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Game Theory

Game theory is the analysis of conflict and cooperation among
intelligent rational decision makers.

A decision maker is said to be rational if he makes decisions
consistently in a pursuit of his own objectives.

In a game, two or more individuals make decisions that influence
each others expected utility.

The decision makers are called the players.

The decision objects of players are generally called strategies.
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Game Theory

Game theory offers two basic tools

Models of games.
Solution concepts.

There is a variety of models that represent different scenarios
that might show up in real-life situations.

Solution concepts are predictions about what rational intelligent
players should play.
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Game Theory

Game theory has its origins in social sciences. The rational
intelligent assumption is not always true when we refer to
human beings.

We are interested in games that represent conflict of interests
among wireless nodes, such as software defined radios.

SDRs are programmable devices that act according to their
programming so they can be considered rational.

The behavior of a wireless device may affect the communication
capabilities of neighboring devices because the wireless medium
is usually shared in wireless networks.
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Game Theory

Game theory can be seen as an extension of decision theory to
the case of many decision makers.

We will introduce the concept of utility functions which is of
outmost importance in game theory and then proceed with
examples of real game models.
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Utility Theory

Let X be a set of possible outcomes or alternatives that a
decision making entity wants to select from.

Some outcomes might be more preferable than others.

A binary relation R on X is any subset of X × X .

If (x , y) ∈ R we write xRy

Let � be a binary relation on X, for which x � y , if outcome x
is at least as preferable as outcome y.

� defines a preference relation if it is complete and transitive.
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Utility Theory

� is complete if for every x , y ∈ X , x � y or y � x .

Assume x is a 100kbps connection with 1ms delay and y is a
10Mbps connection with 100ms delay.

The first would be good for transmitting realtime voice the
other for transmitting stored video.

The preference depends on the application.

the preferences of the user in the application layer define
preference relations in lower layers.
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Utility Theory

It would be convenient if we could represent � using numbers.

We will represent the relation � with a function, u : X → <, for
which, x � y ⇔ u(x) ≥ u(y).

Utility functions are not unique. Any composition of a utility
function with a strictly increasing function is a utility function
that represents the same preference relation.

For finite or even countable infinite X such a function always
exists.

For uncountable infinite X its not always possible to find a
utility function.
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Utility Theory

We say � is continuous if for all {xn} such that {xn} → x

1 ∀n, xn � y ⇒ x � y
2 ∀n, y � xn ⇒ y � x

The relation � is continuous iff there exists a continuous utility
function u : X → < that represents it.



Introduction
to Game
Theory

Matigakis
Manolis

Game Theory

Utility Theory

Types of
Games

Static Games of
Complete
Information

Static Games of
Incomplete
Information

Dynamic Games
of Complete
Information

Applications

Power Control In
Cellular Systems

Iterative
Waterfilling

Utility Theory

In realistic situations the outcome of a game may depend not
only on the decision maker’s actions but on random events too.

Let Z denote the set of all possible outcomes.

Let ∆(Z ) denote the set of probability distributions over the set
Z.

a lottery is any member of ∆(Z ).

A decision maker must express preferences over lotteries.
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Utility Theory

We could represent a preference over lotteries with a utility
function just like before.

But we are mostly interested in the so called expected utility
representations.

if � satisfies certain axioms, then it can be proven that there
exists a utility function u : Z → < such that
∀p, q ∈ ∆(Z ), p � q ⇔ Ep(u(z)) ≥ Eq(u(z))

Thus, a rational decision maker should make decisions that
maximize a certain expected utility.
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Types of Games

Games can be partitioned into categories based an various
criteria

If a game is played just once and players get their payoffs at the
end, then the game is static

If there are many rounds, at the end of each the players get a
payoff, then the game is said to by dynamic

If all players know all the utility functions, then the game is said
to be with complete information

If there is some information concerning the game that is not
common knowledge, then the game is said to be with
incomplete information
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Types of Games

If players aim to maximize their own utility then the game is
said noncooperative.

If players are allowed to form coallitions the game is said to be
cooperative.

