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Abstract

Ubiquitous sensing anywhere and anytime is envisioned under the general umbrella of

Internet-of-Things (IoT). The objective of this dissertation is to contribute ultra-low-

power IoT technology, exploiting novel concepts in wireless communications and network-

ing.

The first part of this work studies far field radio frequency (RF) energy harvesting,

taking into account non-linearity, sensitivity, and saturation effects of existing rectenna

circuits. The proposed methodology offers the statistics of the harvested power for any

given rectenna model, under mild assumptions. It is also demonstrated that currently-

used linear RF harvesting models in the literature deviate from reality. In the second part,

scatter radio technology, i.e., communication via means of reflection, is studied in order

to enable ultra-low-power radio communication with single-transistor front-ends. The

thesis proposes low-complexity detection schemes as well as decoding techniques for short

block-length channel codes, tailored to coherent, as well as noncoherent reception of scat-

ter radio. The goal was to target resource-constrained, i.e., hardware-“thin”, scatter radio

tags and simple, low-latency receivers. The developed detection and decoding algorithms

are based on composite hypothesis testing framework. Interestingly, it is demonstrated

that the bit error rate (BER) performance gap between coherent and noncoherent recep-

tion depends on the kind of channel codes employed, the fading conditions, as well as

the utilized coding interleaving depth. The third part of this work proposes a multistatic

scatter radio network architecture, based on orthogonal signaling, contrasted to exist-

ing architectures for dyadic Nakagami fading. Orthogonal signaling allows for collision

free multi-user access for low-bitrate tags. It is shown that the proposed scatter radio

architecture offers better diversity order, more reliable reception, as well as better field

coverage, while demonstrating smaller sensitivity to the topology of the scatter radio tags,

compared to existing monostatic architecture. Finally, the last part of the dissertation

studies resource allocation in multi-cell backscatter sensor networks (BSNs). The average

long-term signal-to interference-plus-noise ratio (SINR) of linear detectors is explored for

multi-cell BSNs, and subsequently harnessed to allocate frequency sub-channels at tags.

The proposed resource allocation algorithm is based on the Max-Sum inference algorithm

and its convergence-complexity trade-off is quantified. Experimental studies in an out-

door scatter radio testbed corroborate the theoretical findings of this work. Hopefully,

this thesis will establish the viability of scatter radio for ultra-low-power communications,

enabling critical current and future IoT applications.
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Chapter 1

Introduction

1.1 An Overview on the Internet-of-Things

The continuous evolution of radio frequency identification (RFID) systems, smart sensors,

communication technologies, and Internet protocols flourished the concept of Internet-of-

things (IoT). IoT is a disruptive technology that will play a leading role in ubiquitous

sensing applications and existing industrial systems. In particular, IoT can be considered

as a global network infrastructure composed by a variety of things (or objects or devices)

around us (such as RFID tags, sensors, actuators, mobile phones) which are able to

interact with each other through the Internet in order to reach common goals [1]. The

IoT framework enables these objects to: think, hear, cooperatively execute jobs, share

information, and coordinate decisions by harnessing the underlying IoT technologies, such

as ubiquitous and pervasive computing, wireless communication technologies, sensor and

actuator networks, Internet protocols and applications. IoT devices are required to fit to

customer demands in terms of availability anywhere and anytime.

The IoT framework offers a vast number of opportunities, encapsulating a wide range

of applications that (a) improve the quality of our lives, (b) provide important information

regarding our environment, (c) grow the world’s economy. Some of the most prominent

application examples are mentioned below [1–3]:

• transportation and smart vehicles: assisted driving, smart cars, congestion control,

automatic road tolling, mobile ticketing, augmented maps,

• logistics: supply chain monitoring and item identification,

• industry: manufacturing, inventory and production management,

1



2 Introduction
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Figure 1.1: Precision agriculture: 80-85% of total water is consumed for agriculture pur-
poses, thus, intelligent plant irrigation that could save even a small amount of water, e.g.,
30%, would offer significant socioeconomic impact.

• healthcare: patient identification and authentication, patient tracking, and patient

data collection,

• building management systems: smart homes, smart museums and gyms,

• environmental sensing: precision agriculture, smart farming, environmental moni-

toring, and environmental variables data collection,

• personal and social: social networking, thefts, losses, and historical queries.

Fig. 1.1 discusses the socioeconomic impact of precision agriculture that belongs to the

class of environmental sensing applications.

Each application has specific requirements in terms of: latency, throughput, commu-

nication range, energy, scalability, and security. Depending on the intended application,

designers may have to make a trade-off among these requirements to achieve a good

balance in terms of cost versus benefits.

To attain full functionality and deliver high-quality services to IoT customers, IoT

integrates six key elements.

• Identification: name and match services according to their demand.

• Sensing: data gathering from related objects/sensors within the network along with

the transmission of the collected information to a data warehouse, database, or

cloud.
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• Communication: connectivity establishment between heterogeneous objects to de-

liver specific services. IoT devices should be low-power and offer resiliency against

communication errors.

• Computation: Processing units (e.g., micro-controllers, microprocessors), software

and cloud platforms, and software applications constitute the computational re-

sources of IoT.

• Services: IoT services depend on the IoT application.

• Semantics: the ability (a) to discover and use resources and modeling information

and (b) to recognize and analyze data for efficient decision making, in order to

provide the required services.

To this end, it is worth noting that by the end of 2020, 212 billion IoT smart objects

are expected to be deployed globally [4]. Furthermore, the whole annual economic impact

caused by the IoT is estimated to be in the range of 2.7 trillion to 6.2 trillion dollars by

2025 [5].

1.2 Background and Motivation

It is apparent that RFID systems lie at the heart of IoT—the majority of low-power IoT

devices in many applications are RFID tags [1–3]. RFID tags emit information wirelessly

through the backscatter principle (or simply scatter principle) [6]: A carrier wave (CW)

illuminator emits a radio frequency (RF) continuous CW signal, which in turn impinges

on the antenna of an RF tag. The tag terminates its antenna load according to the data

to be transmitted in order to modulate the information on top of the impinged signal.

The incident signal is modulated and scattered back towards a reader (interrogator) for

decoding and processing. Fig. 1.2 illustrates the concept of backscatter principle.

First, basic scatter radio principles are revisited from electromagnetic theory to obtain

a basic idea of how scatter radios work and what their main characteristics are. The

backscattered electric field values of a tag alternating its antenna termination between M

loads {Zi}M−1
i=0 can be expressed as [7]:

~Em = ~E0 (As − Γm−1), m = 1, 2, . . . , M, (1.1)

where ~E0 is the load-independent backscattered field, As is the antenna structural mode

term, Γm−1, m = 1, 2, . . . , M , are the reflection coefficients corresponding to the M an-
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Figure 1.2: The principle of scatter radio: CW illuminator may be co-located with the
reader or dislocated from the reader. Abbreviations LO, PA, LNA, and ADC, stand
for local oscillator, power amplifier, low-noise amplifier, and analog-to-digital converter,
respectively.

tenna loads and can be expressed as

Γi =
Zi − Z

∗
a

Zi + Za
, i = 0, 1, . . . , M − 1, (1.2)

where Za is the antenna impedance. The most common choice in scatter radio is M = 2

load values, but extension to more than 2 loads can be found in [8, 9].

Since backscatter radios reflect the incident signal without actively radiating, the

energy cost for scattering operation needs to be carefully evaluated. The energy cost

required for backscattering is due to the termination of the antenna between load values,

i.e., backscattering can be realized by the alternation of a simple RF transistor switch.

In addition, a very simple logic unit is embedded at the tags, in order to decide the

modulation type and the transmitted bit sequence according to the sensed data. Overall,

due to the absence of active signal conditioning components, scatter radio communication

demands ultra-low power consumption, in the order of 10 µWatt [10], and at the same

time requires low monetary cost.

Depending on the modulation, tags alter their antenna load accordingly. For instance,

for amplitude-shift keying (ASK), the tag terminates its antenna at load Z0 or Z1 de-

pending on the transmitted bit “0” or “1” over a bit duration T [11]. Whereas, for

frequency-shift keying (FSK), the tag alternates the antenna load between Z0 and Z1 over

a bit duration T with rate f0 for bit “0” and rate f1 for bit “1” [12]. More sophisticated

continuous-phase modulations at tags, such as minimum shift-keying, are designed in [13].

Reflection coefficients Γ0 and Γ1 highly affect the performance of scatter radio systems

in terms of both bit error rate (BER) as well as in terms of RF harvested energy, ex-

plained subsequently. Particularly, increasing the absolute difference of Γ0 and Γ1, i.e.,

the quantity |Γ0 − Γ1|, the amplitude of the backscattered signal is magnified and thus,

the corresponding received signal-to-noise ratio (SNR) is increased (equivalently the BER
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is decreased) [14]. On the other hand, the larger the quantity |Γ0 − Γ1| is, the smaller

the amount of power available to the tag from the CW incident signal becomes , because

the power transfer efficiency from the antenna to the RF harvesting circuit decreases [15].

Thus, an interesting trade-off arises on how the designer should choose parameters Γ0 and

Γ1 [7], and this clearly depends on the studied scatter radio application.

On the other side, Marconi radios (e.g., our cellphones) consist of signal conditioning

RF components, such as amplifiers, mixers or active filters, and thus the total energy

consumption and monetary cost becomes much larger compared to scatter radio commu-

nication.

While many RFID applications have already been established in practice, the poten-

tial of scatter radio technology envisions even more applications requiring ultra-low-power

IoT devices with few meters communication ranges, e.g., healthcare [1, 3], smart build-

ings [16], and environmental sensing [17–19], as well as many others. Target applications

include scenarios where traditional Marconi radios cannot achieve the desired communi-

cation ranges and meet the minimum power consumption constraints within the desired

weight/size requirements [20]. The aforementioned class of applications incorporates two

aspects: (a) prolonged sensor battery lifetime with almost fully autonomous sensor op-

eration and (b) high reliability and several meters tag-to-reader communication range.

Unfortunately, the provided performance of current RFID technology is still limited com-

pared to the demands for large tag-to-reader ranges and high reliability.

The dissertation is motivated by the fact that the status quo of current ultra-low-power

IoT technology can be significantly empowered by the following points of view:

• Semi-Passive Tags

RFID systems utilize passive tags, i.e., tags powered by the illuminating RF field.

The main drawback of current RFID technology is the limited tag-to-reader range,

currently on the order of a few meters [21, 22]. The principal reasons of such poor

communication ranges are: (a) the limited passive tag sensitivity due to stringent

power limitations [15] and (b) the fact that the illuminating signal from the reader

is used for both powering and communication of the tag.

On the other hand, semi-passive tags, i.e., tags powered from external power or

ambient sources, are more suitable for increased scatter radio communication ranges

[13]. As the modulation at tags requires only the termination of the tag/sensor

antenna at different loads, ultra-low power is required for (uplink) communication

purposes. Such small amount of power can be available from a battery or a super-

capacitor [17] or an ambient source, such as solar, RF or their combination [23].
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Figure 1.3: Passive versus semi-passive tag. The first is powered only through the RF
harvested energy scavenged from incident CW signal, while the second is powered through
an ambient source or through a storage unit that may be a battery or super-capacitor.

Fig. 1.3 illustrates the circuit components of passive and semi-passive tags. The

matching network is responsible for reducing the transmission loss from the antenna,

while the control logic is the “brain” of the tag, determining the tag’s communication

operations through software or hardware resources. Note that the storage unit may

contain a harvesting circuit responsible for charging a battery or a super-capacitor,

or alternatively, the powering can be accomplished by an external ambient source.

• Realistic Signal and Wireless Channel Scatter Radio Model

The vast majority of the works conducting physical layer research on scatter radio

assumes Rayleigh fading for CW illuminator-to-tag and tag-to-reader links [24–

26]. Small-scale fading channel models with line-of-sight LoS component, such as

Nakagami or Rician fading [27], are more appropriate for fading modeling in scatter

radio. That assumption is made because wireless scatter radio links are usually

subject to strong LoS signal, due to the relatively small distance involved. Hence, a

major goal of this dissertation is to incorporate realistic small-scale fading channel

models in scatter radio wireless model.

In practice, path-loss is a major source of signal attenuation in scatter radio links,

e.g., CW illuminator-to-tag-to-reader compound link is in practice extremely power-

limited due to strong power loss. Thus, it becomes imperative to incorporate path-

loss-related parameters in scatter radio wireless model, especially for systems operat-

ing with multiple tags, because, in practice, the power level of signals backscattered

from multiple tags is highly different, e.g., it may differ by several dBs. Existing
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works in scatter radio neglect the impact of different path-losses across different

tags in their analysis and, for that reason, this dissertation will attempt to evaluate

multi-tag performance metrics by embodying the impact of path-loss in wireless

scatter radio models.

For scatter radio systems with passive tags, e.g., RFID systems, the energy outage

events at tags have to be accounted on the signal model. An energy outage event

occurs if the incident RF illuminating power at the tag is below its sensitivity power

threshold, i.e., the minimum power level for the tag to harvest adequate power to

operate. Note from Fig. 1.3-Left, that if the RF power at the output of matching

network is below the RF harvester’s sensitivity, then the passive tag is not able

to backscatter. State-of-the-art passive RFID tags exhibit sensitivities around only

−22 dBm [28]. The dissertation aims to seek the parameters affecting the energy

outage in passive tags scenarios trying to provide an in-depth analysis.

• Impact of Nonlinear RF Harvesting Efficiency

Passive (and energy-assisted) IoT devices power their electronics (charge their stor-

age units) by collecting the incident RF power over a specific time period. RF har-

vesting significantly determines the overall performance of passive devices in many

aspects—without adequate energy to power their electronics, IoT devices cannot

operate. Even for energy-assisted devices exploiting RF energy harvesting to charge

their batteries, one would like to assess the expected charging time of the battery to

the minimum level for proper operation. A variety of circuits in the microwave liter-

ature [29–31] has demonstrated three operation input RF power regimes, stemming

directly from the presence of diodes in the rectifier circuits of RF harvester. First,

for input power below the sensitivity of the harvester (i.e., the minimum required

power for the harvester to operate), the harvested power is zero. Second, for input

power between sensitivity and saturation threshold (the power level above which the

output harvesting power saturates), the harvested power is a continuous, nonlinear,

increasing function of input RF power, with response dependent on the operating

frequency and the circuit components of the rectifier. Lastly, for input power above

saturation, the output power of harvester is saturated, i.e., it is constant. Until the

writing of this dissertation, prior art in communication theory studying RF energy

harvesting, was completely neglecting the above three operation regimes and the

harvested power was modeled as a linear function of input power. Any analysis

involving such non-accurate modeling may offer results that probably deviate from

reality. Hence, accurate modeling of RF harvested power as well as the extent of
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Figure 1.4: The asymmetries in scatter radio links can mitigate the large path-loss atten-
uation in scatter radio communications.

the mismatch between prior art and industry-level RF harvesting models deserves

further investigation.

• Venture of Alternative Scatter Radio Network Architecture

Let us first present the following toy example: consider a scatter radio point-to-

point scenario with a CW illuminator or carrier emitter (CE), a tag, and a reader

placed co-linearly, i.e., CE and reader are dislocated. CE-to-reader range is 100

meters and the tag is placed somewhere on the line segment formed by the CE

and the reader. Suppose that x is the CE-to-tag distance. Then, for free-space

propagation loss, the quantity y(x) =
(

1
x

)2 (
1

100−x

)2
is proportional to the path-loss

at the reader under backscattering operation, for x ∈ (0, 100). Fig. 1.4 shows that

function y is minimized at x = 50, while as x moves either towards 0 or 100, function

y tends to increase. This simple example discloses that strong asymmetries in

scatter radio link—even for free-space model—can offer 2 orders of magnitude larger

path-loss compared to fully symmetric case of x = 50. The fully symmetric case

corresponds also to the case where CE and reader are co-located, i.e., they belong

to the same device. As a result, in order to realize ultra-low power and massive

wireless connectivity in IoT without compromising on communication ranges, the

scatter radio architecture needs to be redesigned.

There are two different architectures for scatter radio systems, namely the monos-

tatic and the bistatic architectures. In the monostatic architecture [32], the reader

consists of both the CW illuminator and the receiver of signals reflected back from



1.2. Background and Motivation 9

the tags. In the bistatic architecture [33], the CW illuminator and the receiver of

the reflected (backscattered) signals are distinct units, located at different positions,

offering flexible network topologies with asymmetric scatter radio links. At the net-

work level, the extension of bistatic architecture is the multi-bistatic (or simply

multistatic) architecture with several low-cost CEs available, two orders of mag-

nitude cheaper than the reader. Simple intuition as well as the observation from

Fig. 1.4 indicate that due to the morphology of the multistatic architecture, each tag

can be close to a CE with high probability, offering two desired implications: (a) the

tag-to-reader coverage is increased with high probability and (b) using passive tags

that harvest RF energy from the illuminating emitters, the probability of energy

outage during the energy harvesting phase can be decreased. A detailed compari-

son among these two scatter radio architectures will be the subject of a chapter in

this dissertation.

• Resource Allocation in Backscatter Sensor Networks

Wireless sensor networks (WSNs) have been emerged as a notorious framework

to support any environmental sensing application. The key components of low-

power, large-scale WSNs are: (a) the ultra-low-power devices (sensors) that sense

and send the data and (b) the fusion centers (cores) that gather the measured

data and cooperate with each other for data extraction, state estimation, or smart

decision making. To achieve the ultimate goal of WSNs, i.e., extended coverage,

high-scalability, and complete energy autonomy, any type of resource allocation at

the cores or the sensors is prerequisite.

Current research trend [13, 31, 34–36] advocates backscatter radio as a candidate,

key-enabling technology for future ultra-low-power, large-scale WSNs. Exploiting

the aspects discussed in the previous paragraphs, a sequel of recent works in scatter

radio, targeting directly on WSN applications, has experimentally demonstrated

more than one hundred meters tag-to-reader communication ranges [37–39]. As the

scatter radio is capable to confront the issue of limited range, scatter radio tags could

replace the conventional ultra-low-power sensors, leading to the notion of multi-cell

backscatter sensor networks (BSNs), where each core forms a backscatter cell and

decodes the signals from the tags within its cell. Any resource allocation algorithm

executed at the cores of BSNs should respect the peculiarities of the scatter radio

wireless and signal model.

However, as multi-cell BSNs are completely unexplored topic up to this time, cap-

italizing upon point-to-point scatter radio prior art and designing signal reception
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algorithms as well as resource allocation algorithms that both account the idiosyn-

crasies of multi-cell BSNs would be an interesting research avenue.

1.3 Objectives

In order to offer a tangible improvement of IoT technology under the prism of wireless

communications and networking, the objectives of this dissertation are:

1. Accurate RF energy harvesting analytical tools for ultra-low-power IoT devices

equipped with any rectifier circuit.

2. Enhanced scatter radio receiver designs for extended tag-to-reader communication

ranges, which could be harnessed with ultra-low complexity at current and future

ultra-low-power IoT devices.

3. New scatter radio network architecture with extended coverage and reliability that

could potentially leverage the adoption of scatter radios in network-based, ultra-

low-power IoT applications.

4. Resource allocation for multi-cell backscatter sensor networks that will reduce in-

stallation cost and extend network coverage of future environmental sensing appli-

cations.

For each of the above topics a unique chapter is devoted.

1.4 Contributions and Organization

The contributions of each chapter can be summarized as follows:

• Chapter 2 offers nonlinear far field RF energy harvesting in wireless communi-

cations. A linear RF harvesting model is commonly assumed in recent simultane-

ous wireless information and power transfer (SWIPT) research, i.e., RF harvested

power is assumed to be a scaled version of the input (received) power. However,

rectifiers typically used in the microwave and RFID industry are nonlinear devices;

thus, RF harvesting efficiency is not constant, but depends on the input power. To

approximate the real energy harvesting model, a piece-wise linear approximation

is proposed, amenable to closed-form and tuning-free modeling. Three example

scenarios are considered, including duty-cycled (non-continuous), as well as contin-

uous SWIPT, comparing linear with industry-level non-linear RF harvesting. It is
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demonstrated that the proposed methodology, even though simple, offers exact per-

formance for all studied metrics. On the other hand, linear RF harvesting models

offer results that deviate from reality, and in some cases are off by one order of

magnitude.

• Chapter 3 proposes physical layer receiver designs for scatter radio point-to-point

systems. We provide a detailed exposition of a scatter radio signal model that

accounts for all microwave, tag-related, and wireless channel parameters of FSK

modulation at tags. The latter is ideal for the power-limited regime, which in turn

is the operating regime of ultra-low-power IoT devices. Coherent and noncoherent

detection and decoding algorithms tailored to the scatter radio FSK signal model

are designed. For fixed energy budget per packet, noncoherent schemes do not

sacrifice energy per information bit as the requirement for training bits of coherent

schemes (for channel estimation) at the packet preamble is eliminated. Noncoherent

symbol-by-symbol and sequence detectors based on hybrid composite hypothesis test

(HCHT) and generalized likelihood-ratio test (GLRT), for the uncoded case and

noncoherent decoders based on HCHT, for small block-length channel codes, are

derived. Small block-length reduces significantly the processing delay at the reader

when multiple tags need to be processed simultaneously. Diversity order analysis

under a fully interleaved coherent coded system reveals that the offered diversity

order of maximum-likelihood (ML) decoder for scatter radio FSK is the same with

ML text-book decoders of Marconi radios. BER performance comparison under

Rician, Rayleigh or no fading, taking into account fixed energy budget per packet is

presented. It is shown that the performance gap between coherent and noncoherent

reception depends on what channel codes are employed, the fading conditions (e.g.,

Rayleigh vs Rician vs no fading), as well as the utilized coding interleaving depth; the

choice of one coding scheme over another depends on the wireless fading parameters

and the design choice for extra diversity vs extra power gain. Finally, experimental

outdoor results at 13 dBm transmission power corroborate the practicality of the

proposed detection and decoding techniques for extended range scatter radios.

• Chapter 4 compares two scatter radio network architectures. Specifically, mono-

static and multistatic scatter radio network architectures are evaluated and con-

trasted in terms of several multi-tag performance metrics. The dyadic Nakagami

fading model is employed to model the small-scale fading in scatter radio links and

the path-loss is also incorporated in the power of fading random variables, filling a

gap in the literature. Maximum-likelihood coherent and noncoherent BER, diversity
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order, average information and energy outage probability comparison is performed,

under the dyadic Nakagami fading. The proposed closed-form expressions for av-

erage energy and information outage probability are evaluated over an ensemble

of square grid topologies, offering a topology-independent performance assessment.

Judicious simulation study over realistic small-scale fading and path-loss models re-

veals that not only the BER decay is doubled in a multistatic architecture compared

to a monostatic one, but also, energy and information outage events are less frequent

in multistatic systems due to the flexible morphology of the multistatic architecture.

It is shown that the multistatic architecture can offer very low BER in fully asym-

metric scatter radio network topologies where monostatic architecture cannot be

defined. As a contribution of [40], a proof-of-concept digital multistatic, scatter

radio WSN with a single receiver, four low-cost emitters and multiple ambiently-

powered, low-bitrate tags, is experimentally demonstrated (at 13 dBm transmission

power), covering an area of 3500 m2.

• Chapter 5 focuses on multi-cell backscatter sensor networks (BSNs), consisting of

few cores that employ conventional Marconi radio technology and act as fusion cen-

ters, as well as scatter radio sensors that are responsible for measuring environmental

quantities and transmission of the sensed information towards the cores. A com-

plete multi-cell scatter radio signal and wireless model is offered incorporating path-

losses, tag- and microwave-related parameters over a dyadic Rician fading channel.

A new multi-tag channel estimation closed-form solution is proposed based on a

linear minimum mean-squared error (LMMSE) estimator. The average long-term

signal-to-interference-plus-noise ratio (SINR) of maximum-ratio combining (MRC)

and zero-forcing (ZF) linear detectors is found and subsequently harnessed to allo-

cate frequency sub-channels at tags. The proposed resource allocation algorithm is

based on the Max-Sum algorithm, obtained from the inference literature, adhering

to simple message-passing update rules. The algorithm is very lightweight and con-

verges to the optimal solution within very few iteration steps. Detailed simulation

results reveal that the ZF detector is more suitable for large-scale BSNs when mul-

tiple receiver antennas can be exploited at the receiver side, capable to cancel out

the intra-cell interference. It is found that the proposed Max-Sum algorithm offers

remarkable convergence-complexity trade-off as it is very lightweight and converges

to the desired optimal solution very quickly.

Finally, chapter 6 contains the dissertation’s concluding remarks and examines future

research directions.



Chapter 2

Nonlinear Far Field RF Energy

Harvesting Analysis

This chapter focuses on far field RF energy harvesting in contemporary wireless com-

munications systems. In contrast to the vast majority of wireless communications RF

harvesting prior art which neglects the nonlinearities imposed by the presence of the

diodes in rectifier circuits, we model the RF harvested power as an arbitrary nonlinear,

continuous, and non-decreasing function of received power, taking into account sensitivity

and saturation effects. To approximate the real energy harvesting model, a piece-wise lin-

ear approximation is proposed, amenable to closed-form and tuning-free modeling. Three

performance metrics are examined, comparing how close to real industry-level nonlinear

RF harvesting is the proposed piece-wise linear approximation versus the linear baseline

RF harvesting models from prior art. It is demonstrated that the proposed methodol-

ogy, even though simple, offers exact performance for all studied metrics. On the other

hand, linear RF harvesting modeling results deviate from reality, and in some cases the

gap is more than an order of magnitude. The material of this chapter is filling a gap in

recent wireless communications RF harvesting literature, opening new research avenues

for practical RF harvesting in Internet-of-Things.

Related Work

Simultaneous wireless information and power transfer (SWIPT) literature within the wire-

less communications theory research community has mainly studied protocol architecture

problems as well as fundamental performance metrics. Protocols that split time or power

among RF energy harvesting and information transfer modules within a radio terminal are

studied in [41], so that specific communication tasks are performed, while the radio ter-

13
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Figure 2.1: Harvested power versus input power for the baseline models. Also an arbitrary
harvesting model is depicted where harvested power is an increasing function of input
power.

minal is solely powered by the receiving RF signal. The aspect of wireless power transfer

in wireless communication imposes additional energy harvesting constraints [42]. Multi-

user orthogonal frequency-division multiplexing (OFDM) systems with SWIPT-based re-

source allocation algorithms have been proposed in [43, 44]. The objective in [45] is to

maximize the total harvested power at the energy harvesting receiver under minimum

required signal-to-interference-plus-noise ratio (SINR) constraints, whereas the authors

in [46] study the minimization of total transmit power under energy harvesting and min-

imum required signal-to-interference-plus-noise constraints. Both [45, 46] formulated the

underlying optimization problems as semidefinite programs and solved them with stan-

dard convex optimization algorithms. The above works are a small sample of existing

RF harvesting literature in wireless communications, which is vastly evolving. Recent

reviews such as in [47–51], offer the current perspective of the wireless communications

theory community in RF harvesting.

RF energy harvesting suffers from limited available density issues, typically in the

regime of sub-microWatt incident RF power, e.g., work in [52] reports 0.1µWatt/cm2

from cellular GSM base stations. In sharp contrast, other ambient energy sources like sun,

motion or electrochemistry can offer high density power.1 Such limited RF density in RF

energy harvesting can power only ultra low-power devices in continuous (non-duty-cycled)

operation or low-power devices, such as low-power wireless sensors in delay-limited, duty-

cycled operation, since sufficient RF energy must be scavenged before operation. That

1For example, sun can offer 35mW/cm2 using a low-cost 5.4 cm × 4.3 cm polycrystalline blue solar
cell [53], while electric potential across the stem of a 60 cm-tall avocado plant can offer 1.15µWatt at
noon time [18].
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is due to the fact that far field wireless power decreases very fast with distance, e.g.,

with the second power of distance in free space, while RF harvesting circuits have limited

sensitivity as well as efficiency (explained in more detail subsequently).

The most critical component of far field RF harvesting circuits is the rectenna, i.e.,

the antenna and the rectifier that converts the input RF signal to DC voltage. The

rectifier circuit usually consists of one or multiple diodes, imposing strong nonlinearity

on the conversion of power. It has been noticed that the rectifier circuit operates in

three input RF power regimes, stemming directly from the presence of diodes. First, for

input power below the sensitivity of the harvester (i.e., the minimum power for harvesting

operation), the harvested power is zero. Second, for input power between sensitivity and

saturation threshold (the power level above which the output harvesting power saturates),

the harvested power is a continuous, nonlinear, increasing function of input RF power,

with response depending on the operating frequency and the circuit components of the

rectifier. Lastly, for input power above saturation, the output power of harvester is

saturated, i.e., it is constant. The above three characteristic regimes are depicted in

Fig. 2.1, with the black-dashed line curve, which adhere to a variety of circuits in the

microwave literature [29–31]. The nonlinearity of harvested power as a function of input

power is also verified by the fact that conversion efficiency in the microwave circuits

literature is always referenced to specific level of input power. Unfortunately, the vast

majority of recent communications theory SWIPT papers, for simplification purposes,

adopts linear input-output models for harvested power as a function of input RF power,

also depicted with red-solid curve in Fig. 2.1.

A diode-based rectifier and broadband rectenna are designed in [54] for energy harvest-

ing from ambient RF signals, while work in [55] designed monopole dual-band antenna for

RF energy harvesting. The authors in [29] study far field powering issues for low-power

and low-duty cycle wireless sensors with low incident power density; rectenna designs are

also proposed. Work in [56] demonstrated conversion efficiencies on the order of 85% op-

erating at 40 dBm input power. Such input power values are very infrequent in practical

far field RF energy harvesting, because input power usually cannot exceed 0 to 10 dBm.

Work in [57] has demonstrated efficiencies on the order of 10% at −10 dBm input power,

while rectenna designs for batteryless backscatter sensor networks offering efficiency 28%

at −20 dBm input power can be found in [31].

Contributions

This chapter contributes to far field RF energy harvesting in the following aspects:
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• For the first time in the wireless communications literature, harvested power can

be modeled as an arbitrary nonlinear, continuous, and non-decreasing function of

input RF power, accounting for: (i) the nonlinear efficiency of realistic rectenna

and RF harvesting circuits, (ii) the zero response of energy harvesting circuit for

input power below sensitivity, and (iii) the saturation effect of harvested power.

Two conversion efficiency models from prior art circuits are used as examples and

compared to linear (baseline) models.

• A piece-wise linear approximation of the actual harvested power is harnessed to

calculate/approximate harvested power probability density function (PDF) and cu-

mulative distribution function (CDF) statistics; harvested power is the product of

the nonlinear harvesting efficiency and the input power. It is found that for choosing

the data points in the utilized approximation uniformly, to achieve approximation

accuracy at least ǫ, at most O(
√

1/ǫ) number of data points is required.

• Three performance metrics are studied: (i) expected harvested energy at the re-

ceiver, (ii) expected charging time at the receiver (time-switching scenario), and

(iii) successful reception at interrogator for passive RFID tags (power-splitting sce-

nario). What can be attributed as the most important contribution of this chapter

is the demonstration that the proposed methodology offers exact performance with

the real, arbitrary nonlinear energy harvesting model for all studied metrics, without

requiring tuning of any parameter. On the contrary, linear RF harvesting modeling

results deviate from reality, and in some cases they deviate from the real model by

one order of magnitude.

Organization and Notation

The rest of this chapter is organized as follows. Section 2.1 introduces the channel model,

Section 2.2 presents fundamentals of far field RF energy harvesting, explaining the in-

herent nonlinearity in real energy harvesting models. Section 2.3 presents the proposed

approximation methodology, while Section 2.4 compares baseline, linear harvesting models

used in prior art with the nonlinear harvesting model, under three performance metrics.

The set of natural and real numbers is denoted as N and R, respectively. For natural

number N ∈ N, set {1, 2, . . . , N} is denoted as [N ] , {1, 2, . . . , N}. Symbol ⊙ stands

for the component-wise (Hadamard) product and (·)⊤ denotes the transpose of a vec-

tor. Notation CN (0, σ2) stands for circularly-symmetric complex Gaussian distribution

of variance σ2. For a continuous random variable (RV) x, supported over interval set

X , the corresponding PDF and CDF is denoted as fx(·) and Fx(x0) =
∫

y∈X :y≤x0
fx(y)dy,
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respectively. The expectation and variance of g(x) is denoted as E[g(x)] and var[g(x)] ,

E[(g(x) − E[g(x)])2], respectively. The Dirac delta function is denoted as ∆(·). The

probability of event A is denoted as P(A). For a function g, domg denotes its domain.

2.1 Wireless System Model

A source of radio frequency (RF) signals illuminates with wireless power an information

and far field RF energy harvesting (IEH) terminal. A dedicated power source is assumed

for the source of RF signals, while the far field IEH terminal harvests RF energy from the

incident signals on its antenna and can operate as information transmitter or receiver.

Narrowband transmissions are considered over a quasi-static flat fading channel. The

downlink received signal at the output of matched filter at IEH terminal for a single

channel use is given by:

y =
√

PT Ts L(d) h s + w, (2.1)

where s is the transmitted symbol, with E[s] = 0 and E [|s|2] = 1, PT is the average

transmit power of RF source, Ts is the symbol duration, h is the complex baseband

channel response, L(d) is the path-loss coefficient at distance d, and w ∼ CN (0, σ2
d) is the

additive white complex Gaussian noise at the IEH receiver.

A block fading model is considered and the channel response changes independently

every coherence block of Tc seconds. Symbol h(n) denotes the complex baseband channel

response at the n-th coherence block. Every coherence block, RF source transmits a packet

whose duration spans Tp seconds, which in turn spans several symbols, with Tp ≤ Tc.

During the n-th coherence time block, the received RF input power (simply abbreviated

as input power) at the IEH terminal is given by:

P
(n)
R = E

[
|s|2

]
PT L(d)

∣∣∣h(n)
∣∣∣
2

= P(d)γ(n), (2.2)

where P(d) , PT L(d) and γ(n) ,
∣∣∣h(n)

∣∣∣
2
. Note that P

(n)
R is a function of γ(n), i.e., P

(n)
R ≡

P
(n)
R (γ(n)). Due to the definition of channel coherence time block, RVs

{
h(n)

}
, across

different values of n, are independent and identically distributed (IID). It is also assumed

that RVs γ(n) are drawn from a continuous distribution, denoted as fγ(n)(·), supported over

the non-negative reals, R+. Hence, the corresponding distribution of P
(n)
R has a continuous

density in R+. For exposition purposes, for any natural number N , the vector of input

power coefficients up to coherence block N is defined as pN ,
[
P

(1)
R P

(2)
R . . . P

(N)
R

]⊤
.

