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Coding on a Trellis

Two categories:
1 Binary symbols, linear encoders → Convolutional codes
2 General set of symbols and encoders → Trellis-coded modulation

The trellis will be assumed to have a periodic structure, meaning that
the Viterbi decoding algorithm operations will be the same for every
state transition interval.

To construct such a trellis, we can use a memory-ν binary shift
register whose contents at any given time the define the state of the
trellis.

Obviously, the number of states is 2ν
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Trellis example

For ν = 2 we have 22 = 4 states: 00, 01, 10 and 11.

From state yz we can only move to xy , where x denotes the input
symbol.

A section of the trellis generated by the above shift register.
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Convolutional codes
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A first look at convolutional codes

A convolutional code linearly combines the contents of the shift
register to create an output.

Such a code is said to have memory ν.

If for every input bit the code creates n0 output bits, the code has a
rate of 1/n0.

The branches of the corresponding trellis are labeled with the output
symbols generated by the state transitions they represent.
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Convolutional code example (1/2)

Consider the following encoder:

For each input bit, we have two output bits, so the rate of the
encoder is 1/2.

The output bits are:
c1 = x1 + x2 + x3

c2 = x1 + x3
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Convolutional code example (2/2)

Conventionally, the initial state is chosen as the all-zero state.

The trellis representing the above code.
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State diagram

Another representation of a convolutional code is its state diagram.

A state diagram describes the transitions between states and the
corresponding output symbols without an explicit time axis.

The state diagram representing the above code.
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Graph reduction rules

We can gradually reduce a graph to a straight line to find its transfer
function, using the following rules:

1

2

3

4
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Rate k0/n0 convolutional codes

Having only rate 1/n0 codes is obviously not very practical.

We can define rate k0/n0 codes. These codes create n0 output bits
for each k0 input bits.

To achieve this, we need k0 shift registers and n0 binary adders.
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Theoretical foundations (1/4)

In general, a single input, single output causal time-invariant system
is characterized by its impulse reponse:

g , {gi}
∞

i=0

The output sequence x , {xi}
∞

i=−∞
is related to the input sequence

u , {ui}
∞

i=−∞
by the convolution:

x = g ∗ u
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Theoretical foundations (2/4)

We can associate the sequences g, x and u with their D-transforms.

The D-transform is a function of the indeterminate D (the delay
operator) and is defined as:

g(D) =

∞
∑

i=0

giD
i

x(D) =

∞
∑

i=−∞

xiD
i

u(D) =

∞
∑

i=−∞

uiD
i
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Theoretical foundations (3/4)

The convolution x = g ∗ u can be now written as:

x(D) = u(D)g(D)

If g(0) = 1 we say that the polynomial g is delay-free.

g(D) may have an infinite number of terms, if for example it has the
form of a ratio between polynomials:

g(D) = p(D)/q(D)

Every rational transfer function with a delay-free q(D) can be realized
in the “controller form” (i.e. with feedback).

Each such function is called realizable.
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Theoretical foundations (4/4)

We can now describe a rate k0/n0 convolutional code through a
k0 × n0 generator matrix G which contains its k0n0 impulse responses.

Recall the following encoder:

We have 1 input and 2 outputs, so the generator matrix will have
dimensions 1 × 2 with:

g11 = 1 + D + D2 g12 = 1 + D2
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Defining convolutional codes (1/2)

We can define a rate k0/n0 convolutional code as the set of all
possible sequences one can observe at the output of a convolutional
encoder.

For a convolutional encoder to be useful, we require it to:
1 be realizable
2 be delay free
3 have a rank k0 generator matrix
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Defining convolutional codes (2/2)

The same convolutional code can be generated by more than one
encoder.

Let Q(D) denote an invertible matrix, we have:

x(D) = u(D)G(D)

= u(D)Q(D)Q−1(D)G(D)

= u′(D)G′(D)

All encoders generating the same code are called equivalent.

