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1 Introduction

Scatter radio technology has emerged as a potential key-enabling technology for low-power, cost-
effective communication systems. Radio frequency identification (RFID) applications [1] as well
as bistatic scatter radio wireless sensor networking [2] are the most notorious examples of scatter
radio technology. The rapid advent of Internet-of-Things (IoT) idea leverages the adoption of
scatter radio technology imperative in future applications

Location-awareness has become an essential aspect of ubiquitous sensing applications, for
instance, environmental and agricultural monitoring [3], health-care monitoring [4], and target
tracking scenarios [5]. Localization becomes more challenging in harsh indoor environments
where the use of global position systems (GPS) technology becomes prohibitory due to signal
blockage or/and severe signal attenuation.

Consequently, in harsh indoor environments consisting of massively deployed IoT devices
localization may be conducted by the use of scatter radio technology [6]. However, as classic RFID
can offer reliable communication in a limited range of 5 to 8 meters [7], the vision of establishing
accurate localization over ranges of more than 10 meters is hindered. With more than 140
meters reliable communication range [2], bistatic scatter radio architecture with semi-passive
radio frequency (RF) tags has become the imminent low-cost and low-power communication
technology that can achieve the goal of almost-zero power, increased range indoor localization.
In contrast to classic monostatic architecture, encountered in RFID, in bistatic architecture, the
antenna of transmitter (also called carrier emitter) and receiver (also called reader) are dislocated.

Unfortunately, in harsh indoor environments the presence of walls, doors, and other obstacles
signifies severe signal attenuation and shadowing, which in turn offers biased range estimates.
Thus, the solution of the following two critical problems becomes the core of indoors localization:

• Distinguish between line-of-sight (LoS) and non-line-of-sight (NLoS) signals.

• Mitigate the effects of NLoS signals which usually add a positive bias on range estimates.

The former is known as NLoS identification, and the latter is called NLoS mitigation.
Prior art has utilized plethora of machine learning, as well as, estimation and detection

theory techniques to approach the above two problems. For NLoS identification work in [8] has
utilized the Neyman-Pearson test for angle-of-arrival (AoA), time-of-arrival (ToA), and received
signal strength (RSS) measurements and offered closed form expressions for the probability of
detection and false alarm. Work in [9] utilizes support vector machine (SVM) framework for
classification and regression, as well as hypothesis testing framework for both NLoS identification
and mitigation in the presence of RSS measurements. The choice among machine learning and
hypothesis testing is based on different user requirements and information available.

Related work [10,11] exploits the power efficiency, fine delay resolution, and robust operation
of ultra wide-band (UWB) technology in harsh environments. Work [10] applies SVM classifica-
tion NLoS identification and SVM regression NLoS mitigation, while work in [11] uses relevance
vector machine (RVM) framework for NLoS identification and mitigation. In both works the
choice of features relies directly on functions that depend explicitly on received signal, e.g., en-
ergy and maximum amplitude of the received signal, rise time, mean excess delay, to name a
few.

Due to the limited range of passive RFID, NLoS effects cannot even identified in a tag-to-
software defined radio (SDR) reader distance of 5 meters. Thus, without the limited range as
bottleneck, bistatic scatter radio architecture with almost zero-power semi-passive RF tags is the
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most promising communication technology for indoor localization. In this work a three-device
bistatic scatter radio architecture is employed, that consists of a carrier emitter, a sensor tag
and a SDR reader (see for example Fig. 1). Adopting the aforementioned bistatic architecture,
this work applies state-of-the-art machine learning algorithms for NLoS identification signals
in scatter radio systems. In contrast to [9], where the moments of RSS measurements are
utilized as features, this work applies directly the machine learning classification algorithm in
RSS measurements.

Real experimental RSS ranging measurements are conducted indoors at different distance
setups. Using directly the gathered RSS measurements, this work aims to (a) provide an estimate
path-loss exponents (PLEs) for the nontrivial scatter radio signal model, (b) compare different
machine learning classification algorithms in terms of how good can distinguish LoS and NLoS
measurements. Although, the proposed PLE estimation framework as well as machine learning
classification algorithms will be applied on the context bistatic architecture, both of them can
be trivially applied to the monostatic RFID architecture, as a simpler case of the bistatic one.

In this work four classification algorithms are studied and implemented for the purposes of
NLoS identification; generative Gaussian classification (GGC), logistic regression (LR), SVM
classification and RVM classification. Several type of feature mappings (also known as basis
functions) on the input data are tested on all algorithms. In addition to the above, for SVM
and RVM classification framework, the corresponding kernelized versions are also studied and
implemented. After several simulations, it is deduced that only Gaussian kernels can offer very
small misclassification error. It is concluded that SVM classification method offers the best error
performance acrosss the majority of different feature mapping and kernel simulation scenarios.

1.1 Notation

The set of real numbers is denoted as R, the binary field is denoted as B , {0, 1}. Nonbold
lower-case letters (e.g., x or x) will stand for variables. Vectors and matrices will be denoted by
lower-case (e.g., x) and capital (e.g., A), respectively, bold characters. Symbol (·)> denotes the
transpose a of a vector or matrix. The inverse of an invertible matrix A is denoted A−1. For a

vector x =
[
x[1] x[2] . . . x[L]

]> ∈ RL, we will adopt notation x[l] to denote its lth element, while
notation x[l1:l2] will stand for the sub-vector of x that consists of the l1th up to l2th elements of
it. Similarly, for a matrix X, X[l1,l2] will denote its (l1, l2)th entry. The all zeros (ones) vector of
size L will be denoted by 0L (1L). The all zeros (ones) matrix of size L1 × L2 will be denoted
by 0L1×L2 (1L1×L2). The L × L identity matrix is denoted by IL. Notation tr{A} is the trace
operator of square matrix A. Symbol ⊗ denotes the Kronecker product, which for two matrices
A ∈ RL1×L2 and B ∈ RL3×L4 is defined as

R(L1·L3)×(L2·L4) 3 C = A⊗B =


A[1,1]B A[1,2]B · · · A[1,L2]B
A[2,1]B A[2,2]B · · · A[2,L2]B

...
...

. . .
...

A[L1,1]B A[L1,2]B · · · A[L1,L2]B

 (1.1)
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Figure 1: LoS setup.

Symbol � stands for the Hadamard (or element-wise product); for two matrices A ∈ RL1×L2 and
B ∈ RL1×L2 it is defined as

RL1×L2 3 C = A�B =


A[1,1]B[1,1] A[1,2]B[1,2] · · · A[1,L2]B[1,L2]

A[2,1]B[2,1] A[2,2]B[2,2] · · · A[2,L2]B[2,L2]
...

...
. . .

...
A[L1,1]B[L1,1] A[L1,2]B[L1,2] · · · A[L1,L2]B[L1,L2]

 (1.2)

The sign function is denoted sgn(x) and returns the sign of x ∈ R. Notation 1{x} is the
indicator function of the statement x, that returns 1, if x is true, and zero, otherwise. Gradient
and Hessian operators of a function f(x) are denoted ∇xf(x) and ∇2

xf(x), respectively. The
probability density function (PDF) (probability mass function (PMF)) of a continuous (discrete)
random vector x is denoted as p(x). The PDF or PMF of a random vector x parametrized by
a nonrandom parameter θ is denoted by p(x;θ). The conditional PDF or PMF of a random
vector x parametrized by a random parameter θ is denoted by p(x|θ). The expectation operator
is denoted as E[·]. The Gaussian distribution with mean µ and covariance matrix Σ of a random
vector x is denoted by N (x;µ,Σ).

