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1 Introduction

This work studies the sufficient conditions for the convergence of the Sum-Product algo-
rithm (SPA) when the factors of the factor graph (FG) have pairwise interactions and
variables have binary domain [1]. In a nutshell, FGs represent graphically the factorization
of a global function into a product of local sub-functions. The global function is usually
a multi-variable probability density/mass function (pdf/pmf), where the calculation of a
marginal pdf/pmf is usually intractable. The SPA is applied on the FG through message-
passing, i.e. exchange of functions, between the FG nodes in a distributed way; the output
is a marginal pdf/pmf with respect to a variable of interest. Factor graph theory has several
applications in many interdisciplinary fields, such as error correction coding theory, detec-
tion and estimation, wireless networking, artificial intelligence and many others. Further
details regarding FGs and SPA can be found in [2–6].

The notation is the following. The set B denotes the set of binary numbers, i.e. B =
{x : x ∈ {−1, 1}}. The operator | · | stands for the cardinality of a set, i.e. |B| = 2.

The rest of this work is organized as follows. In Section 2 are provided some prelimi-
naries about FGs and SPA, Section 3 introduces the notation of [1]. Section 4 derives the
sufficient conditions for the convergence of SPA for binary variables and pairwise interac-
tions (factor nodes with at most 2 arguments). Finally, Section 5 concludes this work.

2 Background

2.1 Factor Graphs and the Sum-Product Algorithm

Let X1, X2, ..., Xn be a set of variables, in which for each i, Xi takes values in some finite
domain Xi. Let f(X1, X2, ..., Xn) be a real valued function of these variables, i.e. a function
with domain

X = X1 ×X2 × · · · × Xn, (1)

and range the set of real numbers R. The domain X of f is called configuration space for
the given set of variables {X1, ..., Xn}, and each element of X is a particular configuration
of the variables, i.e. an assignment of a value for each input of f . Knowing that the set of
real numbers is closed over summation, we will associate n marginal functions1 associated
with function f(X1, ..., Xn), denoted as gXi

(xi) for every i. For each xi ∈ Xi, the value
gXi

(xi) is obtained by summing the value of f(X1, ..., Xn) over all configurations of the
input variables that have Xi = xi.

The marginal of f(X1, ..., Xn) with respect to variable Xi is a function from Xi to R
which is denoted gXi

(xi), and it is obtained by summing over all other variables. More
specifically, the marginal with respect to variable xi ∈ Xi is given by

gXi
(xi) =

∑
x1∈X1

· · ·
∑

xi−1∈Xi−1

∑
xi+1∈Xi+1

· · ·
∑

xn∈Xn

f(X1 = x1, ..., Xi = xi, ..., Xn = xn). (2)

1Hereafter, it will be considered that the terms marginal and marginal function are equivalent terms
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For notational convenience, instead of indicating the variables being summed over, we
indicate those variables not being summed over and we will use the following shorthand

gXi
(xi) =

∑
∼{xi}

f(x1, ..., xi, ..., xn) (3)

=
∑

x1,...,xi−1,xi+1,...,xn

f(x1, ..., xi, ..., xn). (4)

Let f(X1, ..., Xn) factors into a product of several local functions, each having some
subset of {X1, ..., Xn} as arguments, specifically, it is assumed that (X1, ..., Xn) can be
factorized into K factors, namely,

f(X1, ..., Xn) =
K∏
k=1

fk(Sk), (5)

where Sk ⊆ {X1, ..., Xn} is the subset of variables associated with the real-valued local
factor fk, i.e. its configuration space. Such factorization is not unique. Function f(·) itself
is a trivial factorization, since it consist of 1 factor.

Factor graphs are bipartite graphs that represent the factorization of a global function
to smaller local functions, e.g. as in expression 5. More formally, we provide the definition
below:

Definition 1 (Factor graph). Let f(X1, ..., Xn) be a decomposable function with K
factors, namely

f(X1, ..., Xn) =
K∏
k=1

fk(Sk).

