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Network Localization Cramér-Rao Bounds
for General Measurement Models

Panos N. Alevizos, Student Member, IEEE and Aggelos Bletsas, Senior Member, IEEE.

Abstract—A closed-form Cramér-Rao bound (CRB) for gen-
eral multi-modal measurements is derived for D-dimensional
network localization (D ∈ {2, 3}). Links are asymmetric and
the measurements among neighboring nodes are non-reciprocal
depending on an arbitrary differentiable function of their position
difference, subject to additive Gaussian noise (with variance
that may depend on distance). The provided bound incorporates
network connectivity and could be applied for a wide range
of typical, unimodal ranging measurement methods (e.g., angle-
of-arrival or time-of-arrival or signal strength with directional
antennas) or multi-modal methods (e.g., simultaneous use of
unimodal ranging measurements). It was interesting to see that
for specific network connectivity, MSE performance of various
different ranging measurement methods coincide, while perfor-
mance of network localization algorithms is clearly sensitive on
network connectivity.

I. INTRODUCTION

In network localization [1], [2], agents with unknown lo-
cation exchange measurements with reference anchors (non-
cooperative localization) and other neighboring agents (coop-
erative localization). Measurements of relative location and
distance can be quantified by a variety of metrics, such as
received signal strength (RSS) or time-of-arrival (ToA) [1],
[3], angle-of-arrival (AoA) [4], [5] or combination [6].

Performance of any localization algorithm usually employs
the mean squared-error (MSE) metric, which for unbiased
deterministic estimators, is lower-bounded by the Cramér-
Rao bound (CRB) [7]. However, prior art has derived CRB
formulas for specific measurement setups. For instance, work
in [1] offered CRB for two-dimensional (2D) cooperative
localization with ToA [8] or RSS-based measurements. Re-
lated work [9] has offered 2D non-cooperative localization
CRB with hybrid ToA and RSS, while work in [10] offered
performance bounds for 2D noncooperative localization with
ToA and AoA. It is also worth mentioning that reciprocity
in distance-based measurements is typically assumed, which
may not hold in practice, given that measuring apparatus at
different nodes exhibit independent noise levels. CRB includ-
ing multi-modal measurements—where more than one type
of measurements may be simultaneously offered—is typically
not covered in the existing network localization prior art, apart
from special cases. Seminal work in [11] offered MSE lower
bound expressions, derived directly from exchanged signal
waveforms and other physical layer-related information, such
as multi-path profile or parameters relevant to the channel
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statistics; extension to cooperative case is given in [12].
Related applications can be found in [13] and references
therein.

This work offers closed-form CRB for D-dimensional net-
work (cooperative or not) localization (D ∈ {2, 3}), cov-
ering multi-modal ranging measurements, asymmetric links,
nonreciprocal measurements, and studies the impact of net-
work connectivity on localization. Distance dependence in the
variance of ranging error measurements can be also modeled.
Differentiable functions, modeling a large class of ranging
methods are employed. Notation: 1A denotes the indicator
function of statement A, which is one if A is true and zero,
otherwise; tr(·) is the trace operator.

II. SYSTEM MODEL

The network consists of N agents with unknown locations,
indexed by set Ng , {1, 2, . . . , N} and L anchors with a
priori known coordinates (across the entire network), indexed
by set Nan , {N + 1, N + 2, . . . , N + L}. The set of all
network nodes is denoted by H , Ng ∪ Nan and for D-
dimensional localization, the coordinates of node i ∈ H are
represented by vector xi = [xi,1 xi,2 . . . xi,D]

> ∈ RD.
Connectivity matrix A is defined with elements Ai,j = 1
(Ai,j = 0) if node i can (cannot) receive measurements
from node j, ∀i, j ∈ H and Ai,i = 0, ∀i ∈ H. In other
words, the ith row of A indicates the nodes that can send
measurements to node i; the set of all these nodes can be
written as H(i) = {j ∈ H : Ai,j = 1}. For more flexible
modeling, Ai,j 6= Aj,i in general, i.e., connectivity between
terminals may be asymmetric; i may receive measurements
from j, while j may not receive measurements from i. The
set of directed (measurement connectivity) edges is defined as
G , {(i, j) : i ∈ H, j ∈ H(i)} =

{
(i, j) ∈ H2 : Ai,j = 1

}
and notice that (i, j) ∈ G does not necessarily mean that
(j, i) ∈ G. Thus, any type of network connectivity can be
explicitly modeled. It is further assumed that all node positions
are distinct.