The results for the PDF and the CDF of harvested power will be offered without having

in mind a specific type of fading distribution. For specific numerical results, Nakagami
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fading will be considered, as it can describe small-scale wireless fading under both line-

of-sight (LoS) or non-line-of-sight (NLoS) scenarios. Under Nakagami fading, the PDF of

γ(n) follows Gamma distribution with shape parameters
(
m, Ω

m

)
, i.e.,

fγ(n)(x) =
(

m

Ω

)
m xm−1

Γ(m)
e− m

Ω
x, x ≥ 0, (2.3)

where Γ(x) =
∫∞

0 tx−1e−tdt denotes the Gamma function, while Nakagami parameter m

has to satisfy m ≥ 1
2
. Fading power parameter Ω satisfies Ω = E

[∣∣∣h(n)
∣∣∣
2
]

= E

[
γ(n)

]
. For

the special cases of m = 1 and m = ∞, Rayleigh and no-fading is obtained, respectively. For

m = (κ+1)2

2κ+1
the distribution in Eq. (2.3) is approximated by Rice, with Rician parameter

κ [27]. The corresponding CDF of γ(n) is given by:

Fγ(n)(x) = 1 −
∫ ∞

x
fγ(n)(y)dy = 1 −

Γ
(
m, m

Ω
x
)

Γ(m)
, x ≥ 0, (2.4)

where Γ(α, z) =
∫∞

z tα−1e−tdt is the upper incomplete gamma function. For exposition

purposes, Ω = 1 is assumed and thus, input power P
(n)
R in Eq. (2.2) follows Gamma

distribution with shaping parameters
(
m, P(d)

m

)
.

2.2 Fundamentals of Far Field RF Energy Harvesting

This section offers fundamentals in RF energy harvesting, filling a gap largely overlooked in

recent wireless communications theory prior art. The principal component of the far field

RF energy harvesting circuits is the rectenna, i.e., antenna and rectifier, that converts the

incoming AC RF signal to DC under a completely nonlinear operation, commonly realized

by one or more diodes. The efficiency is improved by increasing the number of diodes,

but at the same time, the sensitivity of the harvester is reduced. Fig. 2.2 depicts typical

examples of rectifier circuits found in the literature. Matching network is responsible for

reducing the transmission loss from the antenna. A boost converter usually follows the

rectifier, in order to amplify the required voltage and also offer maximum power point

tracking (MPPT), exactly because the output of the rectifier is a nonlinear function of

the rectifier input power P
(n)
R . Accurately modeling the nonlinearities of the RF harvester

becomes mandatory in information and wireless power transfer, and that motivates the

work in chapter.
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Figure 2.2: Architecture of far field RF energy harvesters. Typical rectifier circuits with
a single diode [31] (upwards) or multiple diodes [58] (downwards) are also depicted, em-
phasizing the nonlinear relationship between harvested and input RF power.

2.2.1 Realistic Far Field RF Energy Harvesting Model

The harvested power at the output of the RF harvesting circuit is modeled as:

P
(n)
har ≡ P

(n)
har

(
P

(n)
R

)
= p

(
P

(n)
R

)
, (2.5)

where

p(x) ,





0, x ∈ [0, P
sen
in ],

η(x) · x, x ∈ [Psen
in , P

sat
in ],

η(Psat
in ) · P

sat
in x ∈ [Psat

in , ∞).

(2.6)

Function η
(
P

(n)
R

)
is the harvesting efficiency as a function of input power, defined over

the interval Pin , [Psen
in , P

sat
in ]. P

sen
in is the harvester’s sensitivity and for any input power

value smaller than the sensitivity the harvested power is zero, i.e., p(x) = 0 for x ≤ P
sen
in .

P
sat
in denotes the saturation power threshold of the harvester, after which the harvested

power is constant.

The power harvesting function p : R+ −→ R+ is assumed to be:

1. non-decreasing, i.e., x < y =⇒ p(x) ≤ p(y), and

2. continuous.

Note that the assumptions above, even though mild, are in full accordance with harvested

power curves reported in the RF energy harvesting circuits prior art, e.g., [29–31,59].
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Figure 2.3: Left: Efficiency of RF harvesting circuit as a function of input power in
dBm for (a) the rectenna proposed in [31], depicted with circles and (b) the PowerCast
module [59] (at 868 Mhz), depicted with squares. Center (Right): Harvested power vs
input power in mWatt for the range of input power values depicted with arrows in the
left figure for the rectenna in [31] (module in [59]).

Fig. 2.3-Left shows two examples of RF harvesting efficiency as a function of input

power in dBm (based on harvesting circuits in [31] and [59]), while Fig. 2.3-Center (Right)

illustrates the harvested power as a function of input power in mWatt, for the rectenna

in [31] (harvester in [59]) and the input power range marked with arrows in Fig. 2.3-Left.

It can be clearly seen that output (harvested) power is a nonlinear function of the input

power. The efficiency functions in Fig. 2.3 are represented as polynomials at the dBm

domain, as follows:

η(x) = w0 +
W∑

i=1

wi(10 log10(x))i, (2.7)

where x takes values in mWatt, W is the degree of the fitted polynomial in dBm, and

{wi}W
i=0 are the coefficients of the polynomials. The degrees of the polynomials for the

fitted functions are W = 10 and W = 12 for the models in [31] and in [59], respectively

(depicted in Fig. 2.3 with dotted and solid curves, respectively). Moreover, input power

intervals Pin = [10−4.25, 101.6] and Pin = [10−1.2, 10] (both in mWatt) are utilized for the

efficiency models in [31] and [59], respectively.

2.2.2 Prior Art (Linear) RF Energy Harvesting Models

Three baseline models are considered for comparison:

Linear (L) Energy Harvesting Model

The first baseline model is the linear (L) model adopted by a gamut of information and

wireless energy transfer prior art. For the linear baseline model, the harvested power (as
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function of P
(n)
R ) is expressed as follows:

p̃L

(
P

(n)
R

)
= ηL · P

(n)
R , ∀P

(n)
R ∈ R+, (2.8)

with constant ηL ∈ [0, 1). The functional form of harvested power in (2.8) is depicted

in Fig. 2.1 with a red solid curve. This model ignores the dependence of RF harvesting

efficiency on input power, the fact that the harvester cannot operate below the sensitivity

threshold, and the fact that the harvested power saturates when input power level is above

a power threshold.

Constant-Linear (CL) Energy Harvesting Model

The harvested power for the constant-linear (CL) baseline model is expressed as:

p̃CL

(
P

(n)
R

)
,





0, P
(n)
R ∈ [0, P

sen
in ],

ηCL · (P
(n)
R − P

sen
in ), P

(n)
R ∈ [Psen

in , ∞),
(2.9)

with constant ηCL ∈ [0, 1). The harvested power curve for the CL model is depicted

with a dash-dotted line in Fig. 2.1. This model takes into account the fact that the

RF harvester is not able to operate below sensitivity threshold P
sen
in , but ignores that RF

harvesting efficiency is a non-constant function of input power and that the harvested

power saturates when the input power level is above P
sat
in .

Constant-Linear-Constant (CLC) Energy Harvesting Model

For constant-linear-constant (CLC) baseline model, harvested power is expressed as func-

tion of input power P
(n)
R through the following expression:

p̃CLC

(
P

(n)
R

)
,





0, P
(n)
R ∈ [0, P

sen
in ],

ηCLC · (P
(n)
R − P

sen
in ), P

(n)
R ∈ [Psen

in , P
sat
in ],

ηCLC · (Psat
in − P

sen
in ), P

(n)
R ∈ [Psat

in , ∞),

(2.10)

where constant ηCLC ∈ [0, 1). The CLC model is depicted in Fig. 2.1 with a dotted curve

and as can be noticed it ignores the nonlinear dependence of harvesting efficiency on input

power.
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...

..
.

Figure 2.4: A graphical illustration of the proposed piece-wise linear approximation for
an RF energy harvesting model, adhering to the mild assumptions of Section 2.2.1.

2.3 Statistics of Harvested Power

Consider the harvesting model in Eq. (2.6) where function p(·) satisfies the assumptions

of Section 2.2.1. A piece-wise linear approximation of function p(·) over interval Pin using

a set of M + 1 points is proposed.

Since harvested power P
(n)
har in (2.6) changes over the range of input power values Pin,

a set of support points {bm}M
m=0 is defined, with b0 = P

sen
in , bm−1 < bm, for m ∈ [M ],

and bM = P
sat
in . The corresponding set of image points {vm}M

m=0 , {p(bm)}M
m=0 satisfy

vm−1 = p(bm−1) ≤ p(bm) = vm, m = 1, 2, . . . , M , with v0 = 0 and vM = p(Psat
in ). Without

loss of generality, 0 = v0 < v1 < v2 < . . . < vM−1 < vM = p(Psat
in ) is assumed. A graphical

illustration of the proposed methodology is provided in Fig. 2.4.

Given the M + 1 points {bm}M
m=0 and {vm}M

m=0, slopes lm , vm−vm−1

bm−bm−1
, m ∈ [M ], are

defined. The utilized methodology approximates function P
(n)
har in Eq. (2.6) through the

following piece-wise linear function:

P̃
(n)
har = p̃

(
P

(n)
R

)
,





0 P
(n)
R ∈ [0, b0],

lm(P
(n)
R − bm−1) + vm−1, P

(n)
R ∈ (bm−1, bm], ∀m ∈ [M ],

vM , P
(n)
R ∈ [bM , ∞).

(2.11)

2.3.1 Statistics of P̃
(n)
har and Approximation Error

This section offers the PDF and CDF of P̃
(n)
har . First, the following is defined:

ξm , F
P

(n)
R

(bm), m = 0, 1, . . . , M, (2.12)
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where F
P

(n)
R

(·) is the CDF of P
(n)
R . In view of Eq. (2.11) it can be deduced that P̃

(n)
har = 0

with probability

P

(
P

(n)
R ≤ b0

)
=
∫ b0

0
f
P

(n)
R

(x)dx = F
P

(n)
R

(b0) = ξ0

=⇒ f
P̃

(n)
har

(x) = ξ0 ∆(x), x = 0. (2.13)

For any m ∈ [M − 1], when P
(n)
R ∈ (bm−1, bm], P̃

(n)
har ∈ (vm−1, vm] holds. Thus, using the

formula for linear transformations in [60] the following is obtained for any m ∈ [M − 1]:

f
P̃

(n)
har

(x) =
1

lm
f
P

(n)
R

(
x − vm−1 + lmbm−1

lm

)
, x ∈ (vm−1, vm]. (2.14)

Note that the last interval P
(n)
R ∈ (bM−1, bM ] requires special attention due to the fact

that the inverse of function p̃(·) does not exist at point vM . Restricting P
(n)
R ∈ (bM−1, bM),

the following holds:

f
P̃

(n)
har

(x) =
1

lM
f
P

(n)
R

(
x − vM−1 + lMbM−1

lM

)
, x ∈ (vM−1, vM). (2.15)

Finally, in view of (2.11), P̃
(n)
har = vM with probability given by:

P

(
P

(n)
R ≥ bM

)
= 1 − lim

x↑bM

F
P

(n)
R

(x)
(a)
= 1 − ξM

=⇒ f
P̃

(n)
har

(x) = (1 − ξM) ∆(x − vM ), x = vM , (2.16)

where (a) stems from the continuity of F
P

(n)
R

(·) as an integral function of a continuous

PDF [61], as well as the definition of ξM . The overall probabilistic description of P̃
(n)
har is

summarized through the following proposition.

Proposition 2.1. For any a given distribution of fading power γ(n), supported on R+,

in view of Eq. (2.2), the corresponding distribution of input power, P
(n)
R , is f

P
(n)
R

(x) =

1
P(d)

fγ(n)

(
x

P(d)

)
. The proposed approximation utilized for harvested power in Eq. (2.11) has

PDF given by:

f
P̃

(n)
har

(x) =





ξ0 ∆(x), x = v0 = 0,

1
lm

f
P

(n)
R

(
x−vm−1+lmbm−1

lm

)
, x ∈ (vm−1, vm]\{vM}, m ∈ [M ],

(1 − ξM) ∆(x − vM), x = vM ,

0, x ∈ R\[0, vM ].

(2.17)



24 Nonlinear Far Field RF Energy Harvesting Analysis

The corresponding CDF of P̃
(n)
har is given by:

F
P̃

(n)
har

(x) =





0 x < 0,

F
P

(n)
R

(
x−vm−1+lmbm−1

lm

)
, x ∈ [vm−1, vm]\{vM}, m ∈ [M ],

1, x ≥ vM .

(2.18)

Proof. The proof of Eq. (2.17) is immediate from Eqs. (2.13)–(2.16). The proof of

Eq. (2.18) is given in Appendix 2.5.

As the next proposition asserts, the proposed approximation in Eq. (2.11) offers ap-

proximation error that decays quadratically with the number of utilized points, even for

a uniform choice of points: {bm}, i.e., bm = bm−1 + δM , m ∈ [M ], with uniform step size

δM , P
sat
in −P

sen
in

M
.

Proposition 2.2 (Approximation Error with Uniform Point Selection). Suppose that we

choose bm = bm−1 + δM , m ∈ [M ], with δM defined as above. If function p(·) is in addition

continuously differentiable, then function p̃(·) in (2.11) restricted over Pin, approximates

p(·) in Pin with absolute error that is bounded as:

∫

Pin

|p(x) − p̃(x)| dx ≤ Cp (Psat
in − P

sen
in )3

8 M2
, (2.19)

where Cp is a constant independent of M .

Proof. The proof is provided in Appendix 2.5.

Thus, at most O
(√

1
ǫ

)
support points are required to approximate function p(·) with

an accuracy of at least ǫ.

2.4 Evaluation

2.4.1 Baseline Comparison: Average Harvested Energy

For baseline comparison, the expected harvested energy is considered. Let UN ,
∑N

n=1 P
(n)
har be denoting the accumulated harvested power up to coherence block N , with

which one can calculate the expected harvested energy over N coherence periods as:

E[Tp UN ] = Tp E

[
N∑

n=1

P
(n)
har

]
= N Tp E

[
P

(n)
har

]
, (2.20)
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for some n ∈ [N ]. The last equality stems from the fact that {P
(n)
har }n∈[N ] are identically

distributed, since {γ(n)}n∈[N ] are also identically distributed. Let us also denote PL,har,

PCL,har, PCLC,har, and P̃har the expected harvested power over a single coherence block

of the following models, respectively: linear in Eq. (2.8), constant-linear in Eq. (2.9),

constant-linear-constant in Eq. (2.10), and proposed in Eq. (2.11).

Under Nakagami fading, the average harvested power for the baseline linear models

can be expressed as:

PL,har = ηL P(d) (2.21)

PCL,har =
∫ ∞

0
p̃CL(x) f

P
(n)
R

(x)dx

= ηCL


P(d)

Γ
(
m + 1, m

P(d)
P

sen
in

)

Γ(m + 1)
−

P
sen
in Γ

(
m, m

P(d)
P

sen
in

)

Γ(m)


 (2.22)

PCLC,har =
∫ ∞

0
p̃CLC(x) f

P
(n)
R

(x)dx

=




P(d)
(
Γ
(
m + 1, m

P(d)
P

sen
in

)
− Γ

(
m + 1, m

P(d)
P

sat
in

))

Γ(m + 1)

+
P

sat
in Γ

(
m, m

P(d)
P

sat
in

)

Γ(m)
−

P
sen
in Γ

(
m, m

P(d)
P

sen
in

)

Γ(m)


 ηCLC, (2.23)

where the expressions above rely on Γ(m+1) = m ·Γ(m), as well as on the following formula

from [62, Eq. (3.381.9)]:

∫ b

a
xi f

P
(n)
R

(x)dx =

(
P(d)

m

)i Γ
(
m + i, m

P(d)
a
)

− Γ
(
m + i, m

P(d)
b
)

Γ(m)
, i ∈ N ∪ {0}. (2.24)

Again with the aid of Eq. (2.24), the expected harvested power over a single coherence

period for the proposed nonlinear model is given by:

P̃har =
M∑

m=1

∫ bm

bm−1

(lm(x − bm−1) + vm−1)f
P

(n)
R

(x)dx +
∫ ∞

bM

vM f
P

(n)
R

(x)dx

=
M∑

m=1




lm P(d)
(
Γ
(
m + 1, m bm−1

P(d)

)
− Γ

(
m + 1, m bm

P(d)

))

Γ(m + 1)
(2.25)

+
(vm−1 − lmbm−1)

(
Γ
(
m, m bm−1

P(d)

)
− Γ

(
m, m bm

P(d)

))

Γ(m)


+

vM Γ
(
m, m

P(d)
P

sat
in

)

Γ(m)
,
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Figure 2.5: Left (Right): Expected harvested energy per coherence block (N = 1) vs
transmission power PT for the rectenna proposed in [31] (harvesting module in [59]).

Numerical Results

The expected harvested energy in Eq. (2.20) is calculated for the actual energy harvesting

model in Eq. (2.6) (obtained through Monte Carlo experiments), as well as for the three

linear baseline models and the proposed approximated nonlinear energy harvesting model.

For the evaluation, the following path-loss model is adopted:

L(d) =

(
λ

d0 4 π

)2 (
d0

d

)ν

, (2.26)

with reference distance d0 = 1, propagation wavelength λ = 0.3456 and path-loss exponent

(PLE) ν.

Fig. 2.5 examines the impact of transmit power PT on average harvested energy over

N = 1 coherence period using Tp = 50 msec packet duration. In Fig. 2.5-Left, PLE ν = 2.1

and m = 5 are set for the rectenna in [31]. It can be seen that the expected harvested

energy performance of the proposed approximation in (2.11) with M + 1 = 1171 points

is the same with the performance of the actual harvesting model for all studied distance

scenarios of d = 4 and d = 10 meters; thus, it is deduced that the approximation with

the specific number M of points is accurate. The slope of the expected harvested energy

for the baseline (linear) schemes is different compared to the exact model, demonstrating

their deviation from the real energy harvesting model.

In Fig. 2.5-Right, under the same small- and large-scale fading parameters as above,

with M + 1 = 2201 approximation points and distance d = 3 m, it is shown that the

linear model is highly inaccurate for the second harvesting circuit module; thus, the

widely adopted linear model cannot capture realistic efficiency models. The performance
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of the other two baseline linear models is closer to the actual harvesting model. However,

the slopes are different and non-negligible mismatch still exists.

2.4.2 Time-Switching RF Energy Harvesting Scenario: Ex-

pected Charging Time

Another important metric is the expected time for the RF harvesting circuit to charge

its storage unit at the minimum required level, before operation. This is graphically

illustrated in Fig. 2.6, showing time-switching RF energy harvesting and communication

protocols, where the terminal (e.g., a wireless sensor) first scavenges the necessary energy

required for transmission and then communicates (e.g., work in [31]). This is a very

common situation in many RF harvesting protocols, since the available power density in

µWatt/cm2 regime is limited and may not be able to retain the power requirements of

the overall apparatus. As a result, a duty-cycled, non-continuous operation is imperative,

as depicted in Fig. 2.6. Thus, the required time to harvest the necessary energy before

operation should be carefully quantified.

An energy harvesting outage event after N coherence periods will occur if the harvested

energy after N coherence periods is below a threshold. The latter is determined by the

capacity of the energy storage unit (e.g., capacitor C) and the operating voltage V of the

harvesting circuit. Thus, the outage event is given by:

ON ,

{
pN ∈ R

N
+ : Tp

N∑

n=1

P
(n)
har

(
P

(n)
R

)
≤ 1

2
C V

2

}

=

{
pN ∈ R

N
+ :

N∑

n=1

P
(n)
har

(
P

(n)
R

)
≤ θth

harv

}
, (2.27)

where the power threshold is determined by the minimum required stored energy for

operation, equal to 1
2

C V
2, as well as the transmission duration Tp, i.e., θth

harv , C V
2

2 Tp
. Note

that the above event depends on the fading coefficients {γ(n)}n∈[N ].

RV N⋆ is defined as the first coherence time index when the accumulated harvested

power is above threshold θth
harv, given that there exist N⋆ − 1 consecutive outage events;

Harvesting COM Harvesting COM

Figure 2.6: Time-switching operation. Necessary energy is harvested before communica-
tion, in duty-cycled, non-continuous applications (e.g., wireless sensors).
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thus, the probability mass function (PMF) of RV N⋆ can be derived as:

P(N⋆ = N) , P

(
ON−1 ∩

{
pN ∈ R

N
+ : P

(N)
har

(
P

(N)
R

)
> θth

harv −
N−1∑

n=1

P
(n)
har

(
P

(n)
R

)})

= P

(
N−1∑

n=1

P
(n)
har ≤ θth

harv ∩ P
(N)
har > θth

harv −
N−1∑

n=1

P
(n)
har

)

(a)
= P

(
UN−1 ≤ θth

harv ∩ UN−1 > θth
harv − P

(N)
har

)

(b)
=
∫

x∈domfPhar

P

(
UN−1 ≤ θth

harv ∩ UN−1 > θth
harv − x

)
f
P

(N)
har

(x)dx

(c)
= FUN−1

(θth
harv) −

∫

x∈domfPhar

FUN−1
(θth

harv − x) f
P

(N)
har

(x)dx, (2.28)

where step (a) used the definition of RV UN , i.e., UN−1 =
∑N−1

n=1 P
(n)
har , step (b) exploited

the law of iterated expectation and the fact that UN−1 and P
(N)
har are independent, and

step (c) employed the CDF definition. Note that the expression above requires the CDF

of UN−1, which will be offered subsequently, while PDF of P
(N)
har can be given with the

methodology of Section 2.3.1.

The expected value of discrete RV N⋆ is given by:

N
⋆

=
∞∑

N=1

N · P(N⋆ = N). (2.29)

N
⋆

can be interpreted as the average number of coherence periods, i.e., N
⋆

Tc seconds,

required for charging, before communication. As the harvesting of adequate RF energy is

necessary for any communication operation at the IEH terminal, the expected charging

time N
⋆

Tc is a prerequisite time interval.

To calculate N
⋆

for the proposed model, Eq. (2.28) must be exploited using ŨN−1 ,
∑N−1

n=1 P̃
(n)
har and P̃

(N)
har . However, only the PDF of each individual RV P̃

(n)
har , n ∈ [N ], is

available. To this end, a numerical methodology to calculate the CDF and the PDF of

ŨN−1 is proposed, exploiting the fact that the latter can be written as a sum of independent

RVs. The proposed methodology to evaluate Eq. (2.28), and thus N
⋆
, is provided in

Appendix 2.5. The PMF of RV N⋆ is calculated for the proposed model using Eq. (2.53)

for any threshold θth
harv.

Consider the rectenna model in [31], the path-loss model given in (2.26) with ν = 2.1

and d = 5 m, transmission power PT = 1.5 Watt, Nakagami parameter m = 5, while

the parameters for the power threshold are set to V = 1.8 V, C = 10 µF, Tp = 50 msec.

Fig. 2.7 shows the histogram of actual UN and the corresponding estimated PDF of RV
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Figure 2.7: Histogram of actual UN and the corresponding PDF vector vf for N = 1,
N = 20, and N = 50 for the energy harvesting model in [31].

ŨN , for N = 1, N = 20, and N = 50.2 It can be seen that the red dotted curves of the

the estimated PDFs perfectly match with the actual PDFs (i.e., the histogram obtained

through Monte Carlo).
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Figure 2.8: Left (Right): Expected number of coherence periods N⋆ necessary for charging
vs distance for the rectenna proposed in [31] (PowerCast module [59]).

Numerical Results

Fig. 2.8 depicts the expected N⋆ for the realistic, proposed, and baseline models as a

function of distance for different capacitor values for the two harvesting efficiency models

in [31] (Left) and [59] (Right) using V = 1.8 V and Tp = 50 msec. The path-loss model

in Eq. (2.26) is employed for the evaluation in conjunction with Nakagami fading. In

Fig. 2.8-Left (Right) the utilized wireless channel parameters are ν = 2.1, m = 5, PT = 1.5

Watt, while for density evolution, the following parameters are employed: H = 217 and

2Appendix 2.5 parameters are H = 216, Sm = 0, SM = NE

[
P̃

(n)
har

]
+ 10

√
N var

[
P̃

(n)
har

]
, ∆ = SM−Sm

H
,

and JFFT = 217.
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Harvesting

COM

Figure 2.9: Power-splitting operation mode.

JFFT = 218 (JFFT = 219). The number of data points to approximate harvested power in

Eq. (2.11) was M + 1 = 1171 and M + 1 = 2201 data points for efficiency models in [31]

and [59], respectively.

For both harvesting efficiency models in [31] and [59] the expected charging time

for the proposed approximation and the true harvested power model coincide, verifying

the accuracy of a) the proposed approximation in Eq. (2.11) and b) the Appendix 2.5

framework.

For the baseline models, results are obtained through Monte Carlo. It is observed that

although the best possible values for ηL, ηCL, and ηCLC are chosen for the baseline models,

they fail to offer the same slope with the true energy harvesting model. Consequently,

the obtained N⋆ for the linear models may deviate one order of magnitude from the true

value, offering deviations from the true duty-cycle and the available resources for wireless

communications. It is also noted that the presence of a boost converter at the rectifier

output may also magnify the necessary time for charging, further amplifying charging

time differences.

The proposed methodology with the nonlinear harvesting model is clearly able to offer

accurate estimation of the charging time.

2.4.3 Power-Splitting RF Energy Harvesting Scenario: Passive

RFID Tags

Next, a backscatter RFID scenario is considered where the EIH node is a passive RFID

tag that splits input RF power for operation and wireless communication, simultaneously

(see Fig. 2.9), as opposed to time-switching (duty-cycled) operation. Passive RFID tags

typically use a simple RF switch (e.g., transistor) to communicate with an interrogator.

Fig. 2.10 illustrates a typical operating block diagram of a passive RFID tag. Suppose

that tag’s antenna is terminated between two load values Z0 and Z1. When the antenna is

terminated at load Z1, the tag reflects the incoming signal, i.e., backscatters information

(uplink), provided that it has sufficient amount of energy. On the other hand, when

the antenna is terminated at load Z0, tag’s antenna is matched to input load and the
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tag absorbs the power from the incident signal. The duration of the overall round-trip

communication between the interrogator and the tag is assumed to last a single coherence

time period. Hence, to minimize the notation we focus on a single coherence time block,

omitting the index n throughout.

The parameter τd is the fraction of time the antenna load is at Z0 (absorbing state),

while the rest 1 − τd corresponds to the fraction of time at load Z1 (reflection state).

Assume that χ is the fraction of receiving input power (when tag’s antenna load is at

absorbing state) dedicated for RF energy harvesting operation; thus, a total of ζhar = χ τd

percentage of input power is dedicated for energy harvesting, with ζhar ∈ (0, 1). The

rest (1 − χ)τd of the input signal power is utilized by the tag downlink communication

circuitry. Furthermore, parameter ρu denotes the fraction of incident input power that is

used for uplink (reflection) scatter radio operation. This number depends on the scattering

efficiency and the fraction of time the tag antenna is terminated at load Z1 (i.e., ρu ≤
1−τd). It is emphasized that scattering efficiency depends on reflection coefficients, which

in turn are input power-independent. With monostatic architecture, the incident input

power at the tag is PR = PT L(d) γ = P(d)γ. Since, only a fraction ρu of input power is

backscattered (i.e., ρu PR), the received power at the interrogator due to the round trip

nature of the backscattering operation is given by:

Pint(PR) = ρu PR L(d) γ = ρu
(PR)2

PT

. (2.30)

Interrogator Tag

Matching

Network

DownlinkCOM

Harvester

RF
DC

Control

 Logic

Uplink

 COM

Figure 2.10: Monostatic backscatter architecture consisting of an interrogator and a pas-
sive RFID tag. The interrogator’s antenna acts as transmitter of the illuminating signal,
as well as receiver of reflected, i.e., backscattered (from the tag) information, hence the
term monostatic.
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The two following events are needed:

A , {The BER at reader is below a threshold β}

=



PR ∈ R+ : 2 Q




√
Pint(PR)

σu




1 − Q




√
Pint(PR)

σu




 < β



 (2.31)

and

B , {The harvested power is larger than tags’ power consumption Pc}
= {PR ∈ R+ : Phar(ζhar PR) > Pc} , (2.32)

where Q(x) , 1√
2π

∫∞
x exp

(
− t2

2

)
dt is the Q-function and the expression in the last line

of Eq. (2.31) is the probability of bit error under coherent maximum-likelihood detec-

tion with FM0 line coding [63], and threshold β ∈ [0, 1
2
]. Parameter σ2

u is the properly

scaled variance of thermal AWGN noise at the receiving circuit of the interrogator. The

expression in (2.31) can be further simplified with the aid of the following proposition:

Proposition 2.3. The function

y = R(x) , 2 Q(x) (1 − Q(x)), x ∈ R+, (2.33)

is monotone decreasing and invertible for x ∈ R+; the inverse function is given by

x = R−1(y) = Q−1

(
2 − √

4 − 8 y

4

)
, y ∈ [0, 0.5], (2.34)

where function Q−1(·) denotes the inverse of Q-function (with respect to composition).

Proof. The proof is given in Appendix 2.5.

The event of successful interrogator reception is denoted by S; the non-successful

reception event at interrogator SC occurs if a) the harvested power is below the tag’s power

consumption or (b) given that the harvested power is above the tag’s power consumption

Pc, the BER at the interrogator is above the threshold β:

P(SC) = P(BC) + P(AC|B)P(B) = 1 − P(B) + P(AC|B)P(B)

= 1 − P(B)(1 − P(AC|B)) = 1 − P(B)P(A|B) = 1 − P(A ∩ B) = 1 − P(S). (2.35)
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Thus, in view of Eq. (2.35), the probability of a successful event is expressed as:

P(S) = P


R




√
Pint(PR)

σu


 < β ∩ Phar(ζhar PR) > Pc




(a)
= P

(
PR >

√
PT R−1(β)σu√

ρu
∩ Phar(ζhar PR) > Pc

)
. (2.36)

where step (a) employed the fact that function R−1 is monotone decreasing and exploited

Eq. (2.30).

The corresponding probability expressions can be derived for the baseline linear models

and the proposed nonlinear harvesting model. The successful reception event at the

interrogator for the baseline models is denoted as Sc, c ∈ {L, CL, CLC} and for the

proposed model as S̃. The following proposition summarizes the results:

Proposition 2.4. Suppose that Pc > 0 and consider Nakagami fading. Let us define

threshold θA ,
√

PT R−1(β)σu√
ρu

> 0. For the linear model, the probability of event SL is given

by:

P(SL) =
Γ
(
m, m

P(d)
θL

max

)

Γ(m)
, (2.37)

where θL
max , max{θA,

p−1
L

(Pc)

ζhar
}.

For the constant-linear model, the probability of event SCL is given by:

P(SCL) =
Γ
(
m, m

P(d)
θCL

max

)

Γ(m)
, (2.38)

where θCL
max , max{θA,

p−1
CL(Pc)

ζhar
}.

For the last baseline model (CLC), the probability of event SCLC is expressed as follows:

P(SCLC) =





Γ(m, m

P(d)
θCLC

max )
Γ(m)

, 0 < Pc < pCLC(Psat
in ),

0, Pc ≥ pCLC(Psat
in ),

(2.39)

where θCLC
max , max{θA,

p−1
CLC

(Pc)

ζhar
}.

Finally, for the proposed nonlinear energy harvesting model, the probability of event

S̃ is given by:

P(S̃) =





Γ(m, m

P(d)
θ̃max)

Γ(m)
, 0 < Pc < vM ,

0, Pc ≥ vM ,
(2.40)
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Figure 2.11: Left (Right): Probability of successful reception at the interrogator/RFID
reader, as a function of the tags’ power consumption Pc and the tag-reader distance, for
the rectenna model in [31] (PowerCast module [59]).

where θ̃max , max{θA, p̃−1(Pc)
ζhar

}.

Proof. The proof can be found in Appendix 2.5.

Numerical Results

Fig. 2.11 offers the probability of successful reception at the interrogator/reader, as a

function of the tag power consumption Pc and the tag-reader distance under the path-loss

model in Eq. (2.26). The following parameters are utilized: τd = 0.5, χ = 0.5, ρu = 0.01,

β = 10−5, σ2
u = 10−11 mWatt. In Fig. 2.11-Left (Right) the rectenna model in [31]

(harvesting module in [59]) is studied using parameters ν = 2.1, m = 5, and PT = 1.5

Watt (PT = 3 Watt) under two distance setups: d = 5 m and d = 3 m (d = 3 m and

d = 2 m), and using M + 1 = 1171 (M + 1 = 2201) data points.

From both figures it can be seen that the performance of the proposed approximation

in Eq. (2.11) is the same as the performance of the real model in Eq. (2.6). On the

other hand, the baseline models deliver different slopes compared to the nonlinear model

and fail to approach its performance; this holds for both harvesting circuits, even though

deviations are more obvious for the harvester in [59]; it is also noted that the selected

values of ηL, ηCL, and ηCLC were chosen so as to reduce the performance difference. It is

also noted that the linear model’s performance curve has completely different slope and

curvature compared to the real harvesting model.

Again, it can be deduced that in sharp contrast to the linear harvesting models, the

proposed harvesting model and the offered methodology provide accurate results.
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2.5 Appendix: Proofs of Chapter 2

Proof of Proposition 2.1

Here the CDF expression in Eq. (2.18) is shown. Using the PDF of Eq. (2.17), for any

x ∈ [vm−1, vm]\{vM}, m ∈ [M ]:

F
P̃

(n)
har

(x) =
∫ x

0
f
P̃

(n)
har

(y)dy

(a)
=

m−1∑

j=1

∫ vj

vj−1

1

lj
f
P

(n)
R

(
y − vj−1 + ljbj−1

lj

)
dy +

∫ x

vm−1

1

lm
f
P

(n)
R

(
y − vm−1 + lmbm−1

lm

)
dy

(b)
=

m−1∑

j=1

∫ bj

bj−1

f
P

(n)
R

(y)dy +
∫ x−vm−1+lmbm−1

lm

bm−1

f
P

(n)
R

(y)dy

=
∫ x−vm−1+lmbm−1

lm

0
f
P

(n)
R

(y)dy = F
P

(n)
R

(
x − vm−1 + lmbm−1

lm

)
, (2.41)

where in (a) the integral is divided in a sum of integrals associated with disjoint intervals

and in (b) change of variables y′ =
y−vj−1+ljbj−1

lj
is performed for each individual integral.

Note that due to the right-continuity of CDF [60], Eq. (2.41) covers the case of x = v0 = 0

since F
P̃

(n)
har

(0) = F
P

(n)
R

(
l1b0

l1

)
= ξ0.

For x ≥ vM the following holds

F
P̃

(n)
har

(x)
(a)
=
∫ v−

M

0
f
P̃

(n)
har

(y)dy +
∫ x

vM

f
P̃

(n)
har

(y)dy
(b)
= ξM + (1 − ξM) = 1, (2.42)

where in (a) the integral is divided over the disjoint intervals [0, vM) and [vM , x), while

in (b), we plugged the definition of CDF found in Eq. (2.41) over interval [0, vM), and we

used the definition of PDF in (2.17) for x ≥ vM . The above conclude the proof.

Proof of Proposition 2.2

The proof of this proposition relies on polynomial interpolation theorem [64, Th. 6.2].