The factor graph G(V,E) corresponding to global function f is a bipartite graph, where
for every variable Xi, there is a variable node denoted with a solid circle, and for every
factor fj, there is a factor node denoted with a non-solid square. Furthermore, if variable
Xi is in the domain of factor fj an edge is created among them, namely eij = (Xi, fj).
It is customary to write Xi ∈ N (fj) or equivalently fj ∈ N (Xi) to denote that variable
Xi is argument of factor fj or in “graph” words, variable node Xi is adjacent with factor
node fj. Sk stands for the subset of the variables of global function f associated with local
function fk. H

N (v) stands for the set of variable (factor) nodes that are adjacent with the factor
(variable) node v.

Example 1. Consider a function f of 6 variables with identical (finite) domain, i.e. Xi =
X , i = 1, ..., 6:

f(X1, X2, X3, X4, X5, X6) = f1(X1, X4)f2(X1, X3, X6)f3(X2, X4, X5)f4(X1).
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The corresponding factor graph is given in Fig. 1. If we want to compute the marginal
with respect to variable X3, gX3(x3), we do the following:

gX3(x3) =
∑
∼{x3}

f1(x1, x4)f2(x1, x3, x6)f3(x2, x4, x5)f4(x1).

�

f1

f2

f3

f4

X1

X2

X3

X4

X5

X6

Figure 1: A factor graph that corresponds to the function of the example 1.

SPA is a powerful algorithm for the efficient computation of the marginals of a global
factorisable function with finite domain.

The simultaneous computation of all marginal functions could be completed if we had
computed all the messages passing across all the edges of FG. An outgoing message along
an edge always depends on the incoming messages. SPA employs a synchronized factor/-
variable node message passing scheduling, in order to calculate all the messages across the
edges of the FG. SPA terminates when all messages have been passed along the edges of
the FG.

Suppose we have a variable Xi with finite domain and a local function fj.
2 Let

µXi−→fj(xi) be denoting the message from a variable node Xi to a neighboring factor
node fj, and µfj−→Xi

(xi) be denoting the message from factor node fj to a variable node
Xi. According to the SPA [3], the message-passing update rules have the following form:

� variable node to local function node update rule:

µXi−→fj(xi) =
∏

fk∈N (Xi)\{fj}

µfk−→Xi
(xi), (6)

2The term local function is equivalent with the term factor and the term local factor.
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� local function node to variable node update rule:

µfj−→Xi
(xi) =

∑
∼{xi}

fj(Sj = sj)
∏

Xl∈N (fj)\{Xi}

µXl−→fj(xl)

 , (7)

where Sj = {Xl : Xl ∈ N (fj)}. The backslash operator denotes the expression “except”.
Namely, the expression Xl ∈ N (fj)\{Xi} stands for all variable nodes Xl which are ad-
jacent with factor node fj except variable node Xi. Similarly, fk ∈ N (Xi)\{fj} are all
neighboring factors nodes to Xi , except {fj}. During initialization phase every leaf factor
node fj (i.e. all factor nodes which are constituted from a single variable) conveys the
message µfj−→Xm = fj(xm). In a similar manner, the messages from every leaf variable
node Xi to the neighboring factor node (fl ∈ N (Xi)) is µXi−→fl(xi) = 1 (by definition).

Every marginal gXi
(xi), of a variable Xi results from the product of all incoming mes-

sages incident to variable node Xi, i.e.

gXi
(xi) =

∏
fk∈N (Xi)

µfk−→Xi
(xi). (8)

If we want to find the marginal with respect to a cluster of variables Sj (that corresponds
to a factor fj, i.e. Sj = {Xl : Xl ∈ N (fj)}), then

gSj
(sj) = fj(sj)

∏
Xl∈N (fj)

µXl−→fj(xl). (9)

Fig. 3 depicts the sum-product algorithm update rule for factor nodes, while Fig.
2 illustrates the sum-product algorithm update rule for variable nodes. Finally, Fig. 4
shows the calculation of a marginal graphically. The calculations of each marginal is
performed at every variable node at the last step of SPA (after the calculation of all
messages across the edges of FG). The concurrent operation of SPA will be shown with an
example, subsequently. One important observation regarding SPA is that every variable
node of degree D must perform D − 1 multiplications.