2 Data Acquisition

Indoors RSS ranging measurements are conducted for K + 1 different distance setups for both
LoS and NLoS environments. The LoS measurement setup can be seen in Fig. 1, whereas the

Table 1: Distance setups for RSS measurements
Setup 0 Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6

sR (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
sk,C (1, 0.95) (6, 0) (7, 0) (8, 0) (9, 0) (10, 0) (11,−0.94)
sk,T (1, 0) (7, 0) (8, 0) (9, 0) (10, 0) (11, 0) (12,0)
dk,CT 0.95 1 1 1 1 1 1.3724
dk,TR 1 6 7 8 9 10 11.04
dk,CR 1.3793 7 8 9 10 11 12
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Figure 2: NLoS setup.

NLoS setup is depicted in Fig. 2. For each setup k ∈ {0, 1, 2, . . . , K}, the position of tag, sk,T,
and carrier emitter (CE), sk,C, was altered, while SDR reader’s position, sR, was not changing.
Table 1 shows the 2D positions of tag, carrier emitter (CE) and SDR reader, as well as the
Euclidean distances of the corresponding links

dk,CT = ‖sk,C − sk,T‖2 (2.1)

dk,TR = ‖sk,T − sR‖2 k ∈ {0, 1, 2, . . . , K}, (2.2)

dk,CR = ‖sk,C − sR‖2, (2.3)

for K = 6. For each distance setup, SDR reader obtained Nmeas LoS and Nmeas NLoS RSS
measurements, with Nmeas = 199, i.e., 2Nmeas RSS measurements per distance setup. Each
measurement has 2 values, the RSS value of CE-to-SDR reader (CR) link and the RSS value of
the compound CE-to-tag-to-SDR reader (CTR) link (this will be explained in more detail at the
next section). As we will explain subsequently, the measurements of setup 0 are utilized only
for the estimation of the path-loss exponents (PLEs) and won’t be utilized for the classification
procedure. Thus our machine learning algorithm utilize 2KNmeas for classification.

SDR reader measures the instantaneous received power from the CE and the tag using
periodogram-based techniques [12]. The power estimation procedure proposed in [12] is tai-
lored to the bistatic scatter radio architecture and respects the signal model of scatter radio,
that differs from classic Marconi radio architectures.

3 Determining Path-Loss Exponent

The measurements for setup 0 will be utilized are reference measurements in order to estimate
the path-loss exponents (PLEs) of links CR, carrier emitter-to-tag (CT), and tag-to-SDR reader
(TR), denoted as νCR, νCT, and νTR, respectively All devices (carrier emitter, tag, and SDR
reader) are equipped with dipole antennas and during the measurements all of them are in the
same height. Thus, in the sequel it is assumed that all devices have the same transmit and
receive antenna gains, i.e., GC = GT = GR = G = 102.15/10.
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3.1 Bistatic Scatter Radio RSS Signal Model

In contrast to conventional Marconi radios, tags employ scatter radio and do not posses receiver
capabilities [2], thus νCT cannot be directly estimated at tag. While the estimation of PLE
associated with CR link is trivial, the estimation of νCT and νTR requires extra machinery that
needs to account the bistatic scatter radio signal model.

The distances of setup 0 are considered as reference distances [13], thus we conduct only
LoS measurements. Accordingly with [13], the received powers associated with link CR and the
compound link CTR at reference distances are assumed to obey the Frii’s law

[miliWatts] P0,CR =
PC G2 λ

(4π)2 (d0,CR)2
, (3.1)

[miliWatts] P0,CTR = PC
G2 λ

(4π)2 (d0,CT)2
s G2 λ

(4π)2 (d0,TR)2
, (3.2)

where P0,CR and P0,CTR are the received power of link CR and compound link CTR, respectively,
for setup 0, PC is the of carrier emitter transmit power, given in miliWatt units, λ is the wave-
length, defined as the ratio of the carrier frequency Fcar, and the propagation velocity c, i.e.,
λ = c/Fcar, and parameter s incorporates microwave- and antenna-related tag parameters, that
change very slowly over time.

For the rest K distance setups, the received power does not necessarily obey the Frii’s law.
In this case the received power for the distance setup k ∈ {1, 2, . . . , K} can be written as [13]

[miliWatts] P
(s)
k,CR = P0,CR

(
d0,CR

dk,CR

)ν(s)CR

, (3.3)

[miliWatts] P
(s)
k,CTR = P0,CTR

(
d0,CT

dk,CT

)ν(s)CT
(
d0,TR

dk,TR

)ν(s)TR

, (3.4)

where s ∈ {LoS,NLoS}. It is known that PLE tends to have larger values when there is no
direct path between transmitter and receiver due to the larger attenuation. The value of PLE is
usually affected by the reflection, diffusion, and scattering characteristics of the environment [13].
Common values for PLE are between 2 and 6.

In practice, there major sources of randomness in the received power of Eqs. (3.3) and (3.4).
These sources come from large-scaling as well as small-scale effects. Large-scale effects depend
the surrounding environment of both transmitter and receiver and vary very slowly with respect
to wavelength λ. Whereas, small-scale effects depend on fading that in turn vary rapidly with
the wavelength.

In this work we focus on the large-scale effects that will cause random variations of the
received power at a given distance due to blockage from objects in the signal path, also known
as shadowing, or even changes in reflecting surfaces and scattering objects. The log-normal
shadowing is employed, according to which, the received power is random variable (RV), given
by

[miliWatts] P
(s)
k,CR = P

(s)
k,CR10

w
(s)
k,CR
10 (3.5)

[miliWatts] P
(s)
k,CTR = P

(s)
k,CTR10

w
(s)
k,CTR
10 (3.6)
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or, equivalently,

[dBm] g
(s)
k,CR = g

(s)
k,CR + w

(s)
k,CR (3.7)

[dBm] g
(s)
k,CTR = g

(s)
k,CTR + w

(s)
k,CTR, (3.8)

for k ∈ {1, 2, . . . , K}, s ∈ {LoS,NLoS}, while for k = 0, we have s = LoS. Random variables

w
(s)
k,l are modeled as zero-mean additive Gaussian RV, with standard deviation σ

(s)
k,l . Clearly,

g
(s)
k,l = 10log10

(
P

(s)
k,l

)
, g

(s)
k,l = 10log10

(
P
(s)
k,l

)
, for l ∈ {CR,CTR}, s ∈ {LoS,NLoS}, and ∀k ∈

{1, 2, . . . , K}; whereas, for the reference setup, we have s = LoS. Standard deviation has dB

units. It is assumed that w
(s)
k,l are independent across different links l ∈ {CR,CTR} and different

distance setups k ∈ {0, 1, 2, . . . , K}. Due to the independence of the measurements the problem

can be decoupled in 2 subproblems: (i) estimate ν
(s)
CR using the probabilistic model of Eq. (3.7)

for both s ∈ {LoS,NLoS} and (ii) estimate {ν(s)CT, ν
(s)
TR} using the probabilistic model of Eq. (3.8)

for both s ∈ {LoS,NLoS}. With this background we now turn our attention on the estimation
of PLEs of links {CR,CT,TR} for the bistatic scatter radio signal model.

