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ABSTRACT 

We consider the problem of nonnegative tensor factorization. Our 
aim is to derive an efficient algorithm that is also suitable for parallel 
implementation. We adopt the alternating optimization (AO) frame­
work and solve each matrix nonnegative least-squares problem via a 
Nesterov-type algorithm for strongly convex problems. We describe 
a parallel implementation of the algorithm and measure the speedup 
attained by its Message Passing Interface implementation on a paral­
lel computing environment. It turns out that the attained speedup is 
significant, rendering our algorithm a competitive candidate for the 
solution of very large-scale dense nonnegative tensor factorization 
problems. 

Index Terms- Tensors, constrained optimization, CANDE­
COMP, PARAFAC, nonnegative factorization, parallel algorithms. 

1. INTRODUCTION 

Tensor factorizations (or decompositions) into latent factors are very 
important for numerous tasks, such as feature selection, dimension­
ality reduction, compression, data visualization and interpretation, 
and are usually computed as solutions of optimization problems [1], 
[2]. The Canonical Decomposition or Canonical Polyadic Decompo­
sition (CANDECOMP or CPO), also known as Parallel Factor Anal­
ysis (PARAFAC), and the Tucker Decomposition are the two most 
widely used tensor factorization models. 

Typical data sizes have been growing rapidly in recent years, 
and this is especially true for machine learning applications of tensor 
factorization models. This trend towards bigger and bigger data has 
made imperative the development of parallel algorithms for tensor 
factorization. In [3] , two parallel algorithms for unconstrained tensor 
factorization/completion have been developed and results concern­
ing the speedup attained by their Message Passing Interface (MPI) 
implementations have been reported. Work on parallel algorithms 
for sparse tensor decomposition appears in [4], [5] . 

In this work, we focus on (dense) nonnegative PARAFAC, 
which, for simplicity, we call Nonnegative Tensor Factorization 
(NTF).1 Our aim is to derive an efficient NTF algorithm that is 
also suitable for parallel implementation. We adopt the Alternating 
Optimization (AO) framework and solve each matrix nonnegative 
least-squares (MNLS) subproblem via a Nesterov-type (accelerated 
gradient) algorithm for L-smooth and t-t-strongly convex problems 
[7, Chapter 2]. This framework seems quite appropriate because it 

t Supported in part by NSF IIS-1 247632 and IIS-1447788. 
1 A more detailed presentation of the algorithm, its performance, and its 

parallel implementation appears in [6]. 
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optimally exploits first-order, i.e., gradient, information and leads 
to an algorithm that is suitable for parallel implementation. We 
describe a parallel implementation of the algorithm and measure the 
speedup attained by its Message Passing Interface (MPI) implemen­
tation in a multi-core environment. We conclude that the proposed 
algorithm is a strong candidate for the solution of very large dense 
NTF problems. 

Notation: Vectors, matrices, and tensors are denoted by small, 
capital, and calligraphic capital bold letters, respectively; for exam­
ple, x, X , and X. lR~XJ XK denotes the set of (1 x J x K) real 

nonnegative tensors , while lR~ x J denotes the set of (1 x J) real 
nonnegative matrices. II . II F denotes the matrix or tensor Frobenius 
norm , I denotes the identity matrix of appropriate dimensions, and 
(A)+ denotes the projection of matrix A onto the set of element­
wise nonnegative matrices, The outer product of vectors a E lR1X 1 , 

b E lRJx l, and c E lR K X1 is the rank-one tensor a 0 b 0 c E 
lRl xJx K with elements (a 0 b 0 c)(i ,j, k) = a(i)b(j)c(k). The 
Khatri-Rao product of compatible matrices A and B is denoted as 
A 8 B and the Hadamard product is denoted as A ® B. Inequality 
A ~ B means that matrix A - B is positive semidefinite. 