If we want to formulate everything in terms of messages µfk−→Xi
(xi), then from Eqs.

6, 7, we take

µfj−→Xi
(xi) =

∑
∼{xi}

fj(Sj = sj)
∏

Xl∈N (fj)\{Xi}

∏
fk∈N (Xi)\{fj}

µfk−→Xl
(xl)

 , (10)

Finally it is presented an illustrative example that clarifies the message-passing opera-
tions of SPA and the respective time-scheduling. At each step the corresponding messages
are shown graphically in Fig. 6.

Example 2. Consider the following factorization of a function f :

f(X1, X2, X3, X4, X5) = f1(X1, X3)f2(X3, X4, X5)f3(X2, X4)f4(X2),

the corresponding FG for the above factorization is given in figure 5. For convenience, we
will apply SPA in distinct steps. At every step the respective messages will be derived.

4



fj+1f1 fj-1 fJ

fj

... ...

Xi

Figure 2: Update rule of the sum-product algorithm for a variable node.

X1 Xi-1 Xi+1 XI

Xi

... ...

fj

Figure 3: Update rule of the sum-product algorithm for a factor node.

f1

fN

fl fn

... ...

...Xi

Figure 4: The marginal function for a variable node Xi with N adjacent factor nodes.
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� Step 1:

µf4−→X2(x2) =
∑
∼{x2}

f4(x2) = f4(x2),

µX1−→f1(x1) = 1,

µX5−→f2(x5) = 1.

The messages of this step are depicted in figure 6(a).

� Step 2:

µf1−→X3(x3) =
∑
∼{x3}

f1(x1, x3)µX1−→f1(x1),

µX2−→f3(x2) = µf4−→X2(x2).

Note that factor node f2 has not received the incoming message from variable node
X3, in order to compute the outgoing message for variable nodes X5 and X4. Simi-
larly, the incoming message from variable node X4 is not available yet, therefore, f2
can not send an outgoing message to variable nodes X5 and X3. Consequently, factor
node f2 at this step remains idle. The messages of this step are showed in figure 6(b).

� Step 3:

µX3−→f2(x3) = µf1−→X3(x3),

µf3−→X4(x4) =
∑
∼{x4}

f3(x2, x4)µX2−→f3(x2).

Factor node f2 remains silent since its incoming messages have not arrived yet. Figure
6(c) illustrates the messages of this step.

� Step 4:

µX4−→f2(x4) = µf3−→X4(x4),

µf2−→X4(x4) =
∑
∼{x4}

f2(x3, x4, x5)
(
µX5−→f2(x5)µX3−→f2(x3)

)
.

The messages of this step are depicted in figure 6(d).

� Step 5:

µX4−→f3(x4) = µf2−→X4(x4),

µf2−→X3(x3) =
∑
∼{x3}

f2(x3, x4, x5)
(
µX5−→f2(x5)µX4−→f2(x2)

)
,

µf2−→X5(x5) =
∑
∼{x5}

f2(x3, x4, x5)
(
µX4−→f2(x4)µX3−→f2(x3)

)
.
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� Step 6:

µX3−→f1(x3) = µf2−→X3(x3),

µf3−→X2(x2) =
∑
∼{x2}

f3(x2, x4)µX4−→f3(x4).

� Step 7:

µX2−→f4(x2) = µf3−→X2(x2),

µf1−→X1(x1) =
∑
∼{x1}

f1(x1, x3)µX3−→f1(x3).

� Termination:

gX1(x1) = µf1−→X1(x1),

gX2(x2) = µf4−→X2(x2)µf3−→X2(x2),

gX3(x3) = µf1−→X3(x3)µf2−→X3(x3),

gX4(x4) = µf2−→X4(x4)µf3−→X4(x4),

gX5(x5) = µf2−→X5(x5).

