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Motivation

To achieve a given QoS (usually expressed as the bit error rate) using
uncoded modulation, we require a certain SNR.

Bandwidth limited channel
1 Use higher order constellations, for example 8-PSK instead of 2-PSK.

Power limited channel
1 We can add redundancy (keeping symbol energy constant).
2 The modulator is forced to work at a higher rate to achieve the same

information bit rate, increasing bandwidth occupation.

The difference between the SNR required for the uncoded and the
coded system to achieve the same BER is called the coding gain.
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Error correcting strategies

There are two error correcting strategies:

Forward error correction (FEC)
Automatic repeat request (ARQ)

1 Stop-and-wait ARQ (e.g. ABP)
2 Continuous ARQ (e.g. SRP, Go-Back-N)

ARQ can only be used if there is a feedback channel.

When the transmission rate is high, retransmissions happen often,
thus introducing delay into the communication.

For one way channels we can only use FEC.
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Linear Binary Codes
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Linear Binary Codes

If C has the form:
C = F

k

2G

where G is a k × n binary matrix with n ≥ k and rank k, called the
generator matrix of C, then C is called an (n, k, d) linear binary code.

The code words of a linear code have the form uG where u is any
binary k-tuple of binary source digits.

For any c1, c2 ∈ C it can be shown that c1 + c2 ∈ C, as follows:

c1 + c2 = u1G + u2G = (u1 + u2)G = uG ∈ C

The ratio r = k

n
is called the rate of the code.
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Linear Binary Codes

An alternative definition of a linear code is through the concept of an
(n − k) × n parity-check matrix H. A code C is linear if:

Hc = 0 ∀c ∈ C

We define s = Hĉ as the syndrome of the received binary codeword ĉ

which is the received vector x̂ ∈ R
n after hard decisions have been

made on each of its components.

If s 6= 0 then we know that an error has occured.

Telecommunications Laboratory (TUC) Linear Block Codes October 23rd, 2008 7 / 26



Encoding Example

Consider the following k × n generator matrix (k = 3, n = 4):

G =





1 0 0 1
0 1 0 1
0 0 1 1





Each one of the 2k = 8 code words have the form uG

For example, for u1 =
[

1 0 1
]

we get the codeword:

c1 = u1G =
[

1 0 1
]





1 0 0 1
0 1 0 1
0 0 1 1



 =
[

1 0 1 0
]
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Hard decision (algebraic) decoding

In algebraic decoding, ’hard’ decisions are made on each component
of the received signal y forming the vector

x′ = (x̂1, x̂2, . . . , x̂n)

e.g. for BPSK we have:
x̂i = sign(yi )

If the vector x′ is a codeword of C, then the decoder selects x̂ = x′,
else the structure of the code is exploited to correct them.

The method is suboptimal because we discard potentially useful
information before using it.
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Soft decision decoding

In soft decision decoding, a Maximum Likelihood (or MAP if
codewords are not equally likely) estimation is performed on the
whole received vector.

x̂ = arg max
x∈C

p(y|x) (ML)

x̂ = arg max
x∈C

p(x|y) (MAP)

Considerable improvement in performance (usually around 3dB), but
more complex implementation.
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Hard decision vs. soft decision decoding example (1/2)

Assume that we have a (3, 1) repetition code, that is:

x = (x1, x2, x3) where x2 = x3 = x1

The codewords of this code (in the signal space) are:

c1 = (−1,−1,−1) and c2 = (+1,+1,+1)

Assume now that transmitted signal is x = (+1,+1,+1) and the
corresponding received vector is y = (+0.8,−0.1,−0.2)
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Hard decision vs. soft decision decoding example (2/2)

Using hard decision decoding, we decide -1 if the majority of the
demodulated signals is -1, and +1 otherwise.

The demodulated vector corresponding to the received vector y is
ŷ = (1,−1,−1). Using the majority rule, we decide that
ŷ = c1 = (−1,−1,−1), thus making a decoding error.

Using soft decision decoding, we will choose the codeword with the
least Euclidean distance from the received vector:

d2
E (y, c1) = (0.8 − 1)2 + (−0.1 − 1)2 + (−0.2 − 1)2 = 2.69

d2
E (y, c2) = (0.8 + 1)2 + (−0.1 + 1)2 + (−0.2 + 1)2 = 4.69

So, we correctly choose ŷ = c1 = (−1,−1,−1).
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Error Probability (1/2)

Recall that:
P(e|x) ≤

∑

x̂6=x

e−||x−x̂||2/4No

For the simple case of the binary elemental constellation
X = {−x ,+x}, we have:

d2
E (c, c′) =

∑

i

(ci − c ′i )
2

=
∑

ci 6=c′
i

4x2

= 4x2dH(c, c′)

= 4EdH(c, c′)
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Error Probability (2/2)

Because of the linearity of the code, we have that c′ + c′′ = c ∈ C so,
the Hamming distance between c and ĉ is:

dH(c, ĉ) = w(c + ĉ) = w(c′)

So, for the error probability of a single codeword, we have:

P(e|c) ≤
∑

ĉ 6=c

e−dH (c,ĉ)E/No =
∑

c∗ 6=0

e−w(c∗)E/No

The value of the above summation does not depend on c, and hence:

P(e|c) = P(e)
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Systematic Codes

A linear code is called systematic if its generator matrix has the form

G = [Ik
...P]

where P is a k × (n − k) matrix.