2. NONNEGATIVE TENSOR FACTORIZATION 

Let tensor XO E lR~x J x K admit a factorization of the form 
R 

X o = [A O, B O, C o] = L a~ 0 b~ 0 c~ , (1) 
r = l 

where A O = [a~ a'Rl E lR~X R , B O = [b~ b'Rl E lR~XR , 
and C o = [c~ c'Rl E lR~ x H We observe the noisy tensor 
X = Xo + e, where e is the additive noise. Estimates of AO , 
B 0 , and C o can be obtained by computing matrices A E lR~ x R, 

B E lR~XR , and C E lR~X R that solve the optimization problem 

min /x(A, B , c) = .!:. II X - [A , B , C] II~ . (2) 
A 2: 0 ,B 2: 0 ,C 2: 0 2 

If Y = [A, B , C] , then its matrix unfoldings , with respect to the 
first, second , and third mode, are given by [8] 

YA = A(C 8 Bf, YB = B(C 8 Af, Yc = C(B 8 Af· 

Thus, /x can be expressed as 

/x(A, B, C) = ~ II XA - A (C 8 Bf ll : 

~ II XB - B (C 8 A)TII: (3) 

~ II Xc - C (B 8 A)TII: . 
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These expressions form the basis for the AO NTF in the sense that, 
if we fix two matrix factors, we can update the third by solving an 
MNLS problem. For reasons related with the conditioning of the 
MNLS problem, we propose to add a proximal term. More specifi­
cally, if Ak, Bk, and Ck are the estimates of A , B , and C , respec­
tively, after the k-th AO iteration, then Ak+l is given by 

1 II TI1 2 At 2 A k+1 := arf~jn2 XA- A(Ck 8 Bk) F + --:f Il A - Ak II F, 

(4) 

where At ;::: 0 determines the weight assigned to the proximal term. 
If (Ck 8 Bk) is a well-conditioned matrix , then it is reasonable to put 
small weight on the proximal term and compute Ak+1 that leads to a 
large decrease of Ix (A, B k, C k ). If, on the other hand, (C k 8 B k ) 
is an ill-conditioned matrix, then it is reasonable to put large weight 
on the proximal term, leading to a better conditioned problem and 
easy computation of A k+1 that improves the fit in Ix(A , Bk, C k ) 
but is not very far from A k. This is the strategy we shall follow for 
the solution of problem (2) (see also [9], [10]). 

The computational efficiency of the AO NTF heavily depends on 
the algorithm we use for the solution of problem (4). In this work, 
we adopt the approach of Nesterov for the solution of smooth and 
strongly convex problems. The derived algorithm is optimal under 
the (worst-case) black-box first-order oracle framework [7, Chapter 
2] and is very efficient in practice. Furthermore, it leads to an AO 
NTF algorithm that is suitable for parallel implementation. 

3. NESTEROV-TYPE ALGORITHM FOR AO NTF 

3.1. Optimal first-order methods for set-constrained L-smooth 
tL-strongly convex optimization problems 

Let 0 < t-t ::; L < (Xl and I : ]Rn -+ ]R be a smooth convex function , 
with Hessian \72 /(x), such that 

t-tl ~ \72 I(x) ~ LI, \I x E ]Rn (5) 

Then, we say that I is an L-smooth t-t-strongly convex function , de­
noted as I E s~:i [7, p. 63] . Let Q be a closed convex set. Our aim 
is to solve problem 

min/(x), 
x E<Q> 

(6) 

within accuracy E > 0, using only first-order, i.e. , gradient, infor­
mation. The accuracy of the solution is defined as follows. Let 
I. := min I(x). A point x E Q solves problem (6) within accuracy 

x E<Q> 
E> 0 if I(x) - I. ::; E. 

We consider optimal first-order methods because they are strong 
and, in many cases, the only viable candidates for the efficient solu­
tion of very large optimization problems. It has been shown in [7, 
Chapter 2] that the first-order oracle complexity of this class of prob-

lems is 0 ( If; log ~ ). An algorithm that achieves this complexity 

and, thus , is first-order optimal is given in Algorithm 1 (see [7, pp. 
80, 81 , 90]). If the projection operation onto set Q, II<Q> (.) , is easy to 
compute, then this algorithm is very efficient in practice. Constants 
t-t and L are unknown and, thus, should be estimated. 