3.2 Probabilistic Model for PLEs over Log-Normal Shadowing

At distances dk,CT, dk,CT, dk,TR, for both LoS and NLoS setups, it is assumed all Nmeas mea-
surements collected by the SDR reader are independent and identically distributed (IID) and
adopt the probabilistic model of Eqs. (3.7) and (3.8) for link CR and compound link CTR,
respectively.1 Let the measurements associated with link CR and compound link CTR be de-

noted as g
(s)
k,CR ,

{
g
(n),(s)
k,CR

}Nmeas

n=1
, and g

(s)
k,CTR ,

{
g
(n),(s)
k,CTR

}Nmeas

n=1
, respectively, where according to

the assumptions in Section 3.1, for k = 0 we have s = LoS, while ∀k ∈ {1, 2, . . . , K}, we have
s ∈ {LoS,NLoS}. Hence, for log-normal shadowing, and for known parameters g0,CR, g0,CTR,

σ
(LoS)
0,CR , σ

(LoS)
0,CTR, and

{
σ
(s)
k,CR, σ

(s)
k,CTR

}K
k=1

, s ∈ {LoS,NLoS}, the IID measurements assumption along

with Eqs. (3.7) and (3.8) for k = 0, imply

g
(LoS)
0,CR ∼ N

(
g
(LoS)
0,CR ; g0,CR1Nmeas ,

(
σ
(LoS)
0,CR

)2
INmeas

)
, (3.9)

g
(LoS)
0,CTR ∼ N

(
g
(LoS)
0,CTR; g0,CTR1Nmeas ,

(
σ
(LoS)
0,CTR

)2
INmeas

)
, (3.10)

while ∀k ∈ {1, 2, . . . , K},∀s ∈ {LoS,NLoS}, imply

g
(s)
k,CR ∼ N

(
g
(s)
k,CR;

(
g0,CR − ν

(s)
CR10log10

(
dk,CR

d0,CR

))
1Nmeas ,

(
σ
(s)
0,CR

)2
INmeas

)
, (3.11)

g
(s)
k,CTR ∼ N

g
(s)
k,CTR;

g0,CTR − 10log10

(dk,CT

d0,CT

)ν(s)CT
(
dk,TR

d0,TR

)ν(s)TR

1Nmeas ,
(
σ
(s)
0,CTR

)2
INmeas

 .

(3.12)

1It is remarked that for each distance setup, SDR reader collects the measurements of CR links and CTR
compound link, concurrently.
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Our first goal is to estimate parameters
{
ν
(s)
CR, ν

(s)
CT, ν

(s)
TR

}
, s ∈ {LoS,NLoS}, using the maximum-

likelihood framework. However, there exist an obstacle, because the parameters g0,CR, g0,CTR,

σ
(LoS)
0,CR , σ

(LoS)
0,CTR, and

{
σ
(s)
k,CR, σ

(s)
k,CTR

}K
k=1

, s ∈ {LoS,NLoS}, are also unknown. Due to Eqs. (3.9)

to (3.12), measurements independence across difference distance setups and across links CR and
CTR, and the fact that the parameters are deterministic, the maximum likelihood estimate
(MLE) of all the parameters can be expressed as the following two (decoupled) problems:{

ν̆
(s)
CR, ğ0,CR, σ̆

(LoS)
0,CR ,

{
σ̆
(s)
k,CR

}K
k=1

}
= arg max

ν
(s)
CR,g0,CTR,

σ
(LoS)
0,CR ,

{
σ
(s)
k,CR

}K

k=1

{
p
(
g
(LoS)
0,CR ; g0,CR, σ

(LoS)
0,CR

) K∏
k=1

p
(
g
(s)
k,CR; g0,CR, σ

(s)
k,CR, ν

(s)
CR

)}

= arg min
ν
(s)
CR,g0,CR,

σ
(LoS)
0,CR ,

{
σ
(s)
k,CR

}K

k=1


Nmeasln

(
σ
(LoS)
0,CR

)
+

Nmeas∑
n=1

(
g
(n),(LoS)
0,CR − g0,CR

)2
2
(
σ
(LoS)
0,CR

)2


+

 K∑
k=1

Nmeasln
(
σ
(s)
k,CR

)
+

Nmeas∑
n=1

[
g
(n),(s)
k,CR −

(
g0,CR − ν

(s)
CR10log10

(
dk,CR

d0,CR

))]2
2
(
σ
(s)
k,CR

)2


 (3.13)

and{
ν̆
(s)
CT, ν̆

(s)
TR, ğ0,CTR, σ̆

(LoS)
0,CTR,

{
σ̆
(s)
k,CTR

}K
k=1

}
= arg max

ν
(s)
CT,ν

(s)
TR,g0,CTR,

σ
(LoS)
0,CTR,

{
σ
(s)
k,CTR

}K

k=1

{
p
(
g
(LoS)
0,CTR; g0,CTR, σ

(LoS)
0,CTR

) K∏
k=1

p
(
g
(s)
k,CTR; g0,CTR, σ

(s)
k,CTR, ν

(s)
CT, ν

(s)
TR

)}

= arg min
ν
(s)
CT,ν

(s)
TR,g0,CTR,

σ
(LoS)
0,CTR,

{
σ
(s)
k,CTR

}K

k=1


Nmeasln

(
σ
(LoS)
0,CTR

)
+

Nmeas∑
n=1

(
g
(n),(LoS)
0,CTR − g0,CTR

)2
2
(
σ
(LoS)
0,CTR

)2
+

(
K∑
k=1

[
Nmeasln

(
σ
(s)
k,CTR

)

+
Nmeas∑
n=1

[
g
(n),(s)
k,CTR −

(
g0,CTR − ν

(s)
CT10log10

(
dk,CT

d0,CT

)
− ν(s)TR10log10

(
dk,TR

d0,TR

))]2
2
(
σ
(s)
k,CTR

)2


 , (3.14)

for s ∈ {LoS,NLoS}. Unfortunately, the above two problems do not admit closed form so-

lution. Thus, we will reside to sub-optimal methods on estimating PLEs
{
ν
(s)
CR, ν

(s)
CT, ν

(s)
TR

}
,

s ∈ {LoS,NLoS}, which will offer simpler formulas and comparable root-mean-squared error
with respect to Cramér-Rao lower bound, discussed below.
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3.3 PLE Estimation for CR Link

In order to find a tractable sub-optimal solution for the optimization problem in (3.13), we will
further decouple the minimizations in (3.13). Firstly we estimate g0,CR using only the measure-

ments g
(LoS)
0,CR (ignoring the rest measurements). After obtaining an estimation for g0,CR, ĝ0,CR,

each σ
(s)
k,CR is estimated separately using only the measurements g

(s)
k,CR, s ∈ {LoS,NLoS} (ignoring

the rest measurements). In doing so, we obtain estimates
{
σ̂
(s)
k,CR

}K
k=1

, for s ∈ {LoS,NLoS}. As

a final step, PLE ν
(s)
CR is estimated using measurements g

(s)
1,CR,g

(s)
2,CR, . . . ,g

(s)
K,CR, s ∈ {LoS,NLoS}.

More specifically, g0,CR is estimated as the sample mean of g
(LoS)
0,CR as

ĝ0,CR =
1

Nmeas

Nmeas∑
n=1

g
(n),(LoS)
0,CR . (3.15)

It is noted that after estimating ĝ0,CR, variance σ
(LoS)
0,CTR does not affect the rest unknown param-

eter, and thus its calculation can be omitted.
Afterwards, for each distance setup k ∈ {1, 2, . . . , K}, and each s ∈ {LoS,NLoS}, the stan-

dard deviation σ
(s)
k,CR is computed as the maximum likelihood variance estimator of measurements

g
(s)
k,CR [14] (assuming unknown mean)

σ̂
(s)
k,CR =

√√√√ 1

Nmeas − 1

Nmeas∑
n=1

(
g
(n),(s)
k,CR −

(
1

Nmeas

Nmeas∑
j=1

g
(j),(s)
k,CR

))2

. (3.16)

After estimating the parameters ĝ0,CR and
{
σ̂
(s)
k,CR

}K
k=1

, the following abbreviation are utilized

for s ∈ {LoS,NLoS}

q̂0,CR = ĝ0,CR1KNmeas (3.17)

Σ̂
(s)

CR =



(
σ̂
(s)
1,CR

)2
0 · · · 0

0
(
σ̂
(s)
2,CR

)2
· · · 0

... · · · . . .
...

