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Abstract—This work proposes a new limited feedback channel
estimation framework. The proposed approach exploits a sparse
representation of the double directional wireless channel model
involving an overcomplete dictionary that accounts for the
antenna directivity patterns at both base station (BS) and user
equipment (UE). Under this sparse representation, a computa-
tionally efficient limited feedback algorithm that is based on
single-bit compressive sensing is proposed to effectively estimate
the downlink channel. The algorithm is lightweight in terms
of computation, and suitable for real-time implementation in
practical systems. More importantly, under our design, using
a small number of feedback bits, very satisfactory channel
estimation accuracy is achieved even when the number of BS
antennas is very large, which makes the proposed scheme ideal
for massive MIMO 5G cellular networks. Judiciously designed
simulations reveal that the proposed algorithm outperforms a
number of popular feedback schemes in terms of beamforming
gain for subsequent downlink transmission, and reduces feedback
overhead substantially when the BS has a large number of
antennas.

I. INTRODUCTION

Future 5G wireless cellular systems are expected to use

a very large number of antennas at the base station (BS).

This type of massive multiple-input multiple-output (MIMO)

multi-antenna architectures has attracted a lot of attention in

recent years by both academia and industry. Massive MIMO

can achieve very high throughputs [1], [2] through spatial

multiplexing and array gains [3]. Massive MIMO systems

also have the advantage of being energy-efficient since every

antenna only operates at a low-energy level [4].

To realize high-throughput massive MIMO systems, acquir-

ing accurate channel state information (CSI) at the BS in a

timely fashion is crucial [5]. In particular, achieving high-

accuracy downlink channel estimation at the BS using only

few feedback bits from the user equipment (UE) is a challenge,

especially in massive MIMO systems. In frequency-division-

duplex (FDD) systems, where channel reciprocity does not

hold and thus the BS cannot acquire downlink channel infor-

mation from uplink training sequences, the feedback overhead

may scale proportionally to the number of BS antennas [6].

Note that this feedback overhead problem does not only

exist in FDD; even in the time-division-duplex (TDD) mode,

relying only on channel reciprocity is not accurate enough,

since reciprocity is itself an approximation, and the uplink

measurements at the BS cannot capture the downlink inter-

ference from neighboring cells [7], [8]. Therefore, studying

limited feedback based channel estimation is well-motivated

for massive MIMO.

Many limited feedback mechanisms that aim at acquiring

accurate CSI at the BS with reduced communication overhead

can be found in the literature [9]. Many of these methods

utilize a vector quantization (VQ) codebook that is known to

both the BS and the UE. After estimating the instantaneous

downlink CSI at the UE, the UE sends through a limited

feedback channel the index of the codeword that best matches

the estimated channel, in the sense of minimizing the outage

probability [10], or maximizing the normalized average signal-

to-noise-ratio (SNR) [11], [12]. VQ-based feedback schemes

are usually combined with transmit beamforming.

Many limited feedback approaches in MIMO systems con-

sider a Rayleigh fading channel model [6], [11], [12], [13],

[14]. Under this channel model, the number of VQ feedback

bits required to guarantee reasonable performance is linear

in the number of transmit antennas at the BS [15] – which is

costly in the case of massive MIMO systems. In addition, since

most of the heavy computations are carried out at the UE, these

approaches assume that the UE has adequate computational,

memory, and power resources for codebook storage and search

(at a minimum), which should be avoided if possible.

Contributions: In this work, an alternative approach to the ex-

isting limited feedback methods is considered. Specifically, we

aim at designing a feedback scheme that meets the demands

of massive MIMO. We employ the double directional MIMO

channel model (DD model) [16] instead of the Rayleigh fading

model. The DD channel model parameterizes each channel

path using angle of departure (AoD) at BS, small- and large-

scale propagation coefficients, and angle of arrival (AoA) at

UE – a parametrization that is well-accepted and advocated

by 3GPP [17], [18]. Our idea is to make use of a ‘virtual

sparse representation’ of the downlink channel under the dou-

ble directional MIMO model [16]. Specifically, we quantize

the angular space of AoA and AoD so that overcomplete

dictionaries are constructed which contain steering vectors

approximating those of the true arrival and departure angles.

Unlike previous work that directly applies compressive sensing

techniques at the UE to recover the channel as in [16], we

propose a scheme in which the UE judiciously compresses the

received measurements and sends back only the signs of the

compressed measurements to the BS. Upon receiving these



sign bits, the BS estimates the channel using a variation of

single-bit compressed sensing (CS) [19], [20], [21], [22]. For

the DD channel model, channel estimation with CS techniques

is considered in [23], [24], [25]

Our new framework features several desirable properties.