The words of these codes have the form

c = uG = [u
... uP]

The (n − k) × n parity check matrix of a systematic code can be
constructed as follows

H = [PT
... In−k ]
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Systematic Code Example

We observe that the generator matrix from the previous example can
be written in the form

G =





1 0 0 1
0 1 0 1
0 0 1 1



 = G =





1
Ik 1

1



 = [Ik
...P]

where P =
[

1 1 1
]T

, so the code is in its systematic form.

The parity check matrix H of the above code can be written as

H = [PT
... In−k ] =

[

1 1 1
... 1

]
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Error detecting capabilities of a code

The received codeword can be written as r = c + e, where c is the
transmitted codeword and e is called the error pattern.

A code with a minimum distance dmin is capable of detecting all error
patterns of dmin − 1 or less errors.

For error patterns of dmin or more errors, there exists at least one
pattern which transforms the transmitted codeword into another valid
codeword, so the code is not capable of detecting all of them.

It can however detect a large fraction of them. If e ∈ C, then
(because of the linearity of the code) r = c + e ∈ C. So, there exist
2k − 1 error patterns of more than dmin errors which are undetectable,
leaving a total of 2n − 2k + 1 detectable error patterns.
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Error correcting capabilities of a code (1/2)

Let t be a positive integer such that

2t + 1 ≤ dmin ≤ 2t + 2

Let c and r be the transmitted and the received codeword respectively.

Let w ∈ {C − {c, r}}

Since the Hamming distance satisfies the triangle inequality, we get

dH(c, r) + dH(r,w) ≥ dH(c,w)

Since c and w are codewords of C, we have that

dH(c,w) ≥ dmin ≥ 2t + 1
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Error correcting capabilities of a code (2/2)

Suppose that dH(c, r) = t ′.

From the above we get that

dH(r,w) ≥ 2t + 1 − t ′

If t ′ ≤ t, then
dH(r,w) > t

The above tells us that if an error pattern of t or less errors occurs,
the received codeword r is closer to the transmitted codeword c than
to any other codeword w in C
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Standard array

An array containing all 2n binary n-tuples which is constructed as
follows:

c1 = 0 c2 . . . c2k

e1 c2 + e1 . . . c2k + e1

e2 c2 + e2 . . . c2k + e2
...

...
e2n−k c2 + e2n−k . . . c2k + e2n−k

where ci ∈ C and ei are all 2n−k possible error patterns.

The first column consists of elements called coset leaders.
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Syndrome decoding (1/2)

Recall that the syndrome of a received vector is defined as:

s = rHT

and that for every codeword c ∈ S it holds that:

s = cHT = 0

All elements of a row of the standard array have the same syndrome:

(e1 + ci )H
T = e1H

T + ciH
T = e1H

T
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Syndrome decoding (2/2)

By computing the syndrome of the received codeword, we can
estimate which error pattern occured, namely the error pattern which
has the same syndrome as the received vector.

It is optimal to choose the most likely error patterns as the coset
leaders.

In the case of the AWGN with BPSK modulation, the most likely
error patterns for large enough SNR are those with minimum weight.

After estimating the error pattern, we can correct the error as follows:

ĉ = r + ei = (c + ei ) + ei = c
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Hamming codes
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Hamming codes

For any positive integer m ≥ 2, there exists a Hamming code with the
following parameters:

1 Code length: n = 2m − 1
2 Number of information symbols: k = 2m − m − 1
3 Number of parity symbols: m = n − k
4 Error correcting capability: t = 1 (dmin = 3)

Different code lengths can be chosen to achieve a wide variety of
rates and performances.

The parity check matrix H of a Hamming code consists of all nonzero
m-tuples as its columns.

Telecommunications Laboratory (TUC) Linear Block Codes October 23rd, 2008 24 / 26



A Hamming code example

For example, let m = 3. We get:
1 m = 3 parity symbols
2 n = 2m − 1 = 23 − 1 = 7 codeword length
3 k = 2m − m − 1 = 23 − 3 − 1 = 4 information symbols

which is a (7, 4, 1) linear code.

The parity check matrix H of this code is:

H =





1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1



 =





1 0 1 1
Im 1 1 1 0

0 1 1 1



 = [Im
...PT ]

The generator matrix for this Hamming code can be constructed as
follows:

G = [Ik
...P]
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Simulation results
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