
NESTEROV-BASED PARALLEL ALGORITHM FOR LARGE-SCALE NONNEGATIVE
TENSOR FACTORIZATION

A. P. Liavas*, G. Kostoulas*, G. Lourakis*, K. Huangt, N. D. Sidiropoulost

* Department of ECE Technical University of Crete
(liavas ,kostoulas , loura kis) @telecom . tuc . gr

t Department of ECE University of Minnesota
(huang663 , nikos) @ece . umn.edu

ABSTRACT

We consider the problem of nonnegative tensor factorization. Our
aim is to derive an efficient algorithm that is also suitable for parallel
implementation. We adopt the alternating optimization (AO) frame­
work and solve each matrix nonnegative least-squares problem via a
Nesterov-type algorithm for strongly convex problems. We describe
a parallel implementation of the algorithm and measure the speedup
attained by its Message Passing Interface implementation on a paral­
lel computing environment. It turns out that the attained speedup is
significant, rendering our algorithm a competitive candidate for the
solution of very large-scale dense nonnegative tensor factorization
problems.

Index Terms- Tensors, constrained optimization, CANDE­
COMP, PARAFAC, nonnegative factorization, parallel algorithms.

1. INTRODUCTION

Tensor factorizations (or decompositions) into latent factors are very
important for numerous tasks, such as feature selection, dimension­
ality reduction, compression, data visualization and interpretation,
and are usually computed as solutions of optimization problems [1],
[2]. The Canonical Decomposition or Canonical Polyadic Decompo­
sition (CANDECOMP or CPO), also known as Parallel Factor Anal­
ysis (PARAFAC), and the Tucker Decomposition are the two most
widely used tensor factorization models.

Typical data sizes have been growing rapidly in recent years,
and this is especially true for machine learning applications of tensor
factorization models. This trend towards bigger and bigger data has
made imperative the development of parallel algorithms for tensor
factorization. In [3] , two parallel algorithms for unconstrained tensor
factorization/completion have been developed and results concern­
ing the speedup attained by their Message Passing Interface (MPI)
implementations have been reported. Work on parallel algorithms
for sparse tensor decomposition appears in [4], [5] .

In this work, we focus on (dense) nonnegative PARAFAC,
which, for simplicity, we call Nonnegative Tensor Factorization
(NTF).1 Our aim is to derive an efficient NTF algorithm that is
also suitable for parallel implementation. We adopt the Alternating
Optimization (AO) framework and solve each matrix nonnegative
least-squares (MNLS) subproblem via a Nesterov-type (accelerated
gradient) algorithm for L-smooth and t-t-strongly convex problems
[7, Chapter 2]. This framework seems quite appropriate because it

t Supported in part by NSF IIS-1 247632 and IIS-1447788.
1 A more detailed presentation of the algorithm, its performance, and its

parallel implementation appears in [6].

978-1-5090-4117-6/17/$31.00 ©2017 IEEE 5895

optimally exploits first-order, i.e., gradient, information and leads
to an algorithm that is suitable for parallel implementation. We
describe a parallel implementation of the algorithm and measure the
speedup attained by its Message Passing Interface (MPI) implemen­
tation in a multi-core environment. We conclude that the proposed
algorithm is a strong candidate for the solution of very large dense
NTF problems.

Notation: Vectors, matrices, and tensors are denoted by small,
capital, and calligraphic capital bold letters, respectively; for exam­
ple, x, X , and X. lR~XJ XK denotes the set of (1 x J x K) real

nonnegative tensors , while lR~ x J denotes the set of (1 x J) real
nonnegative matrices. II . II F denotes the matrix or tensor Frobenius
norm , I denotes the identity matrix of appropriate dimensions, and
(A)+ denotes the projection of matrix A onto the set of element­
wise nonnegative matrices, The outer product of vectors a E lR1X 1 ,

b E lRJx l, and c E lR K X1 is the rank-one tensor a 0 b 0 c E
lRl xJx K with elements (a 0 b 0 c)(i ,j, k) = a(i)b(j)c(k). The
Khatri-Rao product of compatible matrices A and B is denoted as
A 8 B and the Hadamard product is denoted as A ® B. Inequality
A ~ B means that matrix A - B is positive semidefinite.