In the last step we calculate concurrently the marginals with respect to all variables of
function f . �

f1
f2f3f4 X1

X2

X5

X3

X4

Figure 5: FG of the global function of example 2.

2.2 Normed Spaces, Contractions and Bounds

This section introduces some elementary and important properties of vector norms, matrix
norms, contractions and the Mean Value theorem; all these constitute the basic mathe-
matical tool for the subsequent Lemmas and Theorems.
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Figure 6: SPA and message-passing scheduling.

Some examples of vector norms in RN are the l1-norm and l∞-norm which are defined
as

||x||1 =
N∑
i=1

|xi|, (11)

||x||∞ = max
i∈{1,...,N}

|xi| (12)

A norm on a vector space (V, || · ||) induces a metric on V if d(v,u) , ||v − u|| satisfies
the triangle inequality. The resulting metric space is complete, i.e. all Cauchy sequences
converge therein. Assume (X, d) a metric space, a mapping f : X 7→ X is called contraction
with respect to d if there exists a constant L ∈ [0, 1) such that

d(f(x), f(y)) ≤ L · d(x,y), ∀x,y ∈ X (13)

A || · ||-contraction is called the contraction where a norm || · || induces d. If a metric space
(X, d) is complete then

Theorem 1 ( [1]). Let f be a contraction of a complete metric space (X, d). Then f
has a unique fixed point x∞ ∈ X and for any x ∈ X, the sequence x, f(x), f(f(x))...
obtained by iterating f converges to x∞. The rate of convergence is at least linear, since
d(f(x),x∞) ≤ L · d(x,x∞) for all x ∈ X.3

3Linear convergence means that the distance d(f(x),x∞) decreases exponentially.
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Proof. See Theorem 5.1.2 of [7]

Assume that (V, || · ||) is a vector space. A matrix norm induced by norm, is a linear
mapping A : V 7→ V, and defined as follows:

||A|| = sup
v∈V
||v||≤1

||Av|| (14)

Some well known matrix norms are the l1-norm and l∞-norm which on RN induce the
following norm

||A||1 = max
j∈{1,...,N}

N∑
i=1

|ai,j|, (15)

||A||∞ = max
i∈{1,...,N}

N∑
j=1

|ai,j|, (16)

where |ai,j| is the absolute value of the element in the ith row and jth column of A.

Lemma 1 (Mean Value Theorem). Let (V, || · ||) be a normed space and f : V 7→ V
with f being differentiable. Then ∀x,y

||f(x)− f(y)|| ≤ ||x− y|| · sup
z∈[x,y]

||f ′(z)||,

where [x,y] = {λx + (1− λ)y : λ ∈ [0, 1]}, i.e. [x,y] is the line segment joining x and y.

Proof. See [8], Theorem 8.5.4.

In the above theorem f ′(z) denotes the N × N Jacobian derivative matrix. Finally if
we combine Theorem 1 and Lemma 1 we obtain the following result which constitutes the
basic tool hereafter.

Lemma 2. Let (V, || · ||) be a normed space, f : V 7→ V differentiable and suppose that

sup
x∈V
||f ′(x)|| < 1.

Then the sequence x, f(x), f(f(x)), ... converges to a unique fixed point x∞ ∈ V.

Proof. By Lemma 1 f is || · ||-contraction, and hence by Theorem 1 converges to a unique
fixed point x∞ ∈ V.

For a square matrix A, σ(A) stands for its spectrum, namely the set of A’s eigenvalues.
By ρ(A) is denoted the spectral radius of A, and is designated as ρ(A) , sup |σ(A)|,
namely, the largest modulus of eigenvalues of A.
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3 Notation of [1]

In this section it will be presented the notation of [1] for clarification and convenience
in order to derive the sufficient conditions at the next Section. Firstly, the factors and
the variables of the FG will be indexed by the sets F and V , {1, ..., N}, respectively.
Each variable xi, i ∈ V has finite domain denoted by Xi. The vector that contains all
the variables is designated by x = [x1, ..., xN ] ∈ X =

∏
i∈V Xi. Suppose P : X 7→ R++,

a probability measure that can be factorized to local factors indexed by F . Then its
factorization is given by

P (x1, ..., xN) =
1

Z

∏
I∈F

ψI(xI). (17)

The factors ψI are indexed by subsets of V , i.e. if I ∈ F then I = {i1, ...., im} ⊆ V .
The variables associated with factor ψI are denoted as xI = [xi1 , . . . , xim ] ∈

∏
i∈I Xi.