In network localization, agents exchange measurements
with other neighboring nodes (agents or anchors) for esti-
mation of the unknown (agent) coordinates {xn}n∈Ng

, using

set of measurements Y ,
{
y
(m)
i←j : (i, j) ∈ G, m ∈M

}
. Set

M = {1, 2, . . . ,M} denotes the type of measurements for the
pair (i, j), e.g., ToA (m = 1), RSS (m = 2), AoA (m = 3) or
other. Specifically, node i ∈ H conducts measurement y(m)

i←j
of type m by receiving signal transmitted from neighboring
node j ∈ H(i), resulting to ranging measurement given by:

y
(m)
i←j , p

(m)
i←j(xi,xj) +

√
h
(m)
ij (dij) w

(m)
i←j , (1)

with function p
(m)
i←j(xi,xj) , g

(m)
ij (dij) + v

(m)
i←j(xi,xj)

and dij , ‖xi − xj‖; it is emphasized that y(m)
i←j 6= y

(m)
j←i
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in general, even for symmetric connectivity, e.g., due
to independent noise levels at different receivers; thus,{
w

(m)
i←j : (i, j) ∈ G, m ∈M

}
are independent, non-

identically distributed (i.n.i.d.), zero-mean Gaussian random

variables of variance
(
σ
(m)
i←j

)2
. For all (i, j) ∈ G, m ∈ M,

functions g
(m)
ij : R+ −→ R and h

(m)
ij : R+ −→ R+

are assumed differentiable over positive reals and depend
solely on dij , while v

(m)
i←j : R2D −→ R depends solely

on xi − xj (i.e., v
(m)
i←j(xi,xj) = ṽ

(m)
i←j(xi − xj) for some

suitable function ṽ
(m)
i←j : RD −→ R) and is also assumed

differentiable over a neighborhood of (xi,xj). It can be
shown that ∇xi

v
(m)
i←j(xi,xj) = −∇xj

v
(m)
i←j(xi,xj). For each

(directed) link (i, j) ∈ G and measurement type m ∈M, one
available measurement is assumed. Specific examples from
practice follow.

Examples: For ToA ranging measurements, h
(1)
ij (·) = 1,

v
(1)
i←j(·) = 0, g

(1)
ij (dij) =

dij
c

+ bij , c denotes the signal
propagation velocity and bij models a bias term accounting
for possible non-light-of-sight (NLOS) effects.

For RSS ranging measurements with omnidirectional an-
tennas, g(2)ij (dij) = Pij − 10νij log10

(
dij
d0,ij

)
, where νij is the

path-loss exponent (PLE) between nodes i and j and Pij is
the known received power at a short reference distance d0,ij .

For RSS ranging measurements with directional antennas,
function v

(2)
i←j is also added in p

(2)
i←j , modeling the gain GTx

j

of node’s j transmit antenna and gain GRx
i of node’s i receive

antenna (in dB). Specifically for 2D,

v
(2)
i←j(xi,xj) = 10log10

(
GTx
j (φi←j)G

Rx
i (φj←i)

)
,

where φi←j , tan−12

(
xi,2−xj,2

xi,1−xj,1

)
when φi←j ∈ [0, π) and

φi←j , 2π + tan−12

(
xi,2−xj,2

xi,1−xj,1

)
when φi←j ∈ [π, 2π), with

function tan−12

(
y
x

)
, atan2(y, x), and atan2(y, x) ∈ [−π, π]

as defined in [14, Eq. (5.22)]; such definition offers φi←j
ranging in [0, 2π) (as opposed to classic atan, which is limited
to [−π/2, π/2]) and offers a differentiable φi←j . For 3D,

v
(2)
i←j(xi,xj) = 10log10

(
GTx
j (φi←j , θi←j)G

Rx
i (φj←i, θj←i)

)
,

where θi←j = cos−1
(
xi,3−xj,3

‖xi−xj‖

)
∈ (0, π).

