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Abstract

This study presents a numerical investigation of acoustic streaming motion (of

the Rayleigh type) in a compressible gas inside two-dimensional rectangular en-

closures. To numerically study the effects of the sound field intensity on the

formation process of streaming structures, we propose to discretize the fully

compressible form of the two-dimensional Navier-Stokes equations using a high-

order (formally greater or equal to fourth-order) accurate numerical scheme in

both space and time. The proposed numerical solver utilizes high-order compact

schemes along each spatial dimension combined with a filtering procedure when

it is necessary. Acoustic standing waves are excited inside the enclosures and the

resulting acoustic streaming patterns are investigated for low and high-intensity

waves, in both linear and nonlinear regimes following closely the work of Daru

et al. (2013). An extended investigation indicates that without the incorpora-

tion of an appropriate filter, the application of the high-order compact schemes

in case of fast streaming results in spurious oscillations which inhibit their ap-

plicability. Following the recent relevant literature, the numerical simulations

performed demonstrate the ability of the proposed numerical approach to re-

produce efficiently and robustly the transitions from regular acoustic streaming

to irregular streaming and the relevant phenomena confirming results that have
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been previously presented.
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1. Introduction

Acoustic streaming, [1, 2, 3, 4], is a secondary mean steady flow generated

by and superimposed on a primary oscillatory flow. When a compressible fluid

experiences an oscillatory motion (e.g. from a sound source) the nonlinear in-

teractions can often lead to a pattern of time-dependent vortical flows or steady

circulations in the flow field. As such, sound at high-intensity levels in gases and

liquids can generate these mean second-order flow patterns. Acoustic stream-

ing can be sorted into several categories based on the different mechanisms by

which it is generated [4]. For example, boundary-layer-driven streaming or as

it is well-known Rayleigh (or outer) streaming, Eckart or quartz-wind stream-

ing, jet-driven streaming, and traveling-wave or Gedeon streaming. The un-

derstanding of acoustic streaming is of both fundamental and practical interest

since apart from being an interesting physical phenomenon, it plays an impor-

tant role (positive or negative) in many applications [5]. For example, in many

thermoacoustic devices, acoustic streaming results in convected heat flow that

can reduce the device’s efficiency.

Rayleigh-type (or outer) streaming is the main focus of this work. In gen-

eral, Rayleigh acoustic streaming can be generated inside two-dimensional en-

closures as a result of the interaction between a plane standing wave and the

solid boundaries and the mean second-order flow is produced mainly by shear

viscous forces near the fluid-solid boundary. The enclosure’s typical geome-

try is that of length much larger than its transverse dimensions filled with a

compressible gas initially at homogeneous pressure and temperature. Rayleigh

streaming is associated with a length scale of the same order of magnitude as

the wavelength and has a vortex-like structure, characterized by four steady
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counter-rotating vortices, outside the boundary layer. These vortices develop

along the half wavelength (λ) of the standing wave. Vortex motion is also gener-

ated inside the viscous boundary layer (with thickness δν) with four additional

vortices created simultaneously. The vortex motion inside the boundary layer is

called inner or Schlichting streaming [4]. Along the central axis of the enclosure,

the streaming motion is oriented from acoustic velocity node to antinodes while

in the boundary layers from acoustic velocity antinodes to nodes along the inner

walls [3].

The acoustic streaming flow patterns can be categorized into regular (or

classical) and irregular ones. The regular streaming appears as two vortices per

quarter-wavelength of the standing wave which are symmetric about the enclo-

sure’s center line, as schematically shown in Figure 1. In irregular streaming,

the shape and number of the streaming vortices are different from the regular

case. Closely related to this characterization is the one form [6] where it was

shown that the streaming itself can be linear (case of slow streaming) or nonlin-

ear (case of fast streaming). In the case of slow streaming, where the streaming

velocity is considerably smaller compared to the acoustic particle velocity, the

effect of inertia on the streaming flow can be neglected by comparison with vis-

cous effects. On the other hand, the effect of inertia causes distortions to the

streaming patterns and thus cannot be neglected. In [6] a dimensionless param-

eter characterizing the streaming flow for both linear and nonlinear regimes has

been identified; the nonlinear Reynolds number

ReNL =

(
U0

c0

)2(
y0
δν

)2

=

(
M
y0
δν

)2

, (1)

where U0 is the velocity amplitude of the standing wave, c0 is the speed of sound,

y0 is the half-width of the enclosure and M is the acoustic Mach number. If

ReNL � 1, the effect of inertia on the streaming flow can be neglected by

comparison with viscous effects and we speak about the slow streaming; on

the contrary, if ReNL � 1, the effect of inertia cannot be neglected anymore

and we speak about the fast streaming. In the slow regime, the streaming

structure does not depend on the acoustic field amplitude, in the fast regime
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Figure 1: Regular acoustic streaming patterns inside an enclosure

the effect of inertia, according to the theory in [6], causes a specific streaming-

profile distortion which increases with the increasing value of ReNL. Large

amplitude acoustic oscillations, including shock-type waves, induce streaming

of large ReNL in closed resonators and the flow becomes turbulent [2]. In many

practical applications of high-intensity resonant oscillations in closed enclosures

streaming may be inevitable. Hence, the understanding of nonlinear streaming

is of both fundamental and practical interest.

In terms of analytical or semi-analytical modeling of the phenomenon, most

such streaming models have been developed for the case of slow streaming, i.e.

for ReNL � 1. Among others, in [7] a fully analytical solution for acoustic

streaming generated by a standing wave in a rectangular channel of arbitrary

width filled with a viscous fluid was presented employing the methods of per-

turbation analysis. In [7] it was shown that for streaming inside a resonator,

the ratio of the boundary layers thickness (δν) to the resonator’s half width (y0)

is an important parameter that describes the behavior of the inner and outer

streaming. Further, in [8] the authors generalized their solution to take into

account the variations of heat conduction and viscosity with temperature show-

ing that thermal effects have a limited influence on the streaming flow for low
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amplitude acoustic waves. These analytical solutions are valuable for accessing

the accuracy of numerical solutions in the slow streaming regime.

In [9] an experimental study was performed involving streaming for ReNL

up to 20 and it was found that the streaming fields are distorted for high nonlin-

ear Reynolds numbers in correlation with the increasing temperature gradient

along a streaming cell. Further, in [10] streaming in square enclosures was an-

alyzed based on PIV measurements and it was found that for ReNL values up

to 25, streaming cells are regular whereas when ReNL exceeds 25, streaming

deforms to irregular and complex shape patterns. These findings where verified

experimentally and numerically also in [4, 11, 12, 13, 14]. All the above studies

have verified that the longitudinal streaming velocity component along the axis

becomes distorted as the acoustic level increase when compared to its sinusoidal

form at low acoustic levels. For high acoustic amplitudes, the generation of

counter-rotating additional vortices in the center of the enclosure has also been

observed, while the near-wall region inner streaming vortices are modified less.

Further, in [15], it was shown that inertial effects cannot be considered as the

leading phenomenon to explain these distortions and that nonlinear interaction

between the streaming flow and acoustics has to be considered. More recently, in

[16, 17, 18, 19] the interaction between the mean temperature and the streaming

flow at high acoustic levels was analyzed by following a combined formal and

phenomenological approach.

Numerical computations for acoustic Rayleigh-type streaming have emerged

in the literature in the past few decades and two approaches have been mainly

followed. The first one is based on solving the full 2D Navier-Stokes (NS)

equations for low and high-intensity acoustic waves and extracting the mean flow

from the instantaneous one, we refer for example in [20, 21, 22, 13, 11, 14, 15].

The second one is based on solving streaming equations for the mean flow but in

the linear case, for example in [23, 24]. The necessity of utilizing the full 2D NS

equations mainly stems from the need to accurately simulate the flow field inside

and outside the boundary layer, especially for high amplitude plane standing

waves. Hence, the full 2D NS equations can provide a sufficient description of

5



the essential physical mechanisms in all cases.

The numerical computation of acoustic streaming by solving the full 2D

Navier-Stokes equations is considered very challenging. Two key factors mainly

exist which may degrade the numerical solutions; one arises from the thin bound-

ary layers adjacent to the solid surface and the other from the extremely low

levels of the streaming velocities compared with the primary flow. The negative

effects of these factors may be alleviated if very fine grids are implemented near

the boundary layers and simultaneously use high-precision numerical schemes.

Further to the above challenges, the appearance of shock-type wave profiles

in the flow for high acoustic levels, [25, 21, 13], may affect the numerical so-

lution due to numerical oscillations if they are not of relative weak intensity.