Furthermore, it is assumed that ψI is a positive function, i.e. ψI :
∏

i∈I Xi 7→ R++, (where
R++ = {x ∈ R | x > 0}). Variable Z in Eq. 17 is a constant such that

∑
x∈X P (x) = 1.

Upper case letters will stand for indices of factors (i.e. I, J,K... ∈ F), while lower case
letters will be used for indices of variables (i.e. i, j, k, ... ∈ V).

In FG each variable node i ∈ V is connected with all factors I that contain this
variable as their argument. The set of neighbors of a variable node will be denoted as
N (i) = {I ∈ F : i ∈ I}, ∀i ∈ V , while the set of neighbors of a factor node will be denoted
by N (I) = {i ∈ V : i ∈ I} = I, ∀I ∈ F . Finally, for each variable i ∈ V it is defined
the set of neighboring variables, denoted by ∂i = N (N (i))\{i}, i.e. the set of all variables
that have in common with variable i at least one local factor.

The message from a factor node I to a variable node i will be denoted by µI→i(xi),
whereas the message from a variable node i to factor node I will be denoted by µi→I(xi).

Both messages are positive functions on Xi, or equivalently, vectors in R|Xi|
++ and are func-

tions of variable xi. A message from a node to another depends on the incoming messages.
An outgoing message will be denoted as µ̃ and will always depend on the incoming mes-
sages. Following this notation and observing Eqs. 6, 7, we obtain

µ̃j→I(xj) =
1

Zj→I
·
∏

J∈N (j)\j

µJ→j(xj), (18)

µ̃I→i(xi) =
1

ZI→i
·
∑
xI\i

ψI(xI)
∏
j∈I\i

µj→I(xj)

 , (19)

where Zj→I and ZI→i are constants such that
∑

xi∈Xi
µ̃j→I(xj) = 1 and

∑
xi∈Xi

µ̃I→i(xi)
= 1. Throughout, it will be adopted the shorthand J\j instead of J\{j}.

In FG framework, significant role plays if the FG has cycles or not. When the FG is
cycle-free then SPA calculates exactly the marginals {P (xi)}i∈V and {P (xI)}I∈F , otherwise
calculates approximations of them. Suppose an arbitrary FG and all messages, after SPA
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have converged to a fixed point µ∞, the marginals with respect to a variable i ∈ V , or with
respect to a local factor I ∈ F are given respectively by

bi(xi) =
1

Zi

·
∏

I∈N (i)

µI→i
∞ (xi) ≈ P (xi). (20)

bI(xI) =
1

ZI

· ψI(xI)
∏
i∈I

µi→I
∞ (xi) ≈ P (xI), (21)

where Zi and ZI are normalization constants in order to obtain
∑

xi∈Xi
bi(xi) = 1 and∑

xi∈XI
bI(xI) = 1. It has been shown that always exists a fixed point [9]. However

the existence of a fixed point does not necesarily means convergence towards the fixed
point [10].

Finally, if we want the problem be formulated only in terms of messages µI→i(·), then,
using Eqs. 18, 19 we obtain

µ̃I→i(xi) =
1

ZI→i
·
∑
xI\i

ψI(xI)
∏
j∈I\i

∏
J∈N (j)\I

µJ→j(xj)

 , (22)

where ZI→i is a constant, such that
∑

xi∈Xi
µ̃I→i(xi) = 1. Having finished with the notation

we proceed to the sufficient conditions.