As a simple 2D example, consider dipole antennas placed
parallel to the x-axis [15]. Due to symmetry of the dipole
directivity pattern, v(2)i←j(xi,xj) is given by:{

20log10
(
1.67cos3(φi←j)

)
, φi←j ∈

[
0, π2

)
∪
(
3π
2 , 2π

)
20log10

(
−1.67cos3(φi←j)

)
, φi←j ∈

(
π
2 ,

3π
2

)
.

(2)

For a simple 3D example, consider the 3D directivity
pattern of dipoles vertical to x-y plane that depends solely
on θi←j [15]. Due to symmetry, function v

(2)
i←j(xi,xj) can be

simplified to:

v
(2)
i←j(xi,xj) = 20log10

(
1.67sin3(θi←j)

)
, (3)

with θi←j ∈ (0, π).1 It is worth noting that in RSS ranging
measurements, standard deviation (in dB) may depend on
distance and thus, h(2)ij (·) 6= 1 could be also adopted.

Finally, the 2D AoA measurement model is given by
h
(3)
ij (·) = 1 and p

(3)
i←j(·) = v

(3)
i←j(·) with v

(3)
i←j(xi,xj) = φi←j .

III. CRAMÉR-RAO BOUND

Vector x =
[
x>g x>an

]>∈ RD(N+L) is defined, where xg =
{xn}n∈Ng

and xan = {xl}l∈Nan
are associated with agent

and anchor positions, respectively. From Eq. (1), measurement
at node i (due to transmission from neighboring node j) is
distributed according to:

y
(m)
i←j ;xi,xj∼N

(
p
(m)
i←j(xi,xj) , h

(m)
ij (dij)

(
σ
(m)
i←j

)2)
, (4)

and is independent from the rest of the measurements
Y\
{
y
(m)
i←j

}
. Thus, the joint log-likelihood distribution of

measurements Y is expressed as:

ln[f(Y;x)] =
∑
i∈H

∑
j∈H(i)

∑
m∈M

ln
[
f
(
y
(m)
i←j ;xi,xj

)]
︸ ︷︷ ︸

λ
(m)
i←j

. (5)

The Fisher information matrix (FIM) depends on connectiv-
ity and location of all nodes (agents or anchors) and is denoted
as J(xg,xan,G); it is associated with f(Y;x) and unknown
parameters xg, and is given by:

J(xg,xan,G)= EY;x

[
∇xg ln[f(Y;x)]∇>xg

ln[f(Y;x)]
]
. (6)

FIM in (6) can be equivalently written as [7]:

J ≡ J(xg,xan,G) =

J1,1 · · · J1,N

...
. . .

...
JN,1 · · · JN,N

 , (7)

where for n, k ∈ Ng,

Jn,k = EY;x

[
∇xn ln[f(Y;x)]∇>xk

ln[f(Y;x)]
]

(8)

is a D × D matrix. The directed node ID pairs in the two
outermost summations of Eq. (5) involving an agent n ∈ Ng,
are given by the following set:

A(n) ,
⋃
j∈H
{(n, j) : An,j = 1} ∪ {(j, n) : Aj,n = 1} . (9)

The set above incorporates all (directed) links in the network
where agent n is involved either as transmitter or receiver,
during ranging measurements.

Regularity conditions of f
(
y
(m)
i←j ;xi,xj

)
for each (i, j) ∈ G

will be utilized [7], i.e., for any n ∈ Ng and any (i, j) ∈ A(n),

EY;x

[
∇xn

λ
(m)
i←j

]
= 0D, for a.e. xn ∈ RD. (11)

Applying ∇xn in (5) and eliminating the terms λ(m)
i←j that do

not depend on xn offers:

∇xn ln[f(Y;x)]
(9)
=
∑
m∈M

∑
(i,j)∈A(n)

∇xnλ
(m)
i←j . (12)

1Notice that due to the antenna reciprocity theorem, v(2)i←j(·) = v
(2)
j←i(·);

the adopted notation assists clarity regarding which is the transmitting and
which is the receiving antenna and network node.
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Jn,k =



∑
m∈M

( ∑
(i,j)∈A(n)

( [
ḣ
(m)
ij (‖xi−xj‖)

]2
(xi−xj)(xi−xj)

>

2
[
h
(m)
ij (‖xi−xj‖)

]2
‖xi−xj‖2

+

(
[ġ(m)

ij
(‖xi−xj‖)](xi−xj)

‖xi−xj‖
+∇xnv

(m)
i←j(xi,xj)