In the sequel , we adopt Algorithm 1 for the solution of MNLS 
problems with proximal term. We note that [11] and [l2] solved 
MNLS problems using a variation of Algorithm 1 which is equiva­
lent to Algorithm 1 with t-t = O. This algorithm is first-order opti­
mal if the problem is L-smooth; in this case, the oracle complexity 

becomes 0 ( }.) (see [7, p. 90]). However, if the problem is L­

smooth and t-t-strongly convex, then thi s algorithm is not first-order 
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Algorithm 1: Nesterov algorithm for set-constrained L­
smooth and t-t-strongly convex optimization problems 

Input: Xo E Q, t-t, L. Set Yo = Xo, ao E (0,1), q = y. 
1 k-th iteration 

Xk+1 = II<Q> (Yk - t\7/(Yk)) 
a k+l E (0, 1) from a%+ l = (1 - a k+da % + qak+l 
(3 . - <> ,(1 - <>,, ) 

k+ l - ai+O::k+l 

Y k+1 = Xk+1 + (3k+1 (Xk+1 - Xk ) 

Algorithm 2: Nesterov algorithm for MNLS with proximal 
term 

Input: X E ]Rm x k, B E ]Rk x n , A. E ]Rmx n 

1 L' = max(eig(BTB)) , t-t' = min(eig(BTB)) 

2 A = g(t-t' , L'), W = - XB - AA., Z = B T B + AI 

3 q = L;t~ ; L = L' + A;Ao = Yo = A.,ao = l , k = O 
while (1) do 

\7/(Yk ) = W + AkZ 
6 if (terminating_condition is TRUE) then 
7 I break 
8 else 

9 l A k+1 = (Yk - t \7/(Yk ))+ 
10 a%+ l = (1 - ak+ l )a% + qak+l 

(3 . - <> ,(1 - <>,, ) 
11 k+l - <>~ +<> '+1 

12 Y k+1 = A k+1 + (3k +1 (Ak+1 - A k ) 
13 k = k + 1 

14 retumAk. 

optimal and usually performs much worse than the optimal. Thus, 
strong convexity is a very important property that should not be ne­
glected. 

3.2. Nesterov-type algorithm for MNLS with proximal term 

Let X E ]Rm xk , A,A. E ]Rm xn , B E ]Rk xn , and consider the 
problem 

min/(A) = ~ II X - ABTII } + ~ II A - A .II}· (7) 
A ::> 0 2 2 

We shall solve this problem using only gradient information. The 
gradient of I , at point A , is 

\7/(A) = - (X - ABT) B + A(A - A.). (8) 

As we mentioned in Section 2, the main reason we introduce the 
proximal term into the cost function is the improvement of the con­
ditioning of the MNLS problem and guarantee of strong convexity. 
If we consider problem (7) under the framework of the AO NTF al­
gorithm, then we may compute the proximal coefficient A based on 
L' := max (eig(B TB)) and t-t' := min (eig(B T B)). For exam-

ple, if 1r « 1, then we may set A ~ lOt-t' , significantly improv­
ing the conditioning of the problem, by putting large weight on the 
proximal term; however, in this case, we expect that the optimal so­
lution will be biased towards A •. Otherwise, we may set A ~ t-t' , 
putting small weight on the proximal term and permitting significant 
progress towards the computation of A that satisfies approximate 



Algorithm 3: Nesterov-based AO NTF 

Input: X , Ao > 0 , Bo > 0 , Co> O. 
Setk = 0 
while (termina ting condi t ion is FALSE) do 

WA = - XA(Ck 8 B k) - AtAk, ZA = C [ C k ® B [ B k + AtI 
Ak+l = Nesterov_MNLS(WA, ZA, Ak) 

WB = - XB(C k 8 A k+d - A~Bk' ZB = C [ C k ® A [+1Ak+1 + A~I 
B k +1 = Nesterov~NLS(WB , ZB , Bk) 

Wc = - Xc(Ak+1 8 B k+1 ) - Afck, Zc = A[+1 A k+1 ® B[+1 B k+1 + AfI 
C k+1 = Nesterov_MNLS(Wc , Zc , C k) 
k = k + l 

10 return A k, Bk, C k. 

equality X ;;:;0 ABT as accurately as possible. We denote this func­
tional dependence as A = g(f.1,' , L'). 