First, the computational burden is shifted to the BS side – the

UE only carries out matrix-vector multiplications and takes

signs. This is sharply different from most limited feedback

schemes in the literature, where the UE does the ‘heavy

lifting’ [5], [9], [14]. Second, by exploiting sparsity of the

virtual channel model and leveraging sophisticated single-

bit compressive sensing algorithms, the proposed approach

significantly outperforms VQ-based approaches in terms of

estimation accuracy for a given bit budget. Third, the single-

bit compressive sensing technique that we advocate here has a

simple closed-form solution, which can be easily implemented

and performed in real time – thus relieving the computational

burden on the BS as well.

In a addition to designing the new limited feedback scheme,

a new angle dictionary construction methodology is presented

to enhance performance, based on a companding quantization

technique [26]. The idea is to create dictionaries that con-

centrate the angle density in a non-uniform manner along

the angles where directivity patterns attain higher values,

achieving better angle granularity over those regions, which

eventually translates to better channel estimation performance.

Baseline 3GPP and dipole antenna directivity patterns are

considered and contrasted with uniform quantization to show-

case this important point. Judicious simulations reveal that

accounting for antenna directivity patterns in the channel

model offers increased beamforming gain. It is also shown

that the proposed method outperforms baseline least-squares

(LS) scalar and vector quantization in terms of beamforming

gain while requiring less feedback overhead.

Related Work: In [27], one-bit feedback was considered

in the context of power spectrum sensing, where the feed-

back bits correspond to signs of randomly compressed power

measurements. In [28], instantaneous SNR measurements are

compressed to one bit and then fed back to the BS for beam-

former design and channel covariance tracking. The approach

in [28] cannot estimate the instantaneous channel, e.g., phase

is already lost due to the quadratic measurement, even before

taking the sign. The method reported in [29] models the tem-

poral channel evolution using a vector auto-regressive process,

and uses the sign of the Kalman filtering innovation sequence

as feedback to track the channel. The method in [29] requires

strong temporal channel correlation, and it does not exploit the

powerful DD channel model. In addition, all the above involve

computationally demanding iterative optimization algorithms –

in contrast with the method proposed herein, which is closed-

form and hence very lightweight in terms of computational

resources. We also note that the proposed method aims at

recovering the instantaneous channel without assuming any

temporal correlation model.

II. SYSTEM MODEL

We consider a FDD cellular system consisting of a BS

serving K active UE terminals, where the downlink channel

is estimated at the BS through feedback from each UE. For

brevity of exposition, we focus on a single UE. Generalization

to multiple users is straightforward, as the channel estimation

process can be performed separately for each UE. The BS is

equipped with MT antennas, and the UE is equipped with MR

antennas.

The channel is assumed static for a coherence block of

Uc ≈ BcTc complex OFDM symbols, where Bc is the

coherence bandwidth (in Hz), Tc is the coherence time (in

seconds). In downlink transmission, the BS has to acquire

CSI through feedback from the active UE terminals, and then

design the transmit signals accordingly. At the training phase,

the BS employs Ntr training symbols for channel estimation.

The narrowband (over time-frequency) discrete baseband-

equivalent model over a period of Ntr training symbols is

given by

yn = Hsn + nn, n = 1, 2, . . . , Ntr, (1)

where sn ∈ CMT is the nth transmitted training symbol,

yn ∈ CMR is the received vector, H ∈ CMR×MT denotes

the complex baseband equivalent channel matrix, and nn ∼
CN (0, σ2IMR) is additive white Gaussian noise at the receiver.

All quantities in the right hand-side of (1) are independent

of each other. A total power constraint per channel use is

considered, i.e., E[sns
H
n ] = PT

MT
IMT , for all n, where PT

denotes the average total transmit power. The transmit signal-

to-noise ratio (SNR) is defined as SNR , PT

σ2 .

To estimate H, we can use linear least-squares (LS) [6],

or, if the channel covariance is known, the linear minimum

mean-squared error (LMMSE) approach [5]. These linear ap-

proaches need more than MTMR training symbols to establish

identifiability of the channel (to ‘over-determine’ the problem)

– and this is rather costly in massive MIMO scenarios. In

addition, if one estimates the channel at the UE, the UE needs

to be equipped with significant computational resources, which

is unpractical – also considering that channel estimation is a

‘background’ job, not the main function of the UE.