We will focus on non-cooperative game theory in this
presentation.
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Static Games of Complete Information

In normal or strategic form a static game of complete
information is represented by a triple

〈
N, {Si}i∈N , {ui (.)}i∈N

〉
N = {1, . . . , n} is the set of players.

Si is the set of strategies of player i.

ui :→ < is player’s i utility function.
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Static Games of Complete Information

A combination of players’ strategies form a strategic profile
s = (s1, . . . , sn)

The set of all strategic profiles is S = S1 × S2 × · · · × Sn

we represent the set of strategies of all players except i with s−i .

We assume all players select their strategies si ∈ Si

simultaneously.

Each player wants to maximize his own utility.
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Static Games of Complete Information

Example: Forwarder’s Dilemma

Player 1 wants to send to r1 using p2 as forwarder.

Player 2 wants to send to r2 using p1 as forwarder.

Forwarding has a cost c.

If player 1 forwards player’s 2 packet, player 2 gets a
reward 1 and vice versa.

Each player’s utility is his reward minus the cost.



Introduction
to Game
Theory

Matigakis
Manolis

Game Theory

Utility Theory

Types of
Games

Static Games of
Complete
Information

Static Games of
Incomplete
Information

Dynamic Games
of Complete
Information

Applications

Power Control In
Cellular Systems

Iterative
Waterfilling

Static Games of Complete Information

The Forwarder’s Dilemma game in strategic

P1 /P2 F D

F 1-c,1-c -c,1
D 1,-c 0,0

Strategy F is to forward other player’s packet.

Strategy D is to drop other player’s packet.
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Static Games of Complete Information

A strategy si for player i is said to be strictly dominated
if there exists some other strategy s ′i ∈ Si such that
ui (s

′
i , s−i ) > ui (si , s−i )∀s−i ∈ S−i .

In forwarder’s dilemma F is a strictly dominated strategy
for both players.

A rational player would never choose a strictly dominated
strategy.

For the forwarder’s dilemma, (D,D) is the only possible
outcome.
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Static Games of Complete Information

Example: Random Access Game

Two transmitters share the same medium.

When a player transmits, he pays a cost c.

If the other player remains silent, he gets a reward 1.

If both players transmit simultaneously, there is 0 reward.
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Static Games of Complete Information

The Random Access Game in strategic form

P1 /P2 Q T

Q 0,0 0,1-c
T 1-c,0 -c,-c

Strategy T is to transmit.

Strategy Q is to remain silent.

There are no strictly dominated strategies.
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Static Games of Complete Information

If we allow players to randomize over their strategies then we
get the mixed extension of the game.

A mixed strategy for player i is any pdf σi on the set Si .

If players play the mixed strategy profile σ = (σ1, . . . , σn), then
the expected utilities they get are ui (σ) =

∑
s∈S ui (s)σ(s)

usually, we assume that players choose strategies independently
so σ(s) =

∏n
i=1 σi (si )
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Static Games of Complete Information

Example: in the Random Access Game, if player 1 chooses T
with probability p and player 2 chooses T with probability q
then utilities are:

u1(p, q) = q(1− p)(1− c)− (1− q)(1− p)c
u2(p, q) = p(1− q)(1− c)− (1− p)(1− q)c
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Static Games of Complete Information

A solution concept is a prediction of what strategic profiles
might be actually played if players are rational and intelligent.

We can use strict dominance to iteratively eliminate strategies
from the game. Those strategies that survive iterative strict
dominance are called the strictly undominated strategies.

The set of undominated strategies however might be very large.

The most widely used solution concept is the Nash Equilibrium

A strategic profile s∗ is called a NE if for
ui (s

∗
i , s
∗
−i ) ≥ ui (si , s

∗
−i ),∀i ∈ N,∀si ∈ Si
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Static Games of Complete Information

A NE is a stable outcome of a game meaning that if all players
were to play the strategies in s∗, none would have an incentive
to unilaterally deviate.

However two or more players might have an incentive to deviate
together.

A NE in which no set of players has any incentive to deviate is
called a strong NE.

A game may have none, one or many NE
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Static Games of Complete Information

P1 /P2 F D

F 1-c,1-c -c,1
D 1,-c 0,0

The only NE of Forwarder’s Dilemma is (D,D).