In [21] simulations of acoustic streaming in the linear and nonlinear regime

were performed, taking into account heat transfer, in two-dimensional rectan-

gular enclosures by solving the full compressible Navier-Stokes equations with

a fourth-order accurate Flux-Corrected Transport (FCT) scheme. The numer-

ical tests in [21] were conducted for ReNL numbers up to 16 and although the

results were in agreement with theoretical results in the linear regime and show

irregular streaming motion in the nonlinear regime. However, this irregular mo-

tion was exhibited at smaller ReNL values in contradiction to the experimental

results from [26, 9, 10]. For solving the 2D Navier-Stokes equations in [13], and

later in [11, 14, 15], a finite volume upwind scheme, with third-order accuracy in

space and time for the convective terms, and a centered second-order scheme for

the diffusion terms was implemented. The numerical simulations performed in

[13] demonstrated the transition from regular acoustic streaming flow towards

irregular streaming, in agreement with experimental data, demonstrated also

that there is an intricate coupling between the mean temperature field and the

streaming flow. We note here that, the relevant literature concerning numer-

ical investigations of acoustic is rather limited up to this date, especially for

nonlinear streaming regimes.

Alternatively, to numerical methods used thus far for solving the full 2D

Navier-Stokes equations for acoustic streaming, compact higher-order finite dif-

6



ference schemes can provide an effective way of combining the robustness of

local methods (in the sense that computes the derivatives using neighboring

nodes) and the accuracy of spectral methods (global methods). The computa-

tion of derivatives in compact finite differences is implicit in the sense that the

derivatives are computed in a coupled fashion along an entire line [27]. Such an

approach yields a global scheme without sacrificing the advantage of low com-

putational cost and robustness of a scheme on a local stencil, since solving the

resulting tri-diagonal linear system can be carried out very efficiently, [28], for

serial programming and vector parallelism [29, 30]. In particular, the proposed

GPU tri-diagonal solver in [29] can achieve up to a 28× speedup over a sequen-

tial LAPACK solver for a 512 × 512 computation grid. Another advantage of

the compact scheme discretizations is that the resulting linear systems to be

solved are of the tri-diagonal form. In [30], taking into account the structure of

these matrices, the matrix-free storage method allows the entire computation

to be executed on the accelerator device, minimizing memory communication

costs. Further, compared to the standard finite difference approximations, com-

pact schemes have improved resolution in wave-space [27, 31, 32], i.e compact

schemes provide a better representation of the shorter length scales when ap-

plied to problems with a range of spatial scales such as flows for high acous-

tics levels, e.g acoustic resonances occurring within a compressor. Extensive

study and discussion of the resolution characteristics of the higher-order com-

pact schemes on uniform grids have been carried out in [27]. In the last decades,

many applications of high-order compact differential schemes are presented in-

cluding numerical simulations of incompressible [33, 34, 35] and compressible

flows [36]. However, one of the principal problems encountered in the solution

of Navier-Stokes equations with centered schemes, like compact schemes, is the

appearance of numerical instabilities, typically arising near boundaries, in re-

gions of mesh non-uniformities, or in the presence of shock waves or solutions

involving steep gradients. For such cases, an adaptive filtering technique [37]

can provide a robust improvement.

We advocate that higher-order compact finite difference (HCFD) numerical
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schemes may have several advantages when used for simulating Rayleigh acous-

tic streaming. The main advantage of the HCFD scheme considered is its ability

to accurately capture high-frequency content in the solution, such as sharp gra-

dients and oscillations, while maintaining numerical stability. This makes them

particularly useful at the considered problem. In summary, the advantages of

HCFD schemes for Rayleigh acoustic streaming computations are:

• High accuracy: Higher-order HCFD schemes are capable of achieving high

accuracy, which is important for simulating the complex flow patterns that

occur in acoustic streaming. These schemes can accurately resolve small-

scale vortices and other flow features, which are essential for understanding

the mechanisms underlying the phenomenon.

• Ability to capture sharp gradients: nonlinear acoustic streaming involves

sharp gradients in the acoustic pressure and velocity fields. HCFD schemes

are well-suited for resolving these gradients, as they use higher-order

derivatives in their approximations. This makes them capable of accu-

rately capturing the flow patterns and vortices that occur in Rayleigh

acoustic streaming.

• Efficient handling of complex geometries: HCFD schemes are well-suited

for handling complex geometries, such as the irregular shapes of cavities

and channels that may be used in acoustic streaming experiments. HCFD

schemes can be adapted to non-uniform grids and irregular boundaries,

making them suitable for simulations of real-world applications.

• Numerical stability: HCFD schemes are designed to maintain numerical

stability while achieving high accuracy. This is essential for simulating

turbulent flows and other complex flow phenomena that may occur in

Rayleigh acoustic streaming. Inclusion of the filter restores the advan-

tages of high-order approach even in the presence of sharp gradients and

discontinuities.

• Ease of implementation: HCFD schemes are relatively easy to implement
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and require minimal programming effort. Further, using OpenMP for par-

allelization can provide significant advantages in terms of increased speed,

scalability, portability, reduced memory requirements, and improved code

maintainability.

• Compared to the finite volume (FV) schemes that have been applied thus

far for the acoustic streaming problem, FV schemes may require more

computational resources than HCFD schemes to achieve the same level of

accuracy. Moreover, although in [13] a third-order scheme has been used

for the convective terms of the equations a second order centerded scheme

has been implemented for the diffusion terms which reduces the formal

order of accuracy. On the other hand HCFD schemes use higher-order

derivatives in their approximations, which reduces the truncation error

and improves global accuracy.

In brief, we consider that HCFD numerical schemes are well-suited for simulat-

ing Rayleigh acoustic streaming due to their high accuracy, ability to capture

sharp gradients, efficient handling of complex geometries, numerical stability,

and computational efficiency.

To the best of our knowledge, there is no literature concerning investigations

about either the application of the compact finite difference method or the ef-

fects of its filtering components on acoustic streaming flow computations due

to the possible appearance of shock-type waves. Thus, this study proposes, for

the first time, a compact finite difference method as the discretization scheme of

choice for the 2D compressible Navier-Stokes equations to compute the acoustic

streaming in both linear and non-linear regimes. We aim to numerically study

the distortion of the Rayleigh streaming structures as have been reported in

the literature, following closely the work and set-up presented in [13], for com-

parison purposes. To this end, plane standing waves of different intensities are

exited inside rectangular enclosures and the effects of the sound field intensity

on the formation process of streaming structures are investigated numerically

for various ReNL numbers ranging from slow to fast acoustic streaming. Fur-

9



ther, we aim to give a detailed presentation of the proposed numerical scheme

in terms of the different options for its implementation concerning its order of

discretization near the boundaries as well as the different options on the numer-

ical filtering and produce some concrete recommendations on their applicability

to the problem at hand.

2. Model problem and governing equations

We consider a rectangular undeformable enclosure of length L and half-

width y0 that has isothermal and no-slip walls, filled with the working gas. To

investigate the formation of streaming flow structures, we need to initiate an

acoustic standing wave in the enclosure. To this end, the enclosure is vibrated in

the longitudinal direction, x, by imposing on it a harmonic velocity law in time

t; that is V(t) = [V (t), 0]T, where V (t) = ωxmax cos(ωt), with ω = 2πf being

the angular vibration frequency, f the vibration frequency of the enclosure and

xmax its maximum displacement.

The flow field is modeled by the compressible two-dimensional Navier-Stokes

equations expressed in the moving frame attached to the enclosure so that a

vibration forcing term is added [13]. The model equations in conservative form

in a Cartesian coordinate system then read as

∂U

∂t
+
∂(F− Fν)

∂x
+
∂(G−Gν)

∂y
= S, (2)

where

U =


ρ

ρu

ρv

ρE

 , F =


ρu

ρu2 + p

ρuv

u(ρE + p)

 , G =


ρv

ρuv

ρv2 + p

v(ρE + p)

 , (3)
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Fν =


0

τxx

τxy

τxxu+ τyxv + k
∂T

∂x

 ,Gν =


0

τxy

τyy

τxyu+ τyyv + k
∂T

∂y

 ,S =



0

−ρdV
dt

0

−ρudV
dt


,

(4)

where ρ is the density, u and v the flow velocity components in x− and y−direction,

respectively, p denotes the pressure, µ the dynamic viscosity, E the total energy

per unit mass, T is the temperature and k is the thermal conductivity. The

viscous stress tensor components are

τxx = 2µ
∂u

∂x
− 2

3
µ

(
∂u

∂x
+
∂v

∂y

)
, (5)

τyy = 2µ
∂v

∂y
− 2

3
µ

(
∂u

∂x
+
∂v

∂y

)
, (6)

τxy = τyx = µ

(
∂v

∂x
+
∂u

∂y

)
. (7)

The pressure p and the temperature T are given by the equations of state for a

perfect gas, which can be expressed as

p = (γ − 1)

(
ρE − 1

2
(u2 + v2)

)
, (8)

T =
p

Rρ
, (9)

where γ =
cp
cv

is the ratio of specific heats at constant volume and pressure,

respectively, and R is the perfect gas constant corresponding to the working

gas. The speed of sound c is related to the pressure and density by c2 =

γ
p

ρ
. In this study, the thermo-physical properties µ and k are assumed to be

constant. Finally, the Prandtl, Pr, number is the constant that relates thermal

conductivity to viscosity defined as Pr =
µcp
k

with cp =
γR

γ − 1
.