4 Sufficient Conditions for Binary Variables with Pair-

wise Interactions

In this section are derived the sufficient conditions of the convergence of the SPA when the
variables have binary domain, i.e. xi ∈ Xi = B, ∀i ∈ V , and all local factors have at most
2 variables as arguments. Since we assumed that all factors have pairwise interactions
the set of factors can be rewritten as F = F1 ∪ F2, where F1 = V and F2 ,

{
{i, j} :

∃ψI(xi, xj), I ∈ F , i 6= j
}

, where ψI is a local factor that contains variables xi and xj.
Then from Eq. 17 we take

P (x1, ..., xN) =
1

Z
· exp

 ∑
{i,j}∈F2

i<j

Ji,jxixj +
∑
i∈F1

θixi

 , (23)

where θi and Ji,j are such that ψi(xi) = exp(θixi), ∀i ∈ F1 and ψi,j(xi, xj) = exp(Ji,jxixj),
∀{i, j} ∈ F2.

It is noted from Eq. 22 that the single variable factors F1 produce constant messages
to their corresponding adjacent variables. Therefore, we focus on finding when messages
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converge, by studying only the factors with 2 variables. We define the following quantity,
which will be employed for convenience

νi→j , tanh−1
(
µ{i,j}→j(xj = 1)− µ{i,j}→j(xj = −1)

)
. (24)

The above message refers to the message from a variable i to a neighboring variable j via
factor ψi,j. Note that

µ{i,j}→j(xj = 1)− µ{i,j}→j(xj = −1) =
∑
xi∈Xi

(
µi→{i,j}(xi, 1)− µi→{i,j}(xi,−1)

)
(25)

After some algebraic manipulations (see reference [10] for intermediate operations), update
equation 22 can written to the following form

tanh(ν̃i→j) , tanh(Ji,j) · tanh

θi +
∑
t∈∂i\j

νt→i

 . (26)

where ∂i = {t ∈ V : {t, i} ∈ F2}, that is, ∂i is the set of adjacent variables with respect to
i.

It is further defined the set of order pairs D , {i → j : {i, j} ∈ F2} and a mapping
f : R|D| 7→ R|D|. We note that Eq. 26 associates a component (f(ν))i→j , ν̃i→j in terms
of the components of ν ∈ R|D|. The goal is to derive sufficient conditions under which the
mapping f is a contraction. The following examples clarifies all the concepts above.

Example 3. Let P be a probability measure of five variables that can be factorized to
factors with pairwise interactions. Consider the following factorization (note Fig. 7):

P (x1, ..., x5) =
1

Z
ψ1(x1)ψ2(x2)ψ3(x3)ψ4(x4)ψ5(x5)ψ1,2(x1,2)ψ2,3(x2,3)ψ3,4(x3,4)

× ψ4,5(x4,5) (27)

=
1

Z
exp
(
θ1x1 + θ2x2 + θ3x3 + θ4x4 + θ5x5 + J1,2x1x2 + J2,3x2x3 + J3,4x3x4

+ J4,5x4x5
)
. (28)

From the above factorization we obtain the following: V = {1, 2, 3, 4, 5} = F1, while
F2 =

{
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {2, 1}, {3, 2}, {4, 3}, {5, 4}

}
. The set D is given by D ={

1→ 2, 2→ 3, 3→ 4, 4→ 5, 2→ 1, 3→ 2, 4→ 3, 5→ 4
}

. The vector ν ∈ R8 consist
of all messages {νi→j}i→j∈D, while the vector ν̃ ∈ R8 consist of all messages {ν̃i→j}i→j∈D.
The components of vector function f(ν) are given by Eq. 26, namely

(f(ν))i→j = ν̃i→j = tanh−1

tanh(Ji,j) · tanh

θi +
∑
t∈∂i\j

νt→i

 , ∀ i→ j ∈ D.

�
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Figure 7: An FG with pairwise interactions.

