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Acoustic Echo Cancellation: Do
IR Models Offer Better Modeling
Capabilities than Their FIR Counterparts?

Athanasios P. Liavas and Phillip A. Regal@enior Member, IEEE

Abstract—The adequateness of IIR models for acoustic echo performance in the AEC problem than their FIR counterparts.
cancellation is a long-standing question, and the answers found At this point, two comments are in order:
in the literature are conflicting. We use results from rational

Hankel norm and least-squares approximation, and we recall * €onclusions based solely on simulations [4] are not

a test that provides a priori performance levels for FIR and entirely convincing if we cannot guarantee that we have
IR models. We apply this test to measured acoustic impulse approached the global minimum of the error performance
responses. Upon comparing the performance levels of FIR and surface for the lIR case.

IIR models with the same number of free parameters, we do

not observe any significant gain from the use of IR models. We * The use of an equation error model [5] in the (output

attribute this phenomenon to the shape of the energy spectra error) AEC scheme seems questionab!e on its princi-

of the acoustic impulse responses so tested, which possess many ples. This argument becomes stronger in undermodeled
strong and sharp peaks. Fai@hful modeling of these peaks requires cases—including AEC—in which the minimum point

many parameters, irrespective of the type of the model. of an equation error cost function need not have any
Index Terms—Acoustic echo cancellation, FIR models, IIR particular connection with the minimum point of an

models. output error cost function (e.g., [6, p. 28]).
The first attempt to put the problem under a model reduction
|. INTRODUCTION framework appears in [7], where the authors use concepts

from rational Hankel norm approximation theory in order to
amine if IR models offer better approximation properties

modeling capabilities than their finite impulse response (Fl an FIR models with the same number of free parameters in

counterparts. The reason for this is that many physical systefi§ AEC context. Using a measured room acoustic impulse
can be well described by difference equations involving boffSPONSe, they show that IR models can outperform, for
the input and the output. These equations lead, in turn, $8Me model orders in Hankel norm approximation terms, their
rational transfer functions corresponding to IIR models. ~ FIR counterparts. This work remains one of the few that has
When we have to cope with unknown systems ana/§faimed superlorlf[y of IR models in an AEC enwroqment.
unknown signal properties, some type of adaptation has toR€cently, considerable progress has been made in both the
be included in our models. The theory of adaptive FIR filtef§€0retical and the algorithmic parts of adaptive IR filtering.
is well developed (see [1] and [2] among many nice texts) afi@" €xample, using Hankel norm approximation concepts [8],
gives us the ability to predict their behavior under a variety G Priori bounds have been developed for the rational least-
conditions. There are applications, however, in which achie§duares approximation [9], [10], which seems a more natural
ing an acceptab|e performance |eve| requires avery h|gh Ord%ilterion in adaptive f|lter|ng than the Hankel norm Criterion.
FIR model, resulting in very high computational complexityNew efficient algorithms have been developed based on the
A well-known example is acoustic echo cancellation (AECjapped-state lattice structure, overcoming in this way potential
where in order to achieve satisfactory echo compensation, RIrtability of the direct-form IIR filters during adaptation [6,
filters with several thousands of taps are often required [3]chs. 7, 8], [11]. Furthermore, the study of algorithms other than
In the hopes of reducing computational complexity, adaptiv@ochastic gradient-based algorithms has rendered it possible to
lIR algorithms for AEC have remained of interest. Some earfjuarantee that, under certain conditions, the stationary points
works claim that IR models cannot offer substantially bettef a family of adaptive IIR algorithms are “close” to the global
minimum of the least-squares output error performance surface
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w(n) Note that we use, instead of:~1, as the unit delay operator,
' i.e., zFu(n) = u(n—k). The output ofH (z), which is denoted
y(n), can be expressed as

y(n) = h(n) xu(n) = Z hru(n — k). 2
— k=0

H(z) H{z) _ N .
Our adjustable moddl{ (z) is constrained to be causal. It may
be either anMth-order FIR filter

g}(n) R M R
c(n) - yln) H(z) =Y by 3)
N\ k=0

+

Fig. 1. System approximation/identification problem. or a Kth-order IIR filter

K
movements, temperature variations, etc. Thus, it would be . B(z) 1= el N
desirable to treat this problem as one involving nonstationary H(z) = A(2) =K = Z hyz". 4)
systems and signals. It is probably true that no such progress Z apzk PO
can be made until we fully understand simple stationary k=0

cases. A complete understanding of the stationary case would

| N L o .
possibly serve as a valuable guide toward tackling the moF8€ output offi (z), which is denotedj(n), in either case, is
ed as an estimate gfn).