We seek to investigate numerically the acoustic streaming generated by the

interaction of the enclosure’s walls and the imposed plane standing wave. To this

end, resonant conditions are imposed, for which the enclosure’s length L = λ/2,

λ = c0/f being the wavelength with c0 =
√
γp0/ρ0 being the speed of sound

at the initial state. It is well-known, [7, 8], that boundary layers develop along
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the walls, with acoustic boundary layer thickness δν =
√

2ν/ω where ν is the

kinematic viscosity ν = µ/ρ0. Several patterns of streaming can be generated

depending on the value of the ratio y0/δν namely, Rayleigh-type streaming in

the central region and boundary layer type streaming near the longitudinal walls

of the enclosure. Isothermal no-slip physical boundary conditions are employed

in the solid walls of the moving frame.

3. Numerical methodology

We discretize the governing equations using high-order (formally greater

or equal to fourth-order) accurate numerical schemes in both space and time.

The proposed numerical solver utilizes high-order compact schemes along each

spatial dimension, formulated on a collocated grid arrangement. The chosen

temporal discretization is carried out by a fourth-order Runge-Kutta (RK4)

method. Compact (or Padé) schemes are attractive since they allow the use of

relatively small finite difference stencils to gain high-order accuracy. In general,

they allow better resolution at higher wave numbers and offer the potential of

spectral-type accuracy but with greater geometrical flexibility [27]. Although

high-order accuracy can be obtained also by classical explicit finite difference

formulas, the obtained formulas in the classical approach lead to wider stencils

and hence the non-compact form of the difference scheme is less convenient,

especially close to the boundaries.

3.1. Higher-order spatial and temporal discretizations

Assuming a non-uniform discretization at each spatial direction, the enclo-

sure’s physical domain Ω ≡ [0, L] × [0, 2y0] = [0, L] × [0, H] is subdivided into

cells of width ∆x and height ∆y in the x− and y−direction, respectively, with

∆x = L/(Nx − 1) and ∆y = H/(Ny − 1) where Nx and Ny are the numbers

of mesh points in each direction. The vertices of each computational cell are

denoted as (xi, yj), with xi = (i − 1)∆x and yj = (j − 1)∆y for 1 ≤ i ≤ Nx

and 1 ≤ j ≤ Ny. The mesh points denoted by the indices i = 1, i = Nx, j = 1

and j = Ny are boundary nodes, lying on the boundary of the physical domain
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Ω. The collocation arrangement of the grid variables is adopted in which all

flow-field variables are evaluated at the same set of nodal points.

3.1.1. Spatial Discretization

Compact, Padé-type finite difference schemes [27, 37], are used to obtain

high-order accuracy for the derivatives of the inviscid F,G and viscous Fν ,Gν

fluxes. Compact schemes evaluate the derivatives in a coupled fashion by solv-

ing tridiagonal linear systems.

Discretization of the second-order derivatives in the viscous fluxes Fν and Gν

on collocated grids are derived by the application of the first derivative approx-

imation twice. We shall now derive a high-order compact scheme for the first

spatial derivatives in the model Eq. (2). For the implementation, it is necessary

to impose boundary conditions to obtain closed systems. In particular, for a

collocated uniform infinite grid

Gh := {(x, y) : x = xi = (i− 1)∆x, y = yj = (j − 1)∆y; i, j ∈ Z} . (10)

with h = (∆x,∆y) the vector of fixed mesh sizes, we define Ωh := Ω ∩Gh.

As proposed in [27], and in one-dimension, the first derivative’s value φ′i on

an interior mesh points xi of a generic function φ(x) (assuming for convenience

that h = h = ∆x) can be approximated in a coupled fashion with the centered

formula as

βφ′i−2 + αφ′i−1 + φ′i + αφ′i+1 + βφ′i+2 =

= c
φi+3 − φi−3

6h
+ b

φi+2 − φi−2
4h

+ a
φi+1 − φi−1

2h
.

(11)

For at least fourth-order accuracy the constraints for the coefficients satisfy the

equations

a+ b+ c = 1 + 2α+ 2β, a+ 22b+ 32c = 2
3!

2!
(α+ 22β). (12)

and the corresponding truncation error on the right-hand side of (11) is

4

5!
(−1 + 3α− 12β + 10c)h4φ(5).
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Choosing β = 0 and c = 0, a one-parameter family of fourth-order schemes, in

tridiagonal form, can be obtained. Further, if one chooses α =
1

3
the leading

order of the truncation error coefficient vanishes and the scheme is formally of

sixth-order accuracy.

To maintain the tridiagonal nature of the above scheme, the formula em-

ployed at a point close to the boundary is given as

φ′1 + α̃φ′2 =
1

h
(ãφ1 + b̃φ2 + c̃φ3 + d̃φ4). (13)

Requiring (13) to be at least third-order accurate constrains the coefficients to

ã = −11 + 2α̃

6
, b̃ =

6− α̃
2

, c̃ =
2α̃− 3

2
, d̃ =

2− α̃
6

(14)

and the corresponding truncation error on the right-hand side of (11) is

(2(α̃− 3)/4!)h3φ
(4)
1 .

If one chooses α̃ = 3 the leading order of the truncation error coefficient vanishes

and the scheme is formally of fourth-order accuracy. It may be noted that, for

α̃ 6= 3 the leading order truncation error is of dissipative type, while for α̃ = 3

is of a dispersive type. An investigation of different boundary closures (based

on the parameter α̃) is necessary to avoid a reduction of the formal order-of-

accuracy of the numerical scheme or/and ensure a stable numerical scheme.

In a 2D generic representation of the spatial discretization, the first-order

derivatives along the x-direction of a general differentiable function φ(x, y), are

computed in a coupled fashion assuming grid function values of φ and φ
′
, de-

noted as φi,j and φ
′

i,j respectively, at mesh points (xi, yj), i = 1, ..., Nx, by

solving the following Ny linear systems

Pxφ′i,j = Qxφi,j , j = 1, ..., Ny, (15)
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with the compact finite-difference operators Px and Qx defined as

Pxφ
′

i,j =



φ
′

1,j + α̃φ
′

2,j , i = 1;

φ
′

1,j + 4φ
′

2,j + φ
′

3,j i = 2;

φ
′

i−1,j + 3φ
′

i,j + φ
′

i+1,j , i = 3, ..., Nx − 2;

φ
′

Nx−2,j + 4φ
′

Nx−1,j + φ
′

Nx,j
i = Nx − 1;

α̃φ
′

Nx−1,j + φ
′

Nx,j
, i = Nx,

(16)

and

Qxφi,j =



1

2h
(ãφ1,j + b̃φ2,j + c̃φ3,j + d̃φ4,j), i = 1;

3

h
(φ3,j − φ1,j), i = 2;

1

12h
(28(φi+1,j − φi−1,j) + φi+2,j − φi−2,j) , i = 3, ..., Nx − 2;

3

h
(φNx,j − φNx−2,j), i = Nx − 1;

1

2h
(d̃φNx−3,j + c̃φNx−2,j + b̃φNx−1,j + ãφNx,j), , i = Nx.

(17)

It follows that with the above representation we can define the linear space of

all grid functions, that act on Ωh, by G(Ωh). Thus, Px and Qx are the linear

operators along the x-direction

Px,Qx : G(Ωh)→ G(Ωh). (18)

Similarly we can define the linear operators along the y−direction as Py and

Qy by interchanging the i and j indices accordingly.