A more practical approach to the problem of downlink chan-

nel acquisition at the BS of massive MIMO systems would

be to shift the computational burden to the BS, relying on

relatively lightweight computations at the UE, and assuming

that only low-rate feedback is available as well. The motivation

for this is clear: the BS is connected to the communication

backbone, plugged to the power grid, and may even have

access to cloud computing – thus is far more capable of

performing intensive computations. The challenge of course is

how to control the feedback overhead – without a limitation

on feedback rate, the UE can of course simply relay the

signals it receives back to the BS, but such an approach is

clearly wasteful and impractical. The name of the game is

how to achieve accurate channel estimation with low feedback

overhead: our goal is to estimate H using just a few feedback

bits.



Towards this end, our starting idea is to employ a finite

scatterer (multipath or double directional) channel model

comprising L paths [16], which can be parameterized using

a virtual sparse representation. This sparse representation will

lead to a feedback scheme that is rather parsimonious in terms

of both overhead and computational complexity.

A. Double Directional Model and Sparse Representation

The narrowband downlink channel matrix H can be

parametrized as follows:

H =

√
MTMR

L

L∑

l=1

αl cT(φ
′
l) cR(φl)aR(φl)a

H
T(φ

′
l), (2)

where αl is the complex gain of the l-th path incorporating

path-loss as well as small- and large-scale fading effects, and

φl, φ
′
l are the azimuth angle of arrival (AoA) and angle of de-

parture (AoD) of the lth path, respectively. Functions cT(·) and

cR(·) are the transmit and received antenna directivity patterns,

respectively (all transmit antenna elements have the same

directivity pattern, and the same holds for receive antenna

elements). Examples of transmit and receive antenna patterns

are the uniform directivity pattern over a sector [φl
T, φ

u
T], given

by

cT(φ) =

{
1, φ ∈ [φl

T, φ
u
T]

0, otherwise,
(3)

and likewise for cR(φ). The so-called dipole directivity pattern

(on y-axis) [30] is also often considered, and has the following

form:

cT(φ) =

{
GA cos3(φ), φ ∈

[
−π

2 ,
π
2

)
,

−GA cos3(φ), φ ∈
[
−π,−π

2

)
∪
[
π
2 , π

)
,

(4)

where GA is the maximum directional gain of the antenna.

Another baseline directivity pattern is advocated by 3GPP

[31], [32]:

cT(φ) = GB 10
max

{

−0.6
(

φ

φ3dB

)2
,− Am

20

}

, (5)

with φ ∈ [−π, π), where GB is the maximum directional

gain of the radiation element, Am is the front-to-back ratio,

and φ3dB is the 3dB-beamwidth. In (2), aR(φl) and aHT(φ
′
l)

denote receive and transmit array steering vectors of the lth
path, respectively. The specific form of the steering vectors

depends on the array geometry; e.g., when a uniform linear

arrays (ULA) (w.r.t. y axis) is employed, the steering vector

at the BS is given by

aT(φ) =

√
1

MT

[
1 e−j

2πdy

λ
sin(φ) . . . e−j

2πdy(MT−1)

λ
sin(φ)

]⊤
,

where λ is the propagation wavelength, dy is the distance

between the antenna elements in y axis, usually dy = λ/2.

For any antenna array structure and directivity pattern, let

AR , [cR(φ1)aR(φ1) . . . cR(φL)aR(φL)], (6)

AT , [cT(φ
′
1)aT(φ

′
1) . . . cT(φ

′
L)aT(φ

′
L)], (7)

α ,

√
MTMR

L
[α1 α2 . . . αL]

⊤, (8)

then the channel in (2) can be written more compactly as

H = AR diag(α)AH
T. (9)

Starting from the model in (9), one can come up with

a sparse representation of the channel [16]. First, the angle

space of AoA and AoD is quantized by discretizing the

angular space. Let us denote these dictionaries PT and PR

for AoDs and AoAs, respectively. Dictionary PT contains

GT dictionary members, while PR contains GR dictionary

members. One simple way of constructing these dictionaries

is to use a uniform grid of phases in an angular sector

[a, b) ⊆ [−π, π). In that case, PR =
{
a+ j (b−a)

GR+1

}GR

j=1
and

PT =
{
a+ j (b−a)

GT+1

}GT

j=1
.

Let ÃR = {cR(φ)aR(φ) : φ ∈ PR} ∈ CMR×GR and ÃT =
{cT(φ)aT(φ) : φ ∈ PT} ∈ CMT×GT be dictionary matrices,

associated with angle dictionaries PT and PR. Up to some

quantization errors, the channel matrix in (9) can be written

in terms of basis matrices ÃR and ÃT as

H ≈ ÃRGÃH
T, (10)

where G ∈ CGR×GT is the interaction matrix. Note that G is

not diagonal, because in principle any AoA can be associated

with any AoD. The (j, k)th element in G is associated with the

jth and kth columns in ÃR and ÃT, respectively – [G]j,k 6= 0
means that a propagation path associated with the kth angle in

PT and the jth angle in PR is active. In practice, the number

of (prominent) active paths is typically very small compared to

the number of elements of G (i.e., GTGR). Thus, the matrix

G is in most cases very sparse.