)(
[ġ(m)

ij
(‖xi−xj‖)](xi−xj)

>

‖xi−xj‖
+∇>xn

v
(m)
i←j(xi,xj)

)
(
σ
(m)
i←j

)2
h
(m)
ij (‖xi−xj‖)


 , n = k

−
∑

m∈M

 ∑
(i,j)∈

(n,k)∪(k,n)

1(i,j)∈G

( [
ḣ
(m)
ij (‖xi−xj‖)

]2
(xi−xj)(xi−xj)

>

2
[
h
(m)
ij (‖xi−xj‖)

]2
‖xi−xj‖2

+

(
[ġ(m)

ij
(‖xi−xj‖)](xi−xj)

‖xi−xj‖
+∇xnv

(m)
i←j(xi,xj)

)(
[ġ(m)

ij
(‖xi−xj‖)](xi−xj)

>

‖xi−xj‖
+∇>xn

v
(m)
i←j(xi,xj)

)
(
σ
(m)
i←j

)2
h
(m)
ij (‖xi−xj‖)


 , n 6= k.

(16)

For any n ∈ Ng and any (i, j) ∈ A(n), (i′, j′) ∈ A(n) and
m,m′ ∈M, measurements y(m)

i←j and y(m
′)

i′←j′ are independent,
unless m = m′, i = i′, and j = j′. Thus, by the regularity
conditions of Eq. (11), EY;x

[
∇xnλ

(m)
i←j∇>xn

λ
(m′)
i′←j′

]
is non-zero

only if m = m′, i = i′ , j = j′ for any (i, j) ∈ A(n). Using
the above and substituting Eq. (12) in (8) for k = n, the
diagonal blocks in (7) can be calculated as:

Jn,n =
∑
m∈M

∑
(i,j)∈A(n)

EY;x

[
∇xn

λ
(m)
i←j∇

>
xn
λ
(m)
i←j

]
. (13)

Similarly, due to the regularity conditions, for any k, n ∈
Ng, with k 6= n, EY;x

[
∇xn

λ
(m)
i←j∇>xk

λ
(m′)
i′←j′

]
is a nonzero

matrix only if k ∈ H(n), m = m′, i = i′ = n, j = j′ = k,
or only if n ∈ H(k), m = m′, i = i′ = k, j = j′ = n. Thus,
after some algebra, the non-diagonal blocks in Eq. (7) can be
expressed as:

Jn,k=
∑
m∈M

∑
(i,j)∈

(n,k)∪(k,n)

1(i,j)∈G EY;x

[
∇xnλ

(m)
i←j∇

>
xk
λ
(m)
i←j

]
(14)

It is also noted that for any n ∈ Ng and k ∈ H(n),

EY;x

[
∇xn

λ
(m)
n←k∇

>
xn
λ
(m)
n←k

]
(a)
=−EY;x

[
∇xn

λ
(m)
n←k∇

>
xk
λ
(m)
n←k

]
(b)
=

(
∇xnp

(m)
n←k(xn,xk)

)(
∇>xn

p
(m)
n←k(xn,xk)

)
h
(m)
nk (dnk)

(
σ
(m)
n←k

)2 +

+
∇xn

h
(m)
nk (dnk)∇>xn

h
(m)
nk (dnk)

2
[
h
(m)
nk (dnk)

]2 . (15)

Equality (a) holds due to ∇xn
λ
(m)
n←k = −∇xk

λ
(m)
n←k; the

latter holds because λ(m)
n←k is a function that depends on the

difference xn − xk, stemming directly from Eq. (1) and the
assumptions of Sec. II. Equality (b) stems from the fact that all
functions are differentiable near (xn,xk) and [7, Eq. (3.31)].

Substituting Eq. (15) in (13) and (14), we obtain the expres-
sion in (16) at the top of the page. In (16), we also employ
the chain rule of differentiation and ∇xn

dnk = xn−xk

‖xn−xk‖ ,
which is properly defined due to the distinct node positions
assumption. Notation ġ

(m)
nk (dnk) and ḣ

(m)
nk (dnk) denotes the

first derivative of g
(m)
nk (·) and h

(m)
nk (·), respectively, evaluated

at point dnk = ‖xn − xk‖.
The MSE of any unbiased deterministic estimator x̂n, of

the nth agent position is lower bounded by:

EY;x

[
‖x̂n − xn‖2

]
≥ tr

(
J−1n,n

)
, (17)

where J−1n,n is the nth diagonal D ×D matrix block of J−1.