The above results in a complete fourth-order first derivative approximation

scheme obtained with compact formulas which can be written in an abbreviated

form as C3-4-6-4-3 for α̃ 6= 3 and C4-4-6-4-4 for α̃ = 3. The first and last

numbers in the abbreviation denote the order of accuracy of the scheme on the

boundary nodes, while the second and before last numbers denote the order of

the near boundary nodes, and the central number represents the order of the

inner approximation. As shown in [27], using eigenvalue analysis, for the one-

dimensional advection equation, the differencing scheme (15) for α̃ = 2 generates
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a numerically stable algorithm. This was also the case in our simulations in this

work, since using scheme C4-4-6-4-4 and for various values of α̃ wasn’t able to

provide stable solutions in all cases. Thus, scheme C3-4-6-4-3 with α̃ = 2 was

implemented throughout the current presentation. The second-order derivatives

are computed with the successive application of (15) twice, which retains the

order of accuracy.

Now, Eq. (2) can be written in the following semi-discrete compact form:

dUi,j

dt
= R(Ui,j ; t) (19)

where the discretized components of the right-hand side vector of Eq. (19) are

given (omitting for clarity the i, j indices) by

R1(U; t) = −P−1x Qx(ρu)− P−1y Qy(ρv), (20)

R2(U; t) =P−1x Qx
(
Txxu− ρu2 − p

)
+ P−1y Qy (Txyu− ρuv)− ρdV

dt
,

.

(21)

R3(U; t) =P−1x Qx (Txyu− ρuv) + P−1y Qy
(
Tyyu− ρv2 − p

)
. (22)

R4(U; t) =P−1x Qx
(
uTxxu + vTxyu− ρEu− pu+ kP−1x QxT

)
+

P−1y Qy
(
uTxyu + vTyyu− ρEv − pv + kP−1y QyT

)
− ρudV

dt

(23)

where the discrete operators Tyy, Tyy and Txy are given by

Txxu =
4

3
µP−1x Qxu−

2

3
µP−1y Qyv (24)

Tyyu =
4

3
µP−1y Qyv −

2

3
µP−1x Qxu (25)

Txyu = µ
(
P−1y Qyu+ P−1x Qxv

)
(26)

with u = [u, v]T.

3.2. Temporal Discretization

An explicit Runge-Kutta scheme with fourth-order accuracy is employed for

the temporal discretization of Eq. (19),
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Un,1 = Un, pn,1 = pn,Pn,1 = Tn, (27)

Un,2 = Un +
∆t

2
Rn,1, pn,2,Tn,2 from Eqs. (8), (9) (28)

Un,3 = Un +
∆t

2
Rn,2 pn,3,Tn,3 from Eqs. (8), (9) (29)

Un,4 = Un + ∆tRn,3, pn,4,Tn,4 from Eqs. (8), (9) (30)

Un+1 = Un +
∆t

6

(
Rn,1 + 2Rn,2 + 2Rn,3 + Rn,4

)
, pn+1,Tn+1 from Eqs. (8), (9).(31)

with tn = n∆t, tn,1 = tn, tn,2 = tn,3 = tn + ∆t/2, tn,4 = tn + ∆t, and

Rn,` = R(Un,`; tn,`), for ` = 2, 3, 4.

For the RK4 scheme, being fully explicit, the time step ∆t is fixed to satisfy

its stability condition. In all cases considered next, the time step limitation is

acoustic, and it is given by

∆t ≤ CFL · hmin

c0
, hmin = min(∆x,∆y) (32)

where the CFL number is less than one. In all the simulations presented in the

next section the CFL number was set to 0.5, unless otherwise stated.

3.3. Boundary Conditions

As stated before, isothermal and no-slip boundary conditions were imposed

for all walls. Hence, for the velocities and temperature along the boundaries we

impose

u(0, y, t) = v(0, y, t) = 0, u(L, y, t) = v(L, y, t) = 0,

u(x, 0, t) = v(x, 0, t) = 0, u(x,H, t) = v(x,H, t) = 0,

T (0, y, t) = T (L, y, t) = T (x, 0, t) = T (x,H, t) = T0.

The spectral-like differencing scheme proposed here, requires accurate bound-

ary conditions. To this end, the characteristic boundary conditions for the

Navier-Stokes equations where implemented for the density, adapted from [38].

This procedure is based on the characteristic wave theory and avoids numeri-

cal instabilities while controlling spurious wave reflections at the computational
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boundaries. Specifically we solve

∂ρ(x, 0)

∂t
=

1

c

∂p(x, 0)

∂y
− ρ(x, 0)

∂v(x, 0)

∂y
, (33)

∂ρ(x,H)

∂t
= −1

c

∂p(x,H)

∂y
− ρ(x,H)

∂v(x,H)

∂y
, (34)

∂ρ(0, y)

∂t
=

1

c

∂p(0, y)

∂x
− ρ(0, y)

∂u(0, y)

∂x
, (35)

∂ρ(L, y)

∂t
= −1

c

∂p(L, y)

∂x
− ρ(L, y)

∂u(L, y)

∂x
. (36)

For the boundary nodes, where eqs (33)-(36) apply, the relevant spatial deriva-

tives are simply computed using the values that have been obtained from the

formulas in (16) and (17) for i = 1 and i = Nx and from the resulting system

(15). Similar for the y-direction. Further, at the end of each step of the Runge-

Kutta method the pressure and the energy at the boundaries are calculated

from

p = ρRT0 and E =
RT0
γ − 1

. (37)

3.4. Numerical Filtering

Compact-difference discretizations, like other centered schemes, are nondissi-

pative and are therefore susceptible to numerical instabilities due to the growth

of high-frequency modes. These difficulties may originate mainly from mesh

non-uniformity, boundary conditions, and highly nonlinear flow features. Since

traveling shock-like waves are present for flows of high acoustics levels, a high-

order implicit filtering technique [31, 39] is incorporated to alleviate the spurious

oscillations arising from instabilities.

If a component of the obtained (from the core numerical scheme) discretized

solution vector is denoted by φi,j , filtered values φ̂i,j , e.g in x−direction, are

obtained by solving the following Ny linear systems

Pf φ̂i,j = Qfφi,j , j = 1, ..., Ny (38)
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with the compact finite-difference operators Pf and Qf defined as

Pf φ̂i,j =



φ̂1,j i = 1;

αf φ̂1,j + φ̂2,j + αf φ̂3,j i = 2, ...,K;

αf φ̂i−1,j + φ̂i,j + αf φ̂i+1,j i = K + 1, ..., Nx −K;

αf φ̂Nx−k,j + φ̂
′

Nx−k+1,j + αf φ̂Nx−k+2,j i = Nx −K + 1, ..., Nx − 1;

φ̂Nx,j i = Nx,

(39)

and

Qfφi,j =



φ1,j i = 1;

K+1∑
n=1

an,iφn,j i = 2, ...,K;

K∑
n=0

an
2

(φi+n,j + φi−n,j) i = K + 1, ..., Nx −K;

K+1∑
n=1

an,i−Nx+K+1φNx−n+1,j i = Nx −K + 1, ..., Nx − 1;

φNx,j , i = Nx

(40)

System (38) provides a 2Kth-order accurate (OA) formula on a 2K+1 point

stencil. Based on coefficient values proposed in [27, 31], the K + 1 coefficients,

a0, a1, . . . aK and coefficients a1,i, a2,i, . . . aK+1,i for i = 2, ..,K, are derived in

terms of an adjustable αf with Taylor- and Fourier-series analysis. These are

presented in Tables 5-7 in the Appendix. Further, in [31] spectral responses

of these filters were analyzed. The adjustable parameter αf should satisfy the

restriction −0.5 < αf ≤ 0.5, with higher values of αf corresponding to a less

dissipative filtering. Extensive numerical experience suggests that regardless of

the time-integration scheme, values of αf between 0.3 and 0.5 are appropriate.

In general, the filter is typically chosen to be at least two orders of accuracy

higher than the compact difference scheme.

We note here that, the filtering process is not applied at the boundary nodes.

Tables 6 and 7 in the Appendix list coefficients for the higher-order one-sided

boundary filter formulas that can be employed at discrete points near the bound-
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ary when the filter is used for the interior points can not be applied due to stencil

restrictions. An extensive listing of boundary filter coefficients is provided in

[37]. In the present work, the solution is filtered once after the final stage of

the explicit Runge-Kutta method. When shock-like waves occur, the proposed

high-order numerical scheme is coupled with such a filter scheme to achieve

convergence (for steady-state solutions). In this work, filtering is applied to

the conserved variables and four different strategies have been investigated for

its application, as to recognize the most efficient one, (a) sequentially in each

coordinate direction, (b) in the x-direction only, (c) in the y-direction only and

(d) along the physical direction of the filtered conserved variables i.e. along

the x−direction for the variables ρ, ρu, ρE and along the y-direction for the ρv

variable. To this end, the core numerical scheme C3-4-6-4-3 from Section 3.1.1

can be combined with different filtering options resulting in an overall stable

high-order numerical solver. We can abbreviate the filtering (F) combination

used as, for example, F(b):B6-B6-I6-B6-B60.45 for filtering in the x-direction

only (option (b) from above), with αf = 0.45, when a 6th-order filter is chosen

in the second and third discrete layers from the boundary (B) as well as at the

rest interior (I) discrete points.