Setting Y = [y1 y2 . . . yNtr ], S = [s1 s2 . . . sNtr ],
N = [n1 n2 . . . nNtr ], and using the channel approximation

in (10), the baseband-equivalent model in (1) can be written

in a compact matrix form as

Y = ÃRGÃH
T S+N. (11)

Vectorizing Eq. (11) and using the property vec(ABC) =
(C⊤ ⊗ A) vec(B), where ⊗ denotes the Kronecker product,

the baseband received signal is given by

y =
(
(S⊤Ã∗

T)⊗ ÃR

)
g+ n = Qg+ n, (12)

where y , vec(Y) ∈ C
MRNtr , g , vec(G) ∈ C

GTGR ,

n , vec(N) ∈ CMRNtr , and Q , (S⊤Ã∗
T) ⊗ ÃR ∈

CMRNtr×GTGR . We define G , GTGR, standing for the

joint dictionary size. Now, our task amounts to properly

compressing y and sending a few feedback bits to the BS

which can enable simple and effective estimation of g – since

once g is recovered, the channel H can be approximately

recovered from (10).

III. CONSTRUCTION OF ANGLE DICTIONARIES

ACCOUNTING ANTENNA DIRECTIVITY PATTERNS

Before introducing the feedback scheme and algorithm that

recovers the downlink channel at the BS, let us consider the



practical problem of quantizing the angular space. Prior works

that employ the sparse representation in (9) use uniformly

discretized angles as dictionaries [16], [24]. However, a more

appealing angle dictionary should take into consideration the

antenna directivity patterns, since the channel itself naturally

reflects these directivity patterns – e.g., if a receive antenna has

a spatial null, then it is impossible to receive a path coming

from the null direction, and likewise for transmit nulls. A more

refined version of this idea is to pack more angles around the

peaks of the antenna directivity pattern, because the dominant

paths will likely fall in those regions, and this is where we need

higher angular resolution. Denser discretization within high-

antenna-power regions can reduce quantization errors more

effectively compared to a naive uniform quantization that

ignores the directivity pattern. In this section, we propose a

simple and easily implementable angle quantization technique

that is based on the above rationale. As will be seen in the

simulations, considering the directivity patterns substantially

enhances the performance of channel estimation – especially

in the low SNR regime.

To explain our approach, let q : [a, b) −→ R+ be a

given antenna directivity pattern function, which is assumed

continuous over φ ∈ [a, b) and suppose that we want to

represent it using N quantization points; see Fig. 1 for the

3GPP directivity pattern. We define the cumulative function

of q, given by G(φ) ,
∫ φ

a
q(x)dx. As the range space of

function q takes positive values, its continuity implies that G

is monotone increasing. Thus, the following set

Cq ,

{
G(a) +

n(G(b)− G(a))

N + 1
,

}N

n=1

, (13)

partitions the range of G in N + 1 intervals of equal size.

By the definition of G, the set in (13) partitions function q

in N + 1 equal area intervals. Having the elements of set Cq,

we can find the phases at which q(φ) is partitioned in N + 1
equal area intervals – which means that we achieve our goal of

putting denser grids in the angular region where the q function

has higher intensity. These phases can be found as

Fq ,
{
G−1(y)

}
y∈Cq

, (14)

where G−1 : [G(a),G(b)) −→ [a, b) is the inverse (with

respect to composition) function of G. Observe that G−1 is

continuous, monotone increasing function since G is as well

continuous and monotone increasing. The discrete set Fq is

a subset of [a, b) and concentrates more elements at points

where function q has larger values.

Following the above principles, let us further exemplify

the procedure of constructing the angle dictionaries using

the function q of the 3GPP antenna directivity pattern that

is given in Eq. (5). As the most general case, we assume

a ≤ −φ3dB

√
Am

12 and b ≥ φ3dB

√
Am

12 . The domain of q can

be partitioned into 3 disjoint intervals as

[a, b) = [a,−φ0) ∪ [−φ0, φ0) ∪ [φ0, b), (15)

φ
-4 -3 -2 -1 0 1 2 3 4

q
(φ
)

0

0.5

1

1.5

2

2.5

3

{q(φ)}φ∈Fq

3GPP Directivity Pattern

Fig. 1. 3GPP directivity pattern along with function q applied on the proposed
dictionary using a = −π and b = π. Note the proposed angle dictionaries
contain more elements on the domain of q which obtains larger values.