For any continuously differentiable function g(·) defined over an interval [x0, x1] and a

linear function g̃(·) that interpolates g(·) on x0 and x1, for any x ∈ [x0, x1] there exists

φ ≡ φ(x) ∈ (x0, x1) satisfying the following

g(x) − g̃(x) =
(x − x0)(x − x1)

2
g′′(φ), (2.43)
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where g′′(·) denotes the second order derivative of function g(·). Using the above, the

absolute error is upper bounded as

∫ x1

x0

|g(x) − g̃(x)| dx ≤ 1

2
max

x∈[x0,x1]
|g′′(x)|

∫ x1

x0

|(x − x0)(x − x1)| dx

=
1

2
Cg

∫ x1

x0

(x − x0)(x1 − x)dx, (2.44)

where constant Cg ≡ Cg(x0, x1) , maxx∈[x0,x1] |g′′(x)| depends on function g(·) as well as

points x0 and x1. Combining the following identity

max
x∈[x0,x1]

(x − x0)(x1 − x) =
(x1 − x0)2

4
(2.45)

with Eq. (2.44), the absolute error can be upper bounded as

∫ x1

x0

|g(x) − g̃(x)| dx ≤ Cg(x1 − x0)3

8
. (2.46)

Next, the above framework is applied to the proposed piece-wise linear approximation

function p̃(·). Since p(·) is continuously differentiable in Pin, using the fact that p(bm) =

p̃(bm), for m = 0, 1, . . . , M , applying the results above, the following is obtained

∫

Pin

|p(x) − p̃(x)| dx =
M∑

m=1

∫ bm

bm−1

|p(x) − p̃(x)| dx
(a)

≤ (δM)3

8

M∑

m=1

max
x∈[bm−1,bm]

|p′′(x)|

(b)

≤ (δM)3

8
M max

x∈Pin

|p′′(x)| =
Cp (Psat

in − P
sen
in )3

8 M2
. (2.47)

where in (a) δM = bm − bm−1 is utilized, combined with the result in (2.46), while in

(b), maxx∈Pin |p′′(x)| ≥ maxx∈[bm−1,bm] |p′′(x)| for any m ∈ [M ] is employed. Constant

Cp ≡ Cp(Pin) , maxx∈Pin |p′′(x)| depends on set Pin and the given function p(·), and is

independent of M .

Numerical Density Evolution Framework for the Sum of Inde-

pendent RVs

Consider a RV x which can be expressed as x =
∑N

n=1 x(n), where {x(n)}N
n=1 are indepen-

dent of each other, supported by sets S(n), n ∈ [N ], respectively. It is assumed that the

PDF of each individual RV x(n) is given, fx(n)(·), over the support S(n), n ∈ [N ], and each

S(n) is bounded. In addition note that the support of RV x is S = S(1) + S(2) + . . . + S(N)

(set addition), due to the required convolution operation.
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The idea of density evolution is to approximate numerically the PDF of RV x exploiting

the fact that it can be written as the convolution of individual PDFs. To do so, consider

the support set [Sm, SM] as an approximation of set
⋃N

n=1 S(n) ∪ S. Note that set can be

chosen so as
∫

y∈[Sm,SM] fx(n)(y)dy ≈ 1, ∀n ∈ [n] and
∫

y∈[Sm,SM] fx(y)dy ≈ 1. Support set

[Sm, SM] is discretized using H + 1 grid points with uniform grid resolution ∆ = SM−Sm

H
,

and the following discrete (support) set is formed

H∆ = {Sm + h ∆}H
h=0. (2.48)

Set H∆ is a discrete approximation of support [Sm, SM] and can be also viewed as a

vector with H + 1 elements, whose the j-th element is H∆[j] = Sm + (j − 1)∆. Let us

denote v
(1)
f , v

(2)
f , . . . , v

(N)
f the H + 1-dimensional PDF vectors of RVs x(1), x(2), . . . , x(N),

respectively, where each element of v
(n)
f is given by

v
(n)
f [j] , fx(n)(H∆[j]), j ∈ [H + 1]. (2.49)

Note that with the above definition of PDF vector v
(n)
f , the following approximation holds:

1 =
∫

y∈S(n) fx(n)(y)dy ≈ ∑H+1
j=1 v

(n)
f [j] ∆, for each n ∈ [N ].

Next, using JFFT > H + 1 points (for efficient implementation JFFT has to be a power

of 2) the fast Fourier transform (FFT) of PDF v
(n)
f is evaluated, which is the characteristic

function of RV x(n). The vector of characteristic function of RV x(n) is given by

φ(n) = FFT
(
ṽ

(n)
f ∆

)
∈ C

JFFT (2.50)

where (ṽ
(n)
f )⊤ =

[
(v

(n)
f )⊤ 0⊤

JFFT−(H+1)

]⊤
is the zero-padded version of v

(n)
f , appending

extra JFFT − (H + 1) zeros at the end v
(n)
f . Using the following facts: (a) the sum

of independent random variables is the convolution of their associated PDFs and (b) the

equivalence among convolution operation and the inverse Fourier transform of the product

of Fourier transforms, the final PDF of x is obtained as

vfx = IFFT
(
φ(1) ⊙ φ(2) ⊙ . . . ⊙ φ(N)

)
[1 : H + 1] (2.51)

where vector vfx consists of the first H +1 elements of vector IFFT(φ(1) ⊙φ(2) ⊙ . . .⊙φ(N))

and is an approximation of the PDF of RV x. The CDF vector for RV x can be evaluated

as

vFx
[j] =

j∑

i=1

vfx [i] ∆, j ∈ [H + 1]. (2.52)
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Note with the above methodology the evaluation of vfx requires only O(N JFFT logJFFT)

arithmetic operations due to the properties of FFT [65].

To evaluate Eq. (2.28) for a given threshold θ, the PDF of RV u =
∑N−1

n=1 x(n), vfu ,

is first calculated using Eq. (2.51) with N − 1. Then, the index associated with largest

element of H∆ that is smaller than θ is found, i.e., if θ∗ = arg max{y ∈ H∆ : y ≤ θ} the

optimal index jθ satisfies θ∗ = H∆[jθ], and then we calculate

vFu
[jθ] −

jθ∑

i=1

vFu
[jθ − i + 1] v

(N)
f [i] ∆. (2.53)

The overall complexity to calculate N
⋆

for the proposed model is dominated by the

calculation of vfu which is O(N JFFT logJFFT).

Proof of Proposition 2.3

Consider two continuous monotone (invertible) functions h1 : X1 −→ X2, h2 : X2 −→ X3

with X1, X2, X3 subsets of R. The proof relies on the following facts from calculus:

• If h1 : X1 −→: X2 is monotone increasing (decreasing) then h−1
1 : X2 −→: X1 is

monotone increasing (decreasing) too.

• Function h , h2 ◦h1 : X1 −→ X3, i.e., h2(h1(·)), is also monotone and invertible with

inverse h−1 = h−1
1 ◦ h−1

2 : X3 −→ X1.

• If h1 is monotone decreasing and h2 monotone increasing then h = h2◦h1 is monotone

decreasing. In addition, h−1 is monotone decreasing as well.

Using the above we now prove the proposition.

Let x 7→ h1(x) , Q(x), with X1 = [0, ∞) and X2 = [0, 0.5], and x 7→ h2(x) , 2 x (1−x),

with X2 = [0, 0.5] and X3 = [0, 0.5]. Note that h1(x) = Q(x) is monotone decreasing in

[0, ∞), while h2(x) = 2 x (1 − x) is monotone increasing in [0, 0.5], thus due to bullet 3

above, both R(·) and R−1(·), given in Eq. (2.33) and (2.34), respectively, are monotone

decreasing. Finally, the formula for R−1(·) is shown. Note that for y ∈ [0, 0.5] the following

quadratic equation

2x − 2x2 = y (2.54)

has roots

x =
2 ∓ √

4 − 8y

4
. (2.55)
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Function h2(·) is monotone increasing, thus, according to bullet 1, h−1
2 (·) has to be mono-

tone increasing too. The first root 2−√
4−8y
4

offers increasing inverse for y ∈ [0, 0.5], thus

h−1
2 (y) = 2−√

4−8y
4

. Using the rule for the inverse of composition discussed in bullet 2, the

following is obtained

R−1(y) = (h−1
1 ◦ h−1

2 )(y) = Q−1

(
2 − √

4 − 8y

4

)
. (2.56)

Proof of Proposition 2.4

The proof is provided for the proposed model, as the rest baseline models are special

cases. The proof for the baseline models can be obtained trivially using similar reasoning.

First note that since image points are selected as 0 < v1 < v2 < . . . < vM , the slopes

satisfy l1 < l2 < . . . < lM , thus piecewise-linear function p̃(·) is monotone increasing in

[b0, bM ] (and thus invertible in [0, vM ]).

Firstly, consider the case 0 < Pc < vM , implying that b0 < p̃−1(Pc) < bM . Using

similar reasoning with Eq. (2.36), the probability of successful reception at interrogator

for the proposed model can be expressed as

P(S̃) , P

(
PR >

√
PT R−1(β)σu√

ρu

∩ P̃har(ζharPR) > Pc

)

(a)
= P

(
PR > θA ∩ PR >

p̃−1(Pc)

ζhar

)

(b)
= P

(
PR > θ̃max

)
= 1 − FPR

(θ̃max), (2.57)

where (a) stems from the definition of θA as well as the fact that 0 < Pc < vM , while

(b) relies on the definition of θ̃max. The result follows by plugging the CDF of PR for

Nakagami fading.

For Pc ≥ vM , the following hold

S̃ ⊆ {PR ∈ R+ : P̃har(ζharPR) > Pc}
(a)

⊆ {PR ∈ R+ : P̃har(PR) > vM}, (2.58)

where (a) results from the following facts: (i) Pc ≥ vM and (ii) p̃(ζharPR) ≤ p̃(PR), since

ζhar ∈ (0, 1) and function p̃(·) is non-decreasing. Thus, by the monotonicity of probability

measure [61], Eq. (2.58) implies that P(S̃) ≤ P

(
P̃har(PR) > vM

)
= 1 − F

P̃har
(vM) = 0, due

to the definition of CDF in Eq. (2.18). Hence, for Pc ≥ vM , P(S̃) = 0.





Chapter 3

Backscatter Radios: Fundamentals,

Detection, and Channel Coding

This chapter offers the basic communication principles and physical layer receiver designs

for scatter radio point-to-point systems. A detailed exposition of a scatter radio signal

model is provided, incorporating all microwave, tag-related, and wireless channel parame-

ters. The chapter in the sequel presents coherent and noncoherent detection and decoding

reception schemes tailored to the scatter radio frequency shift-keying (FSK) signal model.

FSK modulation is employed as it is an ideal option for the power-limited regime. Specific

small block-length channel codes are harnessed at both ends of scatter radio link to reduce

the resulting bit error rate (BER) at the reader. The proposed reception algorithms are

ideal for short packet communication. The latter offers reduced processing delay at the

reader within practically meaningful limits and allows for large-scale multi-tag processing.

Detailed simulation study demonstrates that the BER performance gap between coher-

ent and noncoherent reception depends on whether channel codes are employed, on the

fading conditions (e.g., Rayleigh vs Rician vs no fading), as well as on the utilized coding

interleaving depth; the choice of one coding scheme over the other depends on the wireless

fading parameters and the design choice for extra diversity vs extra power gain. Finally,

experimental outdoor results at 13 dBm transmission power corroborate the practicality

of the proposed detection and decoding techniques for scatter radio systems. The material

of this chapter facilitates the adoption of intelligent, low-power scatter radio devices in

the sensing regime of several tens of meters, ideal for ultra-low-power Internet-of-Things

applications.

41
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Related Work

The basic ingredients of current scatter radio technology include the illuminating radio

frequency (RF) emitter towards the tags, the reflecting tags (scatter radio nodes), that

may be passive (i.e., powered by the illuminating RF field) or semi-passive (i.e., power by

an ambient source or an external battery) and the receiving device of the backscattered

(from the tags) signals, also known as the reader. In contrast to Marconi radios that

consist of signal conditioning RF components, such as amplifiers, mixers or active filters,

in scatter radios, the communication is accomplished by means of reflection; scattering

can be achieved with a single RF transistor at each tag, significantly reducing the energy

consumption and monetary cost compared to Marconi radios.

Backscatter radios are embedded in a plethora of commercial devices [66] and var-

ious interfaces [67, 68]. The most prominent use of scatter radio is in radio frequency

identification (RFID) systems, principally utilized for inventorying, electronic tickets and

people identification [66,69]. RFID is also expected to play a key role in the evolution of

Internet-of-things (IoT) and related applications [70]. Typical scatter radio RFID systems

are monostatic, i.e., the illuminating transmitter and the receiver are part of the same

device. RFID systems suffer from limited communication range, in the order of a few

meters, due to the following reasons: (a) the illuminating signal from the interrogator is

used for both powering and communication of the tag, (b) the tag’s circuit has limited

sensitivity and RF harvesting efficiency, and (c) there are high bitrates, reducing the

received energy per bit.

Semi-passive tags, i.e., tags powered by external power sources, are more suitable

for increased scatter radio communication ranges [13]. As the modulation at the tags

requires only the termination of the tag/sensor antenna at different loads, ultra-low-power

is required for communication purposes. Such small amount of power can be available

from a battery or an ambient source, such as solar, RF or their combination [23], enabling

perpetual sensing [71] even at small levels of ambient power [28]. Another option to

further increase communication ranges is to employ scatter radio modulations suitable

for power-limited regime, such as minimum-shift keying (MSK) or frequency-shift keying

(FSK). The latter can be implemented with rather simple hardware logic at the tag and

allows frequency-division multiplexing (FDM), i.e., each tag backscatters over a unique

portion of the spectrum and the reader can decode concurrently the superposition of

FSK-modulated backscattered signals of multiple tags.

Low bitrate symbol-by-symbol noncoherent reception of MSK for monostatic scatter

radio is studied in [13]. The authors in [24] studied fading and correlation of the two-way

(from illuminating antennas to the tags and from the tags back to the reader) backscatter
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radio channel, with emphasis on multi-antenna systems. Work in [32,72], offered a detailed

link budget analysis for backscatter systems incorporating microwave and tag-related

parameters. Single-antenna detectors for two-collided scatter radio tags are proposed

in [73], exploiting the inherent memory of FM0 line codes, used in commercial RFID.

Recent work in [63] examined the protocol utilized at Gen2 RFID tags and re-designed

signal processing reception algorithms (e.g., for symbol level synchronization, channel

estimation, bit duration estimation) for coherent maximum-likelihood (ML) detection at

a commodity, monostatic software-defined radio (SDR) reader.

Bistatic scatter radio was first experimentally demonstrated in [11,12,33]. In bistatic

scatter radio the illuminating emitter and the receiver of the backscattered signals are

dislocated, i.e., they are two separate devices. Signal processing reception algorithms for

tags employing scatter radio on-off keying [11] or FSK [12] and SDR symbol-by-symbol

noncoherent detector are offered in [33], also highlighting the additional difficulties due to

the bistatic nature, e.g., carrier frequency offset (CFO) between the illuminating emitter

and the receiver. Ranges one order of magnitude larger than conventional RFID were

demonstrated. Small block-length error-correction channel codes for inherently resource-

constrained tags are proposed in [74] designing heuristic soft-decision metrics for noncoher-

ent decoding with FSK and bistatic principles; compared to the uncoded case experimental

communication range increase was shown. Subsequent work in [37] proposed coherent de-

tection and decoding with small block-length cyclic channel codes for the bistatic scatter

radio architecture with FSK modulation. The compound channel vector incorporated

all wireless channel and microwave, tag-related parameters and was estimated through

a least-squares (LS) technique, exploiting a short training packet preamble (known at

the receiver). Work in [75] offered generalized-likelihood ratio testing (GLRT)-optimal

noncoherent sequence detection of uncoded orthogonal signaling, also showing its relation

with commercial Gen2 RFID protocols.

Scatter radio testbeds in [76] and [38] demonstrated reception of bistatic scatter radio

FSK with an embedded receiver for Bluetooth and UHF frequencies, respectively. The

system in [38] achieved tag-to-reader range of 250 meters. The authors in [77] generated

Wi-Fi transmissions using bistatic scatter radio principles, offering 3 orders of magnitude

lower power than existing Wi-Fi chipsets and the achieved tag-to-reader ranges were

up to 30 meters. Another example of Wi-Fi backscatter can be found in [78], where

the tags translate the original transmitted 802.11b codeword to another valid 802.11b

codeword that can be decoded by the Wi-Fi receiver. The system offers up to 54 meters

communication ranges with a 200 kbps throughput.
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Contributions

The contributions of this chapter can be summarized as:

• It is proved that the square-law symbol-by-symbol detector for uncoded scatter radio

FSK, is an instance of a composite hypothesis test (CHT), and more specifically, of

a hybrid CHT (HCHT).

• Noncoherent symbol-by-symbol and sequence detectors for uncoded scatter radio

FSK are designed based on GLRT.

• A noncoherent HCHT decoding rule is designed for coded scatter radio FSK signals,

ideal for small packet and small block-length channel codes.

• It is found that a fully interleaved system under coherent ML decoding for backscat-

ter FSK, offers probability of bit error (BER) that decays with the minimum distance

of the utilized code. This is the same diversity order as the text-book coherent ML

decoders.

• An extensive BER performance evaluation of the proposed scatter radio receivers

is offered under Rician, Rayleigh or no fading, assuming fixed energy per packet.

It is found that for the uncoded case, noncoherent reception may outperform co-

herent reception under fixed energy per packet, accounting in the coherent case the

energy spent at the preamble bits for channel estimation. For the coded case, the

performance gap between coherent and noncoherent decoding depends on the fading

conditions (e.g., Rayleigh vs Rician vs no fading), the depth of utilized interleaver,

that determines the diversity gain.

• Experimental outdoor measurements (with scatter radio testbed) corroborate the

practicality of the proposed detection and decoding techniques for scatter radio.

Organization and Notation

The rest of this chapter is organized as follows: Section 3.1 presents the system model,

showing how the bistatic signal model can also describe the monostatic, and describes

the utilized modulation scheme. Section 3.2 designs noncoherent receivers for scatter

radio FSK incorporated in the bistatic setup. Section 3.3 reviews the channel estimation

procedure in scatter radio and offer the maximum-likelihood (ML) coherent detectors

and decoders. Simulation and experimental results are offered in Section 3.4 and 3.5,

respectively.
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Symbols (·)⊤, (·)H, (·)∗ will denote the transpose, Hermitian, and complex conjugate,

respectively, of a vector or matrix. Real-part and imaginary-part operations are denoted

by ℜ{·} and ℑ{·}, respectively. The phase of a complex number z is denoted as z. The

distribution of a proper complex Gaussian N × 1 vector x with mean µ and covariance

matrix Σ is denoted by CN (µ, Σ) , 1
πN det(Σ)

e−(x−µ)HΣ−1(x−µ). U [a, b) and N (µ, σ2) de-

note, respectively, the uniform distribution in [a, b) and the Gaussian distribution with

mean µ and variance σ2. Notation fx|θ(·|·) stands for the conditional probability density

function (PDF) of random vector x parameterized by a random or deterministic vector θ.

The expectation operator associated with conditional PDF fx|θ(·|·) of any function g(x, θ)

is denoted as E
x|θ

[g(x, θ)] ,
∫

x g(x, θ)fx|θ(x|θ)dx.

3.1 Scatter Radio Signal Model

Bistatic scatter radio consists of a carrier emitter (CE), a RF tag, and a software-defined

radio (SDR) reader (a graphical illustration is provided in Fig. 3.1). Due to relatively

small bitrate (in the order of kilo-bits per second), or equivalently large nominal bit

period T , along with the small channel delay spread, frequency non-selective (flat) fading

channel [79] is assumed, with complex baseband response given by:

hm(t) = hm = am e−jφm , m ∈ {CR, CT, TR}, (3.1)

where aCR, aCT, aTR ∈ R+ denote the channel attenuation parameters of the corresponding

links and φCR, φCT, φTR ∈ [0, 2π) the respective phases. Due to the bistatic setup in

Fig. 3.1, the distance between the antennas of different devices is several wavelengths

apart and thus, the channel response parameters are considered statistically independent

of each other; channel parameters change independently every Tcoh seconds, where Tcoh is

the coherence time.

For outdoor environments, there exists strong line-of-sight (LOS) signal for each indi-

vidual link, and thus, channel parameters are assumed Rician random variables (RVs) [27],

i.e., for m ∈ {CR, CT, TR},

hm ∼ CN
(√

κm

κm + 1
σm,

σ2
m

κm + 1

)
. (3.2)

Rician parameter κm stands for the ratio between the power in the direct path and the

power in the scattered paths of link m ∈ {CR, CT, TR}. The distribution of channel
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Carrier

Emitter

Tag

  SDR Reader

hCT(t)

hTR(t)

hCR(t)

Figure 3.1: Bistatic architecture: carrier emitter (CE) is located away from software-
defined radio (SDR) reader; RF tag modulates and backscatters the incident RF signal
from CE towards the SDR reader.

amplitude am for link m ∈ {CR, CT, TR} is Rice, given by:

fam(x) = 2
κm + 1

σ2
m

x e
−
(

κm+
(κm+1)x2

σ2
m

)
I0

(
2 x

σm

√
κm (κm + 1)

)
, x ≥ 0, (3.3)

where I0(·) is the modified Bessel of the first kind and order zero [80, p. 47]. It is noted that

for κm = 0, Rayleigh fading is obtained, while for κm = ∞, Gaussian channel is obtained

with the parameter am being deterministic constant, i.e., am = σm, m ∈ {CR, CT, TR}.

It is noted that the channel power of link m, given by E [|hm|2] = σ2
m, is independent of

κm. For exposition purposes and without loss of generality, σ2
m = 1, m ∈ {CR, CT, TR},

is assumed hereafter.

CE transmits a continuous sinusoid wave at carrier frequency Fcar whose complex

baseband representation is

c(t) =
√

2PC e−j(2π∆F t+∆φ), (3.4)

where PC is the carrier transmission power at passband, ∆F and ∆φ model the carrier

frequency and carrier phase offset between CE and SDR reader, respectively. ∆φ is

modeled as a uniform RV in [0, 2π).

The carrier wave c(t), propagated through wireless channel hCT, illuminates the an-

tenna of the tag. The incident signal at tag is attenuated and rotated due to the channel

gain aCT e−jφCT . Portion of the incident signal is reflected back; the specific attenuation

is related to the tag’s scattering efficiency. Let s be denoting the scattering efficiency

attenuation, which is considered constant for a duration of a packet. For two distinct tag

load values (i.e., binary modulation at the tag), the baseband scattered waveform from
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tag is [33]:

ui(t) = s

((
As − Γ0 + Γ1

2

)
+

Γ0 − Γ1

2
bi(t)

)
aCT e−jφCTc(t), i ∈ B, (3.5)

where bi(t) corresponds to the complex baseband waveform for bit i ∈ B , {0, 1}. The

term v0 , As − Γ0+Γ1

2
is a DC constant depending on the (load-independent) tag antenna

structural mode As [81] and the (tag load-dependent) tag reflection coefficients Γ0 and Γ1.

As the scatter radio modulator at each tag does not include any type of signal conditioning

units (e.g., amplifiers, filters or mixers) there is no noise term in Eq. (3.5). The absence of

signal conditioning at each tag offers low-power consumption and is the main advantage

of scatter radio.

In this work FSK modulation is employed at tags, thus, for FSK modulation, wave-

form bi(t) represents the fundamental frequency component of a 50% duty cycle square

waveform1 of period 1/Fi and random initial phase Φi:

bi(t) =
4

π
cos(2πFit + Φi) ΠT (t), i ∈ B, (3.6)

where ΠT (t) is the rectangular pulse of bit duration T , given by:

ΠT (t) ,





1, 0 ≤ t < T,

0, otherwise.
(3.7)

Φi ∼ U [0, 2π) models the phase mismatch between tag and SDR reader when bit i ∈ B

is transmitted, assumed constant for a duration of a packet. RVs Φ0 and Φ1 are assumed

independent of each other. In addition, vector Φ , [Φ0 Φ1]
⊤ is also defined.

For the duration of single bit, T , the received demodulated complex baseband signal

at the SDR reader is given by the superposition of the CE sinusoid and the backscattered

1It can be shown that the fundamental frequency component holds ≈ 80% of the total power of the
50% duty cycle square pulse [13].
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tag signal propagated through wireless channels hCR and hTR, respectively, i.e.,

y(t) = aCR e−jφCR c(t) + aTR e−jφTR ui(t) + n(t)

=



√

2Pc e−j∆φ

(
aCR e−jφCR + s v0 aCT aTR e−j(φCT+φTR)

)

︸ ︷︷ ︸
DC term

+
√

2Pc
2 |Γ0 − Γ1|s aCT aTR

π
e−j(φCT+φTR+∆φ+ Γ0 − Γ1) cos (2πFit + Φi) ΠT (t)




· e−j2π∆F t + n(t), (3.8)

where n(t) is a complex, circularly symmetric, additive Gaussian noise process with power

spectral density given by:

Sn(F ) =





N0, |F | ≤ WSDR

0, otherwise,
(3.9)

where WSDR denotes the SDR receiver bandwidth and N0 = kbTθ, where kb and Tθ are

the Boltzmann constant and receiver temperature, respectively.

The signal in Eq. (3.8) contains carrier frequency offset (CFO) ∆F , which can be di-

rectly estimated using periodogram-based techniques, and subsequently, compensated. It

is apparent in Eq. (3.8) that CFO depends on all terms, including the DC terms. There-

fore, tag-dependent parameters such as As, typically overlooked in the literature, do play

important role in the CFO estimation step. SDR reader applies CFO compensation, and

then eliminates the DC terms of the signal in (3.8) by estimation and removal of the re-

ceived signal’s time average [33]. Assuming perfect synchronization and CFO estimation,

the DC-blocked received signal of Eq. (3.8) over a bit period T , can be simplified to:

ỹ(t) = µ a e−jφ cos (2πFit + Φi) ΠT (t) + n(t), (3.10)

where the following abbreviations are utilized:

a , aCT aTR, φ , φCT + φTR + ∆φ + Γ0 − Γ1, (3.11)

µ ,
√

2PC
|Γ0 − Γ1|

2

4

π
s =

√
2PC |Γ0 − Γ1|

2

π
s. (3.12)
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Expanding the cosine term in (3.10) it follows that:

ỹ(t) =
µ h

2

(
ej(2πFit+Φi) + e−j(2πFit+Φi)

)
ΠT (t) + n(t), (3.13)

with scalar

h , a e−jφ (3.14)

be denoting the compound channel parameter including some phase and wireless channel

fading parameters.

For Fi ≫ 1
T

, i ∈ B, the instantaneous received energy per bit is defined as:

E(a) ,
∫ T

0

∣∣∣∣µ a e−jφcos(2πFit + Φi)

∣∣∣∣
2

dt ≈ Tµ2a2

2
, (3.15)

where
∫ T

0 cos2(2πFit+Φi)dt ≈ T
2

is exploited, due to Fi ≫ 1
T

. The average received energy

per bit and the average received SNR are defined as:

E = E
a
[E(a)] =

Tµ2

2
=

4 T PC |Γ0 − Γ1|2 s
2

π2
, (3.16)

SNR ,
E

N0

=
T µ2

2N0

=
4 T PC |Γ0 − Γ1|2 s

2

N0 π2
. (3.17)

For each bit i ∈ B, the received signal in (3.13) contains two exponential frequencies

±Fi and not one; thus, a classic FSK demodulator for conventional (Marconi) radio loses

half of the signal and results in a 3-dB BER performance loss for bistatic FSK [33]. It

is not difficult to see that for |F1 − F0| = k
T

, k ∈ N, along with Fi ≫ 1
T

, i ∈ B (that

implies that Fi + F0 ≫ 1
T

or Fi + F1 ≫ 1
T

), the set
{

1√
T

e±j2πFitΠT (t)
}

i∈B
constitutes a

4-dimensional orthonormal basis, that can be used for expansion of the received signal

in (3.13). The next theorem exploits the above 4-dimensional basis and offers the discrete

baseband equivalent scatter radio FSK signal model.

Theorem 3.1. For Fi + 20
T

≪ WSDR, the baseband equivalent signal over a bit duration

T is given by the following 4-dimensional complex vector

r =




r+
0

r−
0

r+
1

r−
1




= h

√
E

2




e+jΦ0

e−jΦ0

e+jΦ1

e−jΦ1




⊙ si +




n+
0

n−
0

n+
1

n−
1




, (3.18)

where vector si = [(1 − i) (1 − i) i i]⊤ corresponds to bit i ∈ B. Symbol ⊙ denotes the

component-wise (Hadamard) product and 4-dimensional complex, circularly symmetric
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Gaussian noise vector n is distributed according to:

n , [n+
0 n−

0 n+
1 n−

1 ]⊤ ∼ CN (04, N0 I4) . (3.19)

Proof. The proof is given in Appendix 3.6.

It is noted that the system model above has been verified experimentally [11, 12,

17, 33, 82, 83]. It is also noted that it is general enough to describe monostatic scatter

radio (where illuminating carrier emitter and receiver belong to the same reader unit)

as a special case, with hCR (and appropriate κCR, σCR) modeling the leakage from the

transmit to the receive RF chain of the reader.

3.2 Noncoherent Scatter Radio Reception

3.2.1 Uncoded Symbol-By-Symbol Detection

The optimal noncoherent symbol-by-symbol detector in terms of bit error rate (BER), is

the maximum-likelihood (ML) detector, expressed as:

fr|i(r|0)
i=0

≷
i=1

fr|i(r|1) ⇐⇒ E
h,Φ

[
fr|i,h,Φ0(r|0, h, Φ0)

] i=0

≷
i=1

E
h,Φ

[
fr|i,h,Φ1(r|1, h, Φ1)

]
. (3.20)

Note that due to Eqs. (3.18) and (3.19),

fr|i,h,Φ(r|i, h, Φ) ≡ CN (h xi(Φ), N0 I4) , (3.21)

with xi(Φ) =
√

E

2

[
e+jΦ0 , e−jΦ0, e+jΦ1 , e−jΦ1

]⊤ ⊙ si. For the bistatic scatter radio signal

model, the ML rule in (3.20) does not admit closed-form expression for Rician parameters

κCT, κTR ∈ [0, +∞), and thus, alternative noncoherent detection rules should be designed.

Noncoherent Hybrid Composite Hypothesis-Testing (NC-HCHT) Symbol-By-

Symbol FSK Detection

The first proposed noncoherent symbol-by-symbol detection rule is the NC-HCHT detec-

tor that treats the unknowns Φ0 and Φ1 as random parameters, while h is viewed as a

nonrandom parameter; thus, NC-HCHT detector is given by:

arg max
i∈B

{
E
Φ

[
max
h∈C

ln
[
fr|i,h,Φ(r|i, h, Φ)

]]}
. (3.22)
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Lemma 3.1. The noncoherent detector of Eq. (3.22) is channel-agnostic and is equivalent

to:

|r+
0 |2 + |r−

0 |2
i=0

≷
i=1

|r+
1 |2 + |r−

1 |2, (3.23)

i.e., the detector in (3.22) is the square-law detector.

Proof. For hypothesis i = 0, x0(Φ) depends solely on Φ0, i.e., x0(Φ0), and for the inner-

most maximization in (3.22) deterministic parameter h is eliminated as:

arg max
h∈C

ln
[
fr|i,h,Φ0(r|0, h, Φ0)

]

= arg min
h∈C

‖r − hx0(Φ0)‖2
2 =⇒ hopt =

(x0(Φ0))H r

‖x0(Φ0)‖2
2

. (3.24)

As a result, plugging the optimal h back:

max
h∈C

ln
[
fr|i,h,Φ0

(r|0, h, Φ0)
]

= ln
[
fr|i,h,Φ0

(r|0, hopt, Φ0)
]

= 4ln

(
1

πN0

)
− 1

N0

(
||r||22 − |rHx0(Φ0)|2

‖x0(Φ0)‖2
2

)

= 4ln

(
1

πN0

)
− 1

N0

(
||r||22 − 1

2

∣∣∣(r+
0 )∗ejΦ0 + (r−

0 )∗e−jΦ0

∣∣∣
2
)

= 4ln

(
1

πN0

)
− 1

N0

||r||22 +
1

2N0

(
|r+

0 |2 + |r−
0 |2
)

+
1

N0

ℜ
{
(r+

0 )∗(r−
0 )e2jΦ0

}
. (3.25)

Only the last term in (3.25) depends on Φ0, and thus, applying expectation with respect

to Φ in the last term in (3.25) offers

E
Φ

[
ℜ
{
(r+

0 )∗(r−
0 )e2jΦ0

}]
= E

Φ0

[
ℜ
{
(r+

0 )∗(r−
0 )e2jΦ0

}]
= 0, (3.26)

where Eq. (3.26) relies on the fact that Φ0 ∼ U [0, 2π). Therefore, applying expectation

with respect to Φ in (3.25) the last term is eliminated. Since Φ1 ∼ U [0, 2π), applying

similar reasoning for hypothesis i = 1, the detection rule of Eq. (3.23) is obtained after

some elementary algebra.

Interestingly, the above square-law detector has been also proposed in [33] as a heuristic

noncoherent detection rule.

Proposition 3.1. For Rayleigh fading, i.e., κCT = κTR = 0, the detector in (3.23) offers

BER given by:

Pr(e) =
e

2
SNR

(
5SNR + 2

)
E1

(
2

SNR

)
− SNR

4SNR
2 , (3.27)
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where function E1(x) =
∫∞

x
e−t

t
dt for x > 0 [84, p. 150].

Proof. In Appendix 3.6.

Noncoherent Generalized Likelihood-Ratio Test (NC-GLRT) Symbol-By-

Symbol FSK Detection

The NC-GLRT symbol-by-symbol detection rule treats the unknowns Φ0, Φ1 and h as

deterministic parameters and can be expressed as:

arg max
i∈B

{
max

Φ∈[0,2π)2
max
h∈C

ln
[
fr|i,h,Φ(r|i, h, Φ)

]}
. (3.28)

Theorem 3.2. The detector of Eq. (3.28) is channel-agnostic and is equivalent to:

|r+
0 | + |r−

0 |
i=0

≷
i=1

|r+
1 | + |r−

1 |. (3.29)

Proof. The proof relies on fact that for any complex number α,

|α| = max
v∈C:|v|=1

ℜ{αv∗} = max
ϕ∈[0,2π)

ℜ
{
αe−jϕ

}
. (3.30)

Using Lemma 3.1, for i = 0, the innermost maximization in (3.28) is simplified to

Eq. (3.25), depending solely on Φ0. Applying maximization with respect to vector Φ ∈
[0, 2π)2 in (3.25) affects only the last term Eq. (3.25); thus, in view of (3.30), the following

holds:

max
Φ1∈[0,2π)

max
Φ0∈[0,2π)

ℜ
{
(r+

0 )∗(r−
0 )e2jΦ0

}
= |r+

0 ||r−
0 |, (3.31)

where we exploited that ℜ
{
(r+

0 )∗(r−
0 )e2jΦ0

}
is a periodic function of Φ0 with period π.

