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On the Behavior of Information Theoretic Criteria
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Abstract—The Akaike information criterion (AIC) and the min-
imum description length (MDL) are two well-known criteria for
model order selection in the additive white noise case. Our aim is
to study the influence on their behavior of a large gap between the
signal and the noise eigenvalues and of the noise eigenvalue dis-
persion. Our results are mostly qualitative and serve to explain the
behavior of the AIC and the MDL in some cases of great prac-
tical importance. We show that when the noise eigenvalues are not
clustered sufficiently closely, then the AIC and the MDL may lead
to overmodeling by ignoring an arbitrarily large gap between the
signal and the noise eigenvalues. For fixed number of data sam-
ples, overmodeling becomes more likely for increasing the disper-
sion of the noise eigenvalues. For fixed dispersion, overmodeling
becomes more likely for increasing the number of data samples.
Undermodeling may happen in the cases where the signal and the
noise eigenvalues are not well separated and the noise eigenvalues
are clustered sufficiently closely. We illustrate our results by using
simulations from the effective channel order determination area.

Index Terms—Akaike information criterion, minimum descrip-
tion length criterion.

I. INTRODUCTION

M ODEL order selection is a fundamental task in time-se-
ries analysis and signal processing. Two commonly used

approaches for this task are the Akaike information criterion
(AIC) and the minimum description length (MDL), which were
originally proposed in [1]–[3] and popularized in the signal pro-
cessing community by Wax and Kailath [4].

The case of interest is described as follows. Assume that
the measured data form a sequence of-dimensional vectors

obeying the model . The
matrix is of full-column rank , and and

are uncorrelated sequences of zero-mean stationary
complex Gaussian random vectors, with covariance matrices

and , where
superscript denotes Hermitian transpose, anddenotes
the identity matrix. Under these assumptions, the covariance
matrix of is

where is a rank- matrix. The -dimensional subspace
spanned by the columns of is usually called the signal sub-

Manuscript received August 3, 2000; revised May 1, 2001. A. P. Liavas was
supported by the EPET II Program of the Greek Secretariat for Research and
Technology. The associate editor coordinating the review of this paper and ap-
proving it for publication was Dr. Athina Petropulu.

A. P. Liavas is with the Department of Computer Science, University of Ioan-
nina, Ioannina, Greece (e-mail: liavas@cs.uoi.gr).

P. A. Regalia is with the Départment CITI, Institut National des Télécommu-
nications, Evry Cedex, France (e-mail: Phillip.Regalia@int-evry.fr).

Publisher Item Identifier S 1053-587X(01)05867-6.

space, whereas its orthogonal complement is called the noise
subspace.

The problem of interest is to determine of the dimension of
the signal subspace. Denoting the eigenvalues ofas

, we obtain that the smallest
eigenvalues of are equal to . Hence, in theory, we can de-
termine the dimension of the signal subspace from the multi-
plicity of the smallest eigenvalue of . However, in practice,
we do not have access to the true data covariance matrix but to
its finite sample estimate

The smallest eigenvalues of are all different with probability
1, complicating thus the determination of the dimension of the
signal subspace. In this case, one may estimate the dimension
of the signal subspace by using the AIC [4]

AIC

or the MDL criterion

MDL

where denote the eigenvalues of, and
and denote, respectively, the geometric and the arithmetic

mean of their arguments. The dimension of the signal subspace
is taken to be the value of for which either
AIC or MDL is minimized. Under the aforementioned
ideal assumptions, the MDL criterion is shown to be asymp-
totically consistent, whereas the AIC tends to overestimate the
dimension of the signal subspace [4]–[6]. Works estimating the
probabilities of under- and over-estimation under the ideal as-
sumptions have appeared in [6]–[9].

However, these ideal assumptions may not be fulfilled in
practice. The noise eigenvalues may be dispersed due to the
existence of colored noise [6], [10]. The AIC and the MDL
would be considered robust and applicable in practice if
they could provide reliable estimates under slightly nonideal
conditions. In [6], Xu and Kaveh show that in the presence of
colored Gaussian noise, both the AIC and the MDL tend to
overestimate the model order with probability that increases
with increasing the number of data samples. Asymptotically,
as , the probability of the “breakdown” of these
detectors tends to 1.