Both players would be better off if they choose (F,F).

A NE is not necessarily a global optimum.
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Static Games of Complete Information

An outcome of a game is weakly Pareto efficient iff there is
no other outcome that would make all players better off.

An outcome of a game is strong Pareto efficient iff there is no
other outcome that would make at least one player better off
without reducing the utilities of the rest.

A NE is not always Pareto efficient.
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Static Games of Complete Information

P1 /P2 Q T

Q 0,0 0,1-c
T 1-c,0 -c,-c

The random access game has two NE (T,Q) and (Q,T).

Both are Pareto efficient.

They are unfair though!
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Static Games of Complete Information

An equivelant way to define a NE is using the best-reply
correspondence

a point-to-set mapping Mi (s) that associates each strategy
profile s with a subset of Si that maximize players i utility given
the strategies in s−i is said to be the best-reply correspondence
for player i.

The best-reply correspondence of the game is M = ×i∈NMi (s)

A strategic profile s is a NE iff s ∈ M(s).
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Static Games of Complete Information

For the forwarder’s dilemma game Mi (s) = D,∀s ∈ S .

For the Random Access Game

Mi (s) =

{
T if s−i = Q
Q if s−i = T
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Static Games of Complete Information

A NE exists if the best-reply correspondence has a fixed point.

There are theorems that gives sufficient conditions for the
existance of fixed points of a correspondence and therefore for
the existance of NE.

One such theorem states that if every players actionn space is a
compact convex set in Euclidean space and the utility functions
are continuous in S and quasi-concave then the game has at
least one pure NE.

Nash proved in 1956 that every finite game has a NE in mixed
strategies.
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Static Games of Incomplete Information

In a game of complete information everything is assumed to be
common knowledge.

A more realistic model might assume that each player has some
private information.

For instance, each node in a wireless network knows his own
channel.

In game theory literature the private information of a player is
called its type.

Games of incomplete information are represented by Bayesian
Games.
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Static Games of Incomplete Information

A Bayesian Game consists of the following:

a set of players N
a set of types Ti for each player
set of actions Ci for each player
a probability function pi (·, ti ) for each player
a utility function ui (c , t)
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Static Games of Incomplete Information

Each player is assumed to know his own type.

We use the term actions for the decision objects of players
instead of strategies. A strategy for player i is a function from
the players types Ti to his actions Ci .

The probability function pi (·, ti ) is a function from Ti into
∆(T−i ).

It represents what player i knows about other players types
when his own type is ti .
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Static Games of Incomplete Information

A Bayesian Game can be represented in strategic form as
follows:

The set of players is T ∗ =
⋃

i∈N Ti .
The strategies available for each of the players that
represent player i of the Bayesian Game are Dti = Ci .
For any d in ×s∈T∗Ds the utility function is defined as
uti (d) =

∑
t−i∈T−i

p(t−i |ti )ui ((d(tj))j∈N , (tj)j∈N).



Introduction
to Game
Theory

Matigakis
Manolis

Game Theory

Utility Theory

Types of
Games

Static Games of
Complete
Information

Static Games of
Incomplete
Information

Dynamic Games
of Complete
Information

Applications

Power Control In
Cellular Systems

Iterative
Waterfilling

Dynamic Games of Complete Information

When players interact by playing a similar stage game numerous
times, the game is called a dynamic, or repeated game. Unlike
static games, players have at least some information about the
strategies chosen on others and thus may contingent their play
on past moves.

Each time they play they get a payoff.

Players express their preferences over sequences of payoffs.
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Dynamic Games of Complete Information

A very general model of a repeated game is of the form
Γr = (N,Θ, (Di ,Si , ui )i∈N , q, p) where

N is the set of players

Θ is the set off the possible states of nature as it is described in
game theory text books

For each player i, the sets Di and Si , denote the set of moves
player i can choose and the set of signals he may receive, at
each round of the game

q is an initial distribution in ∆(S ×Θ)

p is a transition function p : D ×Θ→ ∆(S ×Θ)

ui : D ×Θ→ < is the payoff function of player i
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Dynamic Games of Complete Information

The games is played for infinite rounds.