Remark 1. In general, for cases of slow streaming i.e. ReNL � 1, no filtering
need to be applied. For cases of ReNL = O(1) solutions converged to a steady
state but spurious oscillations appeared in the solution. For higher ReNL cases
and strongly nonlinear streaming regimes, filtering was mandatory. To this
end, various filtering combinations were tested during this work, for the dif-
ferent cases presented below, to conclude to the most accurate and robust one
combined with the core scheme C3-4-6-4-3. In terms of the different filtering
strategies (a)-(b) above it was found that for ReNL ≤ 4 option (b) was sufficient
while for higher ReNL numbers option (d) was proven the most accurate. In
terms of the order of filtering used at the two layers of grid points near the
boundary, applying 6th-order filtering was proven to be the most accurate and
robust for flows with moderate ReNL numbers.

4. Numerical tests and results

In this section we present numerical tests and results to verify the ability of

the proposed numerical scheme (and its variations) to simulate the generated
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streaming patterns as well as to detail its proper implementation (in terms

of boundary closure formulas and filtering options). We assume an enclosure

initially filled with air with uniform values for pressure p0 = 101325Pa, density

ρ0 = 1.2kg/m3 and temperature T0 = 294.15K. The thermo-physical properties

for air are µ = 1.795 · 10−5kg/(ms), k = 0.025W/(mK), γ = 1.4 and R =

287.06J/(kgK). The resulting initial speed of sound is c0 = 343.82m/s with

the Prandtl number Pr = 0.7213.

In the harmonic velocity law, the vibration frequency of the enclosure is set

to f = 20000Hz, which corresponds to a high-frequency wave. The resulting

wavelength of the sound waves at this frequency is λ = 17.191mm for the result-

ing value of c0. The length of the enclosure is chosen to be L = λ/2 = 8.5955mm

and the resulting acoustic boundary layer thickness is δν = 1.543·10−2mm. The

acoustic velocity produced in the enclosure depends on the ratio y0/δν , varying

from a narrow geometry to wider enclosures, and on the amplitude xmax of the

displacement in the harmonic velocity law. These parameters for the test cases

considered in this work are given in Table 1.

For all numerical simulations performed, and as stated before, a Cartesian

mesh of rectangular cells of constant size ∆x × ∆y was implemented, with

∆x = L/(Nx−1) and ∆y = H/(Ny−1) being the spatial discretization lengths

in the x and y−direction, respectively, where Nx and Ny are the mesh points

used. Here, we have used Nx = 501 mesh points in the x−direction, in most

cases, and in order to obtain at least five points per boundary layer thickness

we set ∆y = δν/5 [13].

Table 1: Simulations test cases: parameters used (top half of table) and resulted characteristic
values (bottom half)

Parameters Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
xmax(µm) 5 5 80 10 50 100 35
y0/δν 6 10 10 40 20 20 60
H/L 0.0215 0.0359 0.0359 0.1436 0.0718 0.0718 0.2154

Nx ×Ny 501× 61 501× 101 501× 101 501× 401 501× 201 601× 241 301× 601

Ûmax(m/s) 4.748 7.724 71.52 26.35 61.32 90.38 63.60
M 0.013 0.022 0.208 0.076 0.178 0.2628 0.1849
ReS 11.99 31.73 2721.20 369.60 1666.97 4345.62 2151.76
ReNL 0.0068 0.0504 4.327 9.403 12.723 27.640 123.17
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As referenced in the Introduction, the regularity of the streaming flow is

described by the nonlinear Reynolds number ReNL. In this work, and for com-

parison purposes, the definition of ReNL = (Ûmax/c0× y0/δν)2 = (M × y0/δν)2

is that of [13] which corresponds to half of that of Menguy and Gilbert [6]. In the

simulations performed here, several ReNL values are considered ranging from

very slow streaming flow (ReNL = 0.0068) to fast streaming flow (ReNL=27.640)

and also a case with ReNL = 123.17, for several values of the ratio y0/δν and for

Mach numbers ranging from M = 0.013 to M = 0.26 as shown in Table 1. An-

other dimensionless parameter that is frequently used in the study of streaming

flows is the streaming Reynolds number which can be defined in terms of the

maximum acoustic velocity as ReS = Û2
max/νω, [21, 10], and has been included

here for comparison purposes. The relation between these two dimensionless

parameters is ReS =
λ2

2π2y20
ReNL. We also note here that Ûmax is defined to be

the maximum amplitude of Umax which is defined here, and in the following, as

the acoustic velocity amplitude at the velocity antinode.

4.1. Case 0

In this case, the enclosure half-width is the smallest one and, given the value

of the resulting ReNL, the problem is almost linear. Thus, this test case aims

to compare the numerical results, obtained with the core compact scheme C3-4-

6-4-3, with those obtained with linear theory as well as its numerical accuracy.

Figure 2 presents the velocity signal (denoted here as Umax) at the center of

the enclosure and pressure variation, denoted here as pmax, at the enclosure’s end

as functions of the number of periods. The center of the enclosure corresponds

to an antinode thus the acoustic velocity gets its maximum at this point. The

periodic regime established after about 10 periods can be seen. The final signal

is purely sinusoidal, in agreement with the linear theory.

Figure 3 presents the velocity and pressure distributions along the symmetry

of the y−axis in the enclosure, up to the 20th period. The primary oscillatory

flow is periodic and at ωt = π/2 and ωt = 3π/2, the velocity’s maximum and

minimum values are obtained. At the beginning of the period cycle, the pressure
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Figure 2: Case 0: Acoustic velocity (top) at the center of the enclosure and pressure (bottom)
at the of the enclosure at x = L, as functions of the number of periods elapsed

is maximum at the left wall, decreasing with distance reaching a minimum at

x = L. At ωt = π the pressure profile is symmetric to the profile given at ωt = 0

concerning the vertical mid-plane, reaching a maximum at the right wall. The

presented pressure profiles intersect at x = L/2 creating a pressure node. The

perfect sinusoidal profile of the emitted wave by the oscillating enclosure is very

slightly distorted due to the nonlinear effects.

Further, in Figure 4 streamlines of the mean flow field are shown. This flow

field is computed by time average quantities over an acoustic period (the 20th

in our case) and the mean velocity values uM and vM , also called Eulerian

streaming velocities, are obtained. In this case, four clockwise and four coun-

terclockwise circulations (vortical structures) can be observed. Four of these

vortical structures (called inner streaming) are formed in the vicinity of the

horizontal walls and their height defines the thickness of the acoustic boundary

layer. The four vortical structures in the middle section of the enclosure define
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Figure 3: Case 0: Variation of the u velocity (left) and pressure (right) along the symmetry
of y−axis at ωt = 0, π/2, π, 3π/2

the so-called outer streaming. The horizontal length of both the outer and inner

streaming vortices is characterized by a quarter-wavelength. Further, the ana-

lytical solution of [8] for the streamlines at the upper quarter of the enclosure is

given, verifying the accuracy of the numerical results. It is noted that the exact

solution in [8] is obtained by imposing the harmonic excitation to an enclosure

of infinite length.

Figure 5 shows the variation of the computed dimensionless streaming ve-

locity for the u component at x = 3L/4 and for the v component at x = L/2

using as as reference velocity the Rayleigh streaming velocity defined as uR =

3Û2
max/16c0 [7, 8, 21, 13]. Again, numerical results are compared with the ana-

lytical solution of [8] and a perfect agreement can be observed.

Finally, for this preliminary test case, the obtained mean temperature field

is shown in Figure 6. As expected, for very small ReNL numbers the mean

temperature difference inside the enclosure is very small leading to a negligible

mean temperature gradient (difference between the minimum and maximum

values of temperature) of value ∆T ≈ 0.02K.

To obtain a numerical accuracy indication of the proposed numerical scheme

C3-4-6-4-3, a convergence study is presented next. Using a numerical reference

solution obtained with a fine mesh of Nx = 2000 mesh points, the rate of
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Figure 4: Case 0: streamlines of the numerical mean flow along the enclosure (top) and
analytical streamlines for the upper right quarter from [8] (bottom)

convergence, r, in all usual norms are given in Tables 2 and 3 for the velocities

u and v. As it can be observed the numerical scheme reaches the expected

formal order of accuracy.