2. NONNEGATIVE TENSOR FACTORIZATION

Let tensor XO E lR~x J x K admit a factorization of the form
R

X o = [A O, B O, C o] = L a~ 0 b~ 0 c~ , (1)
r = l

where A O = [a~ a'Rl E lR~X R , B O = [b~ b'Rl E lR~XR ,
and C o = [c~ c'Rl E lR~ x H We observe the noisy tensor
X = Xo + e, where e is the additive noise. Estimates of AO ,
B 0 , and C o can be obtained by computing matrices A E lR~ x R,

B E lR~XR , and C E lR~X R that solve the optimization problem

min /x(A, B , c) = .!:. II X - [A , B , C] II~ . (2)
A 2: 0 ,B 2: 0 ,C 2: 0 2

If Y = [A, B , C] , then its matrix unfoldings , with respect to the
first, second , and third mode, are given by [8]

YA = A(C 8 Bf, YB = B(C 8 Af, Yc = C(B 8 Af·

Thus, /x can be expressed as

/x(A, B, C) = ~ II XA - A (C 8 Bf ll :

~ II XB - B (C 8 A)TII: (3)

~ II Xc - C (B 8 A)TII: .

ICASSP 2017

These expressions form the basis for the AO NTF in the sense that,
if we fix two matrix factors, we can update the third by solving an
MNLS problem. For reasons related with the conditioning of the
MNLS problem, we propose to add a proximal term. More specifi­
cally, if Ak, Bk, and Ck are the estimates of A , B , and C , respec­
tively, after the k-th AO iteration, then Ak+l is given by

1 II TI1 2 At 2 A k+1 := arf~jn2 XA- A(Ck 8 Bk) F + --:f Il A - Ak II F,

(4)

where At ;::: 0 determines the weight assigned to the proximal term.
If (Ck 8 Bk) is a well-conditioned matrix , then it is reasonable to put
small weight on the proximal term and compute Ak+1 that leads to a
large decrease of Ix (A, B k, C k). If, on the other hand, (C k 8 B k)
is an ill-conditioned matrix, then it is reasonable to put large weight
on the proximal term, leading to a better conditioned problem and
easy computation of A k+1 that improves the fit in Ix(A , Bk, C k)
but is not very far from A k. This is the strategy we shall follow for
the solution of problem (2) (see also [9], [10]).

The computational efficiency of the AO NTF heavily depends on
the algorithm we use for the solution of problem (4). In this work,
we adopt the approach of Nesterov for the solution of smooth and
strongly convex problems. The derived algorithm is optimal under
the (worst-case) black-box first-order oracle framework [7, Chapter
2] and is very efficient in practice. Furthermore, it leads to an AO
NTF algorithm that is suitable for parallel implementation.

3. NESTEROV-TYPE ALGORITHM FOR AO NTF

3.1. Optimal first-order methods for set-constrained L-smooth
tL-strongly convex optimization problems

Let 0 < t-t ::; L < (Xl and I :]Rn -+]R be a smooth convex function ,
with Hessian \72 /(x), such that

t-tl ~ \72 I(x) ~ LI, \I x E]Rn (5)

Then, we say that I is an L-smooth t-t-strongly convex function , de­
noted as I E s~:i [7, p. 63] . Let Q be a closed convex set. Our aim
is to solve problem

min/(x),
x E<Q>

(6)

within accuracy E > 0, using only first-order, i.e. , gradient, infor­
mation. The accuracy of the solution is defined as follows. Let
I. := min I(x). A point x E Q solves problem (6) within accuracy

x E<Q>
E> 0 if I(x) - I. ::; E.

We consider optimal first-order methods because they are strong
and, in many cases, the only viable candidates for the efficient solu­
tion of very large optimization problems. It has been shown in [7,
Chapter 2] that the first-order oracle complexity of this class of prob-

lems is 0 (If; log ~). An algorithm that achieves this complexity

and, thus , is first-order optimal is given in Algorithm 1 (see [7, pp.
80, 81 , 90]). If the projection operation onto set Q, II<Q> (.) , is easy to
compute, then this algorithm is very efficient in practice. Constants
t-t and L are unknown and, thus, should be estimated.

In the sequel , we adopt Algorithm 1 for the solution of MNLS
problems with proximal term. We note that [11] and [l2] solved
MNLS problems using a variation of Algorithm 1 which is equiva­
lent to Algorithm 1 with t-t = O. This algorithm is first-order opti­
mal if the problem is L-smooth; in this case, the oracle complexity

becomes 0 (}.) (see [7, p. 90]). However, if the problem is L­

smooth and t-t-strongly convex, then thi s algorithm is not first-order

5896

Algorithm 1: Nesterov algorithm for set-constrained L­
smooth and t-t-strongly convex optimization problems

Input: Xo E Q, t-t, L. Set Yo = Xo, ao E (0,1), q = y.
1 k-th iteration

Xk+1 = II<Q> (Yk - t\7/(Yk))
a k+l E (0, 1) from a%+ l = (1 - a k+da % + qak+l
(3 . - <> ,(1 - <>,,)

k+ l - ai+O::k+l

Y k+1 = Xk+1 + (3k+1 (Xk+1 - Xk)