0 0 · · ·
(
σ̂
(s)
K,CR

)2

⊗ INmeas (3.18)

bCR =

[
10log10

(
d1,CR

d0,CR

)
10log10

(
d2,CR

d0,CR

)
· · · 10log10

(
dK,CR

d0,CR

)]>
⊗ 1Nmeas , (3.19)

and, according to Eq. (3.11) and the fact that the measurements at different distances are

independent, we observe that, given q̂0,CR and Σ̂
(s)

CR, the random vector

g
(s)
CR =

[(
g
(s)
1,CR

)> (
g
(s)
2,CR

)>
. . .

(
g
(s)
K,CR

)>]>
, (3.20)

follows multivariate normal distribution with mean q̂0,CR− ν(s)CRbCR and covariance matrix Σ̂
(s)

CR,
i.e.,

g
(s)
CR ∼ N

(
g
(s)
CR ; q̂0,CR − ν(s)CRbCR, Σ̂

(s)

CR

)
, (3.21)
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with s ∈ {LoS,NLoS}. Thus, a convenient estimator for ν
(s)
CR, would be the MLE of ν

(s)
CR given

the parameters

{
ĝ0,CR,

{
σ̂
(s)
k,CR

}K
k=1

}
expressed as

ν̂
(s)
CR =

(
(bCR)>

(
Σ̂

(s)

CR

)−1
bCR

)−1
(bCR)>

(
Σ̂

(s)

CR

)−1 (
q̂0,CR − g

(s)
CR

)
, s ∈ {LoS,NLoS}. (3.22)

3.4 PLE Estimation for CTR Link

The same estimation procedure with Section 3.3 is followed to obtain a tractable estimator for
ν̂
(s)
CT and ν̂

(s)
TR for both s ∈ {LoS,NLoS}. Thus, accordingly with Eq. (3.15), parameter g0,CTR is

estimated as

ĝ0,CTR =
1

Nmeas

Nmeas∑
n=1

g
(n),(LoS)
0,CTR . (3.23)

Next, following exactly the same reasoning with Section 3.3, for each distance setup the standard
deviation σ

(s)
k,CTR is estimated as

σ̂
(s)
k,CTR =

√√√√ 1

Nmeas − 1

Nmeas∑
n=1

(
g
(n),(s)
k,CTR −

(
1

Nmeas

Nmeas∑
j=1

g
(j),(s)
k,CTR

))2

, (3.24)

As a final step, the following abbreviations are utilized

q̂0,CTR = ĝ0,CTR1KNmeas (3.25)

Σ̂
(s)

CTR =



(
σ̂
(s)
1,CTR

)2
0 · · · 0

0
(
σ̂
(s)
2,CTR

)2
· · · 0

... · · · . . .
...

0 0 · · ·
(
σ̂
(s)
K,CTR

)2

⊗ INmeas (3.26)

bCT =

[
10log10

(
d1,CT

d0,CT

)
10log10

(
d2,CT

d0,CT

)
· · · 10log10

(
dK,CT

d0,CT

)]>
⊗ 1Nmeas (3.27)

bTR =

[
10log10

(
d1,TR

d0,TR

)
10log10

(
d2,TR

d0,TR

)
· · · 10log10

(
dK,TR

d0,TR

)]>
⊗ 1Nmeas (3.28)

BCTR = [bCT bTR]. (3.29)

so that, for given ĝ0,CTR and
{
σ̂
(s)
k,CTR

}K
k=1

,

g
(s)
CTR =

[(
g
(s)
1,CTR

)> (
g
(s)
2,CTR

)>
. . .

(
g
(s)
K,CTR

)>]>
, (3.30)

is a multivariate Gaussian vector, with mean q̂0,CTR −BCTR

[
ν
(s)
CT ν

(s)
TR

]>
and covariance matrix

Σ̂
(s)

CTR, i.e.,

g
(s)
CTR ∼ N

(
g
(s)
CTR ; q̂0,CTR −BCTR

[
ν
(s)
CT ν

(s)
TR

]>
, Σ̂

(s)

CTR

)
, s ∈ {LoS,NLoS}. (3.31)
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Thus, the MLE for PLEs ν
(s)
CT and ν

(s)
TR, given the parameters

{
ĝ0,CTR,

{
σ̂
(s)
k,CTR

}K
k=1

}
(associated

with the measurements g
(s)
CTR) is given by[

ν̂
(s)
CT

ν̂
(s)
TR

]
=

(
(BCTR)>

(
Σ̂

(s)

CTR

)−1
BCTR

)−1
(BCTR)>

(
Σ̂

(s)

CTR

)−1 (
q̂0,CTR − g

(s)
CTR

)
, s ∈ {LoS,NLoS}.

(3.32)

3.5 Comparison with Cramér-Rao Lower Bound with Known Param-
eters

Suppose that the parameters g0,CR, g0,CTR, σ
(LoS)
0,CR , σ

(LoS)
0,CTR, and

{
σ
(s)
k,CR, σ

(s)
k,CTR

}K
k=1

, s ∈ {LoS,NLoS},
are known. Abbreviating

Σ
(s)
l =



(
σ
(s)
1,l

)2
0 · · · 0

0
(
σ
(s)
2,l

)2
· · · 0

... · · · . . .
...

0 0 · · ·
(
σ
(s)
K,l

)2

⊗ INmeas , l ∈ {CR,CTR}, s ∈ {LoS,NLoS}, (3.33)

S(s) =

[
Σ

(s)
CR 0Nmeas×Nmeas

0Nmeas×Nmeas Σ
(s)
CTR

]
, s ∈ {LoS,NLoS} (3.34)

B =

[
bCR 0KNmeas×2

0KNmeas×1 BCTR

]
(3.35)

q =

[
g0,CR1KNmeas

g0,CTR1KNmeas

]
, (3.36)

ν(s) =
[
ν
(s)
CR ν

(s)
CT ν

(s)
TR

]>
, s ∈ {LoS,NLoS} (3.37)

and using the independence of measurements across different links, we deduce that for given

g0,CR, g0,CTR, σ
(LoS)
0,CR , σ

(LoS)
0,CTR, and

{
σ
(s)
k,CR, σ

(s)
k,CTR

}K
k=1

, s ∈ {LoS,NLoS}, vector g(s) ,

[
g
(s)
CT

g
(s)
CTR

]
g(s) ∼ N

(
g(s) ; q−Bν(s),S(s)

)
, s ∈ {LoS,NLoS}. (3.38)

Hence, applying [15, Eq. (3.31)] we conclude that the Fisher information matrix for parameter
vector ν(s) is given by

F(s) =
(
B>
(
S(s)
)−1

B
)
, s ∈ {LoS,NLoS}. (3.39)

Thus according to Cramér-Rao bound (CRB), the mean squared-error of any unbiased estimator

of nonrandom parameter ν(s), say ν̂(s), is lower bounded as

Eg(s);ν(s)

[∥∥∥ν̂(s) − ν(s)
∥∥∥2
2

]
≥ tr

{(
F(s)
)−1}

, s ∈ {LoS,NLoS}. (3.40)
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Figure 3: Left: RMSE of the proposed PLE vector estimator and CRB versus σ for different
values of Nmeas and K = 10. Left: RMSE of the proposed PLE estimator and CRB versus K for
different values of σ and Nmeas = 150.