Hence,

max
Φ∈[0,2π)2

max
h∈C

ln
[
fr|i,h,Φ0(r|0, h, Φ0)

]
= 4ln

(
1

πN0

)
− 1

N0
‖r‖2

2 +
1

2N0

(
|r+

0 | + |r−
0 |
)2

. (3.32)

Working similarly for i = 1, the result in (3.29) follows after elementary algebra.

3.2.2 Uncoded Sequence Detection

It is a well-known fact that when bit period T is smaller than channel coherence time Tcoh

noncoherent symbol-by-symbol detection is not BER-optimal in flat fading and instead,

noncoherent sequence detection must be employed (e.g., [85] and references therein). For
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static (immobile) scatter radio sensor networks, the above scenario of Tcoh ≫ T is possi-

ble. However, classic noncoherent sequence detection based on exhaustive search may be

prohibitive, due to its exponential (in the sequence length) complexity. In this section,

recent results in noncoherent sequence detection with log-linear complexity for orthogonal

modulations are revisited from [85], in order to to design a noncoherent GLRT sequence

detection for backscatter FSK, denoted as NC-GLRT.

Let Tcoh = NcohT , where Ncoh denotes the number of symbols affected by the same

channel coefficient and let Ncoh ∈ N, for simplicity. Transmission of a bit sequence

consisting of Ns information bits is considered, denoted as i = [i1 i2 . . . iNs ]
⊤ ∈ BNs ,

assuming Ns ≤ Ncoh. The associated received sequence, over a duration of Ns bits consists

of the concatenation of Ns received vectors r1, r2, . . . , rNs; each of them can be further

expanded as in (3.18):

r1:Ns =




r1

r2

...

rNs




= h




xi1(Φ)

xi2(Φ)
...

xiNs
(Φ)




+




n1

n2

...

nNs




, (3.33)

where rn =
[
r+

0 (n) r−
0 (n) r+

1 (n) r−
1 (n)

]⊤
stands for the 4-dimensional received vector

for the nth time instant and

xin
(Φ) ,

√
E

2

[
ejΦ0 e−jΦ0 ejΦ1 e−jΦ1

]⊤ ⊙ sin
, (3.34)

with sin
= [1 − in 1 − in in in]⊤, in ∈ B, n = 1, 2, ..., Ns. Using the same reasoning

with (3.19), the noise statistics in Eq. (3.33) are
[
n⊤

1 n⊤
2 . . . n⊤

Ns

]⊤ ∼ CN (04Ns , N0 I4Ns).

Additionally, vector xi(Φ) ,
[
x⊤

i1
(Φ) x⊤

i2
(Φ) . . . x⊤

iNs
(Φ)

]⊤
is also defined. From (3.33)

and the noise statistics above, the following is obtained,

fr1:Ns |i,h,Φ (r1:Ns|i, h, Φ) ≡ CN (h xi(Φ), N0 I4Ns) , (3.35)

implying that r1, r2, .., rNs are conditionally independent of each other given parameters

h, Φ, and any transmitted sequence i. As in Section 3.2.1, the NC-GLRT detection metric
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over the sequence i can be expressed as:

max
i∈BNs

max
Φ∈[0,2π)2

max
h∈C

ln
[
fr1:Ns |i,h,Φ (r1:Ns|i, h, Φ)

]

= max
Φ∈[0,2π)2

max
i∈BNs

max
h∈C

ln
[
fr1:Ns |i,h,Φ (r1:Ns|i, h, Φ)

]
. (3.36)

For fixed Φ ∈ [0, 2π)2 in (3.36), in accordance with the derivation of (3.25) in Lemma 3.1,

arg max
i∈BNs

max
h∈C

ln
[
fr1:Ns |i,h,Φ (r1:Ns|i, h, Φ)

]
= arg max

i∈BNs

∣∣∣(r1:Ns)
H xi(Φ)

∣∣∣ , (3.37)

where Eq. (3.37) was obtained by plugging in the optimal h, hopt =
(xi(Φ))Hr1:Ns

||xi(Φ)||22
and

dropping out terms that do not affect the optimization problem. Thus, using Eq. (3.37) in

conjunction with the identity in (3.30) for α = (r1:Ns)
H xi(Φ), the NC-GLRT optimization

problem in Eq. (3.36) can be equivalently expressed as follows:

max
Φ∈[0,2π)2

max
i∈BNs

∣∣∣(r1:N)H xi(Φ)
∣∣∣ = max

Φ∈[0,2π)2
max
i∈BNs

max
ϕ∈[0,2π)

ℜ
{(

(r1:N)H xi(Φ)
)

e−jϕ
}

(3.38)

= max
Φ∈[0,2π)2

max
ϕ∈[0,2π)

max
i∈BNs

Ns∑

n=1

ℜ
{
(rn)Hxin

(Φ)e−jϕ
}

(3.39)

= max
Φ∈[0,2π)2

max
ϕ∈[0,2π)

Ns∑

n=1

max
in∈B

{
ℜ
{
(rn)Hxin

(Φ)e−jϕ
}}

. (3.40)

From (3.40) we note that for fixed Φ ∈ [0, 2π)2 and ϕ ∈ [0, 2π), the innermost maximiza-

tion in Eq. (3.39) splits into independent maximizations for any n = 1, 2, . . . , Ns, of the

following form:

în(Φ, ϕ) = arg max
i∈B

ℜ
{
(rn)Hxi(Φ)e−jϕ

}

⇐⇒ℜ
{
(rn)H (x0(Φ0) − x1(Φ1)) e−jϕ

} în(Φ,ϕ)=0

≷
în(Φ,ϕ)=1

0

⇐⇒cos
(

(rn)H (x0(Φ0) − x1(Φ1)) − ϕ
) în(Φ,ϕ)=0

≷
în(Φ,ϕ)=1

0. (3.41)
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For fixed Φ ∈ [0, 2π)2, as ϕ scans [0, 2π), the decision în(Φ, ϕ) changes, according to

Eq. (3.41), only when:

cos
(

(rn)H (x0(Φ0) − x1(Φ1)) − ϕ
)

= 0 (3.42)

⇐⇒ ϕ = ±π

2
+ (rn)H (x0(Φ0) − x1(Φ1)) (mod 2π)

︸ ︷︷ ︸
ϕ

(1)
n ,ϕ

(2)
n

.

Hence, the decision sequence î(Φ, ϕ) =
[
î1(Φ, ϕ) î2(Φ, ϕ) . . . îNs(Φ, ϕ)

]⊤
changes

only at

ϕ
(1)
1 , ϕ

(2)
1 , ϕ

(1)
2 , ϕ

(2)
2 , . . . , ϕ

(1)
Ns

, ϕ
(2)
Ns

, (3.43)

where 0 < ϕ(l)
n < 2π, for any n = 1, 2, . . . , Ns, l ∈ {1, 2}. Since the 2Ns points are distinct

with probability one, only an element of decision î(Φ, ϕ) changes at each such point [85].

By sorting the above points in ascending order, i.e.,

(θ1, θ2, . . . , θ2Ns) = sort
(
ϕ

(1)
1 , ϕ

(2)
1 , ϕ

(1)
2 , . . . , ϕ

(1)
Ns

, ϕ
(2)
Ns

)
, (3.44)

the decision î(Φ, ϕ) remains constant in each one of the following 2Ns intervals:

J0 = [θ0, θ1), J1 = [θ1, θ2), . . . , J2Ns−1 = [θ2Ns−1, θ2Ns), (3.45)

with θ0 = 0. It is noted that the interval [θ2Ns , 2π) is ignored because it corresponds to

the same sequence î(Φ, ϕ) with J0. Thus, for fixed Φ ∈ [0, 2π)2, our objective is the

identification of the 2Ns sequences î(Φ, 0), î(Φ, θ1), . . . , î(Φ, θ2Ns−1), one of which offers

the largest metric of interest, i.e., the left-hand side of Eq. (3.38). The procedure of finding

the best sequence î⋆(Φ) , î(Φ, θopt) is given in Algorithm 1. For given Φ ∈ [0, 2π)2, the

algorithm offers the GLRT-optimal sequence following the same principles with sequence

detection algorithm developed in [85], with complexity O(NslogNs).

After obtaining the sequence î⋆(Φ) the optimal phase pair Φ⋆ is given by:

Φ⋆ = arg max
Φ∈[0,2π)2

∣∣∣(r1:Ns)
H x̂

i⋆(Φ)
(Φ)

∣∣∣ . (3.46)

and satisfies the following:

î⋆(Φ⋆) = îGLRT. (3.47)

There is no readily available closed-form solution of problem in Eq. (3.46), thus, the

following approach is instead utilized.
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Algorithm 1 GLRT Sequence Detection Given Φ

Input: r1:Ns =
[
r⊤

1 r⊤
2 . . . r⊤

Ns

]⊤
, Φ = [Φ0 Φ1]⊤

1: for n = 1 : Ns do
2: ϕ(1)

n := +π
2

+ (rn)H (x0(Φ0) − x1(Φ1)) (mod 2π)
3: ϕ(2)

n := −π
2

+ (rn)H (x0(Φ0) − x1(Φ1)) (mod 2π)
4: end for
5: (θ1, θ2, . . . , θ2N ) := sort

(
ϕ

(1)
1 , ϕ

(2)
1 , ϕ

(1)
2 , . . . , ϕ

(1)
N , ϕ

(2)
N

)

6: for n = 1 : Ns do
7: în(Φ, 0) ≡ γn := arg max

i∈{0,1}
ℜ
{
(rn)Hxi(Φ)

}

8: end for
9: mcur :=

∑Ns
n=1(rn)Hxγn

(Φ)
10: vbest := |mcur|
11: î⋆(Φ) := [γ1 γ2 . . . γNs]

⊤

12: for j = 1 : 2Ns − 1 do
13: let n be the index: θj = ϕ(l)

n for some l ∈ {1, 2}
14: γ := în(Φ, θj−1)
15: ζ := 1 − γ
16: mcur := mcur + (rn)H (xζ(Φ) − xγ(Φ))
17: în(Φ, θj) := ζ
18: vcur := |mcur|
19: if vcur > vbest then
20: vbest := vcur

21: î⋆(Φ) := î(Φ, θj)
22: end if
23: end for

Output: î⋆(Φ)

Algorithm 2

Input: r1:Ns =
[
r⊤

1 r⊤
2 . . . r⊤

Ns

]⊤
, M

1: j := 1
2: for Φ ∈ WM × WM do
3: î⋆

j = GLRT Sequence Detection Given Φ(r1:Ns, Φ)

4: vj :=

∣∣∣∣(r1:Ns)
H x̂

i⋆
j

(Φ)

∣∣∣∣
5: j := j + 1
6: end for
7: j⋆ := arg max

j∈{1,2,...,M2}
vj

Output: î⋆
j⋆
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As a practical intuitive alternative, a natural number M ∈ N is chosen and the

following set is formed:

WM ,

{
0,

2π

M
,
4π

M
, . . . ,

(M − 1)2π

M

}
⊂ [0, 2π), (3.48)

and instead of solving the problem in Eq. (3.46), the following optimization problem is

formed:

Φ̃⋆
M = arg max

Φ∈(WM )2

∣∣∣(r1:N)H x̂
i⋆(Φ)

(Φ)
∣∣∣ . (3.49)

The optimal phase pair for the above problem, Φ̃⋆
M , offers sequence decision î⋆

(
Φ̃⋆

M

)
,

which converges to îGLRT as M −→ ∞. Appropriate finite values of M are examined

numerically. The above procedure is illustrated in Algorithm 2 and enjoys complexity of

O(M2NslogNs), since there are M2 Φ-pairs and for each pair, a sequence is found with

O(NslogNs), while the quality metric for each sequence (in order to find the “best”) is

computed with linear in Ns complexity.

3.2.3 Noncoherent Coded Reception/Decoding

It is very challenging to apply error-correction channel coding in scatter radios due to the

following reasons:

• scatter radio tags are inherently resource-constrained, and thus, encoding at each

tag/sensor must be computationally affordable, and

• SDR reader must also employ low-complexity detection and decoding, in order to

concurrently serve as many as possible frequency-modulated tags in a given spec-

trum band.

Encoding

The transmitter encodes a sequence of K information bits to a sequence of Nc ≥ K coded

bits through a linear function over the binary field. Specifically, a linear block code C over

the field B is a K-dimensional subspace of BNc. A binary Nc-tuple is a codeword of C if

and only if there exists a binary K-tuple that can generate this Nc-tuple from G, i.e.,2

c ∈ C ⇐⇒ ∃ b ∈ B
K : c = bG. (3.50)

2All channel coding-related vectors are considered as row vectors, hereafter.
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The ratio RC , K
Nc

defines the rate of the code C, while the minimum distance dC
min of

C is the smallest Hamming weight wH (i.e., the number of non-zero components) of any

non-zero codeword in C, i.e., dC
min = min

c∈C\{0}
wH(c). Hereafter, a code will be abbreviated

by the triplet (Nc, K, dC
min).

Soft-Decision Noncoherent Hybrid Composite Hypothesis-Testing (NC-

HCHT) Decoding

As already mentioned, the inherently resource-constrained tags render the utilization of

small block-length channel codes mandatory. However, a major obstacle for small block-

length channel codes over wireless environments is the fact that errors usually occur in long

bursts when the channel is in deep fade [79].3 When wireless channel fading affects a sheer

amount of bits, the use of channel codes with small block-length is not appropriate, due

to their small error-correction capability. The interleaving technique in conjunction with

linear block codes (of relatively small length, i.e., short packet) overcomes this difficulty

[80].

The transmitter stores a block of D codewords in a D × Nc matrix and transmits

the information column-wise (where D is the interleaving depth of the interleaver), i.e., it

transmits the first coded bit of each of the D codewords and then the second bit of each of

the D codewords and so forth, until the Nc-th coded bit. The receiver stores DNc received

symbols and performs decoding row-wise, i.e., it decodes symbol sequences corresponding

to actual codewords. In that way, long errors in consecutive coded bits are avoided due

to the fact that burst errors are now affecting coded bits from different codewords [79].

It can be shown that a fully interleaved coded system (i.e., DT ≥ Tcoh), with classic FSK

and Rayleigh fading, achieves diversity order dC
min under ML noncoherent decoding [80].

For the scatter radio case, each tag backscatters a packet of DNc coded bits. After

DC-blocking, CFO estimation/compensation and symbol synchronization, SDR reader

processes DNc received symbols. Let c = [c1 c2 . . . cNc ] ∈ C be a codeword corresponding

to a specific row of the interleaving matrix; according to (3.18), the discrete baseband

signal, associated with that row of interleaving matrix, is given by:

r1:Nc =




r1

r2

...

rNc




=




h1xc1(Φ)

h2xc2(Φ)
...

hNcxcNc
(Φ)




+




n1

n2

...

nNc




, (3.51)

3As discussed in [86], in bistatic scatter radio, deep fading events are even more frequent due to the
product of channel gain terms aCT, aTR.
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where rn and xcn
(Φ) are defined as in Section 3.2.2, cn ∈ B, n = 1, 2, . . . , Nc and {hn}Nc

n=1

are the channel coefficients associated with coded bits {cn}Nc
n=1. The noise statistics are

given as in Section 3.2.2. In sharp contrast to Eq. (3.33), it is remarked that in Eq. (3.51):

(a) the transmitted sequence c belongs to a linear subspace of BNc and (b) some of {hn}Nc
n=1

may be independent of each other, and their correlation depends on the (a) sequence

length, (b) interleaving depth, and (c) channel coherence time. For the particular case of

a fully interleaved system, i.e., DT ≥ Tcoh, {hn}Nc
n=1 are independent of each other and

diversity gain can be obtained.

As in the uncoded case, the ML decoding rule does not amenable to a closed-form

expression and thus, an alternative decoding rule is devised. Applying the notion of

NC-HCHT decoding and treating Φ0 and Φ1 as uniform random variables in [0, 2π) and

{hn}Nc
n=1 as unknown nonrandom parameters, the following decoding rule is proposed:

arg max
c∈C

{
E
Φ

[
max

h∈CNc
ln
[
fr1:Nc |c,h,Φ(r1:Nc|c, h, Φ)

]]}
, (3.52)

where the vector h = [h1 h2 . . . hNc ]
⊤ consists of all deterministic compound channel

coefficients.

Theorem 3.3. For DT ≥ Tcoh, the decoding rule in Eq. (3.52) is simplified to the

following soft-decision, channel-agnostic rule:

ĉ = arg max
c∈C

Nc∑

n=1

wncn, (3.53)

where wn , |r+
1 (n)|2 + |r−

1 (n)|2 −
(
|r+

0 (n)|2 + |r−
0 (n)|2

)
, n = 1, 2, . . . , Nc are the soft-

decision variables.

Proof. The proof can be found in Appendix 3.6.

The receiver forms the vector w = {wn}Nc
n=1 of “soft decisions” for each row of inter-

leaving matrix and applies the rule in (3.53) D times. In practice we apply the rule of

Eq. (3.53) for any value of D (even when DT < Tcoh) due to its inherent simplicity. Soft-

decision decoding offers smaller BER performance compared to hard-decision decoding,

where the receiver applies first detection on a symbol-by-symbol basis and then applies

decoding on the bit sequence. The optimization problem in (3.53) requires O(2KNc) arith-

metic operations, which is exponential complexity on the number of information bits, K.

However, such computational cost is not very high for SDR reader if relatively small

block-length Nc (and thus small K) is utilized. For simulation results, small block-length,
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cyclic Bose-Chaudhuri-Hocquenghem (BCH), as well as Reed-Muller (RM) channel codes

are studied [87].

3.3 Coherent Scatter Radio Reception

For coherent reception let us define

g , h

√
E

2




e+jΦ0

e−jΦ0

e+jΦ1

e−jΦ1




, (3.54)

the compound channel vector that squeezes all unknown random parameters h, Φ0, and

Φ1. Substituting (3.54) in (3.18) the baseband signal over a bit duration T can be written

as:

r = g ⊙ si + n. (3.55)

3.3.1 Channel Estimation of Compound Scatter Radio Wireless

Channel

To coherently detect the received signal by Eq. (3.55), both the compound channel h

as well as the random phases Φi, i ∈ {0, 1} need to be estimated. Following a training

based technique, an priori known at the transmitter/receiver training signal is periodically

backscattered from the tag and the SDR reader then applies least-squares (LS) estimation

to obtain an estimate for compound vector channel g. Such pilot signal could be the

preamble, typically used for packet and/or symbol synchronization.

More specifically, once during the channel coherence time Tcoh, Ntr training bits
{

bitr

}
,

itr = 1, . . . , Ntr, are transmitted by the tag. After CFO estimation, DC blocking, syn-

chronization, and demodulation the vector representation of the received training signal

over one bit period T can be written equivalently as

ritr = Tbitr
g + nitr, (3.56)

with

Tbitr
=
[
(1 − bitr)e1 (1 − bitr)e2 bitre3 bitre4

]
∈ C

4×4, (3.57)

where ek, k = 1, . . . , 4, denotes the k-th column of the I4 identity matrix.
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Thus, for the duration of Ntr training symbols, the receiver applies column-wise con-

catenation of the vector representations of the Ntr bits in the training sequence and forms

vector y ∈ C4Ntr :

rtr =




r1

r2

...

rNtr




=




Tb1

Tb2

...

TbNtr




g +




n1

n2

...

nNtr




= Ttr g + ntr. (3.58)

To jointly estimate the compound channel h and phases Φi, i ∈ {0, 1}, the receiver

obtains the LS estimate of vector g:

ĝ = arg min
g∈C4

‖rtr − Ttr g‖2
2 ⇐⇒ ĝ =

(
TH

tr Ttr

)−1
TH

tr rtr. (3.59)

Although the LS estimate ĝ is ignoring the dependencies in vector g, it adheres to a

simple closed-form expression.

3.3.2 Maximum-Likelihood Detection and Decoding

For the baseband signal in (3.55) the reader treats channel estimate ĝ as the true channel

vector and applies coherent ML detection:

îML = arg max
i∈B

fr|i,g(r|i, ĝ)
(a)
= arg max

i∈B
ℜ
{

rH (ĝ ⊙ si)
}

, (3.60)

where in (a) we exploited the fact that fr|i,g(r|i, ĝ) ≡ CN (ĝ ⊙ si, N0 I4).

For decoding without interleaving technique utilized, i.e. D = 1, suppose that a

codeword c = [c1 c2 . . . cNc ] ∈ C (where C is a linear block code) is backscattered from the

tag towards the SDR reader. The baseband signal associated with the sequence of bits in

the codeword is given in (3.33). For a given the channel estimate ĝ, the ML decoder can

be simplified to

ĉML = arg max
c∈C

fr|c,g(r|c, ĝ)
(a)
= arg max

c∈C

{
N∑

i=1

ℜ
{
rH

i (ĝ ⊙ sci
)
}}

, (3.61)

where (a) exploits that

fr|c,g(r|c, ĝ) ≡ CN
([

(ĝ ⊙ sc1)⊤ (ĝ ⊙ sc2)
⊤ . . . (ĝ ⊙ scNc

)⊤
]⊤

, N0 I4Nc

)
. (3.62)
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The complexity to find the optimal codeword ĉML is O(2K Nc), which is exponential on

the number of information bits. However, for relatively small codeword lengths Nc, such

complexity is affordable to SDR reader.

The final result in coherent receiver pertains to the diversity order achieved by coherent

ML decoding in a fully interleaved system.

Theorem 3.4. Under Rayleigh fading scenario, i.e., κCT = κTR = 0, bistatic scatter

radio system with coherent ML decoding with full interleaving, i.e., Tcoh = (D + Ntr)T ,

achieves diversity order dC
min.

Proof. In Appendix 3.6.

However, the interleaving technique introduces delay and requires additional mem-

ory, since both the scatter radio tag/sensor, as well as the receiver process a block of D

codewords upon transmission and reception, respectively. Since the tag is equipped with

limited memory, the interleaving technique as presented for both coherent and noncoher-

ent coded reception schemes may be a practical option only for relatively small values of

D.

3.4 Simulation Results

Simulations for the bistatic scatter radio system model assume backscatter binary FSK

transmissions with T = 1 msec bit duration, over quasi-static flat fading channel with

coherence time Tcoh = 100 msec; Rayleigh fading (κCT = κTR = 0), Rician fading

with κCT = 20, κTR = 10 and no fading, i.e., Gaussian channel (κCT = κTR −→ ∞)

are studied.4 In all simulated cases, perfect symbol synchronization and CFO estima-

tion/compensation are also assumed. For comparison purposes, coherent detection and

decoding schemes are also included with Ntr = 30 training bits for channel estimation.

In all cases, the average received SNR per information bit is given by Eq. (3.17), while

packet length and energy consumption per transmitted packet are both fixed for com-

parison fairness. Hence, noncoherent receivers (without using a dedicated sequence of

training bits in the packet for channel estimation) offer for equal packet lengths higher

energy per information bit than their coherent counterparts.
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Figure 3.2: BER vs average received SNR for Rayleigh fading with no channel coding
of the various noncoherent detectors. Comparison to the coherent case is conducted for
fixed energy per packet, including energy spent for channel estimation.

3.4.1 Uncoded BER Performance

For uncoded bistatic scatter radio system, the noncoherent symbol-by-symbol and se-

quence detectors of Sections 3.2.1 and 3.2.2 are compared with the ML coherent detector

given in (3.61) with least-squares (LS) channel estimation (abbreviated as Coh-ML), as-

suming packets with 70 information bits for all setups. Thus, the total energy per packet

is 70E and (30+70)E for noncoherent and coherent setup, respectively, taking into account

the Ntr = 30 training bits for channel estimation in the coherent case. For fixed energy

per packet, the total energy per bit for noncoherent and coherent setup is E and 7
10

E

Joules, respectively. Furthermore, M = 6 is employed for NC-GLRT sequence detection

(for sequence length Ns ≥ 2).

Fig. 3.2 depicts for Rayleigh fading the BER of noncoherent symbol-by-symbol HCHT

and GLRT detectors, GLRT sequence detector (for various sequence lengths Ns), and Coh-

ML detector. It is remarked that for symbol-by-symbol NC-HCHT detection, simulation

results and analytical expression in Eq. (3.27) coincide. Coh-ML detector outperforms

symbol-by-symbol noncoherent detectors by 2-3dB. Increasing the sequence length Ns of

NC-GLRT sequence detector improves the BER performance, exhibiting 1-2dB perfor-

mance gain compared to Coh-ML detector. It can be seen that under a constant energy

consumption per packet, the energy per information bit in the coherent case is 30% smaller

compared to the noncoherent case, due to the overhead spent on training bits (in the co-

4Such coherence time and fading parameter values have been experimentally verified for immobile
outdoor setups, CE close to tag and tag-to-reader distance more than 100 meters [33, 37].
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Figure 3.3: BER vs average received SNR of NC-HCHT and Coh-ML detection for differ-
ent fading scenarios. Comparison to the coherent case is conducted for fixed energy per
packet, including energy spent for channel estimation.

herent case) for channel estimation. The NC-GLRT sequence detector capitalizes upon

that, exploiting correlation (due to the unknown channel) between consecutive symbols

and offers blind detection, i.e., no requirement for overhead (training) channel estima-

tion bits. It is also noted that increasing parameter M beyond 6, offers negligible extra

performance gain for the NC-GLRT sequence detector.

Fig. 3.3 compares the BER performance of NC-HCHT and Coh-ML detectors for

different types of fading as a function of average received SNR. As the SNR defined

in (3.17) is the same for any type of fading and does not depend on Rician parameters, such

comparison makes a lot of sense. It can be seen that as parameters κCT and κTR increase,

i.e., the channel becomes more deterministic, the BER gap between the two detection

schemes is reduced with increasing SNR. It is observed that as the fading becomes more

deterministic, the power gain dominates the BER performance in moderate and high SNR

regime. Interestingly, for the Gaussian channel case (no fading, deterministic channel),

NC-HCHT detector outperforms Coh-ML detector for SNR values greater than 12. As

discussed above, this stems from the fact that noncoherent schemes have a higher power

gain (E vs 7
10

E Joules per bit) compared to coherent one. This is highly important in

typical scatter radio scenarios, with strong line-of-sight (LOS).

Fig. 3.4 studies the sequence length of NC-GLRT in various fading scenarios; as fading

becomes more deterministic, the performance gap between NC-GLRT sequence detector

and Coh-ML detector slightly increases, showing that the proposed log-linear complexity

sequence detector is a promising option for power-limited scatter radio networks. It is

emphasized again that the BER performance gain of noncoherent receivers also exploits
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Figure 3.4: Performance of GLRT sequence detection with Ns = 70 and Coh-ML detection
for different fading scenarios and no channel coding. Comparison to the coherent case is
conducted for fixed energy per packet, including energy spent for channel estimation.
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Figure 3.5: Impact of fading in BER performance for HCHT and Coh-ML decoders. Both
setups utilize the cyclic (31, 11, 11) BCH code and D = 1. Comparison to the coherent case
is conducted for fixed energy per packet, including energy spent for channel estimation.

the higher energy per information bit, compared to the coherent receiver, due to fixed

energy per packet and no need for training/overhead bits for channel estimation. Both

Fig. 3.3 and Fig. 3.4 above clearly indicate that the choice of preferable noncoherent

detection scheme depends on the specifics of the wireless fading channel and the SNR

operating value.
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Figure 3.6: Impact of interleaving depth D for NC-HCHT and Coh-ML decoders with
cyclic (31, 11, 11) BCH code over Rician fading. Comparison to the coherent case is
conducted for fixed energy per packet, including energy spent for channel estimation.

3.4.2 Coded BER Performance

Using code C(Nc, K, dC
min) along with interleaving, the proposed NC-HCHT decoder of

Eq. (3.53) and the ML coherent decoder in Eq. (3.61) with LS channel estimation (Coh-

ML) are compared in terms of BER. Two small block-length channel codes are studied:

the cyclic (31, 11, 11) BCH code CBCH and the (32, 16, 8) RM channel code CRM; the

first has smaller rate but higher error-correction capability than the second. As in the

uncoded case, a total energy budget constraint per packet is considered assuming packets

of DNc coded bits (i.e., (K/Nc)DNc information bits). Thus, for noncoherent coded

setups the total energy per packet is DNcx, where x is the energy cost per bit, while

for coherent coded setups the total energy per packet is [DNc + LcohNtr] x, where integer

Lcoh ,
⌈

DNcT

Tcoh

⌉
indicates how many times the channel needs to be estimated (utilizing Ntr

training bits each time). Thus, for fixed energy per packet, i.e., DNcx = (K/Nc)DNcE

or [DNc + LcohNtr] x = (K/Nc)DNcE, the total energy per bit x for noncoherent and

coherent coded setup is K
Nc

E and
KD

DNc + LcohNtr
E Joules, respectively.

Fig. 3.5 considers the use of (31, 11, 11) BCH channel code with D = 1, i.e., no

interleaving and studies the impact of fading in NC-HCHT and Coh-ML decoders. It

can be seen that as fading parameters κCT, κTR decrease, the BER for both decoding

schemes increases. That is due to the higher randomness of fading for smaller values of

κCT and κTR and the limited error-correction capability due to the small block-length of

the utilized codes. It is also noted that as κCT, κTR, and SNR increase, the performance

of noncoherent coded system approaches the performance of coherent one.
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Figure 3.7: Impact of fading for NC-HCHT decoder with cyclic (31, 11, 11) BCH or
(32, 16, 8) RM channel code and full interleaving.

Fig. 3.6 studies the impact of interleaving depth D in BCH NC-HCHT and Coh-

ML decoders over Rician fading; as expected, the BER of both schemes is reduced with

increasing D, due to the diversity gain introduced by interleaving. It is noted that for

D = 5, Coh-ML decoder offers approximately 3 dB performance gain compared to NC-

HCHT decoder. However, as D increases, their BER performance gap becomes smaller.

Finally, Fig. 3.7 compares the (31, 11, 11) BCH cyclic and the (32, 16, 8) RM channel

codes for different fading scenarios, with NC-HCHT decoding and full interleaving. An

interesting observation emerges: while for Rayleigh fading BCH-coded outperforms RM-

coded system, for Rician fading they offer similar BER performance, whereas for no fading

RM offers slightly smaller BER compared to BCH. This means that when κCT and κTR

are small, i.e., in highly random fading scenarios, diversity gain (that depends on dC
min)

plays more important role in BER performance than energy gain (that depends on RC),

while the opposite holds in more deterministic fading scenarios.

3.5 Experimental Results

Outdoors measurements were conducted with the experimental setup depicted in Fig. 3.8.

An embedded carrier emitter (CE) was employed transmitting at frequency of 868 MHz

with transmit power 13 dBm. A custom 8-bit microcontroller-based, scatter radio tag was

utilized at 1 kbps with binary FSK and switching (subcarrier) frequencies of F0 = 125

kHz and F1 = 250 kHz. A commodity (USRP2) SDR with Flex-900 front-end radio

card was utilized as the receiver, connected to a laptop running the noncoherent and



68 Backscatter Radios: Fundamentals, Detection, and Channel Coding

Figure 3.8: Experimental outdoor topology: depicted carrier emitter-to-tag distance dCT

was 8 meters.

coherent detection/decoding algorithms. All radio modules were equipped with omni-

directional antennas, at height of 1.70 meters. Channel coherence time of 50 to 100 msec

was observed during the experimental results, due to immobility. For the considered

experimental scenario, CE was placed between tag and SDR reader, co-linearly (Fig. 3.8).

A packet of 47 bits was utilized for both coherent and noncoherent setups.

Periodogram-based CFO estimation was applied using the whole received signal,5

and energy-based symbol and packet synchronization was also employed. The (last) 31

bits constitute a BCH codeword (i.e., Nc = 31), utilized at both coherent and noncoherent

setups for detection and decoding, while the remaining 16 bits were exploited only at the

coherent case, for LS channel estimation. The following schemes were compared in terms

of BER:

• uncoded NC-HCHT symbol-by-symbol detector,

• uncoded GLRT symbol-by-symbol detector,

• uncoded GLRT sequence detector with Ns = 31 and M = 6,

• uncoded Coh-ML detector,

• coded NC-HCHT decoder, and

• coded Coh-ML decoder.

5The periodogram is the maximum-likelihood estimate (MLE) of ∆F , whose mean-squared error
(MSE) decays asymptotically with the cubic power of the number of utilized samples [88].
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Figure 3.9: Experimental BER comparison of all scatter radio receivers as a function of
tag-to-SDR reader distance dTR (m).

D = 1 was utilized, i.e., coding schemes did not utilize interleaving. In addition, the

energy per bit was held fixed, i.e., total energy per packet was not fixed among the

different schemes (favoring coded vs uncoded or coherent vs noncoherent reception).

Fig. 3.9 offers the experimental BER of the above schemes as a function of the tag-

to-reader distance. It can be seen that both coherent and noncoherent uncoded receivers

achieve ranges in the order of 145m with BER ≤ 3%, while coded receivers achieve

ranges of 148 and 141 meters approximately, at BER ≤ 4% and 0, respectively. It is

observed that uncoded coh-ML detector offers similar BER with uncoded (noncoherent)

GLRT sequence detector and both of them outperform by approximately one meter the

symbol-by-symbol noncoherent detectors (under unequal total energy cost per packet).

Interestingly, it can be shown that the proposed noncoherent coded receiver achieves

comparable BER performance with the coded coherent one, even though the latter spends

extra bits (and energy) for channel estimation; thus, potential energy gains are available

for the noncoherent setup. It is worth emphasizing that the reported BER, in the order

of 1%–5%, is acceptable for low bitrate sensing applications.



70 Backscatter Radios: Fundamentals, Detection, and Channel Coding

3.6 Appendix: Proofs of Chapter 3

Proof of Theorem 3.1

Under the orthogonality criterion for noncoherent FSK: |F1 − F0| = k
T

, k ∈ N, and for

Fi ≫ 1
T

, any two exponentials of frequencies F0, F1 will be orthogonal:

∫

T
ej2πFit

(
ej2πFkt

)∗
dt ≈





T, Fi = Fk,

0, Fi 6= Fk,
k, i ∈ B, (3.63)

where the integration is performed over one bit period T . Thus, the set
{

1√
T

e±j2πFitΠT (t)
}

i∈B

constitutes a 4-dimensional orthonormal basis, that can be used for expansion of the

received signal in Eq. (13) in the manuscript. Specifically, for bit duration T , a bank of

correlators processes the received signal ỹ(t) as

r+
0 =

∫ +∞

−∞
ỹ(t)

(
1√
T

ΠT (t)e+j2πF0t

)∗
dt

=
∫ T

0

µh

2
√

T

(
ej(2πFit+Φi) + e−j(2πFit+Φi)

) (
e−j2πF0t

)
dt +

∫ T

0
n(t)

(
e−j2πF0t

√
T

)
dt

(a)
=
∫ T

0

µh

2
√

T
ej(2π(Fi−F0)t+Φi)dt + 0 + n+

0

(3.63)
= he+jΦ0

√
Tµ

2
(1 − i) + n+

0

(b)
= he+jΦ0

√
E

2
(1 − i) + n+

0 , (3.64a)

where (a) follows from the fact that the integral of the “fast” exponential with frequency

Fi + F0 is approximated by zero since Fi ≫ 1
T

, i ∈ B, and (b) follows from the definition

of E in Eq. (15) of the manuscript. Similarly,

r−
0 =

∫ +∞

−∞
ỹ(t)

(
1√
T

ΠT (t)e−j2πF0t

)∗
dt = he−jΦ0

√
E

2
(1 − i) + n−

0 , (3.64b)

r+
1 =

∫ +∞

−∞
ỹ(t)

(
1√
T

ΠT (t)e+j2πF1t

)∗
dt = he+jΦ1

√
E

2
i + n+

1 , (3.64c)

r−
1 =

∫ +∞

−∞
ỹ(t)

(
1√
T

ΠT (t)e−j2πF1t

)∗
dt = he−jΦ1

√
E

2
i + n−

1 . (3.64d)

The complex exponentials are time-limited in [0, T ), and thus, for Fi +
20
T

≪ WSDR, the or-

thonormal basis
{

1√
T

e±j2πFitΠT (t)
}

i∈B
can be considered band-limited in [−WSDR, WSDR].