Algorithm 2: Nesterov algorithm for MNLS with proximal
term

Input: X E]Rm x k, B E]Rk x n , A. E]Rmx n

1 L' = max(eig(BTB)) , t-t' = min(eig(BTB))

2 A = g(t-t' , L'), W = - XB - AA., Z = B T B + AI

3 q = L;t~ ; L = L' + A;Ao = Yo = A.,ao = l , k = O
while (1) do

\7/(Yk) = W + AkZ
6 if (terminating_condition is TRUE) then
7 I break
8 else

9 l A k+1 = (Yk - t \7/(Yk))+
10 a%+ l = (1 - ak+ l)a% + qak+l

(3 . - <> ,(1 - <>,,)
11 k+l - <>~ +<> '+1

12 Y k+1 = A k+1 + (3k +1 (Ak+1 - A k)
13 k = k + 1

14 retumAk.

optimal and usually performs much worse than the optimal. Thus,
strong convexity is a very important property that should not be ne­
glected.

3.2. Nesterov-type algorithm for MNLS with proximal term

Let X E]Rm xk , A,A. E]Rm xn , B E]Rk xn , and consider the
problem

min/(A) = ~ II X - ABTII } + ~ II A - A .II}· (7)
A ::> 0 2 2

We shall solve this problem using only gradient information. The
gradient of I , at point A , is

\7/(A) = - (X - ABT) B + A(A - A.). (8)

As we mentioned in Section 2, the main reason we introduce the
proximal term into the cost function is the improvement of the con­
ditioning of the MNLS problem and guarantee of strong convexity.
If we consider problem (7) under the framework of the AO NTF al­
gorithm, then we may compute the proximal coefficient A based on
L' := max (eig(B TB)) and t-t' := min (eig(B T B)). For exam-

ple, if 1r « 1, then we may set A ~ lOt-t' , significantly improv­
ing the conditioning of the problem, by putting large weight on the
proximal term; however, in this case, we expect that the optimal so­
lution will be biased towards A •. Otherwise, we may set A ~ t-t' ,
putting small weight on the proximal term and permitting significant
progress towards the computation of A that satisfies approximate

Algorithm 3: Nesterov-based AO NTF

Input: X , Ao > 0 , Bo > 0 , Co> O.
Setk = 0
while (termina ting condi t ion is FALSE) do

WA = - XA(Ck 8 B k) - AtAk, ZA = C [C k ® B [B k + AtI
Ak+l = Nesterov_MNLS(WA, ZA, Ak)

WB = - XB(C k 8 A k+d - A~Bk' ZB = C [C k ® A [+1Ak+1 + A~I
B k +1 = Nesterov~NLS(WB , ZB , Bk)

Wc = - Xc(Ak+1 8 B k+1) - Afck, Zc = A[+1 A k+1 ® B[+1 B k+1 + AfI
C k+1 = Nesterov_MNLS(Wc , Zc , C k)
k = k + l

10 return A k, Bk, C k.

equality X ;;:;0 ABT as accurately as possible. We denote this func­
tional dependence as A = g(f.1,' , L').

Problem (7) is L-smooth and J.L-strongly convex, with L = L' +
A and J.L = p,' + A. We note that the values of Land p, are necessary
for the development of the Nesterov-type algorithm , thus, computa­
tion of L' and p,' is imperative.

A Nesterov-type algorithm for the solution of the MNLS prob­
lem (7) is given in Algorithm 2, where (-) + denotes projection onto
the set of matrices with nonnegative elements. For notational conve­
nience, we denote lines 3 to 13 of Algorithm 2 as

Aopt = Nesterov~NLS(W, Z , A .).

The Karush-Kuhn-Tucker (KKT) conditions for problem (7) are [11]

\7f(A) 2: 0, A 2: 0, \7f (A) ® A = O. (9)

These expressions can be used in a terminating condition. For exam­
ple, we may terminate the algorithm if

min ([\7 fry k)l · .) > -toh, max (I [\7f(Yk) ® Y kl ·1) < tob,
t ,J t ,J t ,J t,J

for small positive real numbers toh and tob.
Computational complexity: Quantities Wand Z are computed

once per algorithm call and cost, respectively, O(mkn) and O(kn2)
arithmetic operations. Quantities Land p, are also computed once
and cost at most O(n3) operations. \7 f(Y k) ' A k, and Y k are up­
dated in every iteration with cost O(mn2) , O(mn) , and O(mn)
arithmetic operations, respectively.

