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On the Numerical Stability and Accuracy of the
Conventional Recursive Least Squares Algorithm

Athanasios P. Liavas and Phillip A. Regalfgenior Member, IEEE

Abstract—We study the nonlinear round-off error accumula- local exponential stability of the correspondingpnlinear
tion system of the conventional recursive least squares algorithm, round-off error propagation system [6, pp. 17-19]. No clear
and we derive bounds for the relative precision of the com- indication has surfaced, however, as to “how small’ the

putations in terms of the conditioning of the problem and the .
exponential forgetting factor, which guarantee the numerical sta- accumulated error should be so that the influence of the

bility of the finite-precision implementation of the algorithm; the ~ nonlinear terms does not destroy the stability properties of
positive definiteness of the finite-precision inverse data covariance the overall system.

matrix is also guaranteed. Bounds for the accumulated round-off ~ An examination of the nonlinear round-off error accumu-
errors in the inverse data covariance matrix are also derived. In lation system of the conventional RLS algorithm appeared in

our simulations, the measured accumulated roundoffs satisfied, 7 h o f losive di d | d
in steady state, the analytically predicted bounds. We consider [7], where a scenario fagxplosive divergenceas developed.

the phenomenon of explosive divergence using a simplified ap- EXplosive divergence is the occurence of “sudden big” errors
proach; we identify the situations that are likely to lead to this due to finite-precision effects. This phenomenon has been

phenomenon; simulations confirm our findings. linked to the loss of the positive definiteness of the finite-
precision inverse data covariance matrix and the negative value
|. INTRODUCTION of a theoretically positive quantity [7]. However, the approach

DAPTIVE signal processing algorithms are widely use8f [7] is mostly qualitative, and finally, numerical stability is
not guaranteed.

In many e}ppl|cat|on areas becau;e of their ability to This is our main subject. We perform a detailed study
adapt to changing and/or unknown environments. The theor o . .
the stability properties of thenonlinear round-off error

of adaptive FIR recursive least squares (RLS) filters is we . . .
. o c?umulatlon system of the conventional RLS algorithm and
developed and provides the user, at each time instant, a sef 8

. . we derive the following:
parameters optimal in the least-squares sense [1], [2]. ) .
A very important “real-life” problem that is inherent in * an upper bound for the relative precision of the compu-

the continuous use of adaptive algorithms is their behavior (@tions in terms of

in finite-precision environments. This problem contains the =~ —the conditioning of the problem;

following subproblems: —the exponential forgetting factor;
« round-off error generation, which is strongly implemen- ~ Which guarantees that the nonlinear round-off error ac-
tation dependent; cumulation system remains BIBO stable; it is also guar-

* round-off error propagation, in which a Sing|e perturba- anteed that the finite-preCiSion inverse data covariance

tion is introduced at an arbitrary iteration, and its influence ~ matrix remains positive definite;
on subsequent computations is studied; « a corresponding upper bound for the accumulated round-
« round-off error accumulation, in which we study the  off error.
composite influence of the previous two subproblems. In Section Il, we review the linear least squares problem
If, for a given a|gorithm, the round-off errors accumu|at@.nd two classical RLS algorithms. In Section Ill, we derive
without bound, then the algorithm is unsuitable for continuodBe nonlinear round-off error accumulation system of the
use without further intervention. conventional RLS algorithm, which is studied in Section IV.
For the conventional RLS algorithms, the round-off errdft Section V, we present simulation results, and conclusions
propagation is the best studied of the three aforementior@@ drawn in Section VI.
subproblems [3]-[5]. Such studies typically examine tie
earizedround-off error propagation system and focus on the [l. RECURSIVE LEAST SQUARES ALGORITHMS
derivation of itsexponential stability this, in turn, implies  For the standard least squares problem, we are given a
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The recursive solution of (1) gives rise to an RLS algorithm,

for which a standard form appears as

Or = Ok—1 + Ry, "re (ur — 01 ) (2)
Ry, = ARy_1 + ¢udj. 3)

The conventional recursive least squares (CLS) algorithm
results if we introduceP, = R,jl and apply the matrix

inversion lemma to (3); this gives the familiar recursions

Ill. THE NONLINEAR ROUND-OFF
ERROR ACCUMULATION SYSTEM

Let us denote byAx the accumulated round-off error in the
quantity z. Then

AP £ Py - Py, 9
Ar§ 27 — 18 = ptAPr_1dn. (10)

Assuming thaﬂf,—’;’i < 1, we can expand the second term
k

75 = A+ oL Pu_16n, (4) of (8) as (11), shown at the bottom of the pag€hus, the
Pr_1¢k " nonlinear round-off error accumulation system is described by
O = Or1 + 7—e(“k — i1 ¢%) (5) (12), shown at the bottom of the page. The study of (12)
1 ’}Dkfl(f)k(f)t P, is of primordial importance for the “real-life” finite-precision
P, = " <Pk1 — 7—6"> (6) implementation of the CLS algorithm. However, it seems that
k

the existence of the higher order terms has been a major

In order to study the finite-precision implementation of thebstacle toward this purpose. In the sequel, we perform a
CLS algorithm, we denote by’ the finite-precision version detailed study of the nonlinear difference equation (12), and
of P, we define the intermediate quantity we derive sufficient conditions for its BIBO stability, implying

N numerical stability of the CLS algorithm.
7 = A+ ¢ Pu_1n (7)
A. Assumptions
In order to study (12), the following assumptions are in-
voked.