difficult nonstationary case. Thus, our interest in this papHP il ==t ) L o
will be restricted to the stationary case. Our objective is to (jeter_mme the filtef$(~) that minimize
The performance levels achieved byual complexitylR € mean square estimation error
and FIR models provide a measure of the approximation E[2(n)] = E[(y(n) — §(n))?]
capabilities offered by the respective models in the AEC 1 47
problem. By equal complexity models, we mean models with =or
the same number of free parameters. It is not always true o
that such models will lead to adaptive algorithms with exacthyheres, (¢?“) is the power spectral density of the inpt(t2).
the same computational complexity. However, we feel th&ince our input is unit variance zero mean white noise, this
this definition of complexity is the most appropriate for ouminimization problem reduces to
study because in .t'his way, we measure how effectively the min |[H(z) - H(z)||§
parameters are utilized by the various models. H(z)
The rest of the paper is organized as follows. In Section I, 1 [

Su(e)H(I) = H(I) P dw  (5)

we recall some principal results from least-squares approx- =min — [ |H('*) - H(™)? dw

S . ; fr(z) 27 J_

imation theory, which constitute a test for the performance -

o.ffer.ed by 'FIR' and IIR models in the least-squares approxima- — min Z (hy, — flk)2 (6)
tion/identification problem. In Section IlI, we apply this test in () 15

the AEC context using measured (as opposed to hypothesized)

room acoustic impulse responses. For the acoustic impulégere|l - [l denotes theC, norm.

responses tested, [IR models do not offer substantially superiof” the sequel, we assume that the deg¥éer K (FIR or
modeling capabilities than do their equal complexity FIRR, respectively) is insufficient to allow th€, norm of the
counterparts. This phenomenon may be attributed to the shggEmation error to reach zero. In the next three subsections,
of the energy spectra of the AEP’s so tested; they possess m&/fgy€View known results that express how small thenorm
strong and sharp peaks, whose faithful modeling, as showrghthe estimation error can become versus the model order in

Section IV, requires many parameters, irrespective of the ty[fgms of the impulse respongé; }. These bounds will form
of the model. Conclusions are drawn in Section V. he basis for the comparison of the modeling capabilities of
FIR and IIR models in the AEC context.

Il. LEAST-SQUARES APPROXIMATION

UsING FIR AND IR MODELS A. Mth-Order FIR Case

In this section, we review the system approxima- When H(z) is an Mth-order FIR model, our minimization
tion/identification setup shown in Fig. 1. The unit variancBroblem becomes

zero mean white noise sequenc€rn) drives both H(z) M
and H(z). We assume thaH(z) is causal and stable in Cmin |[H(z) = Y byt
the I, sense, i.e., ho, - b k=0 9

=9} =9} M oo
H(z)=>_ mz*,  with > hi < oc. (1) = min <Z (e —ha)* + > hi). 7)
k=0 k=0

ho, - hy
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It is clear that the coefficients of the optimuldth-order FIR Furthermore, since at each minimum point|éf (z)— H(z)||,

filter match the firstM + 1 coefficients ofH(z), giving it happens that, = ho [6, p. 129], then
M 7 = min  ||H(z) = H2)|l2 < ox1(Tw).  (15)
~min  |[H(z) — Z | = Z h3. (8) deg H(2)<K '
P far k=0 2 k=Mtl It can also be shown [10] that
Thus, given the impulse responag, £ = 0, 1, ---, we can - 1/2
computea priori the performance achieved by the optimum : Hiz)— H > 2(DCw D
FIR models as a function of the model ordéf. deg gl(fig 14 (2) (@2 2 i:;rl oi(DLuD)
(16)
B. Kth-Order IIR Case where D = diag dy, dy, ---), with
When H(z) is a Kth-order IIR model, the minimization ok —1
problem (6) becomes die = di—1\[ =5 do = 1. 17)
: & 2
min _||H () — H(z)|l2- (©) Thus, givenhy, k = 0, 1, ---, we can derivea priori upper

deg H(2)<K ; .
and lower bounds [via (15) and (16), respectively] for the

In this case, we cannot derive, in general, exact expressigfigformance offered by the IR models as a function of the
for the minimum £, error versus the model order in termsyodel orderk. At this point, we must note that in general,
of the impulse response. We can, however, obtain, givgdih bounds ardoose and we do not knova priori which

hi, k =0, 1,---, a priori upper and lower bounds for thepound is closer to the minimung, error norm achieved by
minimum £, norm of the estimation error as a function othe IR models.

the model orderK. These bounds depend on the Hankel
singular values ofH(z), and we find it useful to introduce ARMAp, ) Case
some notation at this point.