3.5.1 Numerical Results for PLE Estimation

In this section we compare the root-mean-squared error (RMSE) performance of the PLEs es-
timator described in Sections 3.3 and 3.4 with the CRB associated with perfect knowledge of
the unknown parameters given in (3.40). We simulate the proposed estimator using computer
simulations and study the impact of two parameters:

• The impact of parameter Nmeas for fixed K.

• The impact of parameter K for fixed Nmeas.

We consider a bistatic scatter radio topology parametrized by number K, as follows

sR = 02 (3.41)

sk,T =

[
7 + k
6 + k

]
, k = 1, 2, . . . , K, (3.42)

sk,C =

[
14− k

10

]
, k = 1, 2, . . . , K, (3.43)

with reference distance d0,CR = d0,CT = d0,TR = 1 meters. Otherwise stated the following
parameter values are considered: s = 10−2, Fc = 868MHz, c = 3 · 108m/s, PC = 20mWatt
(or −13dBm). We implicitly assume a scenario where carrier emitter and tag have LoS among
each other, and both of them have NLoS with SDR reader, i.e., s = NLoS. Thus, we choose
as PLE values ν

(NLoS)
CR = 2.75, ν

(NLoS)
CT = 2.08, and ν

(NLoS)
TR = 2.6. We further assume that for

reference distance setup (setup 0) σ
(LoS)
0,CTR = σ

(LoS)
0,CR = 1dB. For simplicity it is also assumed that

the shadowing variance remains the same across different distance setups with values σ
(NLoS)
k,CTR =

1.5σ
(NLoS)
k,CR and σ

(NLoS)
k,CR = σ, ∀k ∈ {1, 2, . . . , K}. The range of values for shadowing variance

considered in this work are taken from realistic RSS measurement testbeds [16].
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Figure 4: Left (Right): Experimental RSS measurements values in dBm for CR (CTR) link as a
function of dk,CR.

Fig. 3-Left shows the RMSE of the proposed PLE vector estimator and CRB as a function of
RSS ranging noise standard deviation, σ, for different values of Nmeas and fixed value of K = 10.
The RMSE of CRB is calculated by taking the square root of the right-hand side (RHS) in (3.40).
It is noted that for fixed number of distance setups, K, as we increase the value of parameter
σ both PLE estimator’s and CRB RMSE decrease. In addition, as we increase the number
of collected measurements per distance setup, Nmeas, the RMSE also decreases. For fixed σ,
the RMSE performance gap between CRB and the proposed estimator is approximately 5-7dB,
which quite remarkable from the estimation accuracy perspective, since the proposed estimator
estimates all unknown parameters first, while the CRB in Eq. (3.40) assumes full knowledge for
the unknown parameters. It is noted that as σ increases, the RMSE performance gap decreases.

In Fig. 3-Right the RMSE performance of the proposed estimator, as well as the CRB are
plotted as function ofK for two different standard deviation values and fixed value forNiter = 150.
It can be seen that for fixed Niter and σ the RMSE decreases slowly. As in the previous case, we
note that for smaller values of ranging noise standard deviation, σ, the RMSE performance gap
between the proposed estimator and CRB is diminished.

3.6 Estimated PLEs for Real Data

If we apply the estimation procedure described in Sections 3.3 and 3.4, to our collected measure-
ments, depicted in Fig. 4, we obtain

ν̂(LoS) = [2.6084 2.0705 2.1838]> , (3.44)

ν̂(NLoS) = [2.7558 2.0666 2.5797]> , (3.45)

which corroborate the efficacy of the proposed PLE estimation framework.
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4 Machine Learning for NLoS Identification

4.1 Creating Input Data and Labels

The input data and the corresponding labels are denoted x(i) ∈ RM and y(i) ∈ B, respectively.
In this work we used the following input data

x(i) =
[
g
(n),(LoS)
k,CR g

(n),(LoS)
k,CTR dk,TR

]>
, i = n+ (k − 1)Nmeas, (4.1)

for n = 1, 2, . . . , Nmeas, and k = 1, 2, . . . , K, associated with LoS measurements and

x(i) =
[
g
(n),(NLoS)
k,CR g

(n),(NLoS)
k,CTR dk,TR

]>
, i = KNmeas + n+ (k − 1)Nmeas, (4.2)

for n = 1, 2, . . . , Nmeas and k = 1, 2, . . . , K, associated with NLoS measurements. Clearly the
specific choice of input data offers M = 3, however, more elements can be added in the input
data x(i). After experimentation over different classification algorithms, we deduced that, adding
more elements in each x(i) increases the computational cost, without improving further the error
performance. The corresponding labels are

y(i) =

{
1, if 1 ≤ i ≤ KNmeas

0, if KNmeas + 1 ≤ i ≤ 2KNmeas,
(4.3)

i.e., the labeling is the “1” for LoS measurements and “0” for NLoS measurements. We conclude
that we have at total Ntot = 2KNmeas data.

4.2 Cross-Validation

Recall that Ntot = 2KNmeas is the total number of data. In this work we adopt a Mont Carlo
(MC)-based cross-validation technique. We define Ntr and Ntest the number of training samples
and testing samples, respectively, assuming that both of them are divided by 2K. We also define
Ntr and Ntest the empty sets.

The idea the following: for each random experiment do the following procedure. For each
distance setup k ∈ {1, 2, . . . , K} choose at random (without replacement) Ntr/(2K) elements
from the set N LoS

k = {(k − 1)Nmeas + 1, (k − 1)Nmeas + 2, . . . , kNmeas} and another Ntr/(2K)
elements from the set NNLoS

k = {(K + k− 1)Nmeas + 1, (K + k− 1)Nmeas + 2, . . . , (K + k)Nmeas}.
Move the chosen elements to the set Ntr, and the rest elements are moved the testing set.
Continue for the rest k. The above procedure is illustrated in the pseudocode in Algorithm 1.
The function ChooseWithoutReplacement(A, b) return b elements chosen without replacement
from set A.

4.3 Feature Mappings

Sometimes, it is more convenient to consider functions applied on the original data points{
x(i)
}Ntot

i=1
. The most common example arises when the data

{
x(i)
}Ntot

i=1
are not linearly sepa-

rable, but if we apply a suitable feature mapping (or basis functions) they may be.
For any x ∈ RM we define

l(x) ,
[
ln
(∣∣x[1]∣∣) ln

(∣∣x[2]∣∣) . . . ln
(∣∣x[M ]

∣∣)]> ∈ RM . (4.4)
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Algorithm 1 Monte Carlo-based Cross-Validation

Input:
{
x(i), y(i)

}Ntot

i=1
, LLoS

tr , LNLoS
tr ∈ {1, 2, . . . , Nmeas} such that LNLoS

tr + LLoS
tr is even natural.