with φ0 , φ3dB

√
Am

12 . Applying the definition of cumulative

function G(φ) =
∫ φ

a
q(x)dx and using its continuity, we obtain

G(φ)=





GB(φ− a)10−
Am
20 , φ ∈ [a,−φ0),

G(−φ0) + GB

√
π φ2

3dB

ln(10) 2.4 ·(
erf

(√
ln(10) 0.6 Am

12

)
+

sign(φ)erf
(√

ln(10) 0.6
φ2
3dB

|φ|
))

, φ ∈ [−φ0, φ0),

G(φ0) + GB (φ− φ0) 10
− Am

20 , φ ∈ [φ0, b),
(16)

where we exploit the fact that erf(x)
√
π

2 =
∫ x

0
e−t2dt and

the fact that 10x = eln(10)x. Upon defining y− , G(−φ0),
y0 , G(0), and y+ , G(φ0), the inverse of G(·) can be

calculated using Eq. (16) in closed form as

G−1(y)=





y
GB

10
Am
20 + a, y ∈ [0, y−),

−
erf−1

(

2
√

ln(10) 0.6

φ3dB
√

π

(y0−y)
GB

)

√
ln(10) 0.6

φ3dB

, y ∈ [y−, y0),

erf−1

(

2
√

ln(10) 0.6

φ3dB
√

π

(y−y0)
GB

)

√
ln(10) 0.6

φ3dB

, y ∈ [y0, y
+),

φ0 +
y−y+

GB
10

Am
20 , y ∈ [y+,G(b)),

(17)

where erf−1(·) is the inverse (with respect to composition)

function of erf(·), and is well tabulated by several software

packages, such as Matlab. The definition of inverse function

in (17) for interval [a, b), such that [−φ0, φ0) ⊆ [a, b) ⊆
[−π, π), is the most general case. As one can see in Fig. 1,

our quantization of the angular space is well-aligned with the

directivity pattern.

We also provide the details of constructing the angle dictio-

naries for dipole antenna directivity patterns in Appendix A.

IV. RECOVERING THE CHANNEL FROM A FEW BITS:

A CLOSED-FORM SOLUTION

In order to reduce the feedback overhead without irrevoca-

bly sacrificing our ability to recover accurate CSI at the BS,



we propose to use a pseudo-random dimensionality-reducing

linear operator PH to y. The outcome is quantized with a very

simple sign quantizer and is communicated to BS through a

low-rate limited feedback channel. More specifically, the BS

receives

bℜ + jbℑ = sign(ℜ
(
PHy

)
) + j sign

(
ℑ
(
PHy

))
, (18)

where P ∈ CMRNtr×Nfb , with Nfb ≤ MRNtr. To facilitate

operating in the more convenient real domain, consider the

following definitions

Cℜ ,
[
ℜ(QHP)⊤ ℑ(QHP)⊤

]⊤
, (19a)

Cℑ ,
[
−ℑ(QHP)⊤ ℜ(QHP)⊤

]⊤
, (19b)

C , [Cℜ Cℑ] = [c1 c2 . . . c2Nfb
] ∈ R

2G×2Nfb, (19c)

x ,
[
ℜ(g)⊤ ℑ(g)⊤

]⊤
∈ R

2G, (19d)

b ,
[
b⊤
ℜ b⊤

ℑ
]⊤

= [b1 b2 . . . b2Nfb
]⊤ ∈ R

2Nfb , (19e)

z ,
[
z⊤ℜ z⊤ℑ

]⊤
= [z1 z2 . . . z2Nfb

]⊤ ∈ R
2Nfb , (19f)

with ℜ
(
PHQg

)
= C⊤

ℜx, ℑ
(
PHQg

)
= C⊤

ℑx, zℜ = ℜ
(
PHn

)
,

and zℑ = ℑ
(
PHn

)
. Using the above, in conjunction with (18),

the received feedback bits at the BS are given by

bi = sign
(
c⊤i x+ zi

)
, i = 1, 2, . . . , 2Nfb. (20)

The objective at the BS is to estimate x from the 2Nfb sign

observations b and the compound dictionary-training matrix

C. Since the sparse complex channel vector g has L non-zero

elements, the real vector x has 2L non-zero elements.

