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On the Behavior of Information Theoretic Criteria
for Model Order Selection
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Abstract—The Akaike information criterion (AIC) and the min-  space, whereas its orthogonal complement is called the noise
imum description length (MDL) are two well-known criteria for  subspace.

model order selection in the additive white noise case. Our aim is The problem of interest is to determine of the dimension of

to study the influence on their behavior of a large gap between the . . .
signal and the noise eigenvalues and of the noise eigenvalue distNe Signal subspace. Denoting the eigenvalug aé,(R) >

persion. Our results are mostly qualitative and serve to explainthe A2(R) = --- > A,(R), we obtain that thép — ¢) smallest
behavior of the AIC and the MDL in some cases of great prac- eigenvalues oR are equal tar?. Hence, in theory, we can de-
tical importance. We show that when the noise eigenvalues are not termine the dimension of the signal subspace from the multi-
clustered sufficiently closely, then the AIC and the MDL may lead plicity of the smallest eigenvalue 8. However, in practice,

;?g%\g?r;nn%dglg%ck:éégggg;g;ﬂgb:ﬁgﬂflg(é%r%gn%%? f;v‘ézetg g;em_ we do not have access to the true data covariance matrix but to

ples, overmodeling becomes more likely for increasing the disper- its finite sample estimate

sion of the noise eigenvalues. For fixed dispersion, overmodeling .

becomes more likely for increasing the number of data samples. 1S H
Undermodeling may happen in the cases where the signal and the R = N Z x(n)x" (n).
noise eigenvalues are not well separated and the noise eigenvalues n=1

are clustered sufficiently closely. We illustrate our results by using

simulations from the effective channel order determination area. The smallest eigenvalues Bf are all different with probability

1, complicating thus the determination of the dimension of the
signal subspace. In this case, one may estimate the dimension
of the signal subspace by using the AIC [4]

G(Art1, -5 Ap)
Avests- Ay

Index Terms—Akaike information criterion, minimum descrip-
tion length criterion.

I. INTRODUCTION AIC(k)=—2(p — k)N 1n + 2k(2p — k)
ODEL order selection is a fundamental task in time-se-
ries analysis and signal processing. Two commonly usedthe MDL criterion
approaches for this task are the Akaike information criterion Gt A) 1
(AIC) and the minimum description length (MDL), which wereMDL (k) = —(p—k)N In A)\J”—’)\p + §k(2p—k) ln N
originally proposed in [1]-[3] and popularized in the signal pro- M os Ap)
cessing community by Wax and Kailath [4]. whereA; > X, > .-+ > A, denote the eigenvalues &, and
The case of interest is described as follows. Assume thatnd.4 denote, respectively, the geometric and the arithmetic
the measured data form a sequence-afimensional vectors mean of their arguments. The dimension of the signal subspace
{x(n)}2_, obeying the modek(n) = As(n) + w(n). The is taken to be the value df € {0,...,p — 1} for which either
p X ¢ matrix A is of full-column rank(¢q < p), and{s(n)} and AIC(k) or MDL(k) is minimized. Under the aforementioned
{w(n)} are uncorrelated sequences of zero-mean station@fgal assumptions, the MDL criterion is shown to be asymp-
complex Gaussian random vectors, with covariance matrigesically consistent, whereas the AIC tends to overestimate the
S £ E{s(n)s"(n)} andW = E{w(n)w'(n)} = 2T, where dimension of the signal subspace [4]-[6]. Works estimating the
superscriptt! denotes Hermitian transpose, ailiddenotes probabilities of under- and over-estimation under the ideal as-
the identity matrix. Under these assumptions, the covarian@@mptions have appeared in [6]-[9].

matrix of x(n) is However, these ideal assumptions may not be fulfilled in
. ° ° ) practice. The noise eigenvalues may be dispersed due to the
R = E{x(n)x"(n)} = ASA" + 071 existence of colored noise [6], [10]. The AIC and the MDL

q , ) ) would be considered robust and applicable in practice if
whereASA™ is a rankg matrix. Theg-dimensional subspace ey could provide reliable estimates under slightly nonideal
spanned by the columns & is usually called the signal sub-¢qngitions. In [6], Xu and Kaveh show that in the presence of
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noise eigenvalues and of the noise eigenvalue dispersion. @uorder to simplify notation, we define = (Ap41/Agy2)
results are mostly qualitative and serve to explain the behaviand~ = e27~1/N Thus, we obtaimr > 1, and we express the
of these criteria in some cases of great practical importance.above inequality as