1: Ntr :=
(
LNLoS
tr + LLoS

tr

)
K; Ntest := Ntot −Ntr; Ntr = Ntest = ∅;

2: for k = 1 : K do
3: N LoS

k := {(k − 1)Nmeas + 1, (k − 1)Nmeas + 2, . . . , kNmeas};
4: NNLoS

k := {(K + k − 1)Nmeas + 1, (K + k − 1)Nmeas + 2, . . . , (K + k)Nmeas};
5: ALoS

k :=
{
i1, i2, . . . , iLLoS

tr

}
= ChooseWithoutReplacement

(
N LoS
k , LLoS

tr

)
6: ANLoS

k :=
{
i′1, i

′
2, . . . , i

′
LNLoS
tr

}
= ChooseWithoutReplacement

(
NNLoS
k , LLoS

tr

)
7: Ntr := Ntr ∪ ALoS

k ∪ ANLoS
k ;

8: end for
9: Ntest := {1, 2, . . . , Ntot}\Ntr;

Output: Training set:
{
x(i), y(i)

}
i∈Ntr

, testing set:
{
x(i), y(i)

}
i∈Ntest

After much experimentation over different feature mappings, we deduced that the following
families feature mappings work very well for the classification algorithms studied in bistatic
scatter radio NLoS identification,

φP,D(x) ,

1 (x)> (x⊗ x)> . . . (x⊗ x⊗ · · · ⊗ x)︸ ︷︷ ︸
D times

>

> ∈ RRD,M (4.5)

φL,D(x) ,

1 (l(x))> (l(x)� l(x))> . . . (l(x)� l(x)� · · · � l(x))︸ ︷︷ ︸
D times

>

> ∈ RDM+1, (4.6)

where RD,M =
∑D

d=0M
d. It is worth noting that the feature mapping in (4.5) employees all

the possible coefficients of a polynomial of M variables and degree D. On the other hand, the
feature mapping in (4.6) uses only the powers up to degree D of individual variables. Finally,
the identity feature mapping is given by

φI(x) , [1 x]> . (4.7)

4.4 Kernels

For a given feature mapping φ : RM −→ RL,2 we define an equivalent kernel kφ : RM×RM −→ R

associated with φ as
kφ(x,y) , φ[2:L](x)>φ[2:L](y). (4.8)

The concept of formulating the kernels as an inner product in a feature space allows us to extend
machine learning algorithms by making use of kernel substitution. The general idea is that,
many machine learning algorithms can be formulated in such a way that the feature mapping φ
enters only in the form of scalar products, and thus the scalar product can be replaced with the
equivalent kernel in (4.8). In this work the Gaussian kernel is utilized, defined as

kG
(
x,y;σ2

g

)
, exp

{
−‖x− y‖22

2σ2
g

}
, (4.9)

2In this work we make the convention that for any x ∈ RM , φ[1](x) = 1.
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where tuning parameter σ2
g determines the width of the function around its mode.

4.5 Classification Algorithms

The specific NLoS identification problem requires two classes (or equivalently in detection theory
terms, two hypothesis) in order to be formalized in a proper probabilistic way. Let us the denote
C1 and C0 the classes associated with LoS and NLoS data points, respectively.

The derivation of classification algorithms will take place in the feature space, for generality.
We consider an arbitrary feature mapping on φ : RM −→ RL and we are given a set of fea-
ture vectors along with the corresponding labels (the training data), i.e.,

{
φ
(
x(i)
)
, y(i)

}
i∈Ntr

≡{
φ(i), y(i)

}
i∈Ntr

, and our goal is to to detect the labels of the rest data
{
φ(i)
}
i∈Ntest

. Without any

loss in generality, it is assumed that the training index set, Ntr, consists of all natural numbers
that are less or equal to Ntr, i.e.,

Ntr = {1, 2, . . . , Ntr}. (4.10)

This implies that Ntest = {Ntr + 1, Ntr + 2, . . . , Ntot}. In order to follow a unified algorithmic
presentation framework, it is assumed that the first element of any φ(i), i = 1, 2, . . . , Ntot, is equal
to unity, i.e., φ

(i)
[1] = 1, ∀i = 1, 2, . . . , Ntot.

4.5.1 Generative Gaussian Classification

In generative Gaussian classification the class-conditional densities are assumed to be Gaussian
and our goal is to determine the posterior probabilities. Specifically it is assumed that for any
input feature data point

p
(
φ(i)|C1;µ1,Σ

)
≡ N

(
φ

(i)
[2:L];µ1,Σ

)
(4.11)

p
(
φ(i)|C0;µ0,Σ

)
≡ N

(
φ

(i)
[2:L];µ0,Σ

)
. (4.12)

If we denote p(C1; p) = p, then p(C0; p) = 1− p; it tuns out that the posterior probability of class
of C1 given any input feature point φ(i) takes the following form [17, Eqs. (4.65)–(4.67)].

p
(
C1|φ(i);θ

)
= h

(
(µ1 − µ0)

>Σ−1φ
(i)
[2:L] −

1

2
µ>1 Σ−1µ1 +

1

2
µ>0 Σ−1µ0 + ln

(
p

1− p

))
, (4.13)

where θ = {p,µ1,µ0,Σ} squeezes all the (nonrandom) parameters of the problem and function
h is the logistic sigmoid function, defined as

h(x) ,
1

1 + e−x
=

ex

1 + ex
. (4.14)

Thus the posterior of any data point φ(i) can be determined if we knew the parameters p,µ1,µ0

and Σ in Eq. (4.13). Using the training data points
{
φ(i), y(i)

}
i∈Ntr

, our goal is to find the most

probable parameters p,µ1,µ0 and Σ that maximize the following [17, Eq. (4.71)]

p

({
φ(i), y(i)

}
i∈Ntr

; p,µ1,µ0,Σ

)
=

Ntr∏
i=1

(
p · p

(
φ(i)|C1;µ1,Σ

))y(i)(
(1− p) · p

(
φ(i)|C1;µ1,Σ

))1−y(i)
,

(4.15)

Panos N. Alevizos, TUC ECE School 15



where we have assumed that
{
φ(i), y(i)

}
i∈Ntr

are independent of each other given the parameters.

There exists closed form solution for the parameters in the optimization problem of Eq. (4.15) [17,
pp. 201-202]:

p̂ =

∑
i∈Ntr

y(i)

Ntr

(4.16)

µ̂1 =

∑
i∈Ntr

y(i)φ
(i)
[2:L]∑

i∈Ntr
y(i)

, µ̂0 =

∑
i∈Ntr

(
1− y(i)

)
φ

(i)
[2:L]∑

i∈Ntr
(1− y(i))

(4.17)

Σ̂ =

∑
i∈Ntr

y(i)
(
φ

(i)
[2:L] − µ̂1

)(
φ

(i)
[2:L] − µ̂1

)>∑
i∈Ntr

y(i)

+

∑
i∈Ntr

(
1− y(i)

) (
φ

(i)
[2:L] − µ̂0

)(
φ

(i)
[2:L] − µ̂0

)>∑
i∈Ntr

(1− y(i))
. (4.18)

The posterior of any input feature test point φ(i), i ∈ Ntest, can be calculated by substituting
Eqs. (4.16)–(4.18) in Eq. (4.13) and evaluating it at the specific φ(i). It is noted that, when

matrix Σ̂ is non-invertible, then its pseudoinverse, Σ̂
†
, can be utilized instead in Eq. (4.13).