Since n(t) is a circularly symmetric complex baseband Gaussian random process with

power spectral density N0 in [−WSDR, WSDR] (cf. Eq. (3.9) in the manuscript), its projec-
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tions on an orthonormal basis with bandwidth limited basis functions in [−WSDR, WSDR],

offer independent and identically distributed circularly symmetric complex Gaussian com-

ponents with variance N0 [80], i.e., n = [n+
0 n−

0 n+
1 n−

1 ]⊤ ∼ CN (04, N0 I4) .

Proof of Proposition 3.1

Given hypothesis i = 0 and h, Φ0, Φ1, random variable (RV) z1 , |r+
1 |2 + |r−

1 |2 is the sum

of 4 independent, squared, zero-mean Gaussians, each of variance σ2 , N0/2 and thus,

z1 follows a Chi-squared distribution with 4 degrees of freedom and probability density

function (PDF) given by [80, p. 45]: fz1|i(x|0) = x
4σ4 e− x

2σ2 , x ≥ 0, and corresponding

cumulative distribution function (CDF) given by:

Fz1|i(x|0) = 1 − e− x

2σ2

(
1 +

x

2σ2

)
, x ≥ 0. (3.65)

Similarly, given hypothesis i = 0 and h, Φ0, Φ1, random variable z0 , |r+
0 |2 + |r−

0 |2
is the sum of 4 independent squared non-zero-mean Gaussian RVs, each of variance σ2

and thus, z0 follows noncentral Chi-squared with 4 degrees of freedom with noncentrality

parameter E |h|2 = E a2 that do not depend on RV Φ0. The conditional PDF of z0 is given

by [80, p. 46]:

fz0|i,a(x|0, a) =

√
x

2σ2
√

E a
e− x+E a2

2σ2 I1

(
a

√
x E

σ2

)
, x ≥ 0, (3.66)

where I1(·) is the modified Bessel of the first kind and order one [80, p. 47].

Under hypothesis i = 0, error occurs if z0 < z1. Applying the law of iterated expecta-

tion [89], the probability of that event can be calculated as follows:

Pr(e|i = 0) = Pr(z1 > z0|i = 0) = E
a

[
E

z0|a,i=0

[
1 − Fz1|i(z0|0)

]]
. (3.67)

In view of Eq. (3.65), the inner expectation in Eq. (3.67) is given by:

E
z0|a,i=0

[
1 − Fz1|i(z0|0)

]
=
∫ +∞

0

(
1 − Fz1|i(x|0)

)
fz0|i,a(x|0, a)dx

=
∫ +∞

0

(
1 + x

2σ2

)√
x

2σ2
√

E a
e− 2x+E a2

2σ2 I1

(
a

√
E x

σ2

)
dx

(a)
=

e
− E a2

4σ2 (E a2 + 16σ2)

32σ2
, (3.68)

where in (a), we used [62, Eq. (6.643.2)] and [84, Eqs. (13.15.1), (13.18.3)].
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Substituting SNR = E/(2σ2) in Eq. (3.68) , and applying expectation with respect to

a = aCTaTR under independent Rayleigh fading, offers the following:

E
a




e− E a2

4σ2 (E a2 + 16σ2)

32σ2


 = E

a

[
e− SNR a2

2

(
SNR a2

16
+

1

2

)]

= E
aCT

[
E

aTR

[
e− (aCTaTR)2

SNR

2

(
(aCTaTR)2

SNR

16
+

1

2

)]]

=
∫ ∞

0

∫ ∞

0
4 x y e−x2−y2− (xy)2

SNR

2

(
(xy)2

SNR

16
+

1

2

)
dxdy

(a)
=
∫ ∞

0
y e−y2 8 + 5y2

SNR

2 (y2SNR + 2)2 dy

(b)
=

e
2

SNR

4SNR
2

∫ ∞

2
SNR

e−y −2 + 5ySNR

y2
dy

(c)
=

e
2

SNR (5SNR + 2) E1

(
2

SNR

)

4SNR
2 − 1

4SNR
, (3.69)

where in (a), [62, Eq. (3.461.3)] was exploited, in (b) we applied change of variables, while

in (c), we used [62, Eq. (3.351.4)] and [84, Eq. (6.2.6)]. Due to symmetry, Pr(e|i = 0) =

Pr(e|i = 1) = Pr(e) and the proof is completed.

Proof of Theorem 3.3

Due to the conditional independence of each rn given the transmitted codeword c and

the parameters h, Φ0, Φ1, the log-likelihood PDF can be factorized as

ln
(
fr1:N |c,h,Φ0,Φ1

(r1:Nc|c, h, Φ0, Φ1)
)

=
Nc∑

n=1

ln
[
frn|cn,hn,Φ(rn|cn, hn, Φ)

]
. (3.70)

Hence, the log-likelihood PDF is a separable function of {hn}Nc
n=1. Given that the channel

coefficients {hn}Nc
n=1 are statistically independent and distinct (due to DT ≥ Tcoh), the

innermost maximization in (3.52) can be expressed as the sum of independent maximiza-

tions:

max
h∈CNc

ln
[
fr1:Nc |c,h,Φ(r1:Nc|c, h, Φ)

]
=

Nc∑

n=1

max
hn∈C

ln
[
frn|cn,hn,Φ(rn|cn, hn, Φ)

]
. (3.71)
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Each individual maximization can be calculated as in Lemma 3.1 through Eq. (3.25).

Applying expectation with respect to Φ0 and Φ1 in (3.71), the following is obtained:

E
Φ

[
Nc∑

n=1

[
Q(n) + A(n)

cn

]]
=

Nc∑

n=1

E
Φ

[
Q(n) + A(n)

cn

]
=

Nc∑

n=1

(
Q(n) + (1 − cn)E

Φ

[
A

(n)
0

]
+ cnE

Φ

[
A

(n)
1

])

=
Nc∑

n=1

(
Q(n) + E

Φ

[
A

(n)
0

]
+ cn

(
E
Φ

[
A

(n)
1

]
− E

Φ

[
A

(n)
0

]))
, (3.72)

where

A(n)
cn

=
1

2N0

(
|r+

cn
(n)|2 + |r−

cn
(n)|2

)
+

1

N0
ℜ
{
(r+

cn
(n))∗(r−

cn
(n))e2jΦcn

}
, (3.73)

Q(n) = 4ln

(
1

πN0

)
− 1

N0
||rn||22. (3.74)

According to Eq. (3.26), for any n = 1, 2, . . . , Nc, E
Φ

[
A(n)

cn

]
= 1

2N0

(
|r+

cn
(n)|2 + |r−

cn
(n)|2

)
.

Ignoring the terms in Eq. (3.72) that do not affect the outer maximization, the rule

in Eq. (3.52) is simplified to:

ĉ = arg max
c∈C

{
Nc∑

n=1

cn

(
E
Φ

[
A

(n)
1

]
− E

Φ

[
A

(n)
0

])}
, (3.75)

completing the proof.

Proof of Theorem 3.4

To achieve a fully interleaved system for the coherent case the value of depth D is set

(D + Ntr)T = Tcoh. (3.76)

The transmitter stores D codewords belonging to a linear block code C in a D×Nc matrix

and transmits the information column-wise. For each D bits (each column of interleaving

matrix), Ntr training bits are utilized for channel estimation. Thus, the transmitter sends

at total Nc(D + Ntr) bits.

The receiver has Nc(D + Ntr) received symbols; Nc Ntr of them correspond to training

bits to estimate the random channel vectors associated with each column of interleaving

matrix. Let g1, g2, . . . , gNc be the actual compound channel vectors associated with the

symbols of the 1st, 2nd, . . ., Nc-th column of interleaving matrix, respectively. Due to

Eq. (3.76) the compound channel vectors are independent of each other (and identically

distributed).
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We conclude that in fully interleaved system the receiver decodes symbol sequences

that correspond to codewords with coded bits experiencing independent fading. Accord-

ingly with Eq. (3.51), the received signal for a single row of interleaving matrix can be

expressed as

ri = gi ⊙ sci
+ ni, i = 1, 2, . . . , Nc, (3.77)

with c = [c1 c2 . . . cNc ] ∈ C denoting the transmitted codeword associated with the

specific row of interleaving matrix and sci
=
[
1 − ci 1 − ci ci ci

]⊤
, i = 1, . . . , Nc.

Assuming perfect knowledge of g1, . . . , gNc, and exploiting their independence, the

average probability of decoding error is given by

Pr(e) = E
g1,...,gNc

[Pr(e|g1, . . . , gNc)] . (3.78)

Let g1:Nc = [g⊤
1 g⊤

2 . . . g⊤
Nc

]⊤ for simplicity. For each i = 1, . . . , Nc, the log-likelihood

ratio associated with vector ri (which is a proper complex Gaussian given ci, gi) can be

written as

li = ln

(
fri|ci,gi

(ri|0, gi)

fri|ci,gi
(ri|1, gi)

)
=

2

N0

ℜ
{(

gi ⊙
(

s0 − s1

))H

ri

}
. (3.79)

After some algebra and using Eqs (3.11) and (3.17), the conditional PDF of li can be

expressed as

fli|ci,gi
(li|0, gi) ≡ N

(
SNR a2

CT,i a2
TR,i, 2 SNR a2

CT,i a2
TR,i

)
, (3.80)

fli|ci,gi
(li|1, gi) ≡ N

(
−SNR a2

CT,i a2
TR,i, 2 SNR a2

CT,i a2
TR,i

)
, (3.81)

where the parameters aCT,i, aTR,i are associated with compound channel gi, i =

1, 2, . . . , Nc. Thus, for the channel described by (3.77), the following is satisfied:

fli|ci,gi
(li|0, gi) = f−li|ci,gi

(−li|1, gi), i = 1, 2, . . . , Nc, (3.82)

and the channel is memoryless given g1:Nc ; thus, it can be considered as a binary-input

symmetric-output channel [90].

Under equiprobable signaling, due to the linearity of block code C and the memoryless

structure of channel given g1:Nc , the conditional probability of decoding error is upper

bounded by [91, Eqs. (2)–(4)]

Pr(e|g1, . . . , gNc) ≤
Nc∑

d=dC
min

Nd(C) Pr



(

d∑

i=1

li

)
< 0

∣∣∣∣∣∣
c = 0, g1:Nc


 , (3.83)
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where Nd(C) is the number of codewords in C that have Hamming weight d, i.e.,

Nd(C) =
∣∣∣ {c ∈ C : wH(c) = d}

∣∣∣. (3.84)

The symmetry of channel (Eq. (3.82)) ensures that no loss of optimality is incurred by

considering the all-zeros codeword in the pairwise error probability at the right-hand side

of (3.83).

Under the assumption of all-zeros codeword and for given g1:Nc the PDF of RV l ,
∑d

i=1 li is

fl|c,g1:Nc
(l|0, g1:Nc) ≡ N

(
SNR

d∑

i=1

a2
CT,i a2

TR,i, 2 SNR

d∑

i=1

a2
CT,i a2

TR,i

)
, (3.85)

where RVs aCT,i and aTR,i are independent and follow Rayleigh distribution with unit

power, due to the assumption that κCT = κTR = 0.

In view of Eqs. (3.83) and (3.85) the conditional probability of decoding error satisfies

Pr(e|g1, . . . , gNc) ≤
Nc∑

d=dC
min

Nd(C) Q



√√√√

SNR

d∑

i=1

a2
CT,i a2

TR,i




≤ 1

2

Nc∑

d=dC
min

Nd(C) e− 1
2

SNR

∑d

i=1
a2

CT,i
a2

TR,i . (3.86)

Eq. (3.86) stems from the identity X ∼ N (µ, σ2) =⇒ Pr(X < 0) = Q
(

µ
σ

)
, where

Q(x) , 1
2π

∫∞
x e− t2

2 dt, and from the Chernoff bound for the Q function, Q(x) ≤ 1
2
e− 1

2
x2

.

It is noted that the upper bound depends solely on the random amplitudes aCT,i, aTR,i,

∀i, which must be eliminated through expectation to obtain the upper bound on the

probability of decoding error. In view of Eqs. (3.86) and (3.78), Pr(e) is upper bounded

by

Pr(e) ≤ E
g1:Nc




1

2

Nc∑

d=dC
min

Nd(C) e− 1
2

SNR

∑d

i=1
a2

CT,i
a2

TR,i




=
1

2

Nc∑

d=dC
min

Nd(C) E
g1:Nc

[
e− 1

2
SNR

∑d

i=1
a2

CT,i
a2

TR,i

]

=
1

2

Nc∑

d=dC
min

Nd(C)
d∏

i=1

E
aCT,i,aTR,i

[
e− 1

2
SNR a2

CT,i
a2

TR,i

]
. (3.87)
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Each quantity E
aCT,i,aTR,i

[
e− 1

2
SNR a2

CT,i
a2

TR,i

]
is calculated as

E
aCT,i,aTR,i

[
e− 1

2
SNR a2

CT,i
a2

TR,i

]
=
∫ ∞

0

∫ ∞

0
e− 1

2
(SNR x2 y2)4 x y e−x2−y2

dxdy

=
∫ ∞

0
4

y e−y2

2 + y2SNR
dy =

∫ ∞

0
2

e−y

2 + ySNR
dy (3.88)

=
(

2

SNR

)
e

2
SNR Γ

(
0,

2

SNR

)
. (3.89)

The result in [62, Eqs. (3.461.3) and (3.383.10)] is utilized to obtain Eqs. (3.88) and (3.89).

Γ (s, x) =
∫∞

x ts−1e−tdt is the upper incomplete gamma function. Substituting (3.89)

in (3.87), the final upper bound of Pr(e) is expressed as

Pr(e) ≤ 1

2

Nc∑

d=dC
min

Nd(C
((

2

SNR

)
e

2
SNR Γ

(
0,

2

SNR

))d

. (3.90)

To prove the diversity order argument, the definition of diversity order in [92, Eq. 3]

will be utilized. Specifically, the quantity

lim
SNR→∞

log
((

2
SNR

)
e

2
SNR Γ

(
0, 2

SNR

))

log(SNR)

= lim
SNR→∞





log
(

2
SNR

)

log(SNR)
+

2
SNR

log(SNR)
+

log
(
Γ
(
0, 2

SNR

))

log(SNR)



 (3.91)

equals −1, because the first term of the right-hand side of (3.91) offers −1, the second

offers 0, and the third offers 0 if we use L’Hôpital’s rule and [84, Eq. (8.8.13)]. Therefore,

lim
SNR→∞

log
((

2
SNR

)
e

2
SNR Γ

(
0, 2

SNR

))d

log(SNR)
= −d. (3.92)

Using [84, Eqs. (8.4.4) and (6.8.2)] we conclude that
(

2
SNR

)
e

2
SNR Γ

(
0, 2

SNR

)
≤ 1 for every

(non-negative) value of SNR. Hence, function

((
2

SNR

)
e

2
SNR Γ

(
0,

2

SNR

))d

(3.93)

is a non-increasing function of d. Combining the above with Eqs. (3.90) and (3.92) the

proof is completed.



Chapter 4

Extended Scatter Radio Coverage

for Low-Power Internet-of-Things

Building upon the results presented in chapter 3, this chapter explores scatter radio from

a networking point of view, trying to evaluate and contrast, in terms of several multi-tag

performance metrics, the most prominent scatter radio network architectures, i.e., the

monostatic and the multi-bistatic (multistatic) architectures. In monostatic architecture,

the reader consists of both the illuminating transmitter and the receiver of signals scat-

tered back from the tags/sensors. The multistatic architecture includes several ultra-low-

cost illuminating carrier emitters and a single reader. The chapter analyses performance

metrics such as, maximum-likelihood coherent and noncoherent bit error rate (BER),

diversity order, average information and energy outage probability, under dyadic Nak-

agami fading. The latter is the most realistic small-scale fading wireless channel model

for backscatter communications. The theoretical and simulation results revealed the fol-

lowing: (i) multistatic architecture outperforms monostatic one in terms of diversity order

and BER performance, (ii) for passive tags with radio frequency (RF) energy harvesting,

energy outage events are more infrequent in multistatic than monostatic architecture,

and (iii) multistatic coverage is higher than monostatic. The chapter is closed with some

experimental results attributed to [40]. A proof-of-concept digital multistatic backscatter

sensor network (BSN) was demonstrated with a single receiver, four low-cost emitters and

multiple ambiently-powered, low bitrate tags. The outcome of this research can be ap-

plied in the industries of wireless sensor networks (WSNs) and emerging Internet-of-things

(IoT) applications.

77
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Related Work

In environmental monitoring and precision agriculture, as well as in many other Internet-

of-Things (IoT) applications from healthcare domain and smart homes (with many ex-

amples found in [1] and references therein), the reader (receiver) must be able to decode

multiple sensors’ signals for ranges that may be larger than conventional ranges in ra-

dio frequency identification (RFID) systems. In such situations one potential solution

would be the adoption of conventional (Marconi) radios for multi-sensor communication.

However, radio frequency (RF) front-ends in Marconi radios typically require signal con-

ditioning units, such as mixers, active filters, and amplifiers, increasing complexity, power

consumption, and monetary cost per IoT device. On the contrary, backscattering, i.e.,

communication by means of reflection, can be realized with a single RF transistor at each

scatter radio node, and thus, power consumption and monetary cost per IoT device can

be maintained at ultra-low levels.

There are two different architectures for scatter radio networks, namely the monos-

tatic and the multi-bistatic (multistatic) architectures, depicted in Fig 4.1. In monostatic

architecture [93], the reader consists of both the illuminating transmitter and the receiver

of signals reflected back from the tags. In the bistatic architecture [33], the illuminating

carrier emitter (CE) and the receiver of the reflected (backscattered) signals are distinct

units, located at different positions, offering flexible network topologies. In the multi-

static architecture, several low-cost CEs are available, two orders of magnitude cheaper

than the reader. The latter can be a low-cost, commodity software-defined radio (SDR).

Before presenting any theoretical or simulation result, simple intuition indicates that due

to the morphology of the multistatic architecture, each tag can be close to a CE with high

probability, offering two desired implications: (a) the tag-to-reader coverage is increased

with high probability and (b) using passive tags that harvest RF energy from the illumi-

nating emitters, the probability of energy outage during the energy harvesting phase can

be decreased.

Proof-of-concept multistatic backscatter sensor network (BSN) examples with analog

FM principles can be found in [17] and [19], for environmental humidity and soil moisture,

respectively, while work in [18] used bistatic scatter radio to convey the electric potential

of several plants and each BSN terminal was powered by the plant itself, capitalizing upon

the ultra-low power requirements of scatter radio.

This first concrete step towards increased range digital scatter radio systems operat-

ing with multiple tags was done in [13], where frequency-based modulations were advo-

cated for frequency-based multiple access and a monostatic reader was built to decode

noncoherently minimum-shift keying (MSK)-modulated backscattered, low bitrate sig-
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nals. Subsequent work in [94] conducted coverage analysis assuming tags backscattering

frequency-modulated signals over orthogonal subcarriers. The required number of RF

sources to obtain interference-free communication connectivity for wireless sensor net-

works consisting of passive devices was studied in [95]. The authors in [96] propose a

network architecture that enables device-to-device (D2D) communication between pas-

sive nodes by simultaneously integrating backscatter communication along with wireless

power transfer.

Contributions

The contributions of this chapter are summarized as follows:

• A multi-tag signal model based on joint time- and frequency-division multiplexing

(joint TDM-FDM) for both multistatic and monostatic systems is proposed, ex-

ploiting existing results on scatter radio prior art. The signal model accounts for

(large-scale) path-loss and small-scale fading, based on, realistic for scatter radio

signal model, dyadic Nakagami fading.

• Upper bounds on BER performance of point-to-point backscatter systems under co-

herent maximum-likelihood (ML) detection for dyadic Nakagami fading are derived.

These bounds coincide with the exact BER performance of noncoherent envelope

detection. The derived BER expressions depend on the topology of the tags and can

Monostatic Multistatic 

Figure 4.1: Monostatic (Left) and Multistatic (Right) backscatter sensor network (BSN)
architecture with N tags, n = 1 . . . N , and L illuminating carrier emitters (CEs), l =
1 . . . L.
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be exploited to a network level analysis. It is found that the bistatic architecture

has higher diversity order than the monostatic architecture. Additionally, it is found

that the multistatic analysis covers asymmetric cases, where the fading statistics of

links emitter-to-tag and tag-to-reader are different.

• Information outage probability and tight Jensen-based upper bounds are provided

for Rayleigh fading. In addition, for the case of passive tags, closed-form expressions

for energy outage are derived for Nakagami fading.

• Numerical results demonstrate that multistatic architecture outperforms the mono-

static one for every studied metric. Topology-free information and energy outage

expressions are evaluated over the class of square grid topologies (related to the

spatial distribution of the tags).

• A digital, multistatic BSN is experimentally demonstrated and contrasted to a

monostatic counterpart, corroborating the theoretical findings and offering a con-

crete proof-of-concept. These experimental results are contributed from [40] and

are presented in this thesis to offer a complete comparison between the two studied

scatter radio architectures.

Organization and Notation

The rest of this document is organized as follows: Section 4.1 presents the model of

the monostatic and multistatic architectures. Section 4.2 presents the single user (i.e.,

tag) error probability analysis and Section 4.3 offers the outage probability analysis for

multiple tags and presents how to model the spatial distribution of tags. Next, Section 4.4

offers energy outage analytical results. Numerical and experimental (outdoor) results are

presented in Sections 4.5 and 4.6, respectively.

Notation: Symbols B, N, R, and C denote the set of binary, natural, real, and complex

numbers, respectively. 0N and IN , denote, respectively, the all-zeros vector and identity

matrix of size N . The phase of a complex number z is denoted as z. The distribution of a

proper complex Gaussian N ×1 vector x with mean µ and covariance matrix Σ is denoted

by CN (µ, Σ) , 1
πN det(Σ)

e−(x−µ)HΣ−1(x−µ). U [a, b) denotes the uniform distribution in [a, b).

Expectation of function g(·) of random variable x with probability density function (PDF)

fx(·) is denoted as E[g(x)] ,
∫

x g(x)fx(x)dx. The probability of event A is denoted as P(A).
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4.1 System Model

4.1.1 Network Architecture

We consider a backscatter sensor network (BSN) consisting of N static sensors (tags)

at distinct positions that backscatter their measured data to a single-antenna software-

defined radio (SDR) reader; let N , {1, 2, . . . , N} be denoting the set of tags. Tags are

considered semi-passive, i.e., they utilize scatter radio for communication and are powered

by any type of energy source, either ambient (solar, thermoelectric, chemical) or dedicated

(e.g., battery).

In multistatic BSN architecture a set of RF illuminators or carrier emitters (CE)

is assumed, denoted as L , {1, 2, . . . , L}. The CEs are distinct units from the SDR

receiver and transmit a continuous carrier wave (CW) with time-division multiple access

(TDMA) or frequency-division multiple access (FDMA) (see Fig. 4.1-Right and Fig. 4.2).

For TDMA operation, the l-th CE transmits at the l-th time slot using a common carrier

frequency, whereas for FDMA operation, the l-th CE transmits at the l-th frequency slot,

i.e., carrier frequency centered at a frequency band orthogonal to the bands of the other

simultaneously (in-time) transmitting CEs. The wireless channel is assumed quasi-static,

changing independently across different (time or frequency) slots. For the l-th (time or

frequency) slot, 2N +1 unidirectional links exist (N CE-to-tag links, N tag-to-SDR reader

links and the CE-to-SDR reader link). The distance between the l-th CE and the n-th

tag is denoted by dClTn
, the distance between the n-th tag and the reader is denoted as

dTnR with n ∈ N and the distance between the l-th CE and the SDR reader is denoted

as dClR (Fig. 4.2). Under the assumptions of this work, it will be shown that TDMA and

FDMA operations for CEs offer equivalent signal representations.

In the monostatic BSN architecture the single-antenna reader operates as both the

receiver and the CW emitter, in full-duplex mode. Specifically, the tags are illuminated

by the illuminating CE emitted from the SDR reader. The incident CE signal is modulated

and backscattered towards the SDR reader. For fair comparison to the multistatic system,

transmission across L time slots will be also assumed, with wireless channel changing

independently between time or frequency slots. In this architecture N bidirectional links

exist between the reader and the N tags (Fig. 4.1-Left). The distance between the reader

and the n-th tag is denoted by dk, where k ∈ {TnR, RTn} denotes the unidirectional

tag-to-reader, reader-to-tag link, respectively.

The positions of n-th tag, l-th CE, and SDR reader are denoted uTn
, n ∈ N , uCl

,

l ∈ L, and uR, respectively.
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Figure 4.2: Multistatic BSN transmission model over the l-th time slot.

4.1.2 Channel Model

The adopted path-loss model is [27]:

Lk =

(
λ

4πd0

)2 (
d0

dk

)νk

, (4.1)

where k ∈ {ClR, ClTn, TnR} for multistatic and k ∈ {TnR, RTn} for monostatic archi-

tecture, d0 is a reference distance (assumed unit thereinafter), λ is the carrier emission

wavelength and νk is the path-loss exponent for link k.

Tag communication bandwidth and channel delay spread are assumed relatively small

and thus, frequency non-selective (flat) fading is assumed. The complex channel gain

for the l-th (time or frequency) slot is denoted as hl,k = al,k e−jφl,k , where al,k ∈ R+,

φl,k ∈ [0, 2π), k ∈ {ClR, ClTn, TnR} and k ∈ {TnR, RTn} for multistatic and monostatic

architecture, respectively, with E[|hl,k|2] ≡ E

[
a2

l,k

]
= 1. It is emphasized that for CEs in

TDMA or FDMA mode, hl1,k is statistically independent to hl2,k for any l1 6= l2. Moreover,

at the monostatic architecture reciprocity implies hl,TnR = hl,RTn
, while at the multistatic

architecture, {hl,k} are independent (and not necessarily identically distributed) for dif-

ferent k ∈ {ClR, ClTn, TnR}.1

Due to potentially strong line-of-sight (LoS) signals in scatter radio environments,

Nakagami small-scale fading is a valid assumption for small-scale fading at each scatter

1Results can be easily extended to the multi-antenna reader case.
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radio link (with E

[
a2

l,k

]
= 1) [27, p. 79]:

fal,k
(x) = 2 (Mk)Mk

x2Mk−1

Γ(Mk)
e−Mkx2

, x ≥ 0, (4.2)

where Mk ≥ 1
2

is the Nakagami parameter and function Γ(x) =
∫∞

0 tx−1e−tdt is the Gamma

function. For the special cases of Mk = 1 and Mk = ∞, Rayleigh and no-fading (i.e.,

al,k = 1) is obtained, respectively. For Mk = (κk+1)2

2κk+1
, the distribution in (4.2) approximates

Rice with Rician parameter κk [27].

4.1.3 Signal Model

Multistatic

Following the scatter radio signal model in Section 3.1, the l-th CE transmits a CW at the

l-th (time or frequency) slot, with complex baseband c
[b]
l (t) =

√
2PCl

e−j(2π∆Flt+∆φl), where

PCl
is the l-th CE transmission power, while ∆Fl and ∆φl model the carrier frequency

offset (CFO) and phase offset between the l-th CE and the SDR reader, respectively, due

to the fact that CE and the SDR reader do not share the same oscillator.

Each tag n ∈ N is illuminated by the carrier wave c
[b]
l (t). The tag’s information is

binary-modulated on the incident CW by switching the antenna load between two loads,

associated with two distinct reflection coefficients: Γn,0 and Γn,1 for bit “0” and bit “1”,

respectively. Binary frequency-shift keying (FSK) modulation is employed, where each

tag switches between the two loads using a 50% duty cycle square waveform of duration

T per bit (nominal bit duration), fundamental frequency Fn,i, and random initial phase

Φn,i, for bit i ∈ B , {0, 1} (cf. Eq. (3.6)); in other words, modulation occurs with

different switching frequency between tag antenna loads, utilizing switching (also coined

as subcarrier) frequency Fn,0 for bit “0” and Fn,1 for bit “1”, without any type of signal

conditioning, such as filtering, amplification or mixing [13].

Fig. 4.3 depicts the measured spectrum at a spectrum analyzer when a signal’s genera-

tor’s CW at Fs = 868 MHz illuminates tag n that utilizes binary FSK with |Fn,1 −Fn,0| =

122.5 kHz. In contrast to conventional Marconi-radio FSK, frequencies Fs − Fn,0 and

Fs−Fn,1 also contribute to the total received signal (in addition to Fs+Fn,0 and Fs+Fn,1),

and thus, backscatter FSK modulation uses 4 frequencies, ±Fn,in
, in ∈ B. Consequently,

the optimal demodulator requires 4 matched filters and not 2, as in classic FSK demod-

ulation.

A set of unique subcarrier frequencies Fn,in
, in ∈ B, are employed at tag n to scatter

its data. At the network level, the 4N frequencies {±Fn,in
} , ∀(in, n) ∈ B×N must satisfy
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Fs

F  + s Fn,1F  + s Fn,0F  - s Fn,0F  - s Fn,1

868 MHz

k/2T

Figure 4.3: Measured backscatter radio FSK spectrum with two loads. Scattered signal
appears in 4 frequencies, 2 left and 2 right of the illuminating carrier.

the orthogonality criterion, which for coherent FSK adheres to the following:2

|Fn,i − Fj,m| =
k

2T
and Fn,i ≫ 1

2T
, (4.3)

∀(i, n), (m, j) ∈ B × N : m 6= i, and k ∈ N.

Under the above orthogonality criteria the system of N tags scattering simultaneously

can be divided into N parallel orthogonal channels, where each can be received separately,

without collision. Such single-tag processing techniques have been extensively covered

in [13, 33, 37, 39, 97]. In view of Eq. (3.18), for the point-to-point backscatter system

associated with the n-th tag during the l-th slot, the CFO-free, DC-blocked received

baseband signal at the reader over a bit period T is given by

r
[b]
l,n = h

[b]
l,n

√
E

[b]
l,n xn + wl,n, n ∈ N , (4.4)

where the vector xn is given by:

xn ,

√
1

2

[
e+jΦn,0 e−jΦn,0 e+jΦn,1 e−jΦn,1

]⊤ ⊙ sin
, n ∈ N , (4.5)

and sin
= [(1 − in) (1 − in) in in]⊤ is the four-dimensional transmitted symbol of the

n-th tag corresponding to transmitted bit in ∈ B. Φn,0 (Φn,1) is implementation-specific

phase mismatch between tag n and reader for bit 0 (bit 1), assumed constant for the

L slots. Symbol ⊙ denotes the component-wise (Hadamard) product. According to

Theorem 3.1 for Fn,in
+ 20

T
≪ WSDR, where WSDR is the SDR receiver baseband bandwidth,

2For noncoherent FSK, term k/2T in Eq. (4.3) is replaced with k/T .
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wl,n ∼ CN (04, N0I4). Compound channel parameter h
[b]
l,n in Eq. (4.4) is given by:

h
[b]
l,n , a

[b]
l,n e−jφ

[b]
l,n , (4.6)

a
[b]
l,n = al,ClTn

al,TnR, (4.7)

φ
[b]
l,n = φl,ClTn

+ φl,TnR + ∆φl + Γn,0 − Γn,1. (4.8)

Symbol E
[b]
l,n denotes the average energy per bit for the n-th tag over the l-th slot and,

accordingly with Eq. (3.16), is given by:

E
[b]
l,n =

E

[(
a

[b]
l,n µ

[b]
l,n

)2
T
]

2
=

(
µ

[b]
l,n

)2
T

2
, (4.9)

taking into account that RVs al,ClTn
and al,TnR are independent with unit power. Param-

eter µ
[b]
l,n above incorporates the compound scatter radio link path-losses and tag-related

parameters, i.e.,

µ
[b]
l,n =

√
2 PCl

LClTn
LTnR |Γn,0 − Γn,1|

2

π
sn, (4.10)

with sn modeling the n-th tag’s (real) scattering efficiency, assumed constant over the L

slots. The average received SNR of tag n at the l-th slot for multistatic system associated

with the system in Eq. (4.4) is given by SNR
[b]
l,n = E

[b]
l,n/N0.

As already mentioned, for CEs in TDMA or FDMA mode, hl1,k is statistically inde-

pendent to hl2,k for any l1 6= l2. Under this assumption, tools developed in this work can in

principle accommodate both CE modes. For simpler presentation and concise comparison

with the monostatic architecture, we will assume hereinafter CEs in TDMA mode.

Monostatic

In monostatic case CFO ∆Fl and phase offset ∆φl are zero, due to the fact that the

receiver and the emitter share the same oscillator. Using Eq. (4.4) and the reciprocity

of the channel between the reader and each tag, the DC-blocked, demodulated received

signal for tag n in the monostatic architecture at time slot l is given by:

r
[m]
l,n = h

[m]
l,n

√
Mn

Mn + 1
E

[m]
n xn + wl,n, n ∈ N , (4.11)
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under the same assumptions and definitions as in Eqs. (4.4), (4.5). In accordance with

the multistatic case, h
[m]
l,n is given by:

h
[m]
l,n , a

[m]
l,n e−jφ

[m]
l,n , (4.12)

a
[m]
l,n = (al,TnR)2 , φ

[m]
l,n = 2φl,TnR + Γn,0 − Γn,1. (4.13)

The average received energy per bit for monostatic system for the n-th tag over the l-th

time slot, E
[m]
n , is expressed as:

E
[m]
n =

E

[(
a

[m]
l,n µ

[m]
l,n

)2
T
]

2
=

1 + Mn

2 Mn

(
µ[m]

n

)2
T, (4.14)

since E

[(
a

[m]
l,n

)2
]

= E

[
(al,TnR)4

]
= (Mn + 1)/Mn and µ[m]

n is simplified from Eq. (4.10) to:

µ[m]
n =

√
2PR LTnR |Γn,0 − Γn,1|

2

π
sn. (4.15)

The average received SNR of tag n at the l-th time slot for monostatic system is given

by3
SNR

[m]
n = E

[m]
n /N0.

In the monostatic case above, quantities E
[m]
n and SNR

[m]
n do not depend on time index

l, because they are functions of path loss LTnR; the latter is constant during the L slots.