3.3. Nesterov-based AO NTF

In Algorithm 3, we present the Nesterov-based AO NTF. We start
from a random point (Ao, Bo , Co) and solve, in a circular manner,
MNLS problems with proximal terms, based on the previous esti­
mates. We can use various termination criteria, like, for example,
the (relative) change of the cost function.

It has been shown in [10] that the AO NTF algorithm with prox­
imal term falls under the block successive upper bound minimiza­
tion (BSUM) framework, which ensures convergence to a stationary
point of problem (2).

4. PARALLEL IMPLEMENTATION OF AO NTF

In this section, we assume that we have at our disposal P = PA X

PB X Pc processing elements and present a parallel implementation
of the Nesterov-based AO NTF algorithm following the lines of the

5897

medium-grained approach of [4]. The P processors form a three­
dimensional cartesian grid and are denoted as piA,iB,ic ' for i A
1, ... , PA , iB = 1, ... , PB , and ic = 1, ... , pc.

4.1. Variable partitionings and data allocation

We partition factor Ak into PA block rows as

"h A iA mJ x R f' 1 h 1-Wit k E l& , or ~A = , ... , PA , were
partition accordingly the matricization XA and get

(11)

...L
PA

We

(12)

with xt E IR fX JK In an analogous manner, we partition B k and

XB into PB block rows, each of size J x Rand J xl K , respectively,
and C k and Xc into pc block rows, each of size k x Rand k x I J ,
respectively, where J := Land k := .K....

PB Pc
As we show in Fig. 1, we partition tensor X into P subtensors,

according to the partitionings of the factor matrices, and allocate its
parts to the various processors, so that processor PiA,iB,ic receives
subtensor X iA,iB ,ic , which is defined in equation (10) at the top of
the next page. Further, we assume that processor piA ,iB ,ic knows
A~A, B~B , and C~c. Finally, we assume that all processors know

A[Ak, B[Bk, and C[Ck.

4.2. Communication groups

We define various communication groups over subsets of the P pro­
cessors. At first, we define PA two-dimensional groups, each in­
volving the PB x pc processors Pi A,' ,'> for iA = 1, ... , PA , which
are used for the collaborative update of A~A. In the same manner,
we define the groups P:,iB,'> for iB = 1, ... ,PB, and P: ,:,ic' for
ic = 1, ... , Pc , which are used for the updates of B~B and C~c ,
respectively.

Finally, we define PB x pc single-dimensional communication
groups, each involving the PA processors P" iB,ic' In a similar man­
ner, we define groups PiA,iB ,: and PiA ,: ,ic'

4.3. Algorithm implementation

In the sequel , we describe in detail the parallel update of A k, that is,
lines 3 and 4 of Algorithm 3 (the updates of B k and C k can be im­
plemented in an analogous manner). The update of Ak is achieved

(10)

/ /
_ __ / _____ L __ _

/

- - -1- - - - - I- - - -

___ 1 _____ L __ _

1 1

B~

Fig. 1. Tensor X. factors A k, B k. and C k, and their partitioning for PA = PB = 3 and PC = 2.

via the updates of A~A , for i A = 1, ... , PA, and consists of the
following stages: 60

1. For i A = 1, ... , PA, processors PiA ,', collaboratively com­

pute wt = xt (C k 8 B k). This can be done because

PB Pc

X:t (Ck 8 Bk) = L L X:t ,iB ,iC(C~C 8 B~B) ,
i s = l i c = l

where Xt ,iB,ic is the matricization of X iA,iB,ic , with re­

spect to the first mode. Processor piA,iB,ic computes the
corresponding term of the above sum and the result is com­
puted by an all-reduce operation over the group of processors

p iA,",.

2. The computed wt is scattered among the PB x Pc proces­
sors PiA" (the scattering is based on the id of each proces­
sor in the group PiA," ')' Each processor in the group PiA,'"
uses the scattered partofWt , ZA = CIC k ®BIBk, and

>.t and computes the updated part of A~"+ l' via the Nesterov
MNLS algorithm.

3. The updated parts of A~"+ l are all-gathered at the processors
of the group PiA,"" so that all processors in the group know

the updated A~"+ l '

4. Using an all-reduce operation of (A~"+ l) T A~"+ l over pro­

cessors P. ,iB,ic ' for iB = 1, ... , PB and ic = 1, ... ,Pc,
all processors compute the updated AI+1 Ak+1.

At this point, all processors are ready for the update of B k and, then,
of C k, fini shing one outer iteration of the AO NTF algorithm.