Given a stable and causal(~>) as in (1), its Hankel form
is defined as the doubly infinite Hankel matrix

hi ha ha
ho hs ha
Pw=1hs hy by

P> q
In [7], it was claimed that the shape of the acoustic impulse
response suggests the use of models with unequal numbers
of poles and zeros, i.e., the use of ARMAg) models with
longer numerator than denominatgr % ¢). It turns out that
(10) upper and_lowerCQ error bounds f(_)r the ARM_ep, g) case
can be derived by slightly rearranging the previous case [6, p.
141]. More specifically, we need only remove the fist- ¢)

The Hankel singular values d@f(z) are the singular values of samplesho, hy, -+, hp—q—1, thereby obtaining

Ly, 0;(I'y), and they are usually given in descending order. °° ‘
The Hankel norm ofH (z) is defined as T(z) = hp g2 (18)
k=0
I1H ()|l = Call = o1(Ta) (11)

Then, we perform ath-order rational least squares approxi-
where||T' || denotes the induced 2-norm of the operdtgr. mation toZ’(z). Bounds for this approximation still obey (15)
Kronecker's theorem states that the ranklgf is equal to and (16) withK' = ¢ (the denominator order).
the McMillan degree ofH(z). The rational Hankel norm
approximation problem is fully resolved by the celebrated lIl. IR VERSUS FIR MODELS FOR
theorem of Adamjaret al. [8], which states the following. AcCoUSTIC ECHO CANCELLATION

Theorem: Let 'y be a given Hankel form, and lét; be

a candidate Hankel approximant. Then Formulas (8), (15), and (16) can be used to derive

priori approximation levels for FIR and IR models in any
min _ ||I'g =Tyl =ox+1(Tn). (12) approximation/identification problem, which can be described
rank [p <K by Fig. 1. In this section, we use these formulas to compare
Furthermore, there is a unique Hankel form of rank ndhe modeling capabilities of IR versus FIR models for AEC.
exceedingK that attains this bound. We apply them here to measured (not hypothesized) room
A connection between the rational Hankel norm afil acoustic impulse responses. The dimensions of the room are
norm approximations is provided through the norm/Hankel 7.36 x 3.65 x 2.77 m?, the floor is covered by carpets, and

norm inequality [15], [6, p. 154] two sides have windows.
- 172 In Fig. 2(a), we plot the magnitude of the measured impulse
<Z (hy, — ;Lk)2> <oy Ty —Ty). (13) response of the AEP on a decibel scale (sampling frequency
P - 8 kHz). In Fig. 2(b), we plot the magnitude of its energy

spectrum in the frequency range 100-1000 Hz (the frequency

interval is constrained simply for visualization purposes).

o0 R 1/2 In Fig. 3, we plot the performance levels offered by the

ranlir%ipq( < (hw — hk)2> <og1(TH). (14) models as a function of the number of the model parame-
= Nke=1 ters. The thick lines plot the upper and lower mean square

From (12) and (13), we obtain
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Fig. 2. (a) Magnitude of acoustic impulse response in decibel scale. (b) Energy spectrum of acoustic impulse response (frequency interval 200-1000 H
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Fig. 3. Performance levels for IIR and FIR models. Thick lines: Upper and lower mean square error bounds for IR models. Thin line: Minimum
mean square error for FIR models.

error bounds for IIR models, whereas the thin line plots the In Table I, we present bounds for various ARMAQ)
minimum mean square error achieved by the respective Fifbdels and the minimum mean square error achieved by
models. We observe that for this impulse response, for paraflR models with the same number of parameters. Again, we
eter numbers up to 1500, the FIR performance lies between tiiserve comparable performance levels using FIR and IIR
upper and lower IIR bounds. That is, for parameter numbeapproximants.

up to 1500, the FIR and IIR models provide comparable We performed the aforementioned tests using ten measured
echo reduction. We may remark here that in an adaptitsgical room acoustic impulse responses. No significant differ-
filtering context, neither the FIR nor the IIR models will reactences in performance levels were observed between FIR and
identically their respective global minima due to inevitabldR approximants.

misadjustment effects. Given the large number of parame-Thus, even if we overlook problems commonly appearing in
ters—extending well into the hundreds here—misadjustmehte study of adaptive IIR filters, such as potential existence of
effects may render the two solutions virtually indistinguishablecal minima and potential instability during the adaptation and
in terms of their actual performance measures. slow convergence speed—some of which have been solved in