Problem (7) is L-smooth and J.L-strongly convex, with L = L' + 
A and J.L = p,' + A. We note that the values of Land p, are necessary 
for the development of the Nesterov-type algorithm , thus, computa­
tion of L' and p,' is imperative. 

A Nesterov-type algorithm for the solution of the MNLS prob­
lem (7) is given in Algorithm 2, where (-) + denotes projection onto 
the set of matrices with nonnegative elements. For notational conve­
nience, we denote lines 3 to 13 of Algorithm 2 as 

Aopt = Nesterov~NLS(W, Z , A . ). 

The Karush-Kuhn-Tucker (KKT) conditions for problem (7) are [11] 

\7f(A) 2: 0, A 2: 0, \7f (A) ® A = O. (9) 

These expressions can be used in a terminating condition. For exam­
ple, we may terminate the algorithm if 

min ( [\7 fry k)l · .) > -toh, max (I [\7f(Yk) ® Y kl ·1) < tob, 
t ,J t ,J t ,J t,J 

for small positive real numbers toh and tob. 
Computational complexity: Quantities Wand Z are computed 

once per algorithm call and cost, respectively, O(mkn) and O(kn2) 
arithmetic operations. Quantities Land p, are also computed once 
and cost at most O(n3 ) operations. \7 f(Y k) ' A k, and Y k are up­
dated in every iteration with cost O(mn2) , O(mn) , and O(mn) 
arithmetic operations, respectively. 

3.3. Nesterov-based AO NTF 

In Algorithm 3, we present the Nesterov-based AO NTF. We start 
from a random point (Ao, Bo , Co) and solve, in a circular manner, 
MNLS problems with proximal terms, based on the previous esti­
mates. We can use various termination criteria, like, for example, 
the (relative) change of the cost function. 

It has been shown in [10] that the AO NTF algorithm with prox­
imal term falls under the block successive upper bound minimiza­
tion (BSUM) framework, which ensures convergence to a stationary 
point of problem (2). 

4. PARALLEL IMPLEMENTATION OF AO NTF 

In this section, we assume that we have at our disposal P = PA X 

PB X Pc processing elements and present a parallel implementation 
of the Nesterov-based AO NTF algorithm following the lines of the 
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medium-grained approach of [4]. The P processors form a three­
dimensional cartesian grid and are denoted as piA,iB,ic ' for i A 
1, ... , PA , iB = 1, ... , PB , and ic = 1, ... , pc. 

4.1. Variable partitionings and data allocation 

We partition factor Ak into PA block rows as 

"h A iA mJ x R f' 1 h 1-Wit k E l& , or ~A = , ... , PA , were 
partition accordingly the matricization XA and get 

(11) 

...L 
PA 

We 

(12) 

with xt E IR fX JK In an analogous manner, we partition B k and 

XB into PB block rows, each of size J x Rand J xl K , respectively, 
and C k and Xc into pc block rows, each of size k x Rand k x I J , 
respectively, where J := Land k := .K.... 

PB Pc 
As we show in Fig. 1, we partition tensor X into P subtensors, 

according to the partitionings of the factor matrices, and allocate its 
parts to the various processors, so that processor PiA,iB,ic receives 
subtensor X iA,iB ,ic , which is defined in equation (10) at the top of 
the next page. Further, we assume that processor piA ,iB ,ic knows 
A~A, B~B , and C~c. Finally, we assume that all processors know 

A[Ak, B[Bk, and C[Ck. 

4.2. Communication groups 

We define various communication groups over subsets of the P pro­
cessors. At first, we define PA two-dimensional groups, each in­
volving the PB x pc processors Pi A,' ,'> for iA = 1, ... , PA , which 
are used for the collaborative update of A~A. In the same manner, 
we define the groups P:,iB,'> for iB = 1, ... ,PB, and P: ,:,ic' for 
ic = 1, ... , Pc , which are used for the updates of B~B and C~c , 
respectively. 