A. Single-Bit Compressed Sensing

We make use of the fact that x is sparse, (cf. G being

sparse). We seek a sparse x that yields maximal agreement

between the observed and the reconstructed signs. Ideally, one

would use a formulation that minimizes

−
2Nfb∑

i=1

sign(c⊤i x)bi + ζ‖x‖0, (21)

where ζ > 0 is a regularization parameter, but this is difficult

in terms of optimization. As an optimization surrogate, we

consider the following convex estimator

x̂ = arg min
‖x‖2≤R2

−x⊤Cb+ ζ ‖x‖1, (22)

where R2 is an upper bound on the norm of x and the

constraint prevents elements of x from becoming unbounded

when ζ is small. Note that the above formulation in (22) has

been shown effective for being an optimization surrogate of

the objective function (21), both in practice and in theory.

In fact, our reformulated problem is an instance of single-

bit compressive sensing (CS), which has attracted significant

attention in recent years [19], [20], [21], [22], [33], [34]. We

note that the specific estimator in (22) has been proposed

in [22]. The merit of this approach is that it has a closed-

form solution

x̂ =

{
0, ‖Cb‖∞ ≤ ζ,
R2 T(ζ;Cb)
‖T(ζ;Cb)‖2

, otherwise,
(23)

where T(ζ;x) denotes the shrinkage thresholding operator

defined as [T(ζ;x)]i = (|xi|−ζ)+ sign(xi), i = 1, 2, . . . , 2G.
This closed-form solution is ideal for real-time implemen-

tation. If the elements of C are drawn from a Gaussian

distribution and R2 = 1, the above simple closed-form

solution can recover approximately 2L-sparse vectors on the

unit hypersphere with sample complexity O(2LlogG
ǫ4

), where

sample complexity is the number of single-bit measurements

needed to recover the desired vector within precision at most ǫ.
Note that this identifiability result also justifies our dropping of

the coupling between the supports of the real and imaginary

parts of g in the conversion of the complex model to real

form. The overall computational cost of computing Eq. (23)

is O(NfbG).

B. Remarks

1) Channel Reconstruction: For a given estimate x̂, us-

ing (19d) we set ĝi = x̂i + j x̂G+i, i = 1, 2, . . . , G. Then,

having ĝ, the procedure to estimate H is straightforward.

Namely, an estimate Ĝ from ĝ is formed, and through Eq. (10)

an estimate Ĥ is obtained.

2) Number of Feedback Bits: The proposed method re-

quires from the UE to feed back 2Nfb bits. By assumption

Nfb ≤ NtrMR, so for binary quantization the number of

feedback bits is upper bounded by 2NtrMR. For massive

MIMO MT ≫ Ntr and MT ≫ MR, hence the proposed

algorithm is very-well suited for massive MIMO systems.

3) Feedback Delays: Compared to feedback schemes that

need heavy optimization procedures at the UE [5], [9], [14],

the proposed scheme introduces negligible feedback delays

since the UE simply applies a linear transformation PH on

received vector y and then takes signs.

V. NUMERICAL RESULTS

In this section, all directivity patterns are defined over the

sector [−π/2, π/2). Single-antenna UE devices are consid-

ered, i.e., MR = 1, while the BS is equipped with a ULA.

The beamforming gain is employed as a performance metric

[11], [12]

Beamforming Gain , E

[
PT

‖ĥ‖22

∣∣∣hH ĥ

∣∣∣
2

2

]
. (24)

This metric measures the similarity between the actual channel

h and the normalized channel estimate ĥ and is proportional

to average received SNR. The following algorithms are used

as baselines and compared with the proposed single-bit CS

limited feedback sparse channel estimation algorithm:

• LS channel estimation at the UE, given by ĥH
LS = YS†,

and quantization of ĥH
LS’s elements using Lloyd-Max

scalar quantizer of Q bits per real number. This feedback

scheme requires exactly 2QMTMR feedback bits and is

abbreviated as LS-SQ.

• LS channel estimation at UE, vector quantization of ĥLS,

and then feedback. The vector quantization strategy of

[11] based on 2Q-PSK is utilized due to very small
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Fig. 2. The proposed angle dictionaries offer higher beamforming gain
compared to uniform angle dictionaries that do not account directivity patterns.

number of required feedback bits, equal to Q(MT − 1).
This scheme is abbreviated as LS-VQ.

For CS, the AoD dictionary for 3GPP and dipole antenna

directivity patterns is constructed following the procedures in

Sec. III and Appendix A, respectively. The 3GPP directivity

pattern employs Am = 30 dB and φ3dB = 55 degrees.

For fairness across different antenna directivity patterns their

maximum directional gain is modified so as all of them have

the same area over AoD interval [−π/2, π/2), equal to π.

Thus, GB = 2.184 and GA = 2.35618 are utilized.