The rest of the paper is organized as follows. In Section II, we A
recall the necessary and sufficient conditions for (£G- 1) < flayn,7) = o —nya+(n—1)y > 0. ®)
ITC(k), where ITC stands for “information theoretic criterion”s; fixed and~, f(a,n,~) is a polynomial ofa, which is

and designates either AIC or MDL. Analytic expressions for theanotedf( ). Sufficient and necessary conditions for AIG+
finite sample cases are difficult to derive [6]. Instead, for thesg < AIC(k) are given in terms of the solution of the inequality

cases, we derive sufficient analytic conditions. In Section Ill, w ). An analytic expression for the precise rangevdbr which
identify the cases in which application of the ITC s likely to Iea(f(a) > 0is difficult. oncen > 3.

to model order over- or under-estimation. We show that whén|,arqg finding sufficient analytic conditions for this in-

the noise eigenvalues are not clustered sufficiently closely, th&ﬁ'uality to hold, we first consider the first derivative i)
the ITC may lead to overmodeling by ignoring an arbitrarily

large gap between the signal and the noise eigenvalues. This >0, a> /v
is clearly a serious drawback of the ITC. For fixed number of ~ f'(a) =n(a"' —4)< =0, a= "3/
data samples, overmodeling becomes more likely for increasing <0, 1Sa< "3/

th_e noise eigenvalue d!spersmn_. For flx_ed dispersion, overmoﬂiiS shows thaff(«) attains its minimum atv = »~/7. The
eling becomes more likely for increasing the number of data. .
) . . minimum value is
samples, which concurs with [6]. Undermodeling may happen
in the cases whe.re the signal eigenvalu.es are not well separated f( A7) =n-1) (,y — WTI) <0
from the noise eigenvalues and the noise eigenvalues are clus- o _
tered sufficiently closely. Thus, in the presence of colored noigeecausey > 1. The second derivative gf(«) is
undermodeling is very unlikely to happen. Our results are illus- F(@)=n(n—1)a" 2 >0, foralla> 1.

trated by simulations appearing in Section 1V, while some con-

cluding remarks are given in Section V. Positivity of the second derivative for all > 1 is a necessary
and sufficient condition for the continuous functigtx) to be
Il. STUDY OF INFORMATION THEORETIC CRITERIA convex in the intervady > 1 (e.g., [11]). The pointy = ==/

In this section, we provide sufficient analytic conditions fofs s the unique minimum of («) for & > 1 and, since
ITC(k +1) < ITC(k) in the finite sample cases, with our initiali!a—oc /(<) = 450, we conclude thaf () has a unique zero

development paralleling [6]. Thus, let us recall that the eigeRlOSSINg inthe intervak € [ /7, 00). If a. denotes this zero

values ofR are; > -+ > Ay, and let us define the arithmetic€rossing, then inequality (3) is satisfied if, and onlydf> c..
” - As we mentioned above, a closed-form expressiomdodoes

mean ofA, ..., A, fork =1,...,p, as r @ .
not appear at hand for finit&/ (see [6] for an asymptotic ex-
A 1 pression).
A= p—k+1 M4 4p). In the sequel, we provide an approximati@nto c.. In fact,

we will prove that, overestimates,. Let f(«) be a quadratic

A, Akaike Information Criterion approximation tof («v) at the minimum pointy = »—/7:

By the definition of the AIC and after some straightforward fla) = F(O=7) + lfﬂ( =) — /7).
manipulations, it can be shown that for= 0,...,p — 2, the 2

following relation holds: The zero crossing of () in « > /7 is readily found to lie
Ar1 )" Argo 2n 1 at
AIC(k+1) < AIC(k) = < ) . >e v (1)
Aptz) Akt L A 2 nyAy—1
atoyifin 20200 @
wheren = p — k. By using 4

Since f(a) grows faster tharf(«) (note that the higher order
derivatives off(«) are positive fore > 0), we havef(«) >
fla)foralle > 1, giving f(é) > f(&,) = 0sothati, > a,.
Thus, we obtainthat ifly 1 / Ax12 > G, then AIGk+1) <
<Ak+1 )" et Agt1 Zn_1 AIC(k). Using (2), we can express this sufficient condition as

" Arao +(n—-Le v >0. in (5), shown at the bottom of the page.