4.2. Case 1

The problem for this case is nearly linear and has also been considered in [13].

Again the core compact scheme C3-4-6-4-3 has been applied. Figure 7 presents

the velocity signal and pressure variation at the center and at the end of the

enclosure, respectively, as functions of the number of periods. The amplification
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Figure 5: Case 0: Variation of the computed streaming velocity as a function of y/y0 for the
uM component at x = 3L/4 (left) and for the vM component at x = L/2 (right)

Figure 6: Case 0: mean temperature field along the enclosure

of the initial perturbation and the subsequent periodic regime established after

about 20 periods can be seen.

Figure 8 presents the velocity and pressure distributions along the symmetry

of the y−axis in the enclosure, during the 100th period. The primary oscillatory

flow is again periodic and at ωt = π/2 and ωt = 3π/2, the velocity’s maximum

and minimum values are obtained. At the beginning of the period cycle, the

pressure is maximum at the left wall, decreasing with distance reaching a mini-

mum at x = L. At ωt = π the pressure profile is fairly symmetric to the profile
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Table 2: Case 0: Numerical convergence rates (r) for the velocity u

Nx E(L1) r E(L2) r E(L∞) r
125 2.450 · 10−2 - 2.805 · 10−2 - 3.746 · 10−2 -
250 1.221 · 10−2 1.01 1.367 · 10−2 1.04 1.982 · 10−2 0.92
500 2.650 · 10−3 2.21 3.052 · 10−3 2.16 4.622 · 10−3 2.10
1000 1.335 · 10−4 4.31 1.588 · 10−4 4.27 2.861 · 10−4 4.01

Table 3: Case 0: Numerical convergence rates (r) for the velocity v

Nx E(L1) r E(L2) r E(L∞) r
125 1.122 · 10−5 - 1.556 · 10−5 - 3.081 · 10−5 -
250 5.119 · 10−6 1.13 6.578 · 10−6 1.24 1.216 · 10−5 1.34
500 1.121 · 10−6 2.19 1.551 · 10−6 2.15 2.878 · 10−6 2.08
1000 7.786 · 10−8 3.95 1.021 · 10−7 3.93 2.010 · 10−7 3.84

Figure 7: Case 1: Acoustic velocity (top) at the center of the enclosure and pressure (bottom)
at the of the enclosure at x = L, as functions of the number of periods elapsed

given at ωt = 0, concerning the vertical mid-plane, reaching a maximum at

the right wall. The presented pressure profiles intersect around x = L/2 while

due to attenuation caused by viscous and nonlinear effects, both pressure and

velocity profiles slightly differ from a perfect sinusoidal wave field.
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Figure 8: Case 1: Variation of the u velocity (left) and pressure along the symmetry axis at
ωt = 0, π/2, π, 3π/2

Further, in Figure 9 streamlines of the mean flow field are shown along with

the analytical field obtained from the analytical solution of [8]. The so-called

Rayleigh streaming can be identified with four symmetric streaming cells devel-

oped over the length and half-width of the enclosure; two cells in the bound-

ary layers (inner streaming) and two cells in the core of the enclosure (outer

streaming). These results are in agreement with those obtained by analytical

and numerical models of streaming flows [7, 8, 26, 13] as well as with experimen-

tal measurements [40]. The maximum streaming velocity, uM , value is found

to be approximately 0.028m/s in this case. To this end, Figure 10 shows the

variation of the computed dimensionless streaming velocity for the uM compo-

nent at x = 3L/4 and for the vM component at x = L/2. Again, the numerical

results of the current study are compared with the analytical solution of [8] and

an almost perfect agreement can be observed. It is noted here that the results

presented for this test case are more accurate when compared to the analytical

solution than those presented in [13].

Finally, for Case 1, the obtained mean temperature field is shown in Figure

11. Similar to Case 0 for very small ReNL numbers the mean temperature

difference inside the enclosure is very small (∆T ≈ 0.05K) leading to a negligible

mean temperature gradient. However, as shown experimentally in [25] and
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Figure 9: Case 1: streamlines of the numerical mean flow along the enclosure (top) and
analytical streamlines for the upper right quarter from [8]

verified numerically in [13], this mean temperature gradient established inside

the enclosure results from the heat that is removed from velocity antinodes,

i.e. at the location of largest viscous dissipation, and the heat that is produced

along the lateral wall i.e. close to velocity nodes. Thus, the thermoacoustic heat

transport takes place at a distance of one thermal boundary layer thickness

and then heat diffuses, resulting in a temperature field that is almost one-

dimensional in the central part of the enclosure at steady state.
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Figure 10: Case 1: Variation of the computed streaming velocity as a function of y/y0 for
the u component at x = 3L/4 (left) and for the v component at x = L/2 (right)

Figure 11: Case 1: mean temperature field along the enclosure

4.3. From slow to fast streaming and filtering

Before proceeding to the next cases where we aim to resolve flows at higher

acoustic levels, we have to investigate the use of filtering necessary to obtain con-

verged and stable solutions. This stems from the fact that larger displacements

of the enclosure create larger pressure amplitudes while at the same time pres-

sure gradients increase. This leads to sharp (shock-type) profiles which indicate

the presence of higher harmonics in the wave field. Similarly wider enclosures
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i.e. for larger values of the ratio y0/δν, the viscous effects are weaker and shear

forces along the top and bottom walls have less effect on the bulk of the gas

leading again to shock-type profiles due to less attenuation.

Aiming to investigate the effect of the parameter af , see Section 3.4, two

intermediate cases are shown here to exhibit the effect of filtering as the ReNL

increases, one with ReNL = 0.890 and ReNL = 2.368. Figure 12 presents the

velocity distributions along the symmetry of the y−axis in the enclosure during

the 20th period. Referring to the top of Figure 12, it can be observed that as the

ReNL increases the solution obtained with the core scheme C3-4-6-4-3, although

convergent, contains oscillations with increasing amplitude. These oscillations

are located around the shock for the smaller ReNL case, while in higher acoustic

levels these are diffused throughout the whole solution. The application of the

filtering scheme F(b):B6-B6-I6-B6-B6af for two different values, 0.49 and 0.47,

of the af parameter are shown next. As it can be observed, for the lower ReNL

case the oscillations disappear from the solution even for the larger af value

(where in essence less filtering intensity is applied). On the other hand, for the

higher ReNL value case, higher filtering intensity was necessary to reduce the

amount of oscillations present in the solution up to an acceptable level.

Following from an extensive study of the different filtering options that can

be implemented for the simulations at hand, we have concluded that the choice of

the filtering scheme F(b):B6-B6-I6-B6-B6af with af ∈ [0.45, 0.5) was sufficient

for the test cases that follow, unless otherwise stated.

4.4. Case 2

In this test case the same enclosure width, with y0/δν = 10, as in Case

1 is considered but the amplitude of the enclosure’s displacement is increased

to xmax = 80µm, resulting now in ReNL = 4.327. As noted in the Remark

previously, for cases with ReNL > 4 the filtering option F(d):B6-B6-I6-B6-

B6af was applied with af = 0.45 for the filtering intensity. As can be seen in

Figure 13, the acoustic velocity signal, in this case, is distorted from the perfect

sinusoidal form of the previous cases due to the presence of odd harmonics
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Figure 12: Filtering effect for ReNL = 0.890 (left column) and ReNL = 2.386 (right column)
with no filtering (top), af = 0.49 (middle) and af = 0.47 (bottom)

reaching a maximum speed of 71.52m/s.

As stated previously, the larger displacement of the enclosure leads to sharp

(shock-type) profiles which indicate the presence of higher harmonics in the wave

field. This is evident also in Figure 14 which presents the velocity and pressure

distributions along the symmetry of the y−axis in the enclosure, during the

80th period. Pressure waves emanated from the sinusoidal displacement of the

enclosure are strongly distorted by the nonlinear effects. The traveling shock-
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type waves are of weak intensity and the numerical oscillations produced by the

numerical solver remain bounded and thus do not spoil the solution.
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Figure 13: Case 2: Acoustic velocity (top) at the center of the enclosure and pressure (bottom)
at the of the enclosure at x = L, as functions of the number of periods elapsed
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Figure 14: Case 2: Variation of the u velocity (left) and pressure along the symmetry axis at
ωt = 0, π/2, π, 3π/2

In this case the re-circulation cells start to become asymmetric as can be
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seen in Figure 15 where the streamlines of the mean flow field are presented. In

this test case, the maximum value for the streaming velocity uM is found to be

approximately 3.421m/s.
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Figure 15: Case 2: streamlines of the numerical mean flow along the enclosure

For this case the mean temperature field starts to become two-dimensional,

as shown in Figure 16, due to convective heat transport by the streaming flow

as well as heat conduction in both directions. As the ReNL number increases,

acoustic streaming becomes an effective means of heat transport resulting in

the re-distribution of the mean fluid temperature. Thus, streaming convects the

heat along the enclosure’s axis from the warmer areas near the vertical walls

towards the enclosure’s center. The mean temperature difference computed

inside the enclosure is now ∆T ≈ 6.65K.