On the contrary, E
[b]
l,n and SNR

[b]
l,n in the multistatic case, are both functions of path loss

LClTn
, which depends on the slot index l, since different CE corresponds to each slot.

In addition, it is noted that due to the nature of FSK modulation, the discrete base-

band signal expressions in Eqs. (4.4) and (4.11) depend solely on links ClTn and TnR

due to DC-blocking operation, and thus, the analysis is continued with link TnR for

monostatic and links ClTn and TnR for bistatic (one CE) or multistatic (multiple CEs)

architecture, ∀(l, n) ∈ L × N .

4.1.4 Distribution of Fading Amplitudes

It can be observed that RVs (al,ClTn
)2 and (al,TnR)2 are independent following Gamma

distribution with parameters
(

MClTn
, 1

MClTn

)
and

(
MTnR, 1

MTnR

)
, respectively [60, p. 242],

i.e., the probability density function (PDF) of RVs (al,k)2 is given by:

fa2
l,k

(x) = (Mk)Mk
xMk−1

Γ(Mk)
e−Mkx, x ≥ 0, k ∈ {ClTn, TnR} . (4.16)

3From Eq. (4.11), notice that E

[
|h[m]

l,n |2 Mn

Mn+1 E
[m]
n ||xn||2

]
= E

[m]
n .
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The above distribution reflects the power distribution of each small-scale fading scatter

radio link for both monostatic and multistatic architectures and will be used as a building

block to derive closed-form expressions for the metrics of interest.

For simplified notation, the following abbreviations are used: MClTn
= Mln and MTnR =

Mn.

4.2 BER Analysis with ML Detection

4.2.1 Coherent

Monostatic

According to Eq. (4.11), given channel realization h
[m]
l,n (with

∣∣∣h[m]
l,n

∣∣∣ = a
[m]
l,n ) and phase

parameters Φn,0, Φn,1, the conditional bit error rate (BER) for tag n over time slot l under

ML coherent detection depends solely on amplitude a
[m]
l,n [37], and is given by [79, p. 508]:

P

(
e

[m]
l,n | a

[m]
l,n

)
= Q




a
[m]
l,n

√
Mn

Mn+1
E

[m]
n ‖x0 − x1‖2√
2 N0


 = Q


a

[m]
l,n

√√√√MnSNR
[m]
n

Mn + 1


 , (4.17)

where function Q(x) = 1
2π

∫∞
x e− t2

2 dt and ‖x0 − x1‖2 =
√

2 were utilized.

Using the Chernoff bound for Q(·) function, Eq. (4.17) can be upper bounded as

Q

(
a

[m]
l,n

√
MnSNR

[m]
n

Mn+1

)
≤ 1

2
e

−(a
[m]
l,n )

2
Mn SNR

[m]
n

2 (Mn+1) . Since RV a
[m]
l,n = (al,TnR)2 is Gamma distributed

with parameter
(
Mn, 1

Mn

)
, the unconditional BER can be bounded as:

P

(
e

[m]
l,n

)
= E

a
[m]
l,n

[
P

(
e

[m]
l,n | a

[m]
l,n

)] (a)

≤
∫ ∞

0

1

2
e

− x2
Mn SNR

[m]
n

2 (Mn+1) (Mn)Mn
xMn−1

Γ(Mn)
e−Mnxdx

(b)
=

1

2

(
Mn + M

2
n

2 SNR
[m]
n

)Mn
2

U

(
Mn

2
,
1

2
,

Mn + M
2
n

2 SNR
[m]
n

)
, (4.18)

where U(·, ·, ·) is the confluent hypergeometric function [84, Eq. (13.4.4)]. In step (a)

above, the Chernoff bound for Q function was exploited and in step (b), [62, Eqs. (3.462.1)

and (9.240)] and then [84, Eq. (13.14.3)] were utilized to simplify the final formula.

Is is emphasized that BER in Eq. (4.18) depends on SNR
[m]
n of tag n, which in turn,

depends on Eq. (4.14); the latter is a function of tag’s n location through Eq. (4.15).

Thus, the above BER expression depends on the topology of the tags. The following

proposition offers an important, topology-independent metric:
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Proposition 4.1. Under Rayleigh fading, i.e., Mn = 1, mono-static architecture offers

diversity order equal to 1/2 for any (l, n) ∈ L × N .

Proof. The proof is given in Appendix 4.7.

The above result indicates that for any slot and Rayleigh fading, monostatic BER

decays inversely proportional with square root of SNR at the high SNR regime. It is

shown below that the decay is faster in the multistatic case.

Multistatic

Exploiting Eq. (4.7) along with the formula in [60, p. 302, Eq. 6.148], the PDF of the

product g
[b]
l,n ,

(
a

[b]
l,n

)2
= (al,ClTn

)2 (al,TnR)2 admits closed-form:

f
g

[b]
l,n

(x) =
∫ ∞

0

1

y
fa2

l,ClTn
(y) fa2

l,TnR

(
x

y

)
dy =

2(x Mln Mn)
Mln+Mn

2 KMn−Mln

(
2
√

Mln Mn x
)

x Γ(Mln) Γ(Mn)
, x ≥ 0,

(4.19)

where [62, Eq. (3.471.9)] was used to obtain the simplified form in Eq. (4.19). Kν(·) is

the ν-th order modified Bessel function of the second kind, satisfying Kν(·) = K−ν(·) [84,

Eq. (10.27.3)]. The above distribution is the power distribution of Nakagami dyadic

backscatter channel. Similar expression with Eq. (4.19) can be found in [98], while a

derivation of Eq. (4.19) in the special case of Mln = Mn is given in [99].

In the multistatic case, according to Eq. (4.4), the conditional BER for tag n over the

l-th time slot is given by:

P

(
e

[b]
l,n | a

[b]
l,n

)
= Q

(
a

[b]
l,n

√
SNR

[b]
l,n

)
, (4.20)

which with the use of Chernoff bound is upper bounded as Q

(
a

[b]
l,n

√
SNR

[b]
l,n

)
≤

1
2

e−(a
[b]
l,n)

2
SNR

[b]
l,n

2 .

Hence, BER over the l-th slot for the n-th tag is upper bounded as follows:

P

(
e

[b]
l,n

)
= E

a
[b]
l,n

[
P

(
e

[b]
l,n

∣∣∣a[b]
l,n

)]
≤
∫ ∞

0
e

(
−xSNR

[b]
l,n

/2

)
(x Mln Mn)

Mln+Mn
2 KMn−Mln

(
2
√

Mln Mn x
)

x Γ(Mln) Γ(Mn)
dx

(a)
=

1

2


2 MlnMn

SNR
[b]
l,n




Mn

U


Mn, 1 + Mn − Mln,

2 MlnMn

SNR
[b]
l,n


 , (4.21)
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where U(·, ·, ·) is the confluent hypergeometric function [84, Eq. (13.4.4)]. In Step (a)

above, change of variables x = y2 is performed and the simplified final expression used [62,

Eq. (6.631.3)] and [84, Eq. (13.14.3)].

BER of Eq. (4.21) also depends on the network topology, through the definition of

SNR
[b]
l,n and energy per bit per slot in Eqs. (4.9) and (4.10). The following proposition

offers a topology-independent metric:

Proposition 4.2. Under Rayleigh fading, i.e., Mln = Mn = 1, multistatic architecture

offers diversity order at least 1 for any (l, n) ∈ L × N .

Proof. The proof is immediate from the last proof in Appendix 3.6.

Thus, it is concluded that under Rayleigh fading, the multistatic BER drops faster

compared to the monostatic, at the high SNR regime, even for a single, fixed slot.

4.2.2 Noncoherent

To better highlight the importance of the expressions derived in Eqs. (4.18) and (4.21),

consider the n-th tag operating in noncoherent reception mode over the l-th slot. For

fixed dyadic backscatter channel amplitudes a
[m]
l,n and a

[b]
l,n, as well as phase offsets Φn,0

and Φn,1, and unknown dyadic backscatter channel angles φ
[m]
l,n and φ

[b]
l,n, it can be shown

that the ML reception rule for orthogonal signaling is based on envelope detection [80, Eq.

4.5-32] of the 4 × 1 complex received vector rl,n which can be expressed as:

∣∣∣r[x]
l,n[1] + e2jΦn,0r

[x]
l,n[2]

∣∣∣
in=0

≷
in=1

∣∣∣r[x]
l,n[3] + e2jΦn,1r

[x]
l,n[4]

∣∣∣ , (4.22)

where x = m, x = b, for monostatic and multistatic system, respectively. Note that

the above rule requires the received signal vector r
[x]
l,n and the tag n implementation-

specific phases Φn,0 and Φn,1, while it is different than the square-law detector: |rl,n[1]|2 +

|rl,n[2]|2
in=0

≷
in=1

|rl,n[3]|2 + |rl,n[4]|2 in [33]. Following the same lines in [80, pp. 217–218], the

corresponding conditional error probability of rule in Eq. (4.22) becomes 1
2

e
−(a

[m]
l,n )

2
Mn SNR

[m]
n

2 (Mn+1)

and 1
2

e−(a
[b]
l,n)

2
SNR

[b]
n

2 for monostatic and multistatic system, respectively. Note that the

above expressions coincide with the upper bounds of conditional error probabilities given

in Eq. (4.17) and (4.20). In other words, the expressions in (4.18) and (4.21) reflect
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the exact BER performance under noncoherent envelope detection in monostatic and

multistatic architecture, respectively.4

4.3 Information Outage Analysis

In Section 4.1 we assumed that all subcarrier frequencies used by the tags adhere to the

orthogonality criterion provided in Eq. (4.3). In practice, this is not always the case, due to

frequency generation constraints (e.g., clock drifts, lack of phase-locked loops). As a result,

the allocated subcarrier frequencies at tags may cause adjacent channel interference. An

adjacent in frequency tag j, i.e., tag with pair of subcarrier frequencies (Fj,0, Fj,1) relatively

close to (Fn,0, Fn,1), may be received with significantly higher power than the tag of interest

n; thus, any deviation from the orthogonality criterion may cause interference. Therefore,

the relative spatial location of one tag versus the other, i.e., the network topology, as well

as the subcarrier frequency allocation (denoted as C) of N available pairs of subcarrier

frequencies to N tags does affect overall performance in practice. Notice that there are

N ! possible subcarrier frequency assignments to N tags. A(n) denotes the set of tags

interfering the reception of tag n, while g
[m]
l,n =

(
a

[m]
l,n

)2
and g

[b]
l,n =

(
a

[b]
l,n

)2
. For simplification

purposes, we assume that dyadic channels gl,n and gl,j are statistically independent among

different tags (n 6= j) and any l ∈ L.

4.3.1 Monostatic

For a given subcarrier frequency assignment C, incorporating imperfections mentioned

above, the instantaneous signal-to-interference-plus-noise ratio (SINR) of tag n at the

l-th time slot is defined as by:

SINR
[m]
l,n (C) ,

g
[m]
l,n

Mn

Mn+1
E

[m]
n

∑
j∈A(n) ρnj(C) g

[m]
l,j

Mj

Mj+1
E

[m]
j + N0

, (4.23)

where parameter ρnj(C) is inversely proportional to the assigned subcarrier frequencies

separation between tag n and tag j ∈ A(n) [13]. It depends on the spectral efficiency of

the specific binary modulation implemented at each tag and the filtering functions at the

reader:

ρnj(C) = max
in,ij∈B

{[
εn,j

∣∣∣F C
n,in

− F C
j,ij

∣∣∣
]−2

}
, j ∈ A(n), (4.24)

4Results are connected with the signal model of Section II, which assumes perfect CFO estimation and
correction (in the multistatic case) and perfect DC blocking at the baseband signal for both monostatic
and multistatic cases.
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where F C
n,in

is the subcarrier frequency allocated under assignment C at tag n for bit in ∈ B;

parameter εn,j is a constant depending on the utilized modulation and pulse shaping, as

well as the mismatch between the clocks of tag n and j. Subcarrier frequency difference

raised at the second power, as opposed to the fourth power, is due to the power spectral

density of FSK implemented at each tag, as opposed to (continuous phase) MSK [13].

The average received SINR for any (l, n) ∈ L × N can be expressed as:

SINR
[m]
n (C) =

E

[
g

[m]
l,n

]
Mn

Mn+1
E

[m]
n

∑
j∈A(n) ρnj(C)E

[
g

[m]
l,j

]
Mj

Mj+1
E

[m]
j + N0

=
E

[m]
n∑

j∈A(n) ρnj(C) E
[m]
j + N0

. (4.25)

Proposition 4.3. Under Rayleigh fading, i.e., Mn = 1, for given subcarrier frequency

assignment C and fixed monostatic topology, outage probability for specific tag n and

given slot l ∈ L, can be upper bounded as:

P

(
SINR

[m]
l,n (C) ≤ θ

)
≤ 1 − e

−
√

2θ

SINR
[m]
n (C) . (4.26)

Proof. See Appendix 4.7.

It is worth emphasizing that the above outcome depends on both network topology

(through E
[m]
n ), as well as subcarrier frequency assignment C (through parameter ρ(C)

above).

As the dyadic fading channel parameters change independently among different slots,

i.e., gl,n and gl′,n are statistically independent for any l 6= l′ ∈ L, we can offer outage

expressions for operation over the L slots. Specifically, for a fixed subcarrier frequency

assignment C, the monostatic information outage event for the n-th tag over L attempts

(time slots) is the probability that n-th tag’s SINR is below threshold θ over all L slots,

i.e.,

P

(
L⋂

l=1

{
SINR

[m]
l,n (C) ≤ θ

}) (a)
=
[
P

(
SINR

[m]
l,n (C) ≤ θ

)]L
(4.27)

(b)

≤

1 − e

−
√

2θ

SINR
[m]
n (C)




L

, (4.28)

where (a) is due to the fact that {g
[m]
l,n } are IID for all l ∈ L and (b) holds only under

Rayleigh fading due to Eq. (4.26).
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4.3.2 Multistatic

For given subcarrier frequency channel assignment C, the instantaneous SINR of tag n

for the l-th time slot is

SINR
[b]
l,n(C) ,

g
[b]
l,n E

[b]
l,n

∑
j∈A(n) ρnj(C) g

[b]
l,j E

[b]
l,j + N0

. (4.29)

The average SINR for multistatic case for any (l, n) ∈ L × N is given by:

SINR
[b]
l,n(C) =

E
[b]
l,n

∑
j∈A(n) ρnj(C) E

[b]
l,j + N0

. (4.30)

Proposition 4.4. Under Rayleigh fading, i.e., Mln = Mn = 1, for fixed multistatic topology

and subcarrier frequency assignment C, outage probability for tag n and slot l ∈ L is upper

bounded as:

P

(
SINR

[b]
l,n(C) ≤ θ

)
≤ 1 − 2

√√√√ θ

SINR
[b]
l,n(C)

K1


2

√√√√ θ

SINR
[b]
l,n(C)


 , (4.31)

where K1(·) is the first order modified Bessel function of the second kind [84, Eq. (10.27.3)].

Proof. The proof is provided in Appendix 4.7.

It is noted again that the above bound depends on tag location and network topology

(through E
[b]
l,n), subcarrier frequency assignment C (through parameter ρ(C) above) and

slot l (in contrast to the monostatic case), since at each slot different CE emits.

Accordingly with the monostatic case, for fixed subcarrier frequency assignment C and

given threshold θ, the multistatic information outage probability of tag n operating over

L time slots becomes:

P

(
L⋂

l=1

{
SINR

[b]
l,n(C) ≤ θ

}) (a)
=

L∏

l=1

P

(
SINR

[b]
l,n(C) ≤ θ

)
(4.32)

(b)

≤
L∏

l=1


1 − 2

√√√√ θ

SINR
[b]
l,n(C)

K1


2

√√√√ θ

SINR
[b]
l,n(C)




 , (4.33)

where (a) exploited the independence of
{
SINR

[b]
l,n(C)

}
l∈L

and (b) holds only in a Rayleigh

fading scenario due to Eq. (4.31).
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4.3.3 Average Probability over Random Square Grids

In order to obtain topology-independent outage probabilities, expressions that average

over possible topologies have to be obtained. Since, there are infinite classes of topologies

to choose from, attention is restricted to the class of square M ×M grid network topologies

used in practice. For simplicity, it is assumed that grid resolution ∆ divides M , i.e.,

M/∆ = K ∈ N and the set of 2-dimensional (2D) square grid points is denoted as

follows:

GM,∆ =
{

[k1∆ k2∆]⊤ : (k1, k2) ∈ {0, 1, . . . , K}2
}

. (4.34)

Set GM,∆ has (K+1)2 elements (2D grid points) and M , ∆ are chosen such that (K+1)2 ≥
N + L + 1, i.e., possible tag locations are more than the total number of tags, emitters

and reader.

For a monostatic architecture with fixed SDR reader’s position uR ∈ GM,∆, there are

J
[m]
K,N ,

(
(K+1)2−1

N

)
ways to place N tags in GM,∆\{uR}.5 This is the ensemble of admissi-

ble square grid monostatic topologies. The calculation of a topology-independent average

outage probabilities requires averaging over all J
[m]
K,N possible topologies. Because J

[m]
K,N is

practically enormous, especially for large K, the averaging in this work is applied through

Monte-Carlo, i.e., for a relatively large number of times, the following experiment is re-

peated: uniformly and random select a topology T [m]
L from the ensemble of monostatic

grid topologies (i.e., each of them has probability 1/J
[m]
K,N) and estimate the outage proba-

bility for the sampled topology. Finally, averaging is applied over the sampled topologies.

The same methodology is applied to a multistatic architecture with L CEs and a single

SDR reader, where J
[b]
K,L,N ,

(
(K+1)2−1−L

N

)
=
(

K2+2K−L
N

)
topologies exist, under the same

assumption.

4.4 Energy Outage Analysis for Passive Tags with

RF Harvesting

In contrast to the semi-passive tags assumed so-far, passive tags do not have a dedi-

cated (ambient or not) energy source. Instead, passive tags harvest RF energy from the

illuminating carrier(s).

5If the ordering of how they are placed is not considered and the reader location is fixed.
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For fixed CE, tag n, and SDR reader positions at the l-th time slot, the input power

at the RF harvesting circuit of tag n is given by:

P
[m]
h,l,n = PR LTnR (al,TnR)2, (4.35)

P
[b]
h,l,n = PCl

LClTn
(al,ClTn

)2, (4.36)

for monostatic and multistatic architecture, respectively. Energy outage (EO) event at

tag n occurs when for all L time slots the received input power at tag n RF circuitry is

below a threshold θh, which models the sensitivity of the RF harvesting circuit, i.e., the

input power threshold below which RF harvester offers zero power.6 Mathematically, the

EO event is defined as:

P

(
EO

[m]
L,n

∣∣∣θh

)
, P

(
L⋂

l=1

{
P

[m]
h,l,n ≤ θh

})
, (4.37)

P

(
EO

[b]
L,n

∣∣∣θh

)
, P

(
L⋂

l=1

{
P

[b]
h,l,n ≤ θh

})
, (4.38)

for monostatic and multistatic architecture, respectively. The impact of network topology

in the energy outage probability expressions for multistatic and monostatic systems is due

to the path-loss gains {LClTn
}l∈L and LTnR.

For the monostatic architecture, RVs {P
[m]
h,l,n}l∈L are IID and each P

[m]
h,l,n is Gamma RV

with parameters
(
Mn, PRLTnR

Mn

)
and cumulative distribution function (CDF) given in [100,

Table I]. Thus, energy outage event in (4.37) is given by:

P

(
EO

[m]
L,n

∣∣∣θh

)
=



γ

(
Mn, Mnθh

PRLTnR

)

Γ(Mn)




L

, (4.39)

where γ(a, x) =
∫ x

0 ta−1e−tdt is the lower incomplete gamma function.

For the multistatic architecture, P
[b]
h,l,n is a Gamma RV with parameters

(
Mln,

PCl
LClTn

Mln

)

and RVs {P
[b]
h,l,n}l∈L are independent; as a result, the energy outage event in (4.38) can be

simplified to:

P

(
EO

[b]
L,n

∣∣∣θh

)
=

L∏

l=1

γ

(
Mln, Mlnθh

PCl
LClTn

)

Γ(Mln)
. (4.40)

6State-of-the-art passive RFID tags exhibit θh = −22 dBm [28].
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The average across all tags energy outage event is by taking the average of Eqs. (4.37)

and (4.38) across all tags, i.e.,

1

N

N∑

n=1

P

(
EO

[m]
L,n

∣∣∣θh

)
,

1

N

N∑

n=1

P

(
EO

[b]
L,n

∣∣∣θh

)
. (4.41)

Another important metric that measures the worst-case energy outage is the maximum

energy outage across all tags, i.e.,

max
n∈N

{
P

(
EO

[m]
L,n

∣∣∣θh

)}
, max

n∈N

{
P

(
EO

[b]
L,n

∣∣∣θh

)}
. (4.42)

It is emphasized again that the above outage probabilities depend on a specific multi-

static or monostatic topology. Energy outage expressions that are topology-independent

can be offered using averaging over the ensemble of square grid topologies as in Sec-

tion 4.3.3.

4.5 Simulation Results

First the BER performance of monostatic and bistatic systems is examined for L = 1

slot and N = 1 tag. Rician fading parameters κn = 10 and κln = 9 are used, set-

ting Mn = (κn+1)2

2κn+1
= 5.7619 and Mln = (κln+1)2

2κln+1
= 5.2632. Fig. 4.4-Left illustrates the

exact BER performance under coherent and noncoherent reception for the two scatter

radio architectures. Common SNR = SNR
[b]
l,n = SNR

[m]
n is assumed, resulting to monostatic

reader transmission power PR and bistatic carrier emitter power PCl
related according to

Eqs. (4.9), (4.14)
(
PR =

LCl,Tn

LTn,R

MnPCl

Mn+1

)
. Any monostatic or bistatic topology offering the

specific SNR is applicable to this plot. Upper bounds derived in Eq. (4.18) and Eq. (4.21)

are also plotted. It can be seen that the bistatic architecture outperforms the monostatic

and high-SNR slope is clearly different among the two architectures, as expected. Also,

the derived upper bounds for coherent ML detection schemes coincide with the curves of

noncoherent detection.

Fig. 4.4-Right studies the BER performance as a function of SNR for a scenario where

the tag is far-away from CE (possibly a few kilometers) but the tag-to-reader distance

is relatively small (a few feet). This is a Rayleigh-Nakagami (Rice) scenario, that could

be the case when the tag is illuminated by broadcasting stations and the receiver is close

to the tag. In such scenario, the monostatic architecture is not applicable. Due to the

large CE-to-tag distance, the link from CE-to-tag is assumed NLoS, i.e., κln = 0 and

thus Mln = (κln+1)2

2κln+1
= 1, while tag-to-reader link has strong LoS, thus, κn = 10 with
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Figure 4.4: Left (Right): Monostatic vs bistatic BER versus SNR for ML coherent and
noncoherent detection and Nakagami fading with parameters Mn = 5.7619, Mln = 5.2632
(Mln = 1, Mn = 5.7619, assuming a NLoS CE-to-tag scenario) .
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Figure 4.5: Monostatic vs bistatic BER performance versus Ptx in a 40 × 40 topology for
ML coherent and noncoherent detection averaged over random tag locations.

Table 4.1: Noise and Tag Parameters

N0 = −169 dBm/Hz Fc = 868 MHz λ = 3·108

Fc
m |Γn,0 − Γn,1| = 2, ∀n sn = 0.1, ∀n

Mn = (κn+1)2

2κn+1
= 5.7619. In such extreme case, where the monostatic architecture cannot

be defined, the bistatic BER is less than 1% for received SNR values less than 17 dB

(20 dB) under coherent (noncoherent) detection. The above demonstrate the potential

benefits and flexibility of multistatic architecture in cases where CE is far away from tag.

Fig. 4.5 studies the impact of transmit power on BER for random tag locations. An

SDR reader and a CE are placed in positions [0 0]⊤ and [40 40]⊤, respectively, while

the position of tag follows uniform distribution over a 40 × 40 m2 topology. Common
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Figure 4.6: Network setup: monostatic (left) and multistatic with 4 carrier emitters (CEs)
(right). Grid points (dots) are possible tag locations.

transmit power is used for fair comparison for monostatic and bistatic architectures, i.e.,

Ptx = PR = PCl
. For each sampled tag location the small-scale fading parameters change

as κn ∼ U [0, 20] and κln ∼ U [0, 20], setting Mn = (κn+1)2

2κn+1
and Mln = (κln+1)2

2κln+1
. In addition,

the path-loss exponents (PLEs) from CE-to-tag and SDR reader-to-tag are U [2, 2.5]. The

noise- and tag-related parameters are shown in Table 4.1. It can be seen that the average

BER performance of a randomly placed tag (evaluated over several possible tag locations)

is smaller in the bistatic architecture. It is also observed that the BER decay is faster

in the bistatic compared to the monostatic architecture, corroborating the diversity gains

offered by the bistatic system.

For grid WSN topologies of size M × M m2 and grid resolution ∆ m, energy and

information outage are studied, using M = 2.5, ∆ = 0.125 and M = 200, ∆ = 5,

respectively. For information (energy) outage simulations, random tag topologies are

generated from G200,5 (G2.5,0.125) consisting of N tags, L = 4 CEs placed at {uCl
}4

l=1 ={
[M

4
M
4

]⊤, [ 3M
4

M
4

]⊤, [ 3M
4

3M
4

]⊤, [M
4

3M
4

]⊤
}

for multistatic system, and an SDR reader

placed at the middle of the topology (i.e., position [M
2

M
2

]), in order to maximize the

coverage. The grid topology utilized in information outage simulations is depicted in

Fig. 4.6-Left (-Right) for the monostatic (multistatic) architecture. Similar with the pre-

vious paragraph noise/tag-related parameters are considered (Table 4.1). After sampling

the grid topology, random PLEs νln ∼ U [2, 2.5] and νn ∼ U [2, 2.5] are generated for link

from l-th CE to n-th tag and link from n-th tag to SDR reader, respectively. In addition,

to offer robustness against channel fading, after sampling the topology in the Nakagami

fading scenarios, Nakagami parameters are randomly generated as follows: Mln ∼ U [1, 5]

and Mn ∼ U [1, 5], for link from l-th CE to n-th tag and link from n-th tag to SDR

reader, respectively. For a fair comparison, equal transmission power for monostatic and

multistatic architecture is utilized, setting Ptx = PR = PCl
, ∀l ∈ L.
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Figure 4.7: Topology-independent average and maximum energy outage performance ver-
sus threshold θh for monostatic and multistatic network of Fig. 4.6 using G2.5,0.125.

Considering a passive-tag BSN scenario, the topology-independent average and maxi-

mum energy outage probability is plotted in Fig. 4.7 (by averaging Eqs. (4.41) and (4.42)

over several sampled grid topologies) as a function of harvesting threshold θh under Nak-

agami fading, with Ptx = 35 dBm and N = 8 tags. It is noted that the probability for

a tag to be placed near a CE is higher in the multistatic architecture and thus, energy

outage events are more frequent in the monostatic architecture. Energy outage is a per-

formance bound for networks consisting of passive tags, since harvesting adequate energy

is necessary for the tag to operate. It is worth noting that for energy outage probability

of 10%, the multistatic architecture outperforms the monostatic by 4.5 dB for average

and maximum outage performance.

Finally, information outage is evaluated for a network of semi-passive tags. Since

expressions in Eqs. (4.27) and (4.32) do not admit a closed-form, an extra Monte Carlo

step is conducted after sampling the grid tag topology. Specifically, in the extra Monte

Carlo phase, Rayleigh (Mn = Mln = 1) and Nakagami small-scale fading coefficients are

generated, as well as a random subcarrier assignment to the tags. For an allocation C,

the c-th frequency pair is assigned to tag n if c = pC(n) ∈ N , where pC denotes the

permutation associated with assignment C. The following parameters are utilized: T = 1

msec (i.e., 1 Kbps bitrate), εn,j = 2 πT for all n, j ∈ N with n 6= j, and the subcarrier

frequency pair for the n-th tag,
{
F C

n,0, F C
n,1

}
, is given by F C

n,0 = (0.1 + c Fsp) MHz and

F C
n,1 = (0.1+ c Fsp +Fsp/5) MHz with Fsp = 0.01 MHz, c = 1, 2, . . . , N . Hence, for a given

channel assignment C, the coefficients in Eq. (4.24) for any pair of tags (n, j) ∈ N × N ,

with n 6= j, can be expressed as ρnj(C) = ρjn(C) = 25
[2 π T (5|pC(n)−pC (j)|−1) Fsp]2

.
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Figure 4.8: Tag location-independent, average information outage probability versus
threshold θ for monostatic and multistatic architecture of Fig. 4.6.

Fig. 4.8 illustrates the topology-independent average outage probability (as well as

the corresponding upper bounds for Rayleigh fading) for monostatic and multistatic ar-

chitectures, as a function of threshold θ, for N = 100 tags and Ptx = 28 dBm. It is noted

that the specific monostatic network setup (Fig. 4.6-Left) is the most appropriate among

all possible choices of G200,5 in terms of coverage, since the SDR reader is located in the

middle of the grid. Fig. 4.8 shows that for information outage 10% multistatic system

outperforms monostatic by 3 dB in Rayleigh fading scenario, while for Nakagami fading

the gap approaches 8 dB. The performance gap increases as threshold θ decreases. It

can be also seen that the proposed bounds after averaging over all sampled tag locations

are tight, especially for the multistatic architecture. It is clear again that the multistatic

architecture offers higher reliability, as well as better coverage for scatter radio WSNs.

4.6 Experimental Results

Capitalizing upon the above promising results, a digital multistatic BSN is constructed,

targeting on environmental and agriculture applications for ultra low-cost, microclimate

monitoring around each plant [40]. The measured environmental quantities were: air-

humidity, soil moisture, and temperature; all of them vary slowly as a function of time and

thus, low bitrate (1 Kbps) per sensor was adequate. The communication among the tags

and the reader was through subcarrier (switching) frequency division multiplexing (FDM),

as explained in Section II; the CEs emitted a CW sinusoid in time division multiplexing

(TDM) basis with transmission power 13 dBm over 868 MHz carrier frequency band.
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(a) Tag (b) Reader

Figure 4.9: A prototype scatter radio tag (left) and a custom reader (right); the receiver
antenna is on the top side of a metal box, while the carrier emitter (CE) is on the bottom
side.

Each prototype tag consisted of two distinct boards, the communication and the power

board (Fig. 4.9a). The communication board was applying the communication and sens-

ing operations, including a 8-bit mixed-signal micro-controller unit (MCU) with analog-

to-digital converter, an RF transistor and input/output (I/O) pins for sensors’ inputs.

Binary scatter radio FSK modulation was implemented at the tags; 30 distinct orthogo-

nal subcarrier frequency pairs could be produced. In order to increase the total number

of tags while sustaining low-power operation, a “sleep” mode was implemented in all tags,

with random “wake up”. Thus, multiple tags could share the same pair of subcarrier fre-

quencies with very small collision probability, increasing the total number of tags in the

network, exploiting the utilized “sleep-scatter” duty cycle. In addition, a rate 1/2 Reed-

Muller encoder was implemented at each MCU [74]. The tag was able to operate with a

small solar panel during the daytime and a small coin cell battery during the night. The

battery can be easily replaced by a super-capacitor at the power board [17], [101], [19].

Furthermore, in order to emulate a monostatic reader, the SDR reader and the CE

were placed on the opposite sides of a metallic box. This structure provided good isolation

between the transmit and the receive antennas, without using a circulator. The monostatic

setup is depicted in Fig. 4.9b.

The outdoor measurement campaign consisted of two campaigns. In the first one,

the maximum ranges of the tag-to-SDR links were found. The maximum range was

determined when the BER was up to 5%. The multistatic architecture achieved tag-to-

SDR reader ranges over 140 m, with CE-to-tag range in the order of 10 m. The maximum

tag-to-SDR range for the monostatic system was in the order of 15 m, one order of

magnitude smaller than the multistatic.

In the second campaign, coverage was examined in a field of 3500 m2 area. For the

multistatic architecture, two network topologies were deployed, one with three and one
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(a) Multistatic setup, receiver at the
corner, 3 CEs.

(b) Multistatic setup, receiver at the
center, 4 CEs.

(c) Monostatic setup, 8 readers.

Figure 4.10: Multistatic and monostatic setup for measurement campaigns.

with four CEs. In the first topology (shown in Fig. 4.10a), the SDR reader was placed

at the right field corner, maximizing the tag-to-SDR reader distance, while the three

CEs were placed around the field. In the second topology the reader was placed at

the field center and the four CEs located as shown in Fig. 4.10b. For the monostatic

architecture, multiple readers/CEs were deployed. Since the monostatic architecture’s

ranges were shorter, a total of eight readers were utilized, as shown in Fig. 4.10c. It

should be remarked that using only four monostatic SDR readers at the same locations,

at the same location where CEs were placed in the multistatic case, would offer a smaller

monostatic coverage of 4 · π · 152 = 2827 m2.

From the second campaign we deduce that both architectures can cover similar areas

provided that the monostatic architecture utilizes additional readers, incurring higher

monetary cost. In sharp contrast, the multistatic architecture is more flexible and can

offer greater ranges, even with one SDR reader and multiple low-cost CEs. Equivalently,

with only one reader, the monostatic architecture would offer much smaller field coverage,

compared to the multistatic, as clearly shown in Fig. 4.10a, Fig. 4.10b and Fig. 4.10c.

4.7 Appendix: Proofs of Chapter 4

Proof of Proposition 4.1

For Rayleigh fading, i.e., Mn = 1, RV a
[m]
l,n = (al,TnR)2 follows exponential distribution.

Using Eq. (4.17), the unconditional probability of error over the l-th slot for the n-th tag

is given by:
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where [84, Eqs. (7.14.2), (7.2.1), (7.2.2)] are utilized. The diversity order for the proba-

bility of error in (4.43) is given by [92]:

lim
SNR

[m]
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log
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log
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By applying the rule of L’Hospital:

lim
x→0

−exQ
(√

2 x
)

+ 1
2
√

π x

− 1
x

[
1
2

− ex Q
(√

2 x
)] = lim

x→0

x Q
(√

2 x
)

− e−x
√

x
2
√

π

e−x

2
− Q

(√
2 x
) . (4.44)

Applying again the rule of L’Hospital:
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x→0

Q
(√

2 x
)

− e−x

4
√

πx

− e−x

2
+ e−x

2
√

πx

= lim
x→0

ex
√

x Q
(√

2 x
)

− 1
4
√

π

−
√

x
2

+ 1
2

√
π

= −1

2
. (4.45)

Proof of Proposition 4.3

The PDF of RV g
[m]
l,n ,

(
a

[m]
l,n

)2
= (al,TnR)4 can be determined through RV a

[m]
l,n = (al,TnR)2,

which follows Gamma distribution with PDF given in Eq. (4.16). Using the formula

in [60, p. 199], the required PDF for x ≥ 0 is

f
g

[m]
l,n

(x) =
1

2
√

x
f
a

[m]
l,n

(
√

x) = (Mn)Mn
x

Mn
2

−1

2 Γ(Mn)
e−Mn

√
x. (4.46)

For Rayleigh fading, i.e., Mn = 1 in Eq. (4.46), the PDF of RV g
[m]
l,n is simplified to

f
g

[m]
l,n

(x) = 1
2
√

x
e−√

x, x ≥ 0. The corresponding cumulative distribution function (CDF) is

given by

F
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(x) =
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(y) dy = 1 − e−√
x, x ≥ 0. (4.47)

The monostatic outage probability for Mn = 1 follows:
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In (a), total interference at tag n for the monostatic system at the l-th time slot was defined

as I
[m]
l,n (C) ,

∑
j∈A(n) ρnj(C) g

[m]
l,j E

[m]
j ; step (b1) exploited the law of iterated expectation [89];

step (b2) exploited the assumed statistical independence between g
[m]
l,n and g

[m]
l,j for any

j 6= n; step (c) utilized Jensen’s inequality, taking into account the concavity of CDF in

Eq. (4.47); (d) exploited the linearity of expectation, the SINR definition in Eq. (4.25),

and Mn = 1.