A. FIM Evaluation for Different Measurement Models

To see the utility of Eq. (16), some application examples
follow:
• ToA: ġ(1)ij (dij) =

1
c

and ∇xi
v
(1)
i←j(xi,xj) = 0D.

• 2D RSS, according to Eq. (2): ġ(2)ij (dij) =
−10νij
ln(10)dij

and

∇xi
v
(2)
i←j(xi,xj) =

 60(xi,2−xj,2)
2

ln(10)d2ij(xi,1−xj,1)
−60(xi,2−xj,2)

ln(10)d2ij

 . (18)

• 3D RSS, according to Eq. (3): ġ(2)ij (dij) =
−10νij
ln(10)dij

and

∇xiv
(2)
i←j(xi,xj) =

60

ln(10)d2ij


(xi,3−xj,3)

2(xi,1−xj,1)

(d2ij−(xi,3−xj,3)2)
(xi,3−xj,3)

2(xi,2−xj,2)

(d2ij−(xi,3−xj,3)2)
−(xi,3 − xj,3)

 .
(19)

• 2D AoA: ġ(3)ij (dij) = 0 and

∇xi
v
(3)
i←j(xi,xj) =

 −(xi,2−xj,2)

d2ij
(xi,1−xj,1)

d2ij

 . (20)

With the help of the above and ∇xiv
(m)
i←j(xi,xj) =

−∇xj
v
(m)
i←j(xi,xj), matrix J is directly calculated.

IV. NUMERICAL RESULTS

Numerical results for 2D and 3D localization are presented,
as a function of measurement noise variance, type of ranging
measurements (or combination of methods) and connectivity
radius (assuming—for conciseness—common connectivity ra-
dius r among all terminals). A common measurement noise
variance is assumed, i.e., σ(m)

i←j = σ(m), ∀(i, j) ∈ G and
the values for σ(m) are taken from real experimental testbeds
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Fig. 1. Left: N = 117 agents and L = 4 anchors. Middle and right: N = 40
agents and L = 4 anchors for r = 7 and r = 12, respectively. Connectivity
for two nodes is also depicted in middle and right, for illustration purposes.

[1], [2]. In addition, PLE is assumed known i.e., νij = ν =
2.3, ∀(i, j) ∈ G in RSS measurements [2]. The final CRB
averaged across all agents is given by CRB = 1

N tr
(
J−1

)
.

Fig. 2 illustrates the CRB performance for the 2D topology
of Fig. 1-left, as a function of communication radius r, across
different ranging measurement methods. The RSS measure-
ment model without directionality (line with crosses) has the
worst MSE performance. When network nodes are equipped
with dipole antennas parallel to the x-axis, the MSE (line with
circles) can be further reduced. AoA measurement model (line
with x’s) further reduces MSE compared to classic RSS for
the specific topology, while ToA (diamonds) offers the best
MSE across all measurement methods above. Interestingly,
exploitation of 2 types of measurements significantly improves
MSE performance, as shown in Fig. 2; AoA and RSS could
outperform ToA for specific network connectivity, while joint
ToA and RSS with dipole antennas can significantly reduce
MSE. It is also interesting to see that for specific network
connectivity, MSE performance of various different ranging
measurement methods coincide. Closed-form FIM calculation
of this framework allows simple performance comparisons
across different ranging methods and network topologies.

Fig. 3 offers results for the 3D topology of Fig. 1-middle
and right. RSS offers similar MSE compared to ToA mea-
surements, while RSS with directivity outperforms ToA. That
is due to the small distances involved, and thus, the terms
not depending on distances dominate in FIM. The proposed
CRB was also used to benchmark state-of-the-art network
localization algorithms, e.g., MDS-MAP [16], which is a
refined version of classic multi-dimensional scaling (MDS),
originally designed for full connectivity scenarios, i.e., for
large values of r. Fig. 3 shows that for r ≥ 18, MDS-MAP
with ToA reaches CRB. Additionally, it is shown that perfor-
mance comparison clearly depends on network connectivity.
Hopefully, the proposed bound will be used for benchmarking
in network localization research.
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