In this paper, we study the influence on the behavior of the
AIC and the MDL of a large gap between the signal and the
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noise eigenvalues and of the noise eigenvalue dispersion. Our
results are mostly qualitative and serve to explain the behavior
of these criteria in some cases of great practical importance.

The rest of the paper is organized as follows. In Section II, we
recall the necessary and sufficient conditions for ITC
ITC , where ITC stands for “information theoretic criterion”
and designates either AIC or MDL. Analytic expressions for the
finite sample cases are difficult to derive [6]. Instead, for these
cases, we derive sufficient analytic conditions. In Section III, we
identify the cases in which application of the ITC is likely to lead
to model order over- or under-estimation. We show that when
the noise eigenvalues are not clustered sufficiently closely, then
the ITC may lead to overmodeling by ignoring an arbitrarily
large gap between the signal and the noise eigenvalues. This
is clearly a serious drawback of the ITC. For fixed number of
data samples, overmodeling becomes more likely for increasing
the noise eigenvalue dispersion. For fixed dispersion, overmod-
eling becomes more likely for increasing the number of data
samples, which concurs with [6]. Undermodeling may happen
in the cases where the signal eigenvalues are not well separated
from the noise eigenvalues and the noise eigenvalues are clus-
tered sufficiently closely. Thus, in the presence of colored noise,
undermodeling is very unlikely to happen. Our results are illus-
trated by simulations appearing in Section IV, while some con-
cluding remarks are given in Section V.

II. STUDY OF INFORMATION THEORETICCRITERIA

In this section, we provide sufficient analytic conditions for
ITC ITC in the finite sample cases, with our initial
development paralleling [6]. Thus, let us recall that the eigen-
values of are , and let us define the arithmetic
mean of , for , as

A. Akaike Information Criterion

By the definition of the AIC and after some straightforward
manipulations, it can be shown that for , the
following relation holds:

AIC AIC e (1)

where . By using

(2)

the right-most inequality of (1) becomes

e e

In order to simplify notation, we define
and e . Thus, we obtain , and we express the
above inequality as

(3)

For fixed and , is a polynomial of , which is
denoted . Sufficient and necessary conditions for AIC

AIC are given in terms of the solution of the inequality
(3). An analytic expression for the precise range offor which

is difficult, once .
Toward finding sufficient analytic conditions for this in-

equality to hold, we first consider the first derivative of

.

This shows that attains its minimum at . The
minimum value is

because . The second derivative of is

for all

Positivity of the second derivative for all is a necessary
and sufficient condition for the continuous function to be
convex in the interval (e.g., [11]). The point
is thus the unique minimum of for and, since

, we conclude that has a unique zero
crossing in the interval . If denotes this zero
crossing, then inequality (3) is satisfied if, and only if, .
As we mentioned above, a closed-form expression fordoes
not appear at hand for finite (see [6] for an asymptotic ex-
pression).

In the sequel, we provide an approximationto . In fact,
we will prove that overestimates . Let be a quadratic
approximation to at the minimum point :

The zero crossing of in is readily found to lie
at

(4)

Since grows faster than (note that the higher order
derivatives of are positive for ), we have

for all , giving so that .
Thus, we obtain that if , then AIC

AIC . Using (2), we can express this sufficient condition as
in (5), shown at the bottom of the page.

If then AIC AIC
(5)



LIAVAS AND REGALIA: BEHAVIOR OF INFORMATION THEORETIC CRITERIA 1691

Fig. 1. Bounds on� =A for AIC(k + 1) < AIC(k) versusN , for
n = p � k = 5; 10. Exact bound (solid line),B (dashed line), and bound
derived from [6, Th. 2] (dot-dashed line).

In Fig. 1, we plot with the dashed line and with the solid
line the corresponding bound resulting by replacingby the
numerically computed true zero crossingversus for

. We observe that the true bound and are very close
to each other. Furthermore, as it was expected, always
overestimates the true bound, providing a sufficient condition
for AIC AIC in the finite sample cases. The same
does not happen with the bound derived from the expression
given in [6, Th. 2] plotted with the dot-dashed line, which, for
these values of and , underestimates the true bound.

Using e , the definition (4), and the infinite-se-
ries expansion of the exponential function, we get the approxi-
mation

(6)

which reveals that decreases for increasingand asymp-
totically tends to 1.