Proof of Proposition 4.4

Proof of Eq. (4.31) is along the same lines with proof in Proposition 4.3. The CDF of

g
[b]
l,n for Rayleigh fading is needed, as well as proof of its concavity. Using Mln = Mn = 1 in

Eq. (4.19), the PDF is simplified to f
g

[b]
l,n

(x) = 2 K0(2
√

x), x ≥ 0. The corresponding CDF

can be calculated as follows:
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where step (a) used 2
√

y = z, (b) z
2
√

x
= y, and (c) used [62, Eq. (6.561.8)]. Concavity of

F
g

[b]
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is shown by differentiating twice the CDF F
g
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(x) and utilizing [84, Eq. (10.29.3)]:
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since K1(x) > 0, ∀x > 0. Thus, F
g

[b]
l,n

is concave and Eq. (4.31) follows using the same

reasoning as in Proposition 4.3.





Chapter 5

Resource Allocation in Multi-Cell

Backscatter Sensor Networks

The topic of this chapter is devoted on alternative ultra-low-power, large-scale wireless

sensor networks (WSNs) relying on scatter radio principles. The notion of multi-cell

backscatter sensor networks (BSNs) is proposed: a few interrogators (or cores) that act

as fusion centers and tags/sensors that are responsible for measuring environmental quan-

tities, and transmitting the sensed information towards the cores constitute a multi-cell

BSN. Cores use the conventional Marconi radio technology with front-ends consisting of

active filters, mixers, and amplifiers, whereas tags/sensors use scatter principle to convey

wirelessly the sensed information. To realize extended coverage with prolonged network

sensor batteries lifetime, the ultimate goal in this chapter is to build multi-cell BSNs

where the tag-to-core achievable range is maximized. First, a complete baseband multi-

cell signal model is presented incorporating all scatter radio wireless channel parameters

over dyadic Rician fading channel. A multi-tag channel estimation closed-form solution

is proposed based on linear minimum mean-squared error (LMMSE) estimator. The av-

erage signal-to-interference-plus-noise ratio (SINR) of maximum-ratio combining (MRC)

and zero-forcing (ZF) linear detectors is found and harnessed for frequency sub-channel al-

location at tags. The proposed resource allocation algorithm, called Max-Sum algorithm,

adheres to simple message-passing update rules and is executed over a factor graph at each

core independently. The algorithm is very lightweight and converges to the optimal solu-

tion within very few iteration steps. Judicious simulation study reveals that ZF detector

is more suitable for large-scale BSNs, capable to cancel out the intra-cell interference. The

proposed sub-channel–tag allocation algorithm offers remarkable convergence-complexity

trade-off. The outcome of this research can be used for practical receiver design and

resource allocation in ultra-low-power, large-scale WSNs.

105
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Related Work

Over the recent years, wireless communications and signal processing research on scatter

radios has focused on point-to-point scenarios, where the reader decodes backscattered

signals from a single tag. Very few works have offered concrete solutions on multi-tag

scenarios, where the reader has to decode signals from multiple tags backscattering con-

currently. To the best of our knowledge, no work has offered reception algorithms for

multi-cell scatter radio network architectures, where multiple readers (or cores) aggre-

gate sensed information from multiple tags in their vicinity. The last problem becomes

even more complicated if one accounts the scatter radio aspect of the sensors/tags. Each

tag in the field is illuminated by the superposition of cores’ emitted carrier waves and

backscattered to the nearby cores. The interference experienced at each core after the

reception of multiple backscattered signals is from the tags within the cell formed by the

core (i.e., intra-cell interference) as well as from the tags from other cells (i.e., inter-cell

interference). To mitigate the resulting interference and efficiently assign frequency/time

resources to receiver-less tags, sophisticated resource allocation algorithms accounting for

the idiosyncrasies of scatter radio need to be designed at the cores.

Multi-tag reception algorithms found in scatter radio prior art are primarily designed

for passive radio frequency (RF) tags and focus on single cell reception with a sin-

gle receiver, e.g., radio frequency identification (RFID) systems, where an interrogator

reads/decodes backscattered signals from tags in its vicinity. The first example of reliable

backscatter communication with cell-like flavor is found in [17,83]. Work in [102] studied

joint decoding algorithms for multi-tag reception based on clustering and expectation-

maximization framework. Work in [103] designed reception algorithms for channel esti-

mation and detection from multi-tag RFID signals exploiting multiple receive antennas

at interrogator. Subsequent work [104] proposed multi-packet RFID reception algorithms

for estimating the difference in delay and the tags frequency dispersion and then multi-tag

detection was applied. Multi-tag decoding algorithms based on compressive sensing are

designed in [105] exploiting several collisions at the receiver side.

Backscatter sensor networks (BSNs) are extremely power-limited due to the round-

trip nature of backscatter communication; even for free-space propagation loss, received

power decays with the forth-power as a function of core-to-tag distance [32]. Especially,

for passive tags the maximum achieved ranges is on the order of two to five meters—

far from standards of large-scale, low-cost, ubiquitous sensing applications. As a result,

increasing the coverage, or equivalently, increasing core-to-tag communication range, is of

principle importance in low-cost, low-power BSNs. The authors in [94] offered coverage

analysis for high-density, multi-cell BSNs and discovered that high coverage is feasible
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only if frequency-oriented modulation is harnessed at the tags. Coverage and capacity

analysis for multi-cell BSNs using random Poisson cluster point processes is offered in [96].

Contributions

This chapter proposes a multi-cell BSN architecture with joint time-frequency multiple-

access following the guidelines from [13] and exploiting the know-how and the experimental

experience of our group [11, 12, 17, 33, 37, 39, 82, 83, 86, 106]. Several multi-antenna cores

emit continuous sinusoid waves illuminating the tags in the field. A set of available or-

thogonal frequency sub-bands (also called sub-frequencies) is assumed available and each

tag backscatters a packet of training (for channel estimation and synchronization) and

data symbols modulated over a specific frequency sub-band. The packet is received and

decoded at the closest core. To alleviate intra-cell interference during the training phase,

the training sequences are orthogonal of each other and the tags using the same training

sequence are configured to backscatter over different frequency sub-bands. A measure-

ment phase is also considered where cores conduct signal-to-interference-plus-noise ratio

(SINR) measurements with the tags in their cell. The frequency sub-channel allocation at

tags changes during the measurement phase and the goal at each core is to assess the av-

erage SINR for each pair of neighboring tag–frequency sub-band. Subsequently, resource

allocation based on a specific metric involving a function of estimated average SINR is

applied to find the optimal assignment.

Using the above multi-cell BSN framework, the contributions of this chapter can be

summarized as:

• For the first time in the scatter radio literature a realistic and complete baseband

signal model for multiple-access in multi-cell BSNs is derived. The signal model

incorporates: (a) microwave- and tag-related parameters obtained from real ex-

perimental testbeds, (b) path-loss and dyadic Rician small-scale fading in wireless

channel modeling, and (c) multiple transmit and receive antennas at the cores.

• Based on the multi-cell BSN model, a novel linear minimum mean-squared error

(LMMSE) channel estimator is employed at the cores to estimate the compound up-

link wireless round-trip channels of the tags within the cell. The proposed estimator

takes into account the idiosyncrasies of scatter radio wireless signal model. Using

the estimated channel, two multi-tag linear detectors are proposed: maximum-ratio

combining (MRC) and zero-forcing (ZF).
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• Using the average received SINR measurements associated with both linear detection

techniques a generic formulation for resource allocation in BSNs is proposed. The

formulated problem is attacked with a message-passing inference algorithm with

simple update rules and convergence to the desired solution within very few steps.

The proposed algorithm is an instance of the Max-Sum algorithm.

• Judicious simulation study reveals that ZF generally outperforms MRC in terms

of both bit error rate (BER) and outage probability. It is found that orthogonal

training transmissions are mandatory to maintain good channel estimation accuracy.

The proposed Max-Sum algorithm [107] offers the same optimal performance with

classic convex optimization methods with reduced computational cost, measured in

terms of execution time in large-scale BSNs.

Organization and Notation

The rest of this work is organized as follows. Section 5.1 presents the adopted wireless

scatter radio channel model, Section 5.2 offers the multi-tag baseband signal model, while

the proposed channel estimation closed-form solution along with the average SINR calcu-

lation for MRC and ZF linear detectors is provided in Section 5.3. Section 5.4 formulates

the resource allocation optimization problem and designs the simple Max-Sum algorithm

associated with the problem. Finally, simulation results are presented in Section 5.5.

The set of real, complex, natural, and binary numbers is denoted R, C, N, and B,

respectively. Italic letters (e.g., x), simple bold letters (e.g., x), and capital bold letters

(e.g., X) represent scalars, vectors, and matrices, respectively. Operators (·)∗, ℜ{·}, (·)⊤,

(·)H, (·)−1, (·)† take the conjugate, real part, transpose, conjugate transpose, inverse, and

pseudo-inverse of a matrix, respectively. IN and 0N (1N) represent the N × N identity

matrix and the all-zeros (all-ones) vector of size N , respectively. For a vector x, vector

xi:j is the subvector of x comprising of the i-th up to j-th element. For a matrix A,

[A]i,: denotes the vector formed by A’s i-th row. For two functions f1 : R −→ C and

f2 : R −→ C the inner product is defined as 〈f1, f2〉 ,
∫
R

f1(t)f
∗
2(t)dt. Moreover, if either

f1 or f2 are matrix functions, the inner product is applied component-wise. CN (µ, Σ)

denotes the proper complex Gaussian distribution with mean µ and covariance matrix Σ,

while U [a, b) is the uniform distribution over interval [a, b). P(·), E[·], and var[·], denote the

probability, expectation, and variance operator, respectively. Finally,
∑

i∈I
j∈J

is equivalent

with
∑

i∈I
∑

j∈J .
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Figure 5.1: A multi-cell BSN with B = 2 cores and K = 6 tags.

5.1 Wireless Scatter Radio System Model

We consider a static multi-cell backscatter sensor network (BSN) consisting of B cores

and K sensors/tags, an example is given in Fig. 5.1. Each core is a Marconi radio with

separate transmit and receive antennas, e.g., a software define radio (SDR) reader. It is

assumed that each core has NT transmit and NR receive antennas. Note that for simplifi-

cation purposes monostatic architecture (with different transmit and receive antennas) is

employed at each cell. Although, the proposed reception techniques can be also applied

to the case of multistatic multi-cell architecture.

The sets of all cores and tags are given by the sets B , {1, 2, . . . , B} and

K , {1, 2, . . . , K}, respectively. There exist at total C orthogonal frequency sub-

bands
{
f

(1), f
(2), . . . , f

(C)
}
, given in an ascending order, indexed by set C , {1, 2, . . . , C}.

Due to relatively small delay spread, frequency non-selective (flat) fading channel

[27] is assumed across all links (b, k) and (k, b), b ∈ B, k ∈ K. Moreover, for outdoor

environments, common in wireless sensor network applications, there exist possible strong

line-of-sight propagation paths. Hence, incorporating all the above in wireless channel

model, the baseband complex channel response for links (b, k) and (k, b) is given by

hd
bk ∼ CN




√√√√ κd
bk

κd
bk + 1

σbked
bk,

σ2
bk

κd
bk + 1

INT


 , (5.1)

hu
kb ∼ CN

(√
κu

kb

κu
kb + 1

σkbe
u
kb,

σ2
kb

κu
kb + 1

INR

)
, (5.2)
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where κd
bk and κu

kb denote the ratio between the power in the direct path and the power in

the scattered paths of core-to-tag link (b, k) and tag-to-core link (k, b), respectively, ed
bk

and eu
bk are the antenna steering vectors at core b for the transmit and received antennas,

respectively, depending on antenna array geometry with ‖ed
bk‖2

2 = NT and ‖eu
kb‖2

2 = NR.
1

NT
E[‖hd

bk‖2
2] = σ2

bk and 1
NR

E[‖hu
kb‖2

2] = σ2
kb denote the normalized channel powers of core-

to-tag link (b, k) and tag-to-core link (k, b), respectively. Both downlink {hd
bk}(b,k)∈B×K

and uplink {hu
kb}(b,k)∈B×K channels are assumed uncorrelated of each other and change

independently every Tcoh seconds, where Tcoh is the channel coherence time.

When uniform linear arrays (ULAs) are employed at both ends of core b, transmit and

receive antenna steering vectors can be, respectively, written as

ed
bk =

[
1 e

j 2 π sin(ϕd
bk

) Dy

λ . . . e
j 2 π sin(ϕd

bk
) (NT−1) Dy

λ

]⊤
, (5.3)

eu
kb =

[
1 e

j 2 π sin(ϕu
kb

) Dy

λ . . . e
j 2 π sin(ϕu

kb
) (NR−1) Dy

λ

]⊤
, (5.4)

where ϕd
bk and ϕu

kb denote the angle-of-departure (AoD) for link (b, k) and angle-of-arrival

(AoA) for link (k, b), respectively, λ denotes the propagation wavelength, and Dy is the

antenna spacing (usually Dy = λ
2
). The normalized channel powers σ2

kb and σ2
kb depend

on large-scale path-gain (inverse of path-loss) which, due to reciprocity theorem, is the

same for links (b, k) and (k, b), i.e., σbk = σkb.

When a tag k ∈ K reflects information, it backscatters a packet of M symbols, where

each symbol within packet takes values {±1}. A fraction τtr of total packet duration is

dedicated for channel estimation while the rest 1 − τtr is used for data transmission, i.e.,

the total number of training symbols is Mtr = τtrM ∈ N, while the rest Md = M − Mtr

are data symbols and depend on the sensed information. There is a set of available pilot

sequences Xtr =
{

x(1), x(2), . . . , x(Mtr)
}

⊂ {±1}Mtr, i.e., set Xtr contains Mtr sequences,

each of dimension Mtr. The sequences in set Xtr are orthogonal, i.e.,

(
x(m)

)⊤
x(m′) =





Mtr, if m = m′,

0, if m 6= m′.
(5.5)

The sequence assigned to tag k has been decided a-priori and is assumed fixed. In a

practical scenario, to reduce the interference, the same sequence has to be reused across

tags that are far apart. Finally, sets Mtr , {1, 2, . . . , Mtr} and Md , {Mtr + 1, Mtr +

2, . . . , M} are also defined.
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To obtain accurate resource allocation exploiting long-term information, a periodic

measurement process is conducted divided in several time frames; each frame has du-

ration equal to the channel coherence time. During the measurement process each core

conducts (independently from the rest ones) signal-to-interference-plus-noise ratio (SINR)

measurements with tags in its vicinity. Frequency sub-band allocation changes from frame

to frame while tag sequence assignment is assumed fixed across all frames for simplicity in

implementation. Section 5.3.2 offers a detailed exposition on the proposed average SINR

estimation procedure.

The following sets are defined

KMtr(m),
{
k ∈ K : tag k uses training sequence x(m)

}
, (5.6)

KC(c) ,
{

k ∈ K : tag k uses frequency sub-band f
(c)
}

, (5.7)

KB(b) ,
{

k ∈ K : dbk = min
b′∈B

db′k

}
. (5.8)

It is not difficult to see that set K can be partitioned as K =
⋃

b∈B KB(b). Each set KB(b)

can be further partitioned as KB(b) =
⋃

m∈Mtr
Kbm, where Kbm , KB(b) ∩ KMtr(m). Each

set Kbm can be expressed as Kbm =
⋃

c∈C Kbmc, where Kbmc = Kbm ∩ KC(c). It is not

difficult to see that for two triplets (b, m, c), (b′, m′, c′) ∈ B × Mtr × C , Kbmc and Kb′m′c′

are disjoint if b 6= b or m 6= m′ or c 6= c′. To minimize intra-cell interference, during

the training phase for each frame of the measurements, we consider orthogonal training

transmissions, i.e., tags sharing the same training sequence are configured to transmit at

different frequency sub-bands. In other words, tags within the same cell are assigned to

a unique pair (m, c) ∈ Mtr × C, i.e., |Kbmc| ≤ 1.

The goal at each core b is to estimate the average SINR for each pair (k, c) ∈ KB(b)×C,

by changing tag-channel allocation (i.e., set KC(c)) across different frames.

5.2 Multi-Cell and Multi-tag Processing

Each core b ∈ B emits from each transmit antenna a continuous sinusoid wave with

baseband representation
√

Pb

NT
ejφb, where Pb is the total transmission power and φb is the

phase mismatch between transmit and receive circuitry at core b and is assumed fixed and

known. The superposition of cores’ emitted signals, propagated across downlink channels

{hd
bk}b∈B, incidents at the antenna of tag k, i.e., tag k receives

∑B
b′=1

√
Pb′

NT
ejφb′

(
hd

b′k

)⊤
1NT

.
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Using similar ideas developed in [12, 37, 39] each tag k employees joint frequency and

amplitude modulation and backscatters towards core b

ukb(t) = DCk +

(∑B
b′=1

√
Pb′

NT
ejφb′

(
hd

b′k

)⊤
1NT

)
ηk

2
(Γk,0 − Γk,1)

M∑

i=1

xk,i vkb(t − (i − 1)T ),

(5.9)

where ηk is the scattering efficiency, remaining constant within packet duration, Γk,0 and

Γk,1 are the (load-dependent) reflection coefficients, DCk is a DC term depending on

antenna structural mode as well as on reflection coefficients Γk,0 and Γk,1 and does not

depend on time t, and vkb(t) is the reflected waveform of tag k. Waveform vkb(t) is the

fundamental frequency component of a 50% duty cycle square waveform of period 1/fk,

i.e.,

vkb(t) =
4

π
cos(2πfkt + Φkb) ΠT (t), (5.10)

where ΠT (t) , 1{t ∈ [0, T )}, where

1{X} ,





1, X is true,

0, X is false,
(5.11)

is the sum-indicator function of statement X. fk and Φkb in (5.10) are the generated

frequency of tag k and the random phase mismatch between tag k and core b, respectively.

Phases Φkb are modeled as uniform RVs in [0, 2π), assumed independent and identically

distributed (IID) across different k. If the m-th training sequence and the c-th frequency

sub-channel are assigned to tag k, then {xk,i}Mtr
i=1 = x(m) ∈ Xtr and fk = f

(c). Tag

frequency sub-channels satisfy the following

f
(c) =

lc
T

, ∀c ∈ C, (5.12)

for some lc ∈ N, implying that for c 6= c′, c, c′ ∈ C,
∣∣∣f(c) − f

(c′)
∣∣∣ = |lc − lc′| 1

T
. Random

phase mismatch, as well as the uplink and downlink channels are independent of each

other. Moreover, all data symbols are independent across all tags and time instants and

P(xk,i = ±1) = 1
2
, ∀k ∈ K, ∀i ∈ Md.

Core b receives the superposition of {ukb(t)}k∈K, propagated by uplink channels

{hu
kb}k∈K, i.e.,

ỹb(t) =
∑

k∈K
hu

kb ukb(t) + wb(t), (5.13)
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where the components of wb(t) are independent circularly symmetric, complex Gaussian

noise processes with flat power spectral density (PSD) N0 over [−Wb, Wb] frequency band,

and zero otherwise, i.e.,

F

{
E

[
wb(t)wb(t + τ)H

]}
= N0 1{|F | ≤ Wb} INR

, (5.14)

where F{·} denote the Fourier transform, applied element-wise, and parameter Wb denotes

the receiver bandwidth at core b.

Signal in (5.13) contains DC terms, thus, the time average is removed. After DC-

blocking filtering, signal yb(t) = ỹb(t) − ∫
T0

ỹb(t)dt is formed, where [0, MT ) ⊆ T0, and

T0 is the time processing interval. Note that
∫

T0
ỹb(t)dt ≈ ∑

k∈K hu
kb DCk holds true, due

to (a) the linearity of integration, (b)
∫ a+T

a cos(2πfkt + Φkb) dt = 0 for every a ∈ R since

fk = l
T

, for some l ∈ N, and (c) the fact that the components of w
[n]
b (t) are zero-mean

random processes. Hence, abbreviating ∀k ∈ K

gkb ,

(∑B
b′=1

√
Pb′

NT
ejφb′

(
hd

b′k

)⊤
1NT

)
ηk(Γk,0 − Γk,1) hu

kb

π
2

, (5.15)

and plugging Eq. (5.10) in (5.9) and then substituting in (5.13), the DC-blocked signal

yb(t) can be written as

yb(t) =
∑

k∈K
gkb

M∑

i=1

xk,i cos(2πfk(t − (i − 1)T )+Φkb) ΠT (t + (i − 1)T ) + wb(t). (5.16)

Theorem 5.1. For Wb ≫ 1
T

, when multiple tags are backscattering, the baseband equiv-

alent signal at core b, associated with c-th frequency sub-band, at the i-th time instant is

given by

r
(c)
b,i =

∑

k∈KC(c)

ξ
(c)
kb xk,i + n

(c)
b,i , i = 1, 2, . . . , M, (5.17)

where ξ
(c)
kb , 1{k ∈ KC(c)} gkb

√
T
2

cos(Φkb) is the compound (uplink) channel between tag

k ∈ K and core b at the output of c-th frequency matched filter, incorporating microwave

and wireless propagation parameters, while noise vector n
(c)
b,i ∼ CN (0NR

, σ2
b INR

), with

σ2
b = N0.

Proof. The proof is provided in Appendix 5.6.

By the independence of small-scale fading coefficients and Φkb across all tags k ∈ K,

compound uplink channel vectors {ξ
(c)
kb }k∈K are independent of each other. In addition,
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for a tag k ∈ Kbmc vector ξ
(c)
kb is trivially independent from the rest {ξ

(c′)
kb }c′ 6=c, because

ξ
(c′)
kb = 0NR

, ∀c′ ∈ C\c.

5.3 Channel Estimation and SINR Calculation

Assuming that the first Mtr symbols correspond to the pilot sequence, the training signal

associated with the c-th sub-band at core b can be expressed compactly as

R̃
(c)
b,tr =

∑

k∈KC(c)

ξ
(c)
kb x⊤

k,1:Mtr
+ N

(c)
b,tr, (5.18)

where R̃
(c)
b,tr = [r

(c)
b,1 r

(c)
b,2 . . . r

(c)
b,Mtr

] ∈ CNR×Mtr, x⊤
k,1:Mtr

= [xk,1 xk,2 . . . xk,Mtr], and N
(c)
b,tr =

[n
(c)
b,1 n

(c)
b,2 . . . n

(c)
b,Mtr

]. Since for any tag k ∈ KMtr(m), xk,1:Mtr = x(m), to eliminate the

intra-cell interference and estimate the uplink compound channel of tag k ∈ Kbmc, the

training signal in (5.18) is multiplied with a rescaled version of x(m), i.e., R̃
(c)
b,tr

x(m)

‖x(m)‖2

2

[108].

Thus, due to the orthogonality of {x(m)}m∈Mtr, the training signal associated with tag

k ∈ Kbmc at core b can be written as

R̃
(c)
b,tr

x(m)

‖x(m)‖2
2

, r
(c)
b,tr = ξ

(c)
kb +

∑

b′ 6=b
k′∈Kb′mc

ξ
(c)
k′b + v

(c)
b,tr, (5.19)

where N
(c)
b,tr

x(m)

‖x(m)‖2

2

, v
(c)
b,tr ∼ CN (0NR

, N0

Mtr
INR

). It is remarked that training signal r
(c)
b,tr

associated with tag k ∈ Kbmc does not contain intra-cell interference terms, including only

interference from tags of neighboring cells utilizing the same pair (m, c) with tag k.

Before proceeding to the proposed channel estimator the following proposition is

needed.

Proposition 5.1. For vectors {ξ
(c)
kb }k∈KC(c), ∀c ∈ C, ∀b ∈ B, the expected value is given

by E[ξ
(c)
kb ] = 0NR

, while the covariance C
ξ

(c)
kb

, E[ξ
(c)
kb (ξ

(c)
kb )H] is given by

C
ξ

(c)
kb

=
T η2

k |Γk,0 − Γk,1|2
π2




B∑

b′=1

Pb′ σ2
b′k

κd
b′k + 1

+

∣∣∣∣∣∣

B∑

b′=1

√√√√ Pb′ κd
b′k σ2

b′k

NT(κd
b′k + 1)

ejφb′ (ed
b′k)⊤1NT

∣∣∣∣∣∣

2

 ·

·
(

σ2
kb

κu
kb + 1

(
INR

+ κu
kb eu

kb(e
u
kb)

H

))
(5.20)

Proof. The proof is provided in Appendix 5.6.



5.3. Channel Estimation and SINR Calculation 115

In this work the linear minimum mean-squared error (LMMSE) estimator for param-

eter vector ξ
(c)
kb is used.

Theorem 5.2. For a tag k ∈ Kbmc the LMMSE estimate of ξ
(c)
kb based on training signal

r
(c)
b,tr is given by

ξ̂
(c)

kb = C
ξ

(c)
kb




∑

b′∈B
k′∈Kb′mc

C
ξ

(c)

k′b

+
N0

Mtr
INR




−1

r
(c)
b,tr. (5.21)

In addition, vector ξ̂
(c)

kb and error vector ǫ
(c)
kb = ξ̂

(c)

kb − ξ
(c)
kb are uncorrelated. The mean and

the covariance of vector ǫ
(c)
kb are, respectively, E[ǫ

(c)
kb ] = 0NR

and

C
ǫ

(c)
kb

= C
ξ

(c)
kb


INR

−




∑

b′∈B
k′∈Kb′mc

C
ξ

(c)

k′b

+
N0

Mtr
INR




−1

C
ξ

(c)
kb


 . (5.22)

Proof. The proof of this theorem relies on Bayesian Gauss-Markov theorem [88, Theo-

rem 12.1], Proposition 5.1, and the independence of {ξ
(c)
kb }k∈K.

Note that LMMSE estimator relies only on the first and second moments of parameter

vectors {ξ
(c)
kb } involved in (5.21) and is suboptimal in terms of mean squared-error (MSE)

as it imposes ξ̂
(c)

kb to be a linear function of the observation vector r
(c)
b,tr, while r

(c)
b,tr and

ξ̂
(c)

kb are not proper complex Gaussian vectors. However, amongst all linear estimators,

LMMSE is the one that minimizes the MSE [88].

The received signal r
(c)
b,i in Eq. (5.17) for tag k ∈ Kbmc can be written as

r
(c)
b,i =

∑

m′∈Mtr

k′∈Kbm′c

(
ξ̂

(c)

k′b − ǫ
(c)
kb

)
xk′i +

∑

b′ 6=b
m′∈Mtr

k′∈Kb′m′c

ξ
(c)
k′bxk′i + n

(c)
b,i , (5.23)

where the sum over the set KC(c) is decomposed across two terms, the first pertains to

intra-cell interference, i.e., the tags in KC(c) within cell b (i.e., k ∈ KB(b) ∩ KC(c) =
⋃

m′∈Mtr
Kbm′c), while the second one accounts for the inter-cell interference associated

with tags in KC(c) that do not belong in cell b (i.e., k ∈ ⋃
b′ 6=b

⋃
m′∈Mtr

Kb′m′c). Note that

core b can estimate the corresponding ξ̂
(c)

kb for all tags in its cell, i.e., k ∈ ⋃
m′∈Mtr

Kbm′c

and thus, by the properties of LMMSE estimator, the compound uplink channel can be

written as ξ
(c)
k′b = ξ̂

(c)

k′b − ǫ
(c)
k′b, where ξ̂

(c)

k′b and ǫ
(c)
k′b are uncorrelated.
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5.3.1 Multi-Tag Linear Detection

Core b treats the channel estimate ξ̂
(c)

kb for user k ∈ Kbmc as the actual uplink com-

pound channel and applies linear detection using ξ̂
(c)

kb . For linear detection, a linear

transformation is applied on received signal and the sign of the outcome is used as the

estimated symbol. Applying linear transformation a
(c)
kb on received vector r

(c)
b,i , we obtain

zk,i = (a
(c)
kb )Hr

(c)
b,i , i.e.,

zk,i = (a
(c)
kb )H




ξ̂
(c)

kb xki +
∑

m′∈Mtr

k′∈Kbm′c\k

ξ̂
(c)

k′bxk′i −
∑

m′∈Mtr

k′∈Kbm′c

ǫ
(c)
k′bxk′i +

∑

b′ 6=b
m′∈Mtr

k′∈Kb′m′c

ξ
(c)
k′bxk′i + n

(c)
b,i




.

(5.24)

For each k ∈ KB(b), the estimate of xk,i is given by

x̂k,i = sign(ℜ{zk,i}), i ∈ Md. (5.25)

Two linear detection techniques are examined for symbol xk,i, i ∈ Md: maximum-

ratio combining (MRC) and frequency zero-forcing (ZF) [109]. For MRC detection, vector

a
(c)
kb = ξ̂

(c)

kb . On the other hand, for ZF detection, core b partitions the tags in the cell

according the their utilized frequency sub-bands and for sub-band f
(c) the following matrix

is formed P
(c)
b =

[
ξ̂

(c)

l1b ξ̂
(c)

l2b . . . ξ̂
(c)

lKbc
b

]
, where KB(b) ∩ KC(c) = {l1, l2, . . . lKbc

} and Kbc =

|KB(b) ∩ KC(c)|. The final ZF operator is given by (a
(c)
kb )H =

[
(P

(c)
b )†

]
q,:

, where the q-th

element of set KB(b) ∩ KC(c) satisfies lq = k. Note that ZF detector tries to mitigate

the intra-cell interference coming from tags using the same sub-band with tag k since for

NR ≥ Kbc, (a
(c)
kb )Hξ̂

(c)

k′b = 0 for k′ ∈ (KB(b) ∩ KC(c))\k.

Core b treats the channel estimate ξ̂
(c)

kb as the true channel, and the part including the

last three terms inside parenthesis of (5.24) is considered as interference and noise. Thus,

using the independence of zero-mean {ǫ
(c)
kb }k∈KB(b)∩KC(c), {xk,i}k∈K, and n

(c)
b,i , the received

signal-to-interference-plus-noise ratio (SINR) for tag k ∈ Kbmc is given by

SINR
(c)
kb =

∣∣∣∣(a
(c)
kb )Hξ̂

(c)

kb

∣∣∣∣
2

I
1(c)
kb + I

2(c)
kb + σ2

b ‖a
(c)
kb ‖2

2

, (5.26)
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where intra-cell (I
1(c)
k,b ) and inter-cell (I

2(c)
k,b ) interference terms are given, respectively, by

I
1(c)
kb =

∑

m′∈Mtr

k′∈Kbm′c\k

∣∣∣∣(a
(c)
kb )Hξ̂

(c)

k′b

∣∣∣∣+
∑

m′∈Mtr

k′∈Kbm′c

(a
(c)
kb )HC

ǫ
(c)

k′b

a
(c)
kb , (5.27)

I
2(c)
kb =

∑

b′ 6=b
m′∈Mtr

k′∈Kb′m′c

(a
(c)
kb )HC

ξ
(c)

k′b

a
(c)
kb . (5.28)

Note that for NR ≥ Kbc and ZF detection the first term in Eq. (5.27) becomes zero. In

addition, it is worth-noting that SINR in (5.26) depends on estimated ξ̂
(c)

kb as well as on

quantities that are known to the core and change very slowly with the time due to the

staticness of the cores and the tags.

5.3.2 Measuring the Long-Term SINR

The SINR in (5.26) depends on ξ̂
(c)

kb which in turn changes every coherence period. To

apply robust frequency allocation an average SINR across many channel and frequency

allocation realizations has to be calculated. To this end, a measurement procedure is

employed by all cores and tags to obtain long-term SINR information for subsequent

frequency allocation.

Each tag is assigned to a fixed preamble sequence across the whole measurement phase,

while the channel allocation of each tag changes in a per frame basis. Each frame has

time duration equal to the channel coherence time Tcoh. Let us denote J the total number

of frames for the measurement phase, while set J , {1, 2, . . . J} denotes the set of all

measurement frame indexes. For a core b and a tag k ∈ KB(b), let us denote J (c)
kb the

measurements indexes which tag k is assigned to sub-band f
(c). For each tag k ∈ KB(b)

core b calculates the received SINR in (5.26) for the frames indexed by set J (c)
kb , denoted

as SINR
(c)
kb [j], forming the set

{
SINR

(c)
kb [j] : j ∈ J (c)

kb

}
.

At the end, for each tag k ∈ KB(b), an estimate of average SINR at core b for the c-th

sub-band is obtained as

SINR
(c)
kb =

1∣∣∣J (c)
kb

∣∣∣

∑

j∈J (c)
kb

SINR
(c)
kb [j]. (5.29)

Note that due to the strong law of large numbers [110, Theorem 6.1], as the number of

frames
∣∣∣J (c)

kb

∣∣∣ increases, SINR
(c)
kb tends to the actual E

[
SINR

(c)
kb

]
for tag k ∈ KB(b) ∩ KC(c).
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5.4 Frequency Allocation Based On Max-Sum Message-

Passing

5.4.1 Problem Formulation

After obtaining the average SINR estimates SINR
(c)
kb for all tuples {(k, b, c) ∈ K × B × C :

k ∈ KB(b)} all cores try to obtain frequency sub-channel–tag assignment that maximizes

a specific metric involving the estimated received SINRs. Using the average received

SINR instead of instantaneous SINR, the impact of random intra- and inter- interference

is averaged out, and thus, the optimization problem can be decoupled to B parallel sub-

problems across all cores without significant performance loss.