Akt = A1 — (n = 1) Apyo 2

the right-most inequality of (1) becomes

Arg2

If 2 > Bare 2 1+ n(d. — 1), then AIGk + 1) < AIC(k).

®)
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Fig. 1. Bounds Om1/Ag42 for AIC(k + 1) < AIC(k) versusN, for  Fig. 2. Bounds o, 1/Axy2 for MDL(k + 1) < MDL (k) versusN, for
n = p—k = 5,10. Exact bound (solid line}3s1c: (dashed line), and bound , = p — k = 5, 10. Exact bound (solid line)Y3xpr, (dashed line), and bound
derived from [6, Th. 2] (dot-dashed line). derived from [6, Th. 2] (dot-dashed line).

In Fig. 1, we plot with the dashed liri&y 1 and with the solid C. AIC versus MDL

line the corresponding bound resulting by replacingby the  ag e saw, both criteria involve the samgy, n, v) but differ
numerically computed true zero crossimgversusN forn = i the parameter. For fixedn and N anda > 1, the zero-
5,10. We observe that the true b_ound aidic are very close crossinga, of f(a,n,~) increases for increasing because
to each other. Furthermore, as it was expectgg always f(a,n,v) is linearly decreasing in

overestimates the true bound, providing a sufficient condition
for AIC(k + 1) < AIC(k) in the finite sample cases. The same
does not happen with the bound derived from the expression
given in [6, Th. 2] plotted with the dot-dashed line, which, fop straightforward comparison shows that
these values oV andn, underestimates the true bound.

i — gl2n—1)/N initi infinite-se- 2n—1)In N 2n —1
Usingy = € . the definition (4), and the infinite-se- <( ) ) > exp < )

f(a,n,’y) = (—7’LCY+7’L— 1),Y+an

ries expansion of the exponential function, we get the approxi- 2N
mation &N > e ~ 7.389.
2n(2n —1 That is, for’V > 8 data samples, we havgpr. > varc. This
Baic =1+ ( ) +O(NTY (6) = P V&L, > YATC

(n—1)N means that fofV > 8, which is practically always the case, the
inequality AIC(k + 1) < AIC(k) is satisfied for smaller ratio
which reveals thaBa i decreases for increasifgand asymp- Ax+1/-Ax+2 than the corresponding inequality for the MDL. As
totically tends to 1. a result, the MDL inherits enhanced robustness properties, with

respect to noise eigenvalue dispersion, compared with the AIC.
B. Minimum Description Length

Following similar analysis, we can provide the conditions for lll. OVERMODELING, UNDERMODELING

MDL (k+1) < MDL (k) by solving an inequality as in (3). The The plots appearing in Figs. 1 and 2 illustrate clearly the

only difference is that nowy is defined as following fact: If Ax4 is slightly larger than the mean of the
trailing eigenvalues4;..2 , thenITC(k + 1) < ITC(k). For
2 e {(271 - 1)lnN} _ NI example, fom = p — k = 5andN = 200, if A\yy1/Apt2 >
2N 1.3841, then AIC(k + 1) < AIC(k).

By assuming the thiue signal subspace dimensiongiswe
A lower boundBypr., analogous td3.ic, can be derived at make the following observations.

once. It is plotted with the dashed line in Fig. 2, vergasfor

. : , : » Observation 1) If the signal eigenvalues,. .., A, are
n = 5,10, along with the corresponding bound resulting by of about the same order of magnitude and are well sepa-
using the numerically computed true zero-crossing (solid line). | 4iad from the noise eigenvaluds, ; . then un-
s Ap

With the dot-dashed line, we plot the bound derived by using
the expression of [6, Th. 2], which, as we see, underestimates
the true bound.

dermodeling is very unlikely to happefo see this, let
us examine ITCk) and ITQk + 1) for k& < ¢. By as-