4.5. Case 3

In this test case the enclosure width increases giving a ratio of y0/δν = 40

and the amplitude of the enclosure’s displacement is xmax = 10µm, resulting

now in ReNL = 9.403. Again, as can be seen in Figure 17, the acoustic velocity

signal in this case is again distorted from the perfect sinusoidal form, reaching

a maximum primary oscillatory velocity of 26.35m/s).
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Figure 16: Case 2: mean temperature field along the enclosure
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Figure 17: Case 3: Acoustic velocity (top) at the center of the enclosure and pressure (bottom)
at the of the enclosure at x = L, as functions of the number of periods elapsed

This is evident also in Figure 18 which presents the velocity and pressure

distributions along the symmetry of the y−axis in the enclosure, during the

80th period. Pressure waves emanating from the displacement of the enclosure
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are again strongly distorted by the nonlinear effects and since we have a wider

enclosure (y0/δν = 40) in this case, the viscous effects are weaker and shear

forces along the top and bottom walls have a lesser effect on the bulk of the

gas leading to higher pressure amplitudes. The shock-wave profiles in velocity

and pressure that appear now due to the low attenuation and the numerical

oscillations produced by the numerical solver again remain bounded and do not

spoil the final solution.
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Figure 18: Case 3: Variation of the u velocity (left) and pressure along the symmetry axis at
ωt = 0, π/2, π, 3π/2

In this case, the re-circulation cells have become asymmetric and the centers

of all streaming cells are displaced towards the lateral walls of the enclosure

as can be seen in Figure 19 where the streamlines of the mean flow field are

presented. The maximum value for the streaming velocity uM is found to be

approximately 0.830m/s. For this case, the mean temperature field, shown

in Figure 20, has become two-dimensional due to convective heat transport

by the streaming flow as well as heat conduction in both directions. The mean

temperature difference inside the enclosure is now ∆T ≈ 2.67K which is smaller

compared to the previous case since the Mach number is much smaller compared

to the one in Case 2.
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Figure 19: Case 3: streamlines of the numerical mean flow along the enclosure

Figure 20: Case 3: mean temperature field along the enclosure

4.6. Case 4

In this test case the enclosure width is half of that in the previous case,

giving a ratio of y0/δν = 20 and the amplitude of the enclosure’s displacement

is xmax = 50µm, resulting in a higher ReNL = 12.723. In Figure 21 the higher

acoustic velocity signal, reaching a maximum value of 61.32m/s for this case,

can be seen, while Figure 22 presents the velocity and pressure distributions
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along the symmetry of the y−axis in the enclosure during the 100th period.
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Figure 21: Case 4: Acoustic velocity (top) at the center of the enclosure and pressure (bottom)
at the of the enclosure at x = L, as functions of the number of periods elapsed
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Figure 22: Case 4: Variation of the u velocity (left) and pressure along the symmetry axis at
ωt = 0, π/2, π, 3π/2

In Figure 23 the obtained streamlines of the mean flow field are shown.

As it was pointed out in [13], there is a change of regime for the temperature
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Figure 23: Case 4: streamlines of the numerical mean flow along the enclosure

field before ReNL = 13.26, which corresponds to shift of the outer streaming

cells towards the velocity node (close to the lateral walls of the enclosure).

Hence, a zone of very small streaming velocities is generated in the middle of the

cavity which induces the accumulation of heat while the maximum value for the

streaming velocity uM was found to be approximately 2.829m/s. This behavior

is also evident in the results presented in Figure 24. The mean temperature

difference inside the enclosure has now increased to ∆T ≈ 17.7K.

4.7. Case 5

In this challenging test case the enclosure has again a ratio of y0/δν = 20 but

the amplitude of the enclosure’s displacement is now xmax = 100µm, resulting

in a much higher ReNL = 27.640. For this test case, it was found appropriate

to increase the spatial discretization to a 601 × 241 mesh thus increasing the

number of points to 6 per boundary layer thickness to obtain a grid independent

solution. Further, it was found that the filtering scheme had to be modified using

the F(d):B4-B6-I6-B6-B4af option i.e. reducing the filtering order at the first

layer of grid points close to the boundary, with af = 0.45.

In Figure 25 the higher acoustic velocity signal for this case can be seen

reaching a maximum value of 90.38m/s along with an increase in the pressure
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Figure 24: Case 4: mean temperature field along the enclosure

at the lateral boundaries, while Figure 26 presents the velocity and pressure

distributions along the symmetry of the y−axis in the enclosure, during the

120th period. Compared to Case 4, the larger (doubled) enclosure displacement

creates higher pressure amplitudes. As can be seen in the results, although some

oscillations are still evident in the numerical solution, these remain bounded and

do not spoil the numerical solution.

As can be seen in Figure 27, the outer streaming cells are now split into

several cells. The maximum value for the streaming velocity uM is found to

be approximately 4.702m/s. According to [13], there is an intricate coupling

between the mean temperature field and the streaming flow. To this end, the

mean temperature gradient in high ReNL numbers changes the orientation and

is considered to be the cause of the splitting of the outer streaming cells. It was

observed, also in this work, that for this test case, and for a few tens of periods,

regular streaming flow appeared. Then, destabilization was observed along with

increasing heterogeneity of the mean temperature field, shown in Figure 28.

The mean temperature difference inside the enclosure has now increased to

∆T ≈ 44.66K which is almost exactly the value obtained in [13].

Finally, the longitudinal variation along the enclosure’s central axis at y = 0
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Figure 25: Case 5: Acoustic velocity (top) at the center of the enclosure and pressure (bottom)
at the of the enclosure at x = L, as functions of the number of periods elapsed
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Figure 26: Case 5: Variation of the u velocity (left) and pressure along the symmetry axis at
ωt = 0, π/2, π, 3π/2

(an acoustic velocity node) of the axial dimensionless streaming velocity uM is

shown in Figure 29 for test cases 1-5. As it can be seen, the velocity profile
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Figure 27: Case 5: streamlines of the numerical mean flow along the enclosure

Figure 28: Case 5: mean temperature field along the enclosure

is modified as the ReNL number increases; the sinusoidal form associated with

slow (almost linear) streaming becomes steeper near the enclosure’s side walls

while the average slope of the curves at the center decreases approaching zero

at ReNL = 12.723. Following from the displacement of the streaming cells, the

parabolic behavior of the streaming velocity along the width of the enclosure dis-

appears as the ReNL value increases as shown in Figure 30. These distortions of
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the streaming cells, as well as the previously presented results, are in agreement

with those that have been observed in experiments in rectangular or cylindrical

geometries in wide channels, e.g. in [9, 40, 10, 11]. As pointed out in [13], the

slope is close to zero for a critical ReNL value between 13 and 27, and then the

slope changes sign which indicates the emergence of new streaming cells. This

change of the slope sign can also be seen in our results for ReNL = 27.640 in

Figure 29. Moreover, this is in accordance with the experimental results in [10]

where streaming in square enclosures was analyzed and it was found that for

ReNL values up to 25, streaming cells are regular whereas when ReNL exceeds

25, streaming deforms to irregular and complex shape patterns.

Moreover, and concerning the mean temperature variation, in [18] a criterion

has been established that relates the physical properties of the problem to the

transverse temperature difference which flags for a transition in the streaming

patterns if

∆T ≥ T0
45

2

(
1 +

2

3

(γ − 1)
√
Pr

1 + Pr

)(
δν
y0

)2

. (41)

In our test cases 4 and 5 the corresponding transition value in temperature

difference is 18.7230 and only in case 5 ∆T exceeds this threshold verifying

further the obtained results.
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4.8. Case 6

In this final test case, the enclosure has a ratio of y0/δν = 60, which is three

times bigger than that in the last two cases, and the amplitude of the enclosure’s

displacement is now xmax = 35µm, resulting in a very big ReNL ≈ 120. For this

test case, the spatial discretization to 301×601 mesh points since the size of the

enclosure has increased along the y−direction. The same filtering scheme as in

test case 5 was adopted here as well. We aim here to study the development of

the streaming flow over time.