4.4. Speedup
We present results obtained from an MPI implementation of the
Nesterov-based AO NTF algorithm. The program is executed on
a CentOS system with four AMD Opteron(tm) Processor 6376 (in
total , 64 cores at 2.3 GHz) and 500 GB RAM. The algorithm is im­
plemented in C++, using the Eigen library for linear algebra opera­
tions [13] and compiled using the g++ compiler (version 6.1.0) with
the -03 option for compiler optimizations. We assume a noiseless
tensor X , whose true latent factors have i.i.d elements, uniformly
distributed in [0, 1]. We partition X and appropriately allocate its
parts to the P processing elements. The timer that counts the pro­
gram execution duration starts counting after the data allocation to

5898

Cl.
::0
'0
Q)

50

40

~30
(f)

20

10

-+- R ~ 15
~R ~30

----+- R = 45
-+- R ~ 60
-- Li near Spee dup

10 20 30 40
Number of Cores

50 60

Fig. 2. Speedup diagram of the Nesterov-based AO NTF algorithm
for I = J = K = 1008 and rank R = 15, 30, 45,60.

the processing elements. We use toh = tob = 10- 2 in the ter­
minating conditions for MNLS. The AO terminates at iteration k if
(recall that tensor X is noiseless)

(13)

In Fig. 2, we plot the speedup achieved with P processing elements,
for P = 23 , 33 , 43 , for a tensor with I = J = K = 1008 and ranks
R = 15, 30, 45, 60. We observe that we attain significant speedup,
irrespective of the factorization rank, indicating that our algorithm is
a strong candidate for the solution of large dense NTF problems. For
a more detailed exposition , we refer the reader to [6].

5. CONCLUSION

We considered the NTF problem. We adopted the AO framework
and solved each MNLS problem via a Nesterov-type algorithm for
L-smooth and ,..-strongly convex problems. We presented a parallel
implementation of the algorithm and measured the attained speedup
for a large-scale dense NTF problem. The proposed algorithm seems
a strong alternative to state-of-the-art algorithms for the solution of
very large-scale dense NTF problems.

6. REFERENCES

[1] P. M. Kroonenberg, Applied Multiway Data Analysis. Wiley­
Interscience, 2008.

[2] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari , Nonnega­
tive Matrix and Tensor Factorizations. Wiley, 2009.

[3] L. Karlsson, D. Kressner, and A. Uschmajew, "Parallel algo­
rithms for tensor completion in the CP format," Parallel Com­
puting,2015.

[4] S. Smith and G. Karypis, "A medium-grained algorithm for
distributed sparse tensor factorization," 30th IEEE Interna­
tional Parallel & Distributed Processing Symposium, 2016.

[5] O. Kaya and B. U<;:ar, "Scalable sparse tensor decompositions
in distributed memory systems," in Proceedings of the Interna­
tional Conference for High Performance Computing, Network­
ing, Storage and Analysis. ACM, 2015, p. 77.

[6] A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and
N. D. Sidiropoulos, "Nesterov-based alternating optimization
for nonnegative tensor factorization: Algorithm and parallel
implementations," submitted to the IEEE Transactions on Sig­
nal Processing.

[7] Y. Nesterov, Introductory lectures on convex optimization.
Kluwer Academic Publishers, 2004.

[8] T. G. Kolda and B. W. Bader, "Tensor decompositions and ap­
plications," SIAM Review, vol. 51 , no. 3, pp. 455- 500, Septem­
ber 2009.

[9] Y. Xu and W. Yin, "A block coordinate descent method for
regularized multiconvex optimization with applications to non­
negative tensor factorization and completion," SIAM Journal
on imaging sciences, vol. 6, no. 3, pp. 1758- 1789,2013.

[10] M. Razaviyayn, M. Hong, and Z.-Q. Luo, "A unified con­
vergence analysis of block successive minimization methods
for nonsmooth optimization," SIAM Journal on Optimization,
vol. 23, no. 2, pp. 1126- 1153, 2013.

[11] N. Guan, D. Tao, Z. Luo, and B. Yuan, "Nenmf: An optimal
gradient method for nonnegative matrix factorization ," IEEE
Transactions on Signal Processing, vol. 60, no. 6, pp. 2882-
2898, 2012.

[12] G. Zhou, Q. Zhao, Y. Zhang, and A. Cichocki, "Fast nonneg­
ative tensor factorization by using accelerated proximal gradi­
ent," in Advances in Neural Networks - ISNN 2014, Z. Zeng,
Y. Li, and I. King, Eds. Cham: Springer International Pub­
lishing, 2014, pp. 459-468.

[13] G. Guennebaud, B. Jacob et aI., "Eigen v3,"
http://eigen.tuxfamily.org, 2010.

5899