4.5.2 Logistic Regression

Logistic regression (LR) method does not assume any specific form for the likelihood, but instead,
assumes that posterior distribution of any input feature data point has the following form

p
(
C1|φ(i);θ

)
= h
(
θ>φ(i)

)
, i = 1, 2, . . . , Ntot. (4.19)

The goal of LR classification method is to estimate parameter θ ∈ RL, using the training data{
φ(i), y(i)

}
i∈Ntr

. Assuming that training data
{
φ(i), y(i)

}
i∈Ntr

are independent for any θ and

using that p
(
C1|φ(i);θ

)
= 1 − p

(
C0|φ(i);θ

)
, the goal of LR method reverts on maximizing

(w.r.t. θ) the following objective function

ln

(
p

({
y(i)
}
i∈Ntr

∣∣∣ {φ(i)
}
i∈Ntr

;θ

))
= ln

(
Ntr∏
i=1

p
(
y(i)
∣∣∣φ(i);θ

))
, (4.20)

which is equivalent to

min
θ

{
fLR(θ) , −

Ntr∑
i=1

y(i)ln
(
h
(
θ>φ(i)

))
+
(
1− y(i)

)
ln
(

1− h
(
θ>φ(i)

))}
. (4.21)

The optimization problem in (4.21) is convex in θ and can be solved with a gradient-based or
Newton-based optimization method. In this work the optimization problem in (4.21) is solved
using the Newton method, that requires the gradient and the Hessian matrix of fLR(θ). After
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some elementary algebra we obtain [17]

∇θfLR(θ) =
Ntr∑
i=1

(
h
(
θ>φ(i)

)
− y(i)

)
φ(i) (4.22)

∇2
θfLR(θ) =

Ntr∑
i=1

[(
1− h

(
θ>φ(i)

))
· h
(
θ>φ(i)

)]
φ(i)

(
φ(i)
)>

. (4.23)

Newton method uses the following iterative fixed point equation

θ := θ −
(
∇2

θfLR(θ)
)−1∇θfLR(θ). (4.24)

However, in many cases Hessian matrix in (4.23) is not invertible. To overcome this problem,
the following regularized optimization problem is solved instead of (4.21),

min
θ

{
fLR(θ) +

ζLR
2
‖θ‖22

}
(4.25)

Parameter ζLR is a regularization parameter and its value is determined by the structure of
feature mapping φ. The optimization problem in (4.25) remains convex and, in a similar fashion
with the problem in (4.21), iterative Newton-based method can be employed to find the optimal
θ. The update fixed point equation for the problem in (4.25) takes the following form

θ := θ −
(
∇2

θfLR(θ) + ζLRIL
)−1

(∇θfLR(θ) + ζLRθ) . (4.26)

The above fixed point iteration stops when

dLR(θ) ,
1

2
(∇θfLR(θ) + ζLRθ)>

(
∇2

θfLR(θ) + ζLRIL
)−1

(∇θfLR(θ) + ζLRθ) < εLR, (4.27)

where
√

2dLR(θ) is called Newton decrement at point θ for the objective in (4.25), and εLR is
a predetermined constant to control how close to the optimal objective value the fixed point
iteration stops.

After obtaining the optimal solution for the problem in (4.21) or (4.25), we substitute the
optimal θ? in Eq. (4.19) and we calculate the posterior probabilities for the testing set data.
Finally we apply the following rule

ŷ(i) =

1, if h
(

(θ?)>φ(i)
)
≥ 1

2
,

0, if h
(

(θ?)>φ(i)
)
< 1

2
,

i ∈ Ntest. (4.28)

4.5.3 SVM

The support vector machine (SVM) approaches the classification problem through the concept
of the margin, which is defined to be the smallest distance between the decision boundary and
any of the input feature data samples in the dataset. SVM classify the feature data points in a
non-probabilistic manner, using the following class decision rule

u(i) = u
(
φ(i)
)
, sgn

(
θ>φ(i)

)
= sgn

(
θ[1] + (θ[2:L])

>φ
(i)
[2:L]

)
, i = 1, 2, . . . , Ntot, (4.29)
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and parameter vector θ ∈ RL needs to be estimated so as to maximize the smallest distance
between the decision boundary and any of the input feature data samples in the training dataset.

Let utr =
[
u(1) u(2) . . . u(Ntr)

]>
and ytr =

[
y(1) y(2) . . . y(Ntr)

]>
denote, respectively, the

column-wise concatenation of all u(i) and output labels y(i) associated with the training set. It
turns out that the solution for the SVM problem is the optimal solution of the following convex
optimization problem

minimize
θ,ξ

ζξ>1Ntr +
1

2

∥∥θ[2:L]

∥∥2
2

subject to ξ � 0Ntr (4.30)

utr � (2ytr − 1Ntr) � 1Ntr − ξ,

where ξ is a slack vector that allows some of the training points to be misclassified and ζ is
a regularization parameter that models the trade-off between minimizing training errors and
controlling model complexity. After obtaining the optimal parameter θ? of (4.30), a new testing
data φ(i), i ∈ Ntest, is classified as LoS or NLoS according to

ŷ(i) =
1

2
sgn
(

(θ?)>φ(i)
)

+
1

2
, i ∈ Ntest. (4.31)

Alternatively, the dual version of (4.30) can be employed, which makes use of the equiva-
lent kernel associated with feature mapping φ, kφ(a,b) = φ[2:L](a)>φ[2:L](b), with a,b ∈ RM .
Let Ktr be the kernel matrix associated with the training features, having elements Ktr[i,j] =

kφ
(
x(i),x(j)

)
=
(
φ

(i)
[2:L]

)>
φ

(j)
[2:L], with i, j ∈ Ntr. The dual of convex program in (4.30) is also a

convex program, expressed as

maximize
α

α>1Ntr −
1

2
α>
((

(2ytr − 1Ntr) (2ytr − 1Ntr)
>
)
�Ktr

)
α

subject to ζ1Ntr � α � 0Ntr (4.32)

(2ytr − 1Ntr)
>α = 0,

where ζ is the same regularization parameter with the one in convex program of (4.30). Let α?

be denoting the optimal solution of the dual problem in (4.32). Let

S(α?) ,
{
i ∈ {1, 2, . . . , Ntr} : α?[i] > 0

}
(4.33)

M(α?, ζ) ,
{
i ∈ {1, 2, . . . , Ntr} : 0 < α?[i] < ζ

}
, (4.34)

be the set of support vectors indexes that may have been misclassified and the set of support
vectors indexes that have been classified correctly, respectively. Then the optimal parameter
associated with the constant feature term is given by [17, Eq. (7.37)]

θ?[1] =
1

|M(α?, ζ)|
∑

j∈M(α?,ζ)

(2y(j) − 1
)
−

∑
i∈S(α?)

(
2y(i) − 1

)
· α?[j] ·Ktr[j,i]

 . (4.35)

A test feature φ(i), i ∈ Ntest, is classified as LoS or NLoS according to the following rule [17,
Eq. (7.13)]

ŷ(i) =
1

2
sgn

(
θ?[1] +

Ntr∑
j=1

α?[j] ·
(
2y(j) − 1

)
· kφ
(
x(i),x(j)

))
+

1

2
, i ∈ Ntest. (4.36)
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4.5.4 RVM

The relevance vector machine (RVM) method uses a probabilistic framework, quite similar to the
LR. The main difference is that the parameter θ is treated as Gaussian RV. More specifically,
accordingly with LR method, RVM method models the LoS class posterior as

p
(
C1
∣∣φ(i),θ

)
= h
(
θ>φ(i)

)
, i = 1, 2, . . . , Ntot. (4.37)

Parameter θ is modeled as a Gaussian vector with zero mean and diagonal covariance, i.e.,

p(θ; w) = N (θ; 0L,W
−1) = N

θ; 0L,


1/w[1] 0 · · · 0

0 1/w[2] · · · 0
... · · · . . .

...
0 0 · · · 1/w[L]


 . (4.38)

For a fixed value of hyper-parameter w, RVM method uses the training data
{
φ(i), y(i)

}
i∈Ntr

to

maximize w.r.t. θ the posterior p

(
θ
∣∣∣ {φ(i), y(i)

}
i∈Ntr

; w

)
. It turns out that the latter problem

is equivalent to minimizing w.r.t. θ the following [17, Eq. (7.109)]

min
θ

{
fRVM(θ; w) , −

Ntr∑
i=1

y(i)ln
(
h
(
θ>φ(i)

))
+
(
1− y(i)

)
ln
(

1− h
(
θ>φ(i)

))
+

1

2
θ>Wθ

}
.