Finally, we define PB x pc single-dimensional communication 
groups, each involving the PA processors P" iB,ic' In a similar man­
ner, we define groups PiA,iB ,: and PiA ,: ,ic' 

4.3. Algorithm implementation 

In the sequel , we describe in detail the parallel update of A k, that is, 
lines 3 and 4 of Algorithm 3 (the updates of B k and C k can be im­
plemented in an analogous manner). The update of Ak is achieved 
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Fig. 1. Tensor X. factors A k, B k. and C k, and their partitioning for PA = PB = 3 and PC = 2. 

via the updates of A~A , for i A = 1, ... , PA, and consists of the 
following stages: 60 

1. For i A = 1, ... , PA, processors PiA ,', collaboratively com­

pute wt = xt (C k 8 B k). This can be done because 

PB Pc 

X:t (Ck 8 Bk) = L L X:t ,iB ,iC(C~C 8 B~B ) , 
i s = l i c = l 

where Xt ,iB,ic is the matricization of X iA,iB,ic , with re­

spect to the first mode. Processor piA,iB,ic computes the 
corresponding term of the above sum and the result is com­
puted by an all-reduce operation over the group of processors 

p iA,",. 

2. The computed wt is scattered among the PB x Pc proces­
sors PiA" (the scattering is based on the id of each proces­
sor in the group PiA," ')' Each processor in the group PiA,'" 
uses the scattered partofWt , ZA = CIC k ®BIBk, and 

>.t and computes the updated part of A~"+ l' via the Nesterov 
MNLS algorithm. 

3. The updated parts of A~"+ l are all-gathered at the processors 
of the group PiA,"" so that all processors in the group know 

the updated A~"+ l ' 

4. Using an all-reduce operation of (A~"+ l) T A~"+ l over pro­

cessors P. ,iB,ic ' for iB = 1, ... , PB and ic = 1, ... ,Pc, 
all processors compute the updated AI+1 Ak+1. 

At this point, all processors are ready for the update of B k and, then, 
of C k, fini shing one outer iteration of the AO NTF algorithm. 

4.4. Speedup 
We present results obtained from an MPI implementation of the 
Nesterov-based AO NTF algorithm. The program is executed on 
a CentOS system with four AMD Opteron(tm) Processor 6376 (in 
total , 64 cores at 2.3 GHz) and 500 GB RAM. The algorithm is im­
plemented in C++, using the Eigen library for linear algebra opera­
tions [13] and compiled using the g++ compiler (version 6.1.0) with 
the -03 option for compiler optimizations. We assume a noiseless 
tensor X , whose true latent factors have i.i.d elements, uniformly 
distributed in [0, 1]. We partition X and appropriately allocate its 
parts to the P processing elements. The timer that counts the pro­
gram execution duration starts counting after the data allocation to 
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Fig. 2. Speedup diagram of the Nesterov-based AO NTF algorithm 
for I = J = K = 1008 and rank R = 15, 30, 45,60. 

the processing elements. We use toh = tob = 10- 2 in the ter­
minating conditions for MNLS. The AO terminates at iteration k if 
(recall that tensor X is noiseless) 

(13) 

In Fig. 2, we plot the speedup achieved with P processing elements, 
for P = 23 , 33 , 43 , for a tensor with I = J = K = 1008 and ranks 
R = 15, 30, 45, 60. We observe that we attain significant speedup, 
irrespective of the factorization rank, indicating that our algorithm is 
a strong candidate for the solution of large dense NTF problems. For 
a more detailed exposition , we refer the reader to [6]. 

5. CONCLUSION 

We considered the NTF problem. We adopted the AO framework 
and solved each MNLS problem via a Nesterov-type algorithm for 
L-smooth and ,..-strongly convex problems. We presented a parallel 
implementation of the algorithm and measured the attained speedup 
for a large-scale dense NTF problem. The proposed algorithm seems 
a strong alternative to state-of-the-art algorithms for the solution of 
very large-scale dense NTF problems. 
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