Figs. 2 and 3 show the impact of transmit SNR on beam-

forming gain. We consider PT = 1 Watt transmission power,

MT = 192 transmit antennas, and Ntr = 80 training period;

single-bit CS algorithm uses Nfb = 80 (corresponding to 160
feedback bits overhead) and a random-column-permuted DFT

matrix of size Nfb is used as dimensionality reducing matrix

P, while the dictionary sizes were set to GT = GR = 240. For

the channel model in (2), we assume that L follows a discrete

uniform distribution over [5, 6, . . . , 10]. This choice for mod-

eling the number of paths applies an implicit averaging with

respect to paths to obtain a more robust average performance.

AoD and AoA are uniformly distributed over [−π/2, π/2),
i.e., φl, φ

′
l ∼ U [−π/2, π/2], and Rician fading is considered,

i.e., αl ∼ CN
(
ejϕl

√
κl

κl+1 ,
1

κl+1

)
, with ϕl ∼ U [0, 2π] and

κl ∼ U [0, 40).
Fig. 2 compares the proposed dictionaries with the uniform

dictionary for different antenna directivity patterns. As a

benchmark, the beamforming gain assuming perfect CSI is

also included. It is observed that for 3GPP and dipole di-

rectivity patterns, the proposed angle dictionaries offer higher

performance compared to uniform dictionaries, which do not

account for the directivity patterns at the BS. The maximum

performance gap among proposed and uniform dictionaries is

3 dB in the low SNR regime, which is an evident improve-

ment. Furthermore, as the SNR increases the performance gap

between the proposed CS method and perfect CSI becomes 3
dB.

Fig. 3 shows a comparison of the proposed algorithm with

LS scalar and vector quantizations schemes. Using Q = 1 for
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Fig. 3. The proposed algorithm outperforms LS-SQ and LS-VQ for every
value of SNR and any studied antenna directivity pattern.

TABLE I
SIMULATION PARAMETERS.

Parameters Values

Carrier Frequency (Fc) 2 GHz

Carrier Wavelength (λ) λ = c/Fc

Noise power (σ2) 10−10 Watts

Transmit power (PT) 0.5 Watts

Path number (L) Discrete uniform in [5, 6, . . . , 19, 20]

AoA and AoD (φl and φ′

l
) φl, φ

′

l
∼ U [−π/2, π/2]

Distance of path l (dl) dl ∼ U [80, 120]

Path loss exponent (η) η ∼ N (2.8, 0.12)

Inverse path loss of path l (ρl)
(

λ
4π

)2 (
1

dl

)η

Shadowing (vl) 10log10(vl) ∼ N (10log10(ρl), 4
2)

Rician parameter (κl) κl ∼ U [0, 50]

Multipath gain (αl) αl ∼ CN
(

ejϕl

√

κl

κl+1
vl,

1

κl+1
vl

)

ϕl ϕl ∼ U [0,2π]

LS-SQ and Q = 2 for LS-VQ result in 384 and 382 feedback

bits, respectively. Thus, all schemes utilize roughly the same

number of feedback bits. It can be seen that the proposed

algorithm outperforms LS schemes in terms of beamforming

gain for all directivity patterns considered. This is rather

encouraging: although the proposed algorithm uses somewhat

fewer feedback bits, it achieves much better performance due

to its judicious design.

Next, we consider a more realistic scenario where path-loss

and shadowing are added to the channel model according to

Table I. Please note that using the parameters of Table I the

average received SNR (incorporating path-loss and small- and

large-scale fading effects) changes per realization, so we apply

an implicit averaging with respect to average received SNR.

Under such settings, the simulations cover many more different

cases and can better reflect the real-world performance of the

various algorithms. Also, Ntr = 64 training symbols are used,

while single-bit CS employees Nfb = 64 with dictionary sizes

GT = GR = 180.

Fig. 4 examines a massive MIMO scenario where MT

becomes very large. Note that the proposed single-bit CS

algorithm achieves the largest beamforming gain for all values
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Fig. 4. The proposed algorithm outperforms LS-SQ and LS-VQ for any value
of MT and any studied antenna directivity pattern.

TABLE II
NUMBER OF FEEDBACK BITS USED UNDER VARIOUS MT’S.

MT

Algorithms 64 128 192 256 320 384 448 512

CS 128 128 128 128 128 128 128 128

LS-SQ 128 256 384 512 640 768 896 1024

LS-VQ 126 254 382 510 638 766 894 1022

of MT and all directivity patterns. This is consistent with

our previous simulation. LS-VQ has the worst performance

in this case where the receive-SNR is varying. We observe

that under this realistic scenario the beamforming gain takes

values of the order of 10−8. This is not surprising since on

top of small-scale fading this scenario further incorporates

path-loss and shadowing effects. The noise level is in the

order of 10−10 Watts, and thus, such beamforming gain makes

a lot of sense in practice. Table II illustrates the number

of feedback bits used under different MT ’s. Note that the

proposed algorithm consistently outperforms the LS schemes

in terms of beamforming gain, even though the latter schemes

use many more feedback bits when MT increases. Particularly,

when MT = 1024, the number of feedback bits used by the

LS schemes is almost 10 times higher than the number of

feedback bits used by the proposed scheme.