As can be seen in Figure 31, by T = 50 time periods eight different clock-

wise and counter clock-wise vortices in the resonator can be seen, while the flow

structure is symmetric with respect to both the horizontal and the vertical mid-

planes. The resulting temperature field and the generation of a temperature

gradient can be seen in Figure 32 (top). At later times, the flow field changes

from a quasi-one-dimensional to a two-dimensional leading to an increase in

the number of streaming vortices with an irregular streaming structure. At

T = 200 periods it is important to note that the orientation of the stream-

ing votrices has changed and new smaller vortices have been created, near the

velocity nodes, along with an increase in the mean temperature heterogeneity

and gradient, while the flow structure remains symmetric with respect to both

the horizontal and the vertical mid-planes. At T = 300 periods the symmetry

of the streaming structure with respect to the vertical mid-plane is distorted

(due to the nonlinearity effects) and the generation of secondary vortex rings

can be observed. By time T = 400 periods more irregular and multiple de-

formed vortex patterns can be seen while the streaming structure with respect

to the vertical mid-plane is further distorted. A mean temperature difference

inside the enclosure has been established to ∆T ≈ 37.85K. We note here that,

the maximum obtained values of the streaming velocity uM for test Cases 1-6

were: 0.0280, 3.421, 0.830, 2.829, 4.702 and 3.866, respectively, while the maxi-

mum values of the vM were: 0.000832, 0.200, 0.142, 0.528, 1.187 and 1.169. We

can observe that the ratio vMmax/u
M
max increases from 2.9× 10−2 to 3× 10−1 i.e.

one order in magnitude. This means that the y−component of the streaming
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velocity has a significant influence on the average flow field and enhances the

two-dimensional nature of the problem. The obtained velocity signal at the

center of the enclosure and pressure variation at the enclosure’s end as func-

tions of the number of the last ten periods is shown in Figure 33. Further, it

was found that in this case the streaming patterns were almost stationary and

time-invariant after the oscillation had reached a quasi-steady state as can be

seen in Figure 34 where the variation of the velocity and pressure along the

symmetry axis at ωt = 0 for T = 200, 300 and 400 is shown. This is also verified

by the comparison of the normalized horizontal streaming velocities uM along

the width of the enclosure for T = 300 and T = 400 time periods in Figure 35.

Finally, we use this, computationally demanding, test case as to provide an

indication of the proposed numerical solver’s efficiency. The numerical solver

has been implemented, and reasonably optimized, using OpenMP parallel envi-

ronment using a multi-core processor. The parallel machine used was the Dell

R730 server that features two 8-core Xeon E5-2695@2.4GHz processors, with

16GB of memory. The results of the computational times and the obtained

speedup are summarized in Table 4 for two grids, a coarser and a finer one

along the x−direction. the previous numerical results have been obtained with

the finer grid and execution times are reported for the computation of T = 400

periods.

Table 4: Computational times and speed up for Case 6

Grid A: 151x601 Grid B: 301x601
# cores time (hours) speedup time (hours) speedup

1 129.22 - 282.67 -
2 74.83 1.727 154.61 1.828
4 39.45 3.276 81.33 3.476
8 24.89 5.192 50.78 5.567
16 18.10 7.139 34.43 8.210

From the obtained times, it is evident that very good performance scalability

is achieved versus a single-core CPU . As follows from Table 4, speedup factors

are increased adding more cores in the computation. Using up to 4 cores the
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acceleration is almost linear. The best multi-core acceleration factor of the

numerical solver is about 8x when all available cores of the machine were enabled

and for the finer discretization grid.
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Figure 31: Case 6: streamlines of the numerical mean flow along the enclosure at T =
50, 200, 300, 400 periods (from top to bottom)
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Figure 32: Case 6: mean temperature field along the enclosure at T = 50, 200, 300, 400 periods
(from top to bottom) 49
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Figure 33: Case 6: Acoustic velocity (top) at the center of the enclosure and pressure (bottom)
at the of the enclosure at x = L, as functions of the number of periods elapsed
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Figure 34: Case 6: Variation of the u velocity (left) and pressure along the symmetry axis at
ωt = 0 at T = 200, 300, 400
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5. Conclusions

The formation of acoustic streaming patterns (of the Rayleigh type) and

associated flows in rectangular enclosures, with different aspect ratios and am-

plitudes of displacement, has been studied by solving numerically the unsteady

two-dimensional compressible Navier-Stokes equations using a high-order com-

pact finite difference scheme. The acoustic field in the enclosures has been

created by a plane standing wave excited inside the enclosures by a harmonic

velocity law. Several details of the proposed numerical scheme and its appli-

cability have been given with emphasis on the filtering technique applied to

ensure the stability of the solutions in the presence of shock-type waves that

may appear in the flow. Several test cases have been considered ranging from

linear to highly nonlinear streaming regimes. The numerical simulations per-

formed demonstrated the ability of the proposed numerical scheme to compute

the transition from regular acoustic streaming flow toward irregular streaming.

While retaining its formal order of accuracy, the numerical scheme produced

very accurate results in the linear (and almost linear) cases when compared to

51



known analytical solutions. For the nonlinear cases, the numerical scheme was

able to reproduce the significant distortions of the streaming cells where the

centers of the streaming cells are pushed towards the end-walls of the enclo-

sures as well as the deformation of the streaming cells that split into several

cells for the higher nonlinear cases. The coupling between streaming effects

and thermal effects in the enclosures, by the existence and evolution of a mean

temperature gradient, has been also investigated. Most of the presented results

are in accordance with results presented in the literature from numerical and/or

experimental studies.

From this study, it can be concluded that the compact finite difference

scheme is capable of simulating the nonlinear acoustic streaming in compressible

viscous fluids. Moreover, it can also be concluded that the proposed numerical

scheme can be accurate and robust for simulations of highly nonlinearity levels

and different enclosure geometries and can be potentially applied to different

types of fluids in simulating the nonlinear thermo-acoustic fields. The numerical

algorithm can be relatively straightforwardly extended for the case of cylindrical

(or curvilinear) coordinates to numerically simulate acoustic streaming in tubes.

In this work, the numerical solver has been implemented, and reasonably op-

timized, using OpenMP parallel environment using a multi-core processor and

very good performance scalability was achieved. Furthermore, the entire algo-

rithm can be parallelized efficiently, since in each Runge-Kutta stage several

tri-diagonal systems can be solved simultaneously (of order O(Nx)). Further,

these tri-diagonal systems that arise from the compact discretizations involve

only two matrices, one for the computation of the derivatives and one for the

filtering, minimizing the required data storage of the algorithm, therefore per-

mitting one to perform the whole computation on an acceleration device, e.g

GPUs. To this end, the parallel attributes of the algorithm permit two levels of

parallelization which are currently in progress.
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Appendix

For completeness, we present here the coefficient values for the different

options in the filtering process as described in Section 3.3.

Table 5: Interior Points Coefficients for Different Order Filter Formulas

Schemes (OA) a0 a1 a2 a3 a4

I2 (K = 1)
1

2
+ αf

1

2
+ αf 0 0 0

I4 (K = 2)
5

8
+

3αf
4

1

2
+ αf

−1

8
+
αf
4

0 0

I6 (K = 3)
11

16
+

5αf
8

15

32
+

17αf
16

−3

16
+

3αf
8

1

32
− αf

16
0

I8 (K = 4)
93 + 70αf

128

7 + 18αf
16

−7 + 14αf
32

1

16
− αf

8

−1

128
+
αf
64
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Table 6: Coefficients for Boundary Filter Formulas at nodes 2, j of 4th and 6th order accuracy

OA a1,2 a2,2 a3,2 a4,2 a5,2 a6,2 a7,2

B4
1

16
+

7αf
8

3

4
+
αf
2

3

8
+
αf
4

−1

4
+
αf
2

1

16
+
−αf

8
0 0

B6
1

64
+

31αf
32

15

64
+

3αf
16

15

64
+

17αf
32

− 5

16
+

5αf
8

15

64
− 15αf

32
− 3

32
+

3αf
16

1

64
− αf

32

Table 7: Coefficients for Boundary Filter Formulas at nodes 3, j of 6th order accuracy

OA a1,2 a2,2 a3,2 a4,2 a5,2 a6,2 a7,2

B6 − 1

64
+
αf
32

3

32
+

13αf
16

49

64
+

15αf
32

5

16
+

3αf
8

−15

64
+

15αf
32

3

32
− 3αf

16
− 1

64
+
αf
32
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