B. Minimum Description Length

Following similar analysis, we can provide the conditions for
MDL MDL by solving an inequality as in (3). The
only difference is that now, is defined as

A lower bound , analogous to , can be derived at
once. It is plotted with the dashed line in Fig. 2, versus, for

, along with the corresponding bound resulting by
using the numerically computed true zero-crossing (solid line).
With the dot-dashed line, we plot the bound derived by using
the expression of [6, Th. 2], which, as we see, underestimates
the true bound.

Working similarly to (6), we derive the following approxima-
tion for :

Fig. 2. Bounds on� =A for MDL(k + 1) < MDL(k) versusN , for
n = p� k = 5; 10. Exact bound (solid line),B (dashed line), and bound
derived from [6, Th. 2] (dot-dashed line).

C. AIC versus MDL

As we saw, both criteria involve the same but differ
in the parameter . For fixed and and , the zero-
crossing of increases for increasing because

is linearly decreasing in

A straightforward comparison shows that

e

That is, for data samples, we have . This
means that for , which is practically always the case, the
inequality AIC AIC is satisfied for smaller ratio

than the corresponding inequality for the MDL. As
a result, the MDL inherits enhanced robustness properties, with
respect to noise eigenvalue dispersion, compared with the AIC.

III. OVERMODELING, UNDERMODELING

The plots appearing in Figs. 1 and 2 illustrate clearly the
following fact: If is slightly larger than the mean of the
trailing eigenvalues , then ITC ITC . For
example, for and , if

, then AIC AIC .
By assuming the thetruesignal subspace dimension is, we

make the following observations.

• Observation 1) If the signal eigenvalues are
of about the same order of magnitude and are well sepa-
rated from the noise eigenvalues , then un-
dermodeling is very unlikely to happen.To see this, let
us examine ITC and ITC for . By as-
sumption, is of the same order as and
much larger than . Due to the influence of
the small eigenvalues on , we expect
that will be sufficiently larger than , giving that
ITC ITC for . This leads to
ITC ITC for , avoiding undermodeling.
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Fig. 3. Absolute values of a portion of the subchannels constructed bychan2.mat.

Fig. 4. N = 200, SNR = 35 dB. (a) log� versusk. (b) eigenvalue ratios� =� versusk. (c) Experimentalpdf(k) of AIC estimates versusk. (d)
Experimentalpdf(k) of MDL estimates versusk.

• Observation 2) If the noise eigenvalues are not clustered
sufficiently closely, then the ITC may ignore an arbitrarily
large gap between the signal and the noise eigenvalues,
leading to overmodeling.To justify this claim, let us con-
sider the scenario in which there is a sole large eigen-
value gap, namely, the one betweenand . In order
to obtain the rank estimate , which seems satis-
fying in this case, it must hold that ITC ITC ,
for . From the previous observation, we get that,
due to the clear separation between the signal and the
noise eigenvalues, ITC ITC for . However,
if, due to the existence of colored noise, is slightly
larger than the mean of the trailing eigenvalues , then

ITC ITC , excluding from being our rank es-
timate. We must note that this happensirrespectiveof the
size of the gap between and . For fixed and

, overmodeling becomes more likely for increasing
because both and decrease for increasing
. For fixed , overmodeling becomes less likely for in-

creasing the similarity of the noise eigenvalues.
If is slightly larger than , then ITC

ITC . Following similar arguments, we can see that if
the noise eigenvalues are not clustered sufficiently closely,
then the ITC may lead to severe overmodeling. This prop-
erty is at the root of the “breakdown” of the AIC and the
MDL in the presence of colored noise.
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Fig. 5. N = 200, SNR = 20 dB. (a) log� versusk. (b) eigenvalue ratios� =� versusk. (c) Experimentalpdf(k) of AIC estimates versusk. (d)
Experimentalpdf(k) of MDL estimates versusk.

• Observation 3)If the signal and the noise eigenvalues are
not well separated and if the noise eigenvalues are clus-
tered sufficiently closely, then undermodeling is likely to
happen.To see this, let us consider the ratio .
Under the aforementioned assumptions, ,
which renders likely the fact that ITC ITC , ex-
cluding from being our estimate. Furthermore, from the
assumption that the noise eigenvalues are clustered suffi-
ciently closely, we get that , which is likely
to lead to ITC ITC , for . In
combination with the previous argument, we obtain that in
this case, the ITC may lead to undermodeling. If the noise
eigenvalues are dispersed, then, as is evident from the pre-
vious observation, the ITC may lead to overmodeling.