After this example we present the sufficient conditions under which mapping f is a
contraction mapping. Note that if mapping f : R|D| 7→ R|D| satisfies the condition of
Lemma 2 of Sec. 2 then f is a contraction. It must be noted that different choices of the
vector norms in R|D| will yield different sufficient conditions for f to converge to a fixed
point. Two specific examples of norms will be studied, specifically, the l1- and l∞- norms.
The Jacobian matrix of f, f ′, is calculated as follows:

(f ′(ν))i→j,k→l =
∂ν̃i→j

∂νk→l
= Ai→j,k→lBi→j(ν) (29)

where

Bi→j(ν) ,
1− tanh2(θi +

∑
t∈∂i\j ν

t→i)

1− tanh2(ν̃i→j)
· sign(Ji,j) (30)

Ai→j,k→l , tanh(|Ji,j|) · δi,l · I∂i\j(k). (31)

I∂i\j(k) is the indicator function of k to belong in set ∂i\j, i.e. I∂i\j(k) = 1 if k ∈ ∂i\j,
otherwise it is 0. δi,l is the Kronecker delta function and it is 1 if i = l, or 0 otherwise. We

derived Eq. 29 by using the facts that dtanh(x)
dx

= 1 − tanh2(x), dtanh−1(x)
dx

= 1
1−tanh2(x) , the

chain rule of the derivative, and the fact that tanh(x) = sign(x) · tanh(|x|). One important
observation is that matrix B absorbed the dependence on vector ν. The term Ai→j,k→l is
nonnegative and hold the structure of the FG. Finally we observe that supν∈V|Bi→j(ν)| = 1

14



for all vectors in a vector space V. This implies the following∣∣∣∣∂ν̃i→j

∂νk→l

∣∣∣∣ ≤ Ai→j,k→l, (32)

for every vector ν in V.

Corollary 1. For binary variables with pairwise interactions, if

max
i∈V

{
(|∂i| − 1) ·max

j∈∂i
{tanh(|Ji,j|}

}
< 1 (33)

SPA is an l∞- contraction and converges to a unique fixed point irrespective of the initial
messages.

Proof.

||f ′(ν)||∞
(16)
= max

i→j∈D

∑
k→l∈D

∣∣∣∣∂ν̃i→j

∂νk→l

∣∣∣∣
(32)

≤ max
i→j∈D

∑
k→l∈D

Ai→j,k→l

(31)
= max

i→j∈D

∑
k→l∈D

tanh(|Ji,j|) · δi,l · I∂i\j(k)

Now we use the fact that max
i→j∈D

≡ max
i∈V

max
j∈∂i

, and the fact that we sum over all k, l such

that k ∈ ∂i\j and l = i, and thus we obtain

||f ′(ν)||∞ ≤ max
i∈V

max
j∈∂i

∑
k∈∂i\j

tanh(|Ji,j|)

= max
i∈V

max
j∈∂i

(|∂i| − 1) · tanh(|Ji,j|)

= max
i∈V

{
(|∂i| − 1) ·max

j∈∂i
{tanh(|Ji,j|}

}
.

Finally, we apply Lemma 2 and the proof is completed

Corollary 2. For binary variables with pairwise interactions, if

max
i∈V

max
k∈∂i

∑
j∈∂i\k

tanh(|Ji,j|) < 1 (34)

SPA is an l1- contraction and converges to a unique fixed point irrespective of the initial
messages.
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Proof. Similar to the proof of Corollary 2, we obtain

||f ′(ν)||1
(15)
= max

k→l∈D

∑
i→j∈D

∣∣∣∣∂ν̃i→j

∂νk→l

∣∣∣∣
32),(31)

≤ max
k→l∈D

∑
i→j∈D

tanh(|Ji,j|) · δi,l · I∂i\j(k)

= max
i∈V

max
k∈∂i

∑
j∈∂i\k

tanh(|Ji,j|)

We apply Lemma 2 and the proof is completed.

It is observed in such case, that condition 33 implies 34, but not conversely, hence
l1-norm results a tighter bound than the l∞-norm.

Another way to derive sufficient conditions for convergence of SPA comes from spectral
theory, and specifically from spectral radius of matrix in (31). The basic observation is
that we must consider several iterations of SPA. This entails stronger condition for the
convergence of SPA to a unique fixed point.