We look for useful properties, e.g. minimum number of memory
elements for a minimum complexity Viterbi decoder.
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Systematic encoders (1/2)

Consider an encoder with the following transfer function:

G(D) =

[

1 D2 D

D 1 0

]

Observe that:

[

1 D2 D

D 1 0

]

=

[

1 D2

D 1

]

[

1 0 D

1+D3

0 1 D2

1+D3

]

= Q(D)G′(D)
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Systematic encoders (2/2)

Q(D) is full rank, so u′(D) = u(D)Q(D) is a permutation of all
possible input sequences.

We can write:
x(D) = u(D)′G′(D)

Recall that:

G′(D) =

[

1 0 D

1+D3

0 1 D
2

1+D3

]

This encoder is said to be systematic.

It can be shown that for each code there exists a systematic encoder.
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Polynomial encoders

Let q(D) denote the least common multiple of all the denominators
of the entries of the generator matrix.

Then we have that:
G′(D) = q(D)G(D)

where G′(D) is an encoder which is polynomial and equivalent to
G(D).

Thus, every convolutional code admits a polynomial encoder.
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Minimal encoders

It can be shown that among all equivalent encoder matrices, there
eixsts one corresponding to the minimum number of trellis states.

The above means that its realization in controller form requires the
minimum number of memory elements.

We have seen that every encoder can be transformed into a
systematic rational one.

It can be shown that systematic encoders are minimal.
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Punctured convolutional codes

By puncturing we can obtain a higher rate code from one with a
lower rate.

A fraction of symbols ǫ is punctured (i.e. not transmitted) from each
encoded sequence, resulting in a code with rate r0/(1 − ǫ).

For example, if we puncture 1/4 of the output symbols of a rate 1/2
code, we will get a rate (1/2)/(3/4) = 2/3 code.

Several rates can be obtained from the same “mother code”, making
it possible to create a “universal encoder/decoder”.
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Block codes from convolutional
codes
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Block codes from convolutional codes

In practice, a convolutional code is used to transmit a finite sequence
of information bits, so its trellis must be terminated at a certain time.

At each time t > 0, the n0 output bits of a rate 1/n0 polynomial
encoder are a linear combination of the contents of the shift register:

xt = utg1 + ut−1g2 + . . . + ut−νgν+1

The above equation can be written in a matrix form as follows:

x = uG∞

where

G∞ =









g1 g2 . . . gν+1

g1 g2 . . . gν+1

g1 g2 . . . gν+1

. . . . . . . . . . . .








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Direct termination

Consider an input sequence with finite length N.

The first n0N output bits can be computed as:

x = uGN

The downside of this method is that the coded symbols are not
equally error protected.

This happens because for the first bits the decoder starts from a
known state, thus decreasing their BER.

The exact opposite happens for the last bits in the black, increasing
their BER.
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Zero termination

To avoid the above problem, we can have the encoder end in a
predefined state (usually the all-zero state).

To achieve this, we have to append a deterministic sequence at the
end of the input, which forces the decoder to end in the desired state.

This sequence has length k0/n0, in order to fill the shift register(s).

Obviously, we will have a decrease in rate which may be substantial
for short blocks.
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Tail-biting

We can force the encoder to start and end in the same state with a
tail-biting trellis.

GN =





























g1 g2 . . . gν+1

g1 g2 . . . gν+1

g1 g2 . . . gν+1

g1 g2 . . . gν+1

gν+1 g1 g2 . . . gν

gν gν+1
. . .

. . .
...

...
...

. . .
. . . g2

g2 g3 . . . gν+1 g1





























We do not have the rate loss of zero tailing.

The decoder complexity is increased because the starting and ending
states are unknown.
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Performance evaluation
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Performance evaluation (1/2)

We can describe the transfer function for each transition of a graph
describing a convolutional code as a function of the indeterminate X

raised to the power of the Hamming weight of the corresponding
output word.

Recall the following graph:

For example, the transfer function for the transition α → β would be
X 2.
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Performance evaluation (2/2)

By fully reducing the graph, according to the rules we have seen, we
can compute its transfer function.

The transfer function will be a polynomial of X :

T (X ) = ναXα + νβX β + . . .

The minimum exponent of T (X ) is called the free distance of the
code, denoted dfree.

It can be shown that the error probability for the AWGN channel for
large SNR can be written as:

P(e) ≤ νdfree
Q(

√

2ρdfree
Eb

No

)
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