LIAVAS AND REGALIA: ACOUSTIC ECHO CANCELLATION 2503

TABLE | Using similar arguments, we can prove that the maximum
Bounps For Various ARMA(p, ¢) MoeLs number of extrema points df (¢)|2, where H(z) is the
o o 1 ) Kth-order IIR model given by (4), i2K — 1, and the
ARMA Efe”(n)] | ARMA £fe”(n)] | IR Llc*(n)] corresponding number for the ARMA, ¢) model isp+g—1.
(p.4q) upper hound lower bound win This means that to faithfully model an energy spectrum
whose magnitude exhibitdZ extrema points on the interval
(310, 10) -8.6532 -23.6271 -19.9502 [0, ], we require no fewer thald/ parameters for the FIR
‘ case andV + 2 for the IIR and ARMA cases.
(350, 50) "18.1654 ~32.9206 230518 The shape of the magnitude of the energy spectrum of the
(400,100) 23.9676 41.3913 96807 AEP exhibiting many strong and sharp peaks implies that in
: order to provide faithful AEP approximations, we must use
(510, 10) -12.3106 -28.6896 2097 models possessing many spectral peaks. From the previous
] o s discussion, it is clear that existence of many peaks implies
(600,100) 29.1818 ~46-1556 RIS many parameters in order to obtain a sufficient number of
(600,200) “34.0131 -53.7087 17014 extrema, irrespective of the type of the model. Thus, if we
- accept that the existence of many strong and sharp spectral
(710, 10) -22.3008 -38.4258 -38.9031 peaks is a generic property of AEP’s (as is evidenced by
(800,100) 38,9060 54,9566 . many sFudies, e.g., [7] and [17]), then we deduce that in order
' ) ) to provide good AEP approximations, we must use an FIR,

an lIR, or an ARMA model with a very large number of

. o . . parameters. As concerns the FIR models, this fact is well
certain cases—we may anticipate that adaptive IIR algorithigsown and can be deduced by a simple inspection of the

will not offer echo reduction levels substantially superior fpulse response of an AEP. However, we feel that the part

their FIR counterparts. Refer to [16] for further examplegoncerning the IR models is somewhat surprising (although

which are in general agreement with the results presented h‘f:f@rhaps anticipated in view of some earlier studies [7], [19])
and gives a plausible explanation to the phenomenon related

IV. ADEQUATENESS OFIIR MODELS to the performance of adaptive IIR algorithms for AEC.
FOR ACOUSTIC ECHO CANCELLATION

In the previous section, we observed that IIR and FIR
offer comparable echo reduction for the AEC problem. Our
objective in this section is to isolate those characteristics ofOur main purpose is to answer the questi@o‘1IR models
AEP’s, which seem to be the main causes for this phenomenerhibit modeling capabilities that are to their FIR counterparts

With reference to the impulse response plotted in Fig. 2(a), the AEC probler®” Using theoretical results from least
we observe a decreasing exponential envelope, which has bsguares approximation theory, we recalled a test that can be
the impetus in many works for using IR models to captunesed to derive priori performance levels for these models as a
AEP’s. function of the number of the model parameters. Applying this

With respect to the magnitude of the energy spectrum of thisst to a number of measured typical room acoustic impulse
impulse response, in Fig. 2(b), the most striking observatieasponses, we did not observe any substantial improvement by
is the existence of many strong sharp spectral peaks (fothe use of IIR models. This observation is of great practical
related discussion, see [17]). As a result, for this particulanportance and requires a satisfying explanation. The main
energy spectrum, there exiét ~ 1000 extrema points in cause of this phenomenon lies, in our opinion, in the shape
the frequency range 0-4000 Hz. This means that in orderdbthe energy spectra of the AEP’s so tested. Their striking
model this energy spectrum faithfully, we need no fewer tharharacteristic is the existence of many strong sharp spectral
L parameters. In the sequel, we justify this claim. peaks. We showed that faithful modeling of many peaks

Consider first the FIR case. In order to compute the masequires many parameters, irrespective of the type of model.
imum number of extrema off (¢/~)|> = H(c/*)H(e™7*), It seems that IR models do not outperform their equal

V. CONCLUSIONS

on the interval[0, 7], with complexity FIR counterparts in modeling such cases.
M We may also remark that no study has shown, to our
fI(z) _ Z b (19) knowledge, that acoustic echo paths may be considered to

be finite-order systems. This may be attributed to distributed

. . e parameter effects of acoustic wave propagation or possibly
we first write other modeling considerations. In short, both polynomial and
. M rational transfer functions are “inadequate” for this application
[H(e")]” = Z a cos(wk) (20) o comparable degrees.
k=0 Whether similar conclusions may apply to other application
for someay, K =0, ---, M. Then, we follow the same stepsareas involving “infinite-order” systems is not immediately

as in [18, p. 128], and we conclude that the maximum numbelear. For this reason, we have been careful to focus on a
of extrema of|H(e’“)|? on the intervall0, 7] is M + 1. particular artifact common to most acoustic echo paths: an
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