In each round some state in Θ is the current state of the world.

At the begining of each round, each player receives a signal si
that represents his observation of the other players moves in the
previous round.

Each player uses all his past observations to choose his next
move.

A strategy is a plan of what to do in each round as a function of
the history of the game.



Introduction
to Game
Theory

Matigakis
Manolis

Game Theory

Utility Theory

Types of
Games

Static Games of
Complete
Information

Static Games of
Incomplete
Information

Dynamic Games
of Complete
Information

Applications

Power Control In
Cellular Systems

Iterative
Waterfilling

Dynamic Games of Complete Information

There are many ways in which players may define their
preference among different payoff sequences.

The simplest would be to assume that players aim at
maximizing their sum of payoffs.

For infinitely repeated games though this could be infinite.

An alternative way that doesn’t suffer from the previous
problem is the δ-discounted average.

If the sequence of payoffs player i gets are (wi (1),wi (2), . . . ) the
δ-discounted average is

(1− δ)
∞∑

k=1

δk−1wi (k)
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Dynamic Games of Complete Information

Nash equilibria are defined for repeated games just like for static
games.

There is also a stronger equilibrium concept in repeated games
called subgame-perfect equilibrium.

A strategic profile is a subgame-perfect equilibrium if it is a
NE of every subgame.

In a subgame-perfect equilibrium there is no incentive for players
to deviate from the defined moves at each round.
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Dynamic Games of Complete Information

A simpler model comes when we assume there is only one
possible state of the world, and there each player knows all
other players past moves, Si = ×j 6=iDj .

Such a game is called a repeated game with standard
information.

A standard repeated game is consist of a stage game that is
played again and again.

Any strategy that leads to a NE in every stage game is a NE in
the repeated game.
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Dynamic Games of Complete Information

In Forwarder’s Dilemma we saw there was only one NE which
was inefficient.

Let as assume each time they play there is a 0.99 chance that
they will play again.

The number of times they will play is a random variable with
geometric distribution.

The probability of playing for exactly k rounds is 0.99k−1.01.

Suppose that both players play F until one of them decides to
play D, and in that case both play D from then on.
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Dynamic Games of Complete Information

The total expected future payoff for both players ass long as
they play F is

∞∑
k=1

(0.99)k−1(0.01)(1− c)k = 100(1− c)

if player i chooses D at some round then his total expected
future payoff will be

1 +
∞∑

k=1

(0.99)k−1(0.01)0k = 1

The strategy of always forwarding is a NE in the reapeted game.

In fact its a subgame perfect equilibrium because (D,D) is a NE
of the stage game.
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Power Control In Cellular Systems

The problem of power control has often been modeled as a
game.

Utilities are chosen to be increasing in SINR and decreasing
with power.

One possible utility function used is

ui (p) = ui (pi , γi ) =
R

pi
(1− 2BER(γi ))L

R is the rate at which user transmits.

It has been shown that the static game has a unique NE.

The NE of the static game however is Pareto inefficient.

If players played the game repeatedly they could enforce better
cooperation using credible threats.
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Iterative Waterfilling

suppose we have the same model as in Random Access Game
but now players are allowed to choose their transmitting power
spectral densities.

The two transmitters are the players.

Each player’s strategies are its available power spectral densities.

players utilities are the rates obtained when they see the other
player’s signal as interference.
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R1 =
∫W

0
log

(
1 +

p1(f )

a(f )p2(f ) + N0W

)
,

R2 =
∫W

0
log

(
1 +

p2(f )

b(f )p1(f ) + N0W

)
It can be shown that the optimum transmit signal power
spectral density is a waterfilling solution to power spectral
density of the noise.
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In our model the power spectral density of the noise depends on
the transmit power spectral density of the other player.

When one player changes his PSD the other will also have to
change and so on.

Will they converge to some stable PSDs if they change their
power spectral densities without any coordination (in a
distributed manner that is)?

It can be shown that a distributed iterative algorithm where
each player does waterfilling to the PSD of the noise plus
interference always convergence to a NE.

This means that players in a game can sometimes converge to
an equilibrium distributedly.
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