Lemma 3. Let (X, d) be a metric space and a f : X 7→ X a mapping. We define

f(N)(·) , f(f(· · · f(·)))︸ ︷︷ ︸
N times

.

Suppose that f(N) is a d-contraction for some N ∈ N. Then f has a unique fixed point x∞,
and for any x ∈ X, the sequence x, f(x), f(2)(x), ... converges to x∞.

Proof. Take any x ∈ X and further consider the N -sequences obtained by f(N), by the
following manner

x, f(N)(x), f(2N)(x), ...

f(x), f(N+1)(x), f(2N+1)(x), ...

...

f(N−1)(x), f(2N−1)(x), f(3N−1)(x), ...

We note that each sequence converges to x∞ since f(N) is d-contraction with fixed point
x∞. This implies that sequence x, f(x), f(2)(x), ... converges to x∞.

Theorem 2. Let f : Rm 7→ Rm be a differentiable and suppose that f ′(x) = B(x)A, where A
has non negative entries and B(x) is diagonal, and further its diagonal entries are bounded,
with |Bi,i(x)| ≤ 1. If ρ(A) < 1, then for any x ∈ Rm, the sequence x, f(x), f(2)(x), ...
converges to x∞, which does not depend on x.
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Proof. For the proof we will use some basic algebraic operations. For a matrix B, the
matrix |B| will be designated the matrix with entries |B|i,j = |Bi,j|. For 2 matrices B,C
we define the following properties:

B ≤ C⇐⇒ Bi,j ≤ Ci,j, ∀i, j, (35)

|B| ≤ |C| (35)
=⇒ ||B||1 ≤ ||Ci,j||1, (36)

|BC| ≤ |B| · |C|, (37)

if 0 ≤ A and B ≤ C =⇒ AB ≤ AC and BA ≤ CA. (38)

Utilizing the above and the chain rule of the differentiation, ∀n = 1, 2, 3, ... and any x ∈ Rm

|(f(n))′(x)| =

∣∣∣∣∣
n∏

i=1

f ′(f(i−1)(x))

∣∣∣∣∣
(37)

≤
f′(·)=B(·)A

n∏
i=1

(∣∣B (f(i−1)(x)
)
A
∣∣)

37),(38)

≤
|Bi,i(x)|≤1

An.

Consequently, by property of Eq. 36 we obtain that ||(f(n))′(x)||1 ≤ ||An||1. By Gel’fand
spectral radius theorem that states

lim
n−→∞

(||An||1)1/n = ρ(A),

we choose a positive ε such that ρ(A) + ε < 1, then ∃N : ||AN ||1 ≤ (ρ(A) + ε)N < 1.
Hence, ∀x ∈ Rm, ||(f(N))′(x)||1 < 1, and by applying Lemma 2, we obtain that f(N) is an
l1-contraction. Finally Lemma 3 is applied on f(N) and the proof is completed.

Corollary 3. For binary variables with pairwise interactions, SPA converges to a unique
fixed point irrespective of the initial messages, if the spectral radius of |D| × |D|- matrix

Ai→j,k→l , tanh(|Ji,j|) · δi,l · I∂i\j(k)

is strictly smaller than 1.

Proof. If we combine Eqs. 29 (Eq. 29 indicates that we multiply every element in a specific
row of matrix A with the corresponding element of the diagonal of B, i.e. we have a matrix
multiplication of B with A), 30, 31 and Theorem 2 the proof is immediate.

The last proof completes the sufficient conditions for convergence of SPA.
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5 Conclusions

This work derived sufficient conditions for the convergence of the SPA to a fixed point,
when the factors of FG have pairwise interactions and variables have binary domain. The
report was for the graduate course Functional Analysis and studied the aforementioned
problem using the principles learned from theory lessons. The text was based on [1] with
respect to Sections 3, 4 and subsection 2.2, whereas regarding subsection 2.1 the text was
based on [5].
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