The proposed formulation to obtain the optimal tag–frequency sub-channel association

is expressed at each core individually through the following optimization problem

maximize
∑

k∈KB(b)

∑

c∈C
g
(
SINR

(c)
kb

)
· vkc (5.30a)

subject to
∑

k∈Kbm

vkc ≤ 1, ∀(m, c) ∈ Mtr × C, (5.30b)

∑

c∈C
vkc = 1, ∀k ∈ KB(b), (5.30c)

vkc ∈ B, ∀(k, c) ∈ KB(b) × C, (5.30d)

where g : R+ −→ R is an arbitrary increasing function. Resource allocation variables

vkc indicate either if tag k ∈ K backscatters on the c-th frequency sub-band (vkc = 1)

or not (vkc = 0). Constraint (5.30b) imposes that a frequency sub-band f
(c) can be

assigned to at most one tag in Kbm, ∀m ∈ Mtr, For constraint (5.30c), each tag has to be

assigned to one frequency sub-channel. From a practical point of view, constraint (5.30b)

offers intra-cell pilot interference cancellation by assigning all tags in cell b to a unique

pair (m, c) ∈ Mtr × C of sequence x(m) and frequency sub-band f
(c), causing orthogonal

training transmissions. In doing so, the channel estimate obtained for the tag k ∈ Kbmc

is contaminated only by the tags from other cells that use the same frequency sub-band

f
(c) along with the m-th training sequence (i.e., k ∈ ⋃

b′ 6=b Kb′mc). It is noted that if

|KB(b)| ≤ Mtr · C, problem (5.30) is feasible.
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For set KB(b), the corresponding assignment matrix is defined Vb , {vkc : ∀(k, c) ∈
KB(b) × C}. The following functions are also defined for all cores b ∈ KB(b):

G(Vb) ,
∑

k∈KB(b)

∑

c∈C
Gkc(vkc), (5.31)

Gkc(vkc) , g

(
SINR

(c)
kb

)
· vkc, (5.32)

pmc({vkc}k∈Kbm
) , I




∑

k∈Kbm

vkc ≤ 1



 , ∀(c, m) ∈ C × Mtr, (5.33)

hk({vkc}c∈C) , I

{∑

c∈C
vkc = 1

}
, ∀k ∈ KB(b), (5.34)

where the last two functions (factors) are associated with constraints (5.30b) and (5.30c),

respectively; for a statement X, function I{X} is the max-indicator function defined as

I{X} ,





0, X is true,

−∞, X is false.
(5.35)

The integer programming problem in (5.30) belongs to the class of maximum weighted

matching problems [111, 112] that can be solved through Max-Sum algorithm. To this

end, the optimization problem in Eq. (5.30) is equivalently expressed as

max
Vb∈B|KB(b)|×|C|





G(Vb) +
∑

m∈Mtr
c∈C

pmc({vkc}k∈Kbm
) +

∑

k∈KB(b)

hk({vkc}c∈C)





. (5.36)

The above (unconstrained) maximization problem is equivalent to the constrained prob-

lem (5.30) because the constraints in (5.30b) and (5.30c) are imposed through indicator

functions {pmc}c∈C,m∈Mtr and {hk}k∈KB(b). The problem in (5.36) can be easily transformed

to an equivalent factor graph (FG) and can be solved through Max-Sum algorithm.

5.4.2 Factor Graph Construction

A FG expresses factorizations as the one in Eq. (5.36), consisting of factor nodes and

variable nodes. Each factor node in the FG is connected through an edge to a variable

node if the corresponding factor has input the specific variable. In the optimization

problem (5.36) there exist 4 kind of factors:

• factors {Gkc : ∀(k, c) ∈ KB(b) × C}: each of them is connected to the corresponding

variable vkc,
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Figure 5.2: A FG instance associated with the first core (i.e., b = 1) for the multi-cell
BSN of Fig. 5.1 assuming: (a) C = 4 frequency channels, (b) M = 2 orthogonal sequences
of length 2, and (c) K11 = {1, 3} and K12 = {2}, i.e., tags 1 and 3 are assigned to m = 1
and tag 2 to m = 2.

• factors {pmc}c∈C,m∈Mtr: each of them is connected to variables {vkc}k∈Kbm
,

• factors {hk}k∈KB(b): each of them is connected to variables {vkc}c∈C.

Given the definition of the above factors and the assignment variable matrix Vb, a FG

can be constructed for each core b ∈ B. Each such FG corresponds to the max-sum

factorization in (5.36). An example of a FG associated with the BSN of Fig. 5.1 is

depicted in Fig. 5.2.

5.4.3 Proposed Algorithm

For a given FG, the standard Max-Sum message-passing rules can be derived to find

the optimal configuration for tag–sub-channel association matrix Vb that maximizes the

objective function in (5.30) and satisfies the constraints (5.30b)–(5.30d).

Theorem 5.3. The FG message-passing update rules can be simplified to the following

single-variable update rules

φ
(n)
kc = max

c′∈C\c

{
−ρ

(n−1)
kc′ + g

(
SINR

(c′)
kb

)}
, (5.37)

ρ
(n)
kc =

[
max

k′∈Kbm\k

{
−φ

(n)
k′c + g

(
SINR

(c)
k′b

)}]+

, k ∈ Kbm, (5.38)
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where [x]+ , max{x, 0}. Moreover, to infer the value for variable vkc ∈ B at the n-th

iteration, the decision rule is

v̂
(n)
kc = 1

{
φ

(n)
kc + ρ

(n)
kc ≤ g

(
SINR

(c)
kb

)}
= 1

{
χ

(n)
kc ≤ 0

}
, (5.39)

where any χ
(n)
kc , φ

(n)
kc + ρ

(n)
kc − g

(
SINR

(c)
kb

)
is the soft-estimate for variable vkc at iteration

n.

Proof. The proof is provided in Appendix 5.6.

Algorithm 3 Max-Sum Algorithm

Input:
{
SINR

(c)
kb : k ∈ KB(b), c ∈ C

}

1: n = 0, φ
(0)
kc = ρ

(0)
kc = ζ

(0)
kc = 0, ∀(k, c) ∈ KB(b) × C, a ∈ [0, 1)

2: while termination criterion is not reached do
3: n := n + 1
4: for each (k, c) ∈ KB(b) × C do

5: φ
(n)
kc = max

c′∈C\c

{
−ρ

(n−1)
kc′ + g

(
SINR

(c′)
kb

)}

6: φ
(n)
kc := aφ

(n−1)
kc + (1 − a)φ

(n)
kc

7: end for
8: for each m ∈ Mtr and each (k, c) ∈ Kbm × C do

9: ρ
(n)
kc =

[
max

k′∈Kbm\k

{
−φ

(n)
k′c + g

(
SINR

(c)
k′b

)}]+

10: ρ
(n)
kc := aρ

(n−1)
kc + (1 − a)ρ

(n)
kc

11: end for
12: for each (k, c) ∈ KB(b) × C do

13: χ
(n)
kc = φ

(n)
kc + ρ

(n)
kc − g

(
SINR

(c)
kb

)

14: v̂
(n)
kc = 1

{
χ

(n)
kc ≤ 0

}

15: end for
16: end while

Output: V̂b =
{
v̂

(n)
kc : ∀(k, c) ∈ KB(b) × C

}

The overall procedure to solve the optimization problem in (5.30) is provided in Algo-

rithm 3. The algorithm is executed for all cores b ∈ B in parallel. It can be observed that a

damping technique with an extra one-iteration-memory step is employed at lines 6 and 10

of the algorithm. Damping technique is utilized to prevent pathological oscillations [113].

Algorithm 3 terminates either if a maximum number of iterations, nmax, is reached, or

if the normalized max-absolute error (NMAE) between two consecutive soft-estimates,
max(k,c)∈KB(b)×C

∣∣∣χ(n)
kc

−χ
(n−1)
kc

∣∣∣
max(k,c)∈KB(b)×C

∣∣∣χ(n−1)
kc

∣∣∣
, is below a prescribed precision ǫ.
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5.4.4 Convergence and Complexity Analysis

Note that the underlying FG associated with Eq. (5.36) contains cycles and generally

convergence cannot be guaranteed for the FGs with cycles. Fortunately, for the class of the

FGs corresponding to weighed matching problems, Max-Sum algorithm always converges

to a fixed point which is also the exact solution. Invoking the convergence results derived

in [114] for general weighed b-matching problems, it follows that if the optimal solution of

linear program (LP) associated with the relaxed version of problem (5.30) is integral (i.e.,

optimal solution belongs in B|KB(b)|×|C|) and unique, then Max-Sum algorithm converges

to the exact solution after O(C |KB(b)|) iterations.

Regarding per iteration computational cost of the proposed algorithm, it is not difficult

to see that lines (4)–(7), (8)–(11), and (12)–(15) require O(C2|KB(b)|), O(C |KB(b)|2),

and O(C |KB(b)|) arithmetic operations, respectively. Thus, the overall per iteration

complexity is dominated by lines (4)-(11). The algorithm iterates at most nmax times,

and thus, the overall computation cost of Algorithm 3 becomes O(nmax (C |KB(b)|2 +

C2|KB(b)|)). From simulation results it is noticed that 5 to 10 iterations usually suffice

for the algorithm to converge to the desired solution for all studied setups.

The problem in (5.30) can be transformed to a LP, where constraint (5.30d) is relaxed

to vkc ∈ [0, 1], ∀(k, c) ∈ KB(b)×C. The relaxed LP problem can be solved through standard

convex optimization interior point methods [115]. However, we choose to solve (5.30)

with Max-Sum message-passing framework due to its low per-iteration cost and its fast

convergence rate, observed through simulations. Simulation results also demonstrated

that the proposed Max-Sum algorithm could offer the same optimal solution with classic

interior point solvers requiring smaller execution time.

5.5 Simulation Results

The multi-cell BSN topology of Fig. 5.3 is studied, consisting of B = 21 cores and K =

500 tags. Cores (blue squares) are placed in a cellular setting [27] and the distance of

neighboring cores is
√

3Rcore, where Rcore = 10 meters. The height of all cores (i.e., their

z coordinate) is 2 meters. Tags (yellow circles) are placed randomly in the vicinity of

cores. Their height is a uniform random variable in [0, 1].

The adopted path-loss model is given by [27]

σ2
bk = σ2

kb =

(
d0

dbk

)νbk
(

λ

4πd0

)2

, (5.40)
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Figure 5.3: Studied multi-cell BSN with B = 21 cores and K = 500 tags.

Table 5.1: Wireless Channel parameters.
Parameters Values
Carrier wavelength λ ≈ 0.3456 m
Noise figure NFb = 4 dB, ∀b ∈ B
Noise energy σ2

b = −174 + NFb dBm/Hz
Reference distance d0 = 1 m
Path-loss exponent νbk = 2.1, ∀b ∈ B, ∀k ∈ KB(b)
Rician parameters κu

kb = κd
bk = 10 dB, ∀b ∈ B, ∀k ∈ KB(b)

where νbk is the path-loss exponent for link (b, k) (same for (k, b)), dbk is the distance from

core b to tag k, while d0 is a reference distance. All considered wireless and noise param-

eters are shown in Table 5.1. For simplicity, common backscatter reflection coefficients

are considered for all tags k ∈ K, with Γk,0 = 0.92 and Γk,1 = −0.91. The tag scattering

efficiency is assumed common for all tags, given by ηk = 20%, ∀k ∈ K. The random

phase mismatch at each core b ∈ B is assumed zero, i.e., φb = 0. The transmission power

of each core is the same, i.e., Pb = Ptx, ∀b ∈ B. AoA ϕd
bk and AoD ϕu

kb are considered

fixed and known for any pair (k, b) ∈ K × B. The BSN has C = 15 available frequency

sub-channels and M = 8 orthogonal training sequences. Each sub-channel is given by

f
(c) = 2c

T
, with T = 0.1 msec. Finally, set XM comprises of the columns of the M × M

Hadamard matrix [116].
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Figure 5.4: Average BER vs Ptx for different values of NR for MRC and ZF linear detection.

5.5.1 Average BER

In the first scenario we compare ZF and MRC multi-tag linear detectors in terms of their

bit error rate (BER). The corresponding average BER performance across all tags is

1

K

∑

k∈K
P(x̂k,i 6= xk,i). (5.41)

The average BER performance is tested as a function of both transmission power and the

number of receive antennas, assuming NT = 1 transmit antennas. For channel estimation

phase, tags within the same cell employ unique pairs (m, c) ∈ Mtr × C (orthogonal

transmissions).

Fig. 5.4 studies the average BER performance in Eq. (5.41) of MRC and ZF detectors

as a function of transmission power Ptx under different receive antennas setups. It can

be observed that increasing the transmission power does not reduce the average BER

performance. This stems from the fact that both useful signal power as well as interference

depend linearly on transmission power (cf. Eq. (5.26)) and thus there is a saturation effect

on total received SINR.

Fig. 5.5 depicts the BER performance as a function of NR for Ptx = 15 dBm. In

contrast to transmission power, as can be seen in Fig. 5.5, the impact of receive antennas is

significant in average BER performance for multi-tag system. It is observed that increasing

the number of receive antennas offers diversity gains for both linear detectors, diminishing

the average BER. The performance of ZF is slightly better compared to MRC because the

former mitigates the interference coming from tags sharing the same frequency sub-band

in the same cell, i.e., intra-cell interference.
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Figure 5.5: Average BER vs NR for MRC and ZF linear detection.

5.5.2 Average Outage Probability

Next, we study the impact of orthogonal versus nonorthogonal pilot transmission on

average outage performance. When a tag k ∈ KB(b) backscatters at frequency sub-band

f
(c), an outage event occurs if P

(
SINR

(c)
kb ≤ θ

)
, with SINR

(c)
kb defined in Eq. (5.26) and

θ an outage threshold. Assuming fixed training sequence assignment, we compare the

average outage performance

1

K

∑

b∈B

∑

k∈KB(b)

∑

c∈C
vkc · P

(
SINR

(c)
kb ≤ θ

)
(5.42)

of random training transmissions versus the proposed orthogonal transmissions. In the

former each tag chooses completely random sub-channels. In (5.42), {vkc}(k,c)∈K×C are the

tag–frequency sub-channel allocation variables.

Using NT = 2, NR = 8, and Ptx = 30 dBm, Fig. 5.6 illustrates the average outage

performance of (5.42) as a function of outage threshold θ comparing ZF vs MRC linear

detection as well as random vs orthogonal training transmissions. It can be seen that

outage events are more frequent for MRC detection, stemming directly from the fact

that MRC allows intra-cell interference, while ZF eliminates it. Orthogonal training

transmissions reduce the intra-cell interference on channel estimate and thus outperform

nonorthogonal training transmissions.

5.5.3 Performance of Max-Sum Algorithm

Using the same parameters as in previous paragraph, J = 5000 SINR measurements are

obtained to estimate the average (long-term) SINR according to Eq. (5.29). The proposed
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Figure 5.6: Average outage probability as a function of outage threshold θ for linear
detection schemes using both nonorthogonal and orthogonal training transmissions.
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Figure 5.7: Sum of SINRs for the Max-Sum algorithm, LP, and orthogonal channel allo-
cation.

algorithm is executed to obtain the optimal assignment of variables {vkc}(k,c)∈K×C, using

parameters g(x) = x, x ≥ 0, nmax = 50, α = 0.1, and ǫ = 10−4. The specific value for

the objective tries to maximize the sum of average SINRs, although other metrics could

be employed.

Fig. 5.7 compares the sum of average SINR performance across all tags as a func-

tion of transmission power. As expected, for both ZF and MRC, the proposed Max-Sum

algorithm offers the same optimal performance with relaxed LP technique and both out-

perform orthogonal training transmissions for which tags of the same cell use unique pairs

(m, c) ∈ Mtr × C, i.e., an orthogonal tag–sub-channel assignment is a feasible assignment

in optimization problem (5.30). The results for orthogonal tag–sub-channel assignments
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Figure 5.8: Convergence rate and NMAE of soft-estimates for the Max-Sum algorithm
executed at cores 3 and 15.

Table 5.2: Average Execution Time in Seconds.

MRC ZF

Max-Sum LP Max-Sum LP

K = 500 0.0968 0.6350 0.0982 0.6331

K = 750 0.1304 0.6934 0.1357 0.6945

K = 1000 0.2175 0.7445 0.2215 0.7266

have been averaged over 1000 Monte Carlo experiments. It can be remarked that the gap

between ZF and MRC is negligible. This performance gap among the optimal assignment

(Max-Sum and relaxed LP) and a feasible assignment (orthogonal transmissions) tends

to slightly increase as the transmission power increases.

Fig. 5.8 shows how fast the proposed algorithm converges to the optimal V⋆
b and how

many iterations are required until termination criterion is reached for cores 3 and 15.

Only 3-4 iterations of the proposed algorithm are required for convergence to the optimal

solution for both MRC and ZF linear detectors. For all cores the algorithm terminated

after 10-15 iterations on the average, and for all cases the termination criterion of NMAE

in soft estimates below ǫ was met. The above demonstrates the potential benefits of the

proposed Max-Sum algorithm, since per iteration complexity is small and convergence is

accomplished within few steps.

Finally, one important question would be why one should use the proposed algorithm

instead of classic LP to solve the studied optimization problem in (5.30). To this end, the

proposed algorithm was compared with CVX convex optimization solver [117] in terms of

average execution time across all cores. For the simulations, MATLAB R2016a was used

on a desktop computer with 32-bit operating system and Intel(R) Core(TM)2 Quad CPU
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at 2.83 GHz. The proposed algorithm was implemented with a custom MATLAB script,

while the solution of LP relaxed problem was obtained by CVX solver. Table 5.2 shows

the execution time of the proposed Max-Sum algorithm and LP program solved with CVX

solver under different number of tags scenarios. It is worth noting for K = 1000 tags the

average execution time across all cores for the proposed algorithm is 0.2-0.22 secs, while

for LP requires 0.7-0.75 secs.

5.6 Appendix: Proofs of Chapter 5

Proof of Theorem 5.1

The proof relies on the following trigonometric identities:

cos(α) cos(β) =
1

2
(cos(α + β) + cos(α − β)) (5.43)

∫ T

0
cos(2πxt + γ)dt =





cos(γ) T, if x = 0,

0, if x = l
T

, l ∈ N.
(5.44)

The signal in Eq. (5.16) consists of time delayed cosine terms which any of them is time

limited in one of the following intervals: [0, T ), [T, 2T ), . . . , [(M −1)T, MT ). For the i-th

interval, [(i − 1)T, iT ), we define C functions given by

s
(c)
i (t),

cos
(
2πf

(c) (t − (i − 1)T )
)

ΠT (t − (i − 1)T )
√

T
2

, (5.45)

for all c ∈ C. Doing the same for all intervals [(i − 1)T, iT ), i = 1, 2, . . . , M , total

M · C functions are obtained. The following set of functions SC(M) ,
{{

s
(c)
i (t)

}
c∈C

}M

i=1
is formed. For any pair in SC(M) the following holds

〈
s
(c)
i (t), s

(c′)
j (t)

〉 (a)
=





2
T

∫ T
0 cos

(
2πf

(c)t
)

cos
(
2πf

(c′)t
)

dt, if i = j,

0, if i 6= j,
(5.46a)

(b)
=





1 if i = j and c′ = c,

0, otherwise,
(5.46b)

where in (a) the orthogonality of functions across disjoint time intervals [(i−1)T, iT ) and

[(j − 1)T, jT ) for i 6= j is exploited and we used change of variables t′ = t − (i − 1)T

for i = j, while in (b), we used Eqs. (5.43) and (5.44) with α = 2πf
(c)t, β = 2πf

(c′)t,



5.6. Appendix: Proofs of Chapter 5 129

and γ = 0 along with identity (5.44) using the assumption that each sub-band satisfies

f
(c) = lc

T
, for some lc ∈ N (cf. Eq. (5.12)). Thus, set SC(M) constitutes an orthonormal

basis for M · C-dimensional subspace of time-limited functions within [0, MT ). That set

can be used for expansion of the signal in Eq. (5.16), i.e., for each user k

√
2

T

∫ T

0
cos(2πfkt + Φkb) cos

(
2πf

(c)t
)

dt
(a)
=





cos(Φkb)
√

T
2
, if k ∈ KC(c),

0, if k /∈ KC(c).
(5.47)

where in (a) we used: (i) Eq. (5.43) with α = 2πfkt + Φkb, β = 2πf
(c)t, and γ = Φkb,

and (ii) Eq. (5.44) combined with the facts: (b1) for any two c, c′ ∈ C, f
(c′) + f

(c) = l
T

,

for some l ∈ N, and (b2) k /∈ KC(c) =⇒ fk − f
(c) = l

T
, for some l ∈ N, whereas

k ∈ KC(c) =⇒ fk − f
(c) = 0.

For optimal demodulation, core b projects the DC-blocked received signal yb(t) in

Eq. (5.16) onto basis SC(M), offering vector coefficients

r
(c)
b,i ,

〈
yb(t), s

(c)
i (t)

〉 (a)
=

∑

k∈KC(c)

gkb

√
T

2
cos(Φkb) xk,i + n

(c)
b,i , (5.48)

where in (a), we used Eq. (5.47) and we abbreviated n
(c)
b,i =

〈
wb(t), s

(c)
i (t)

〉
. The noise

components n
(c)
b,i satisfy

E

[
n

(c)
b,i (n

(c′)
b,j )H

] (a)
=
∫

R

∫

R

E

[
wb(t) wb(t

′)H
]

s
(c)
i (t) s

(c′)
j (t′) dt dt′

(b)
=
∫

R

(∫

R

Cwb
(t − t′) s

(c′)
j (t′) dt′

)
s
(c)
i (t) dt

(c)
=
∫

R

F
−1
{

N0 1{|F | ≤ Wb} INR
S

(c′)
j (F )

}
s
(c)
i (t) dt

(d)≈N0 INR

∫

R

F
−1
{
S

(c′)
j (F )

}
s
(c)
i (t) dt

(e)
= N0 INR

〈
s
(c)
i (t), s

(c′)
j (t)

〉
, (5.49)

where in (a), Fubini theorem [61] is employed along with the linearity of expectation.

Equality (b) follows from the definition of the autocorrelation matrix function of complex

white Gaussian noise process wb(t), Cwb
(t − t′) = E

[
wb(t) wb(t

′)H
]
, which stems from

the fact that the noise process is also wide-sense stationary [80, Chapter 2.7]. In (c), we

use: (i) the definition of convolution operation given by the inverse Fourier transform

(abbreviated F−1{·}) of the product of the two functions involved in their Fourier do-

main, (ii) the definition of power spectral density of process wb(t) in Eq. (5.14), and (iii)

the Fourier transform of s
(c′)
j (t′), S

(c′)
j (F ) = F

{
s
(c′)
j (t′)

}
. In (d), we use that S

(c′)
j (F ) can

be approximated as a band-limited function in [−Wb, Wb] frequency band, since we have
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assumed that Wb ≫ 1
T

, whereas, in (e), s
(c′)
j (t) = F−1

{
S

(c′)
j (F )

}
is used. Thus, in view

of (5.49), the projection of wb(t) on basis SC(M) offers IID circularly symmetric Gaus-

sian vectors
{

n
(c)
b,i : c ∈ C, i = 1, 2, . . . , M

}
with covariance matrix N0 INR

. Eqs (5.48)

and (5.49) complete the proof.

Proof of Proposition 5.1

The proof for mean value is relying on the following identity

E[cos(a + Φkb)] = 0, ∀a ∈ R, (5.50)

which in turn stems from the fact that Φkb ∼ U [0, 2π). Thus, E[ξ
(c)
kb ] =

√
T
2
E[gkb]E[cos(Φkb)] =

0NR
.

For the calculation of the covariance, it is noted that RV ak =
∑B

b′=1

√
Pb′

NT
ejφb′

(
hd

b′k

)⊤
1NT

is a proper complex Gaussian RV with expected value

E[ak] =
B∑

b′=1

√√√√ Pb′ κd
b′k σ2

b′k

NT(κd
b′k + 1)

ejφb′ (ed
b′k)⊤1NT

(5.51)

and variance

var[ak] =
B∑

b′=1

Pb′ σ2
b′k

κd
b′k + 1

. (5.52)

Thus, the power of RV ak is E[|ak|2] = var[ak] + |E[ak]|2. With similar reasoning it follows

that

E

[
hu

kb(h
u
kb)

H
]

=
σ2

kb

κu
kb + 1

(
INR

+ κu
kb eu

kb(e
u
kb)

H

)
. (5.53)

Finally, it is not difficult to see that

E[cos2(Φkb)] =
1 + E[cos(2Φkb)]

2

(5.50)
=

1

2
. (5.54)

Since ξ
(c)
kb is zero-mean vector, its covariance is given by

E

[
ξ

(c)
kb (ξ

(c)
kb )H

]
=

T

2
E[gkbg

H
kb]E[cos2(Φkb)], (5.55)

thus, using the above equations in conjunction with Eq. (5.15), the result in Eq. (5.20)

follows after elementary algebra.
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Proof of Theorem 5.3

Applying the framework of [107, 118] for the proposed FG, we derive the Max-Sum

message-passing update rules. Let us denote m
(n)
mc→kc(vkc) and m

(n)
k→kc(vkc) (m

(n)
kc→mc(vkc)

and m
(n)
kc→k(vkc)) the messages from factors pmc and hk to variable vkc at iteration n,

respectively (and vice versa). The standard Max-Sum update rules are

m
(n)
k→kc(x) = max

{vkc′ }c′∈C\c
vkc=x

{
hk({vkc′}c′∈C) +

∑

c′∈C\c

m
(n−1)
kc′→k(vkc′)

}
, (5.56)

m
(n)
kc→mc(x) = Gkc(x) + m

(n)
k→kc(x), (5.57)

m
(n)
mc→kc(x) = max

{vk′c}k′∈Kbm\k

vkc=x

{
pc({vk′c}k′∈Kbm

) +
∑

k′∈Kbm\k

m
(n)
k′c→mc(vk′c)

}
, (5.58)

m
(n)
kc→k(x) = Gkc(x) + m

(n)
mc→kc(x), (5.59)

∀k ∈ Kbm, ∀(m, c) ∈ Mtr × C, and for any message, x ∈ B. The optimal marginal

rule [118] to obtain an estimate for variable vkc, k ∈ Kbm, at the n-th iteration is given by

v̂
(n)
kc = arg max

x∈B

{
m

(n)
k→kc(x) + m

(n)
mc→kc(x) + Gkc(x)

}
, (5.60)

∀k ∈ Kbm, ∀(m, c) ∈ Mtr × C.

Applying the definition of max-indicator factors hk (pmc), which impose that exactly

(at most) one of their input variables should be 1 and the rest 0, the maximizations in

Eqs. (5.56) and (5.58) are feasible only when exactly (at most) one input message is for

decision “1” and the rest are for “0”. In other words, the update rules for factor nodes in

Eqs. (5.56) and (5.58) can be simplified as

m
(n)
k→kc(0) = max

c′∈C\c



m

(n−1)
kc′→k(1) +

∑

c′′∈C\{c,c′}
m

(n−1)
kc′′→k(0)



 , (5.61)

m
(n)
k→kc(1) =

∑

c′∈C\c

m
(n−1)
kc′→k(0), (5.62)

m
(n)
mc→kc(0) = max





∑

k′∈Kbm\k

m
(n)
k′c→mc(0), max

k′∈Kbm\k



m

(n)
k′c→mc(1) +

∑

k′′∈Kbm\{k,k′}
m

(n)
k′′c→mc(0)







 ,

(5.63)

m
(n)
mc→kc(1) =

∑

k′∈Kbm\k

m
(n)
k′c→mc(0). (5.64)
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Since all FG messages take two values, they can be re-parameterized as a single message

through

φ
(n)
kc , m

(n)
k→kc(0) − m

(n)
k→kc(1), (5.65)

ρ
(n)
kc , m

(n)
mc→kc(0) − m

(n)
mc→kc(1), k ∈ Kbm, (5.66)

Plugging Eqs. (5.61) and (5.62) into (5.65), the common term
∑

c′′∈C\{c,c′} m
(n−1)
kc′′→k(0) can-

cels out, and thus,

φ
(n)
kc = max

c′∈C\c

{
m

(n−1)
kc′→k(1) − m

(n−1)
kc′→k(0)

}

(5.59)
= max

c′∈C\c

{
−ρ

(n−1)
kc′ + g

(
SINR

(c′)
kb

)}
, (5.67)

Using similar reasoning as above and plugging Eqs. (5.63) and (5.64) in (5.66), it follows

that for k ∈ Kbm

ρ
(n)
kc = max

{
max

k′∈Kbm\k

{
m

(n)
k′c→mc(1) − m

(n)
k′c→mc(0)

}
, 0

}

(5.57)
=

[
max

k′∈Kbm\k

{
−φ

(n)
k′c + g

(
SINR

(c)
k′b

)}]+

, (5.68)

where [x]+ , max{x, 0}. Note that the variable decision rule in Eq. (5.60) for k ∈ Kbm

can be written as

v̂
(n)
kc = 1

{
m

(n)
k→kc(1) + m

(n)
mc→kc(1) + g

(
SINR

(c)
kb

)
≥ m

(n)
k→kc(0) + m

(n)
mc→kc(0)

}

(a)
= 1{χ

(n)
kb ≤ 0}, (5.69)

where in (a), soft variable estimates χ
(n)
kb , φ

(n)
kc + ρ

(n)
kc − g

(
SINR

(c)
kb

)
are defined and

Eqs. (5.65)–(5.66) are also exploited.
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Conclusion

Internet-of-Things (IoT) is expected to play a prominent role for ubiquitous sensing any-

where and anytime. Plethora of IoT applications at the near future will affect and interact

with billions of humans offering significant socio-economical impact.

The outcomes of this dissertation constitute a significant step towards the improvement

of ultra-low-power IoT from the points-of-view listed in detail below.

An in-depth analytical framework to deduce accurate fundamental performance

bounds for nonlinear RF energy harvesting in ultra-low-power IoT is offered. Specifically,

for the first time in the RF energy harvesting literature, realistic efficiency models are

studied accounting for the sensitivity, nonlinearity, and saturation of the RF harvesting

circuits. A piece-wise linear approximation model is proposed, offering closed-form

expression and tuning-free modeling. Two real RF harvesting efficiency models from RF

harvesting circuits prior art are evaluated and contrasted with the proposed analytical

model and the RF harvesting models from prior art. It is demonstrated that the proposed

approximation model is in complete agreement with reality and more importantly, the

simple, linear RF harvesting modeling results deviate from reality.

An analytical point-to-point scatter radio signal model is presented accounting for

tag-related, microwave, and realistic wireless channel parameters. Novel, low-complexity

noncoherent and coherent detection and decoding reception algorithms are designed for

frequency-shift keying (FSK) at tags taking into account the idiosyncrasies of scatter

radio model. The proposed algorithms are ideal for short packet communication. A

detailed simulation study comparing coherent and noncoherent reception schemes under

energy budget constraints reveals that their performance depends on the type of fading

conditions, the training symbols energy budget for coherent schemes, the size of inter-

leaving depth for coded interleaved systems, as well as the type of utilized channel codes.

Experimental results demonstrate an order of magnitude range increase compared to con-
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ventional scatter radio technology verifying the efficacy of the proposed scatter radio

reception schemes.

It was clearly shown that the multistatic scatter radio architecture offers more reliable

reception as well as better field coverage, while demonstrating smaller sensitivity to the

topology of the tags, compared to the monostatic architecture. It is demonstrated under

realistic Nakagami small-scale fading scenarios and path-loss models that not only the

BER decay is doubled in a multistatic architecture compared to a monostatic one, but

also, energy and information outage events are less frequent in multistatic systems due

to the flexible morphology of the multistatic WSN architecture. A concrete experimental

proof-of-concept scenario for large-scale and reliable scatter radio networks is also offered.

For the first time in the scatter radio literature a complete signal model for multi-

cell backscatter sensor networks (BSNs) is presented, incorporating the idiosyncrasies

of scatter radio wireless models under realistic Rician small-scale fading and path-loss

models. A new closed-form channel estimation procedure is designed to estimate the tag-

to-reader compound uplink channels for every cell. The average SINR of two multi-tag

linear detectors is found and harnessed for resource allocation. To allocate frequency sub-

channels to the tags, a generic optimization problem is formulated. The proposed resource

allocation algorithm has very simple update rules and attains the performance of classic

convex optimization algorithms with very small computational cost. It was shown that

convergence to the desired solution can be obtained within very few iteration steps.

The dissertation concludes with a discussion of some research directions that are a

natural extension of the problems considered.

Accurate Resource Allocation with Nonlinear RF Harvesting

The status quo of resource allocation algorithms in the simultaneous wireless and infor-

mation power transfer (SWIPT) literature neglects the three operation regimes of realistic

RF harvesting circuits mentioned in Chapter 2. Resource allocation optimization prob-

lems can be redesigned by incorporating the proposed RF harvesting model in Chapter 2,

reflecting more accurately the reality. In addition, the provided expressions for the proba-

bility density and cumulative distribution function for RF harvested power under general

small-scale fading models can be exploited to offer accurate queueing delay and power al-

location analysis using a realistic probabilistic model regarding RF energy arrival events.
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Performance Bounds For Energy Harvesting IoT Applications

The provided generic probabilistic analysis under any fading model provided in Chap-

ter 2 can aid to explore several communication-theoretic performance expressions for RF

harvesting IoT devices. To be precise, with the provided analysis, RF energy harvesting

IoT devices with given RF harvesting circuit specifications, one can find corresponding

outage, spectral efficiency, bit error rate (BER) expressions, for given parameters of trans-

mission RF power, transmitter-receiver distance, fading distribution parameters, path-loss

exponent.

Multistatic Scatter Radio Cooperative Localization

Another promising future direction regarding multistatic scatter radio network architec-

ture is the development of cooperative localization algorithms in order to deduce the

position of randomly placed tags on the field. Specifically, multiple carrier emitters (CEs)

can be harnessed to illuminate in a time- or frequency-division multiplexing basis a tag in

the field, while the power of the backscattered signals at the reader can be employed to

estimate the tag-to-reader distance. Using at least three CEs for every tag, the position

of the tags could be estimated using standard state estimation algorithms, e.g., particle

filtering, maximum-likelihood estimation, and many others.

Linear Detection Performance Analysis in Multi-Cell BSNs and

Comparison With Existing Technology

Performance analysis of the developed linear detections schemes for multi-cell BSNs can

be offered in order to calculate several relevant multi-tag performance metrics, such as

average outage, BER, and sum spectral efficiency for a studied BSN topology. Comparison

of the conventional low-power wireless sensor networks (WSNs) consisting of Marconi

radio sensors with the proposed BSN architecture against the aforementioned performance

metrics in an interesting research avenue that definitely deserves further investigation.





List of Abbreviations

ASK Amplitude-shift keying

BCH Bose-Chaudhuri-Hocquenghem

BER Bit error rate

BSN Backscatter sensor network

CDF Cumulative distribution function

CE Carrier emitter

CFO Carrier frequency offset

CW Carrier wave

FDM Frequency-division multiplexing

FSK Frequency-shift keying

GLRT Generalized likelihood-ratio test

HCHT Hybrid composite hypothesis test

IEH Information and energy harvesting

IoT Internet-of-things

LMMSE Linear minimum mean-squared error

LoS Line-of-sight

LS Least-squares

ML Maximum-likelihood

MRC Maximum-ratio combining

MSK Minimum-shift keying

NLoS Non-line-of-sight

OFDM Orthogonal frequency-division multiplexing

PDF Probability density function

RF Radio frequency

RFID Radio frequency identification

RM Reed-Muller

RV Random variable
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SDR Software-defined radio

SINR Signal-to-interference-plus-noise ratio

SNR Signal-to-noise ratio

TDMA Time-division multiple access

SWIPT Simultaneous wireless information and power transfer

WSN Wireless sensor network

ZF Zero-forcing
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