, e , ) i sumption,\x; is of the same order a.42, ..., A, and
' Working similarly to (6), we derive the following approxima- much larger tham\,1, ..., \,. Due to the influence of
tion for B the small eigenvalues, 1, ..., A, on A; 2, we expect
thatAx1 will be sufficiently larger tham 2, giving that
Bupr = 14+ 2n(2n —1)In N <111N> ' ITC(k+1) < ITC(k) fork = 0,...,q— 1. This leads to
(n—1)N N ITC(q) < ITC(j) for j < ¢, avoiding undermodeling.
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Fig. 4. N = 200, SNR = 35 dB. (a)log A, versusk. (b) eigenvalue ratiod, /X..1 versusk. (c) Experimentapdf (k) of AIC estimates versuk. (d)
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« Observation 2)If the noise eigenvalues are not clustered
sufficiently closely, then the ITC may ignore an arbitrarily
large gap between the signal and the noise eigenvalues,
leading to overmodelinglo justify this claim, let us con-
sider the scenario in which there is a sole large eigen-
value gap, namely, the one betwegnandX,,. In order
to obtain the rank estimate = ¢, which seems satis-
fying in this case, it must hold that ITg) < ITC(j),
for j # ¢. From the previous observation, we get that,
due to the clear separation between the signal and the
noise eigenvalues, IT@) < ITC(y) for j < ¢. However,
if, due to the existence of colored noise,;; is slightly
larger than the mean of the trailing eigenvalugs ., then

ITC(g+1) < ITC(q), excludingg from being our rank es-
timate. We must note that this happémespectiveof the
size of the gap betweeky, and ;. For fixed A, and
A,+2, overmodeling becomes more likely for increasing
N because botl, 1 and Bypr, decrease for increasing
N. For fixed N, overmodeling becomes less likely for in-
creasing the similarity of the noise eigenvalues.

If Agt2 is slightly larger thand,, 43, then ITQg+2) <
ITC(g+1). Following similar arguments, we can see that if
the noise eigenvalues are not clustered sufficiently closely,
then the ITC may lead to severe overmodeling. This prop-
erty is at the root of the “breakdown” of the AIC and the
MDL in the presence of colored noise.
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Fig. 5. N = 200, SNR = 20 dB. (a)log A, versusk. (b) eigenvalue ratiod., /A.4+. versusk. (c) Experimentapdf(k) of AIC estimates versuk. (d)
Experimentalpdf (k) of MDL estimates versus.

» Observation 3)If the signal and the noise eigenvalues arstrongly on the number of data samples and the dispersion of
not well separated and if the noise eigenvalues are cluthe noise eigenvalues and not on the large eigenvalue gap.
tered sufficiently closely, then undermodeling is likely to In Fig. 3, we plot the absolute values of the impulse response
happen.To see this, let us consider the ratig/A,4+1. terms of a portion of the two subchannels constructed from the
Under the aforementioned assumptiohg/ A, 11 ~ 1, oversampled, by a factor of 2han2.mafound at the website
which renders likely the factthat ITG—1) < ITC(g), ex- http://spib.rice.edu/spib/microwave.html. The input sequence
cludingq from being our estimate. Furthermore, from theonsists ofvV 4-QAM i.i.d. samples. At the subchannel outputs
assumption that the noise eigenvalues are clustered suffi* (n)} and {+*(n)}, we add zero-mean temporally and
ciently closely, we get that;. /Ai+1 ~ 1, which is likely spatially white noise with variance?, obtaining the noisy
toleadto ITGk—1) < ITC(k),fork = g+1,...,p—1.In  output sequencele* (n)} and{z*(n)}. We define the SNR as
combination with the previous argument, we obtain that in
this case, the ITC may lead to undermodeling. If the noise E{|y* ()| + |v2(n)|%}
eigenvalues are dispersed, then, as is evident from the pre- SNR = 10log,, 2,2
vious observation, the ITC may lead to overmodeling.