IV. SIMULATIONS

In this section, we illustrate the previous observations by
using simulations in the context of effective channel order
determination. This context is very well suited to our study
since the channel tails contribute unknown colored noise to
the covariance matrix associated with the significant part of
the channel (see [10]). In all the cases we consider, the data
covariance matrix eigenvalues are well separated into two
groups: and . This implies that
the only satisfactory estimate for the signal subspace dimension
is 12. However, as we will see, the behavior of the ITC depends

strongly on the number of data samples and the dispersion of
the noise eigenvalues and not on the large eigenvalue gap.

In Fig. 3, we plot the absolute values of the impulse response
terms of a portion of the two subchannels constructed from the
oversampled, by a factor of 2,chan2.matfound at the website
http://spib.rice.edu/spib/microwave.html. The input sequence
consists of 4-QAM i.i.d. samples. At the subchannel outputs

and , we add zero-mean temporally and
spatially white noise with variance , obtaining the noisy
output sequences and . We define the SNR as

SNR

We construct the data covariance matrix
, for , where

, and , and we estimate the effective channel order
by estimating the dimensionof the signal subspace, using

the ITC ( and are related by ; see [10]).
In Fig. 4, we consider the case with and SNR
dB. In Fig. 4(a), we plot on a logarithmic scale the mean

of the eigenvalues of the estimated data covariance matrix
normalized so that versus (the mean is computed on a
basis of 1000 independent realizations). In Fig. 4(b), we plot the
ratios versus . We observe that there exists an eigen-
value gap of about two orders of magnitude betweenand

. This fact suggests that the only satisfactory estimate of the
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Fig. 6. N = 1000, SNR = 20 dB. (a) log� versusk. (b) eigenvalue ratios� =� versusk. (c) Experimentalpdf(k) of AIC estimates versusk. (d)
Experimentalpdf(k) of MDL estimates versusk.

rank of is . Thus, we may consider the eigenvalues
to be the noise eigenvalues. Fig. 4(a) reveals that

the noise eigenvalues are not all clustered very closely. Thus,
we expect that we may face overmodeling. In Fig. 4(c) and (d),
we plot the experimental probability density function of
the AIC and the MDL estimates, respectively. We observe that
both the AIC and the MDL always overestimate the dimension
of the signal subspace by ignoring the large eigenvalue gap. This
happens because the noise eigenvalues are not all clustered suf-
ficiently closely.

In Fig. 5, we use input samples, but now, we have
decreased the SNR to SNR dB. A large eigenvalue gap still
exists, but now, the noise eigenvalues are clustered more closely
than the corresponding ones of Fig. 4. The MDL always esti-
mates 12 as the dimension of the signal subspace, whereas the
AIC overestimates it by one in about 40% of the cases. This be-
havior has been observed extensively and is consistent with our
statement that for fixed , overmodeling becomes less likely
for decreasing the dispersion of the noise eigenvalues. Here, in-
crease of the white noise power is synonymous with increase
of the noise eigenvalue similarity.

In Fig. 6, we depict the case , SNR dB. De-
spite the fact that the trailing eigenvalues are clustered closely,
both citeria often lead to overmodeling (the AIC always over-
models). This happens because the ITC become more sensitive
to the noise eigenvalue dispersion as the number of data samples

increases.

V. CONCLUSION

The information theoretic criteria for model order selection
are based on the similarity of the trailing eigenvalues. As a
result, when the noise eigenvalues are not clustered sufficiently
closely, they may ignore an arbitrarily large gap between the
signal and the noise eigenvalues and may lead to overmodeling.
Undermodeling may happen when the signal and the noise
eigenvalues are not well separated and the noise eigenvalues
are clustered sufficiently closely. Overmodeling is more likely
to happen when the AIC is used. The conditions under which
overmodeling may happen render questionable the use of the
ITC in applications where colored noise may appear. In such
cases, criteria that look for an eigenvalue gap may prove more
useful.
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