(4.39)
Accordingly with LR case, after some algebra, the gradient and the Hessian can be obtained as

∇θfRVM(θ) =

(
Ntr∑
i=1

(
h
(
θ>φ(i)

)
− y(i)

)
φ(i)

)
+ Wθ (4.40)

∇2
θfRVM(θ) =

(
Ntr∑
i=1

[(
1− h

(
θ>φ(i)

))
· h
(
θ>φ(i)

)]
φ(i)

(
φ(i)
)>)

+ W. (4.41)

Since the problem in Eq. (4.39) is convex can be solved by the Newton method. The fixed point
iteration of Newton method for RVM takes the following form

θ := θ −
(
∇2

θfRVM(θ)
)−1∇θfRVM(θ). (4.42)

The above fixed point iteration stops when

dRVM(θ) ,
1

2
(∇θfRVM(θ))>

(
∇2

θfRVM(θ)
)−1∇θfRVM(θ) < εRVM. (4.43)

The optimization problem in (4.39) is solved assuming fixed value for hyper-parameter w.
If we want to optimize with respect to both θ and w we apply the iterative rules found in [17,
p. (355)]. First parameter θ and hyper-parameter w are initialized, and then the following
coupled equations are solved iteratively until the variation on the parameters is less than a
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Table 2: Comparison of Classification Algorithms: Feature Mapping Simulation Cases
Scenario No. Feature Mapping Feature Parameter Values Size of θ

No. 1 φI No parameters 4
No. 2 φP,D D = 2 13
No. 3 φP,D D = 3 40
No. 4 φP,D D = 4 121
No. 5 φL,D D = 2 7
No. 6 φL,D D = 3 10
No. 7 φL,D D = 4 13
No. 8 φL,D D = 5 16
No. 9 φL,D D = 6 19
No. 10 φL,D D = 7 22
No. 11 φL,D D = 8 25
No. 12 φL,D D = 9 28
No. 13 φL,D D = 10 31
No. 14 φL,D D = 11 34
No. 15 φL,D D = 12 37

predetermined threshold εRVM

θ := arg min
θ′
{fRVM(θ′; w)} (4.44)

Σ :=
(
∇2

θfRVM(θ)
)−1

(4.45)

γ[i] := 1− Σ[i,i]w[i], i = 1, 2, . . . , Ntr (4.46)

w[i] :=
γ[i](
θ[i]
)2 , i = 1, 2, . . . , Ntr. (4.47)

After finding the optimal θ using Eqs. (4.44)–(4.47), we plug it in Eq. (4.37), and we apply the
rule in Eq. (4.28) for the test data.

Another interesting attribute of RVM method is that it can be “kernelized”. Specifically, the
kernelized RVM models the posterior of class LoS as

p
(
C1
∣∣φ(i),θ

)
= h

θ[1] +

(
Ntr∑
j=1

θ[j+1]φ
(j)
[2:N ]

)>
φ

(i)
2:N

 = h

(
θ[1] +

Ntr∑
j=1

θ[j+1]kφ
(
x(j),x(i)

))
, (4.48)

i = 1, 2, . . . , Ntot, with kφ defined as in (4.8) and θ ∈ RNtr+1. We can apply the same reasoning
with non-kernelized RVM method described through Eqs. (4.38)–(4.47) and obtain similar results.

5 Numerical Results: Comparison of Classification Algo-

rithms

The following machine learning algorithms are compared for the NLoS identification problem in
bistatic scatter radio:
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Figure 5: Classification algorithms error comparison for the feature mapping scenarios of Table 2.

• generative Gaussian classification (GGC)

• logistic regression (LR)

• support vector machines (SVMs), and

• relevance vector machines (RVMs).

We obtained Nmeas = 199 LoS and NLoS measurements for K = 6 different distance setups.
Thus, we collected Ntot = 2388 data points and the corresponding labels. Each original input
data point is described by Eqs. (4.1) and (4.2). The feature mappings of Section 4.3 are applied
on input data. We use LLoS

tr = LNLoS
tr = 50, thus Ntr = 600 training features are utilized for

training, and the rest, for testing.
Using the cross-validation method described in Section 4.2, we run 1000 Monte Carlo (MC)

experiments. For the mth MC experiment, let
{
ŷ
(i)
a,m

}
i∈Ntest

be denoting the estimated labels on

testing data for algorithm a ∈ {GGC,LR, SVM,RVM} at themth experiment (out of 1000), while
let
{
y(i)
}
i∈Ntest

be denoting the true labels of the testing data. Then, the average misclassification
error for algorithm a after 1000 experiments is given by

ea =
1

1000

1000∑
m=1

(
1

Ntest

∑
i∈Ntest

1
{
ŷ(i)a,m 6= y(i)

})
, a ∈ {GGC,LR, SVM,RVM}, (5.1)

It is noted that, the choice of regularization values for feature mapping cases for LR and SVM
and kernel cases for SVM, as well as the choice of the initialization algorithmic hyperparameter
values for LR and RVM, were chosen empirically after conducting several simulation results.
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Figure 6: Kernelized SVM and RVM error performance as a function of Gaussian kernel param-
eter σ2

g.

Table 2 illustrates the different feature mapping scenarios considered in this work. Regarding
the polynomial feature mapping φP,D in Eq. (4.5), increasing the value of polynomial degree

D, the size of parameter vector θ increases as O
(
MD

)
, which is exponential on the input space

size. Hence, for our case where M = 3, the maximum studied degree for φP,D was D = 4. On
the other hand, the size of parameter vector θ for the log-polynomial feature mapping φL,D in
Eq. (4.6) is O(MD), which is linear in both M and D. In that case the maximum degree D that
we considered was D = 12.

Fig. 5 compares average error performance in (5.1) for a ∈ {GGC,LR, SVM,RVM} for the
feature mappings scenarios given in Table 2. The average error performance for GGC is very poor
over a large number of feature mappings scenarios. The main reason of that poor performance,
is that GGC algorithm assumes Gaussian likelihoods in Eqs. (4.11)-(4.12), which is a strong
assumption, and in our case, this strong assumption does not hold. We observe that SVM
outperforms the other classification algorithms in terms of misclassification error for a wide range
of feature mapping scenarios. The best performance overall schemes and overall feature mapping
scenarios is achieved by SVM in conjunction with log-polynomial feature mapping of degree
D = 11. Very similar error performance is achieved by SVM classification for the polynomial
feature mapping with degree D = 4. For the log-polynomial feature mapping we observe that
the best degree for LR and RVM in terms of average error is achieved for degree D = 10. We
also observe that LR offers very good error performance; in many cases comparable with SVM.
It is noted that GGC and LR methods have quite lower computational cost compared to SVM
and RVM. Thus, LR offers a good error performance-complexity trade-off.
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Next, we compare the kernelized version of SVM method with RVM method. Both algorithms
utilize the Gaussian kernel defined in (4.9). We consider 6 different simulation scenarios; each
scenario utilizes different Gaussian kernel parameter value σ2

g. In contrast to feature mapping
cases, both kernelized algorithms offer size of parameter vector θ equal to Ntr = 601. Observing
Table 2, the above size is quite larger compared to the one offered by any feature mapping
scenario. However, as we noted after much experimentation, this increase in complexity, offers
improved and more stable average error performance for both algorithms. Fig. 6 illustrates the
average misclassification error performance of the algorithms as a function of σ2

g. It is noted
that the best performance of both algorithms is achieved for σ2

g = 1. It is remarked that SVM
slightly outperforms RVM for σ2

g ∈ (0.1, 5], while otherwise, RVM exhibits a large average error
performance gap compared compared to SVM.
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