Fig. 5 shows the beamforming gain as a function of param-

eter Q for different antenna directivity patterns using MT =
256. We recall that Q parametrizes the accuracy as well as the

corresponding number of feedback bits for LS schemes. For

all values of parameter Q and all studied antenna directivity

patterns the proposed single-bit CS algorithm outperforms LS

schemes.

VI. CONCLUSION

This work provides a new limited feedback sparse channel

estimation framework using a single-bit compressed sensing

algorithm that (a) uses overcomplete angle dictionaries ac-

counting for the antenna directivity patterns; (b) entails very

small computational complexity at both ends of the link,

as it admits closed-form solution; and (c) attains a desired
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Fig. 5. Beamforming gain as a function of Q for 256 BS antennas. The
proposed scheme offers an upper performance bound for LS schemes.

level of channel estimation accuracy at a feedback rate that

is independent of the number of BS antennas, making it

ideal for massive MIMO applications. A new angle dictionary

construction methodology was presented that further boosts

the performance of the proposed algorithm. Simulations reveal

that the proposed algorithm outperforms least-squares scalar

and vector quantization techniques in terms of beamforming

gain.

APPENDIX A

DIPOLE ANTENNA DIRECTIVITY PATTERN

Dipole directivity pattern is given in (4). To study the most

general case for interval [a, b), it is assumed that a ≤ π
2 and

b ≥ π
2 . For notational convenience an auxiliary function D(φ)

is defined as

D(φ) ,
GA

12

(
12 sin(φ)− 4 sin3(φ) + 8

)
. (25)

The cumulative function for dipole directivity pattern in (4) is

given by

G(φ) =





D(a)− D(φ), φ ∈
[
a,−π

2

)
,

D(a) + D(φ), φ ∈
[
−π

2 ,
π
2

)
,

D(a) + 2D
(
π
2

)
− D(φ), φ ∈

[
π
2 , b

)
.

(26)

Note that G(φ) is a continuous increasing function since

q(φ) > 0 for all φ ∈ [a, b) except a set of measure zero

[35]. Setting G(φ) = y, the calculation of the inverse function

in (26) requires to solve a composite polynomial of the

following form

sin3(φ)− 3sin(φ) − c = 0, (27)

where constant c changes according to which interval φ
belongs in Eq. (26). To find the roots of the polynomial in (27),

we first ignore sine function by solving

0 =





φ3 − 3φ−
(
2 + 3(y−D(a))

G

)
, φ ∈

[
a,−π

2

)
,

φ3 − 3φ−
(
2− 3(y−D(a))

G

)
, φ ∈

[
−π

2 ,
π
2

)
,

φ3 − 3φ−

(
2 +

3(y−D(a)−2D(π
2 ))

G

)
, φ ∈

[
π
2 , b

)
.

(28)



The polynomials above have real coefficients, thus, there is

at least one real root, and the other two are either complex

conjugates or both real. Using same methodology as in [36],

we find: D0 = 9, ι3 = −1−
√
3

2 ,

D1(y)=





−27
(
2 + 3(y−D(a))

GA

)
, y ∈

[
0,G

(
−π

2

))
,

−27
(
2− 3(y−D(a))

GA

)
, y ∈

[
G
(
−π

2

)
,G

(
π
2

))
,

−27

(
2 +

3(y−D(π
2 )−D(a))

GA

)
, y ∈

[
G
(
π
2

)
,G(b)

)
,

(29)

and

V(y) =
3

√
D1(y) +

√
D2

1(y)− 4D30
2

. (30)

Without getting to algebraic details, after finding the roots

in (28), we incorporate sine function and solve (27), which

offers the inverse of (26)

G−1(y) =





asin

(
ι3V(y)+

ι3D0
V(y)

3

)
− π, y ∈

[
0,G

(
−π

2

))
,

−asin

(
ι3V(y)+

ι3D0
V(y)

3

)
, y ∈

[
G
(
−π

2

)
,G

(
π
2

))
,

asin

(
ι3V(y)+

ι3D0
V(y)

3

)
+ π, y ∈

[
G
(
π
2

)
,G(b)

)
.

(31)
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