We construct the data covariance matiy,; = D on XM

(n)xt (n), for M = 10, wherexy(n) 2 [xH ... xH 1"
-y T1(7

, andx; = |:.7:2 (73} , and we estimate the effective channel order
In this section, we illustrate the previous observations by by estimating the dimensiohof the signal subspace, using
using simulations in the context of effective channel ordéhe ITC (¢ ands are related by = M + m + 1; see [10]).
determination. This context is very well suited to our study In Fig. 4, we consider the case wifh = 200 and SNR=
since the channel tails contribute unknown colored noise 36 dB. In Fig. 4(a), we plot on a logarithmic scale the mean
the covariance matrix associated with the significant part of the eigenvalues of the estimated data covariance marix
the channel (see [10]). In all the cases we consider, the datamalized so thak; = 1 versusk (the mean is computed on a
covariance matrix eigenvalues are well separated into twasis of 1000 independent realizations). In Fig. 4(b), we plot the
groups: {As,..., Ao} and {A13,..., A2}, This implies that ratiosA;/Ax+1 versusk. We observe that there exists an eigen-
the only satisfactory estimate for the signal subspace dimensi@iue gap of about two orders of magnitude betwaenand

is 12. However, as we will see, the behavior of the ITC dependss. This fact suggests that the only satisfactory estimate of the

IV. SIMULATIONS
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Fig. 6. N = 1000, SNR = 20 dB. (a)log A versusk. (b) eigenvalue ratiod /A1 versusk. (c) Experimentapdf (k) of AIC estimates versuk. (d)
Experimentalpdf (k) of MDL estimates versuk.

rank of Ry, is# = 12. Thus, we may consider the eigenvalues V. CONCLUSION

A13, - - -, Ao tO be the noise eigenvalues. Fig. 4(a) reveals that . . L .

the noise eigenvalues are not all clustered very closely. ThusThe information theqre’c_lc criteria fOI‘-I.’nOde.| order selection
we expect that we may face overmodeling. In Fig. 4(c) and ( re based on the similarity of the trailing eigenvalues. As a
we plot the experimental probability density functigif (k) of esult, when the noise eigenvalues are not clustered sufficiently
the AIC and the MDL estimates, respectively. We observe th%{psely, they may ignore an arbitrarily large gap between the
both the AIC and the MDL always overestimate the dimensicﬁﬁgnal and th_e hoise eigenvalues and may I_ead to overmodeh_ng.
of the signal subspace by ignoring the large eigenvalue gap_Tngdermlodellng may haIFpen wheg th% s;]gnal gnd Fhe nollse
happens because the noise eigenvalues are not all clustered@gfnvalues are not well separated and the noise eigenvalues
ficiently closely. are clustered sufficiently closely. Overmodeling is more likely

In Fig. 5, we useV = 200 input samples, but now, we havel© happen when the AIC is used. The conditions under which

decreased the SNR to SNR20dB. A large eigenvalue gap still over_modehlr_wg tr_nay hahppen relndedr qugstlonable the usle of tT]e
exists, but now, the noise eigenvalues are clustered more cloégfi n ap_tp Ica tlﬁnflw ffre colore nmfe may appear. In suc
than the corresponding ones of Fig. 4. The MDL always esfi® esl, criteria that look for an eigenvajue gap may prove more
mates 12 as the dimension of the signal subspace, whereas”ﬁgu '
AIC overestimates it by one in about 40% of the cases. This be-
havior has been observed extensively and is consistent with our
statement that for fixedv, overmodeling becomes less likely
for decreasing the dispersion of the noise eigenvalues. Here, inkl] H. Akaike, “A new look at the statistical model identification EEE
fth hite noise bowe? is svnonvmous with increase Trans. Automat. Contrvol. AC-19, pp. 716-723, Dec. 1974.

Crease 0_ € W p e ynony [2] J. Rissanen, “Modeling by shortest data descriptighytomatica vol.
of the noise eigenvalue similarity. 14, pp. 465-471, 1978.

In Fig. 6, we depict the cas¥ = 1000, SNR= 20 dB. De- [3] G. Schwartz, “Estimating the dimension of a modéyin. Stat.vol. 6,

: - . pp. 461-464, 1978.
spite the fact that the trailing eigenvalues are clustered closelyjs . wax and T. Kailath, “Detection of signals by information theoretic
both citeria often lead to overmodeling (the AIC always over- criteria,” IEEE Trans. Acoust. Speech Signal Processint) ASSP-33,
models). This happens because the ITC become more sensitive N0 2, pp- 387-392, Apr. 1985. L _

h . . lue di . the number of data sam IéS L. C. Zhao, P. R. Krishnaiah, and Z. D. Bai, “On detection of the number
to t. € noise eigenvalue dispersion as u p of signals in presence of white noisd,"Multivariate Anal, vol. 20, pp.
N increases. 1-25, Oct. 1986.
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