1) The regression vectat, is persistently exciting, that is,
there exista, b and &k, such thatd < a < b < o and

and we express the finite-precision time updateéPpfas

~ 1. Pro_1¢ndt P .
b, = X(Pk_l _ %) + P, 8)

Tk

where the termeP, denotes the local round-off error in the

k
computation ofF; in this way, we separate the propagated al < Z)\k—t(/)t(/); <bI, forall k> k. (13)
from the local round-off errors. In Appendix A, we perform a —1
detailed analysis of the finite-precision time update’pf and
we compute the local round-off erref;. 1Formulas (8) and (9) of [8] contain typos.
Pu_1¢w¢t Pr1 _ Pr19r @ P + Poc1 il APt + AP _1gp ¢l Pu1 + APy 1 $pdpf, APy
T T
Ar€ Are\ 2
x{l— ”+<J> —} (11)
7k 7k
—
to(k,AP;, 1)
tl(k,KPk,l)
tg(k,&rpkfl)
IN {Apk_l L Db Py Arj, B df AL + APk_1¢k¢;Pk_1}
A TN TN TN
first order terms
1 [ Po_1¢4dt P P 1 ppdt AP,
B _{ 3 1</)k<j)k % Lo, APyt ) + % l(bk(/)j & Lty (k, APo_1)
)\ Tk Tk
higheT order
AP, 1Pt P AP, _1pp L AP, -
+ K l(i))’;d)k K ltl(/{}, APk_1) + K ld)l;z)k K lto(/{;, APk_l)} +ebF. (12)
k k

-

terms
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This is a well-known condition, which implies that thethat the nonlinear round-off error propagation systeingally
data covariance matrix and its inverse exist and afee., for smallAF,) exponentially stable. However, no study
bounded. Thus, there exist bounded const@@nd? exists, to our knowledge, that provides an indication as to “how
such that small” AP, should be so that the influence of the nonlinear
and the additive terms in (21) does not destroy these stability
properties. This is our main task in what follows.

where, here and throughout, || denotes the 1-norm At first, we derive the solution of (21) as

of its argument. The validity of the bounds in (14) for

k < ko can be guaranteed by a “soft” start.
2) The regression vectaf; is bounded as

IR <R, and P <P, forallk  (14)

k
AP, =Y MNTPRi(f(i, AP,_1) + eP)R; P, (24)
i=1
l¢ell < @, forall . (15) : - -
where f(1, APy) = 0; this can be trivially forced by initial-
In Appendix A, we show that if theelative precisionof the izing the algorithm withP,, which can be represented with
computations, which is denoted by belongs to a certain no round-off error. Then, if there exists a constansuch

interval, then the local round-offP, is bounded as that |[AF;|| < r for i =1,...,k — 1, the following theorem
~ provides an upper bound fOA Py ||.
lePxll < ¢, for all & (16) ™ Theorem 1:1f |AP|| < rfori=1,...,k—1andr < 2,
where £ is a bounded constant. then
Using (3) and (15), we see that an upper bound7Rois A
given by e a2 2
DK+ P22 K2
2 AP . 2
R<R2 (I’A (17) IABl < ST o —emy Y 1o (25)
and an upper bound for the condition number of the dalde proof is given in Appendix B.
covariance matrixC, = || Ry|||| Px|| is provided by Now, if we can find anr independent of: in the range
PP 0<r< % such that the right-hand side of (25) is less than
Ki<KERP<K=2 Y (18) or equal tor, i.e.,
Aqr? K2Ee
. AP, <r 26
IV. STABILITY ANALYSIS OF THE NONLINEAR [|AP]| < NI =N =87 + T S (26)

ROUND-OFF ERROR ACCUMULATION SYSTEM

Let us denote byf(k,AF,_) the higher order termsthen we obtain by induction thafAF|| < » for all k,
appearing in (12). Using (10), we can rearrange (12) as thereby implying that the accumulated round-off error remains

1 P._{1u0t P bounded.
Al = 2 <I - k‘;,?kd)k)APkl <I - 7%(7):,9, : 1) If we momentarily set = 0 in (26), we deduce that can
» k be no larger than

+ f(k,AP_1) + Py (19)
201 _
From (6), we obtain r<ry= AT - A 5. (27)
P \ - AL+ A1 = \)o
- D% _apg, (20) b
7k
so that (19) becomes Next, for eachr € (0,7¢], the upper bound om, for which

. (26) remains true and, hendeA P, || < » for all &, is found as
AP, = APy Ri_1 AP, 1 Ry 1 P+ f(k, APi_1)+eF.. (21)

.2
Looking for a moment at the linearized homogeneous system, e < 1 _2 A <7, _ At . ) ] (28)
we see that K2 R AL =)A= ®?r)
AP, = """ P,R,AP,R; P, (22) B
which gives In order to maximize the relative precisienthat is, minimize
i the wordlength, which guarantees that the accumulated round-
|AP]| < A*7| PRl [|| AP || R: P | off error remains bounded, we have to maximize the function

< MY PR 12| AR < ATICE|AR. (23)  Fo(r) in the interval(0, o). The extremal points afy(r) are
] ) o the solutions tadFy(r)/dr = 0, leading to the second-order
Thus, if the data covariance matrix is bounded from above aBEiuation
below, then the linearized round-off error propagation system

is exponentially stable, with base of decay3].? This implies A2
(1)2(./41 + ./42)7’2 - 2)\(./41 + ./42)7’ + —./42 =0. (29)
2For theX = 1 case, see [1, p. 756] and [9]. d2
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This has as solutions For eachr € (0,7], if
2 _ .2
pe 0= o VAT AA AL+ Ay e< 220 o (38)
2 A+ A 3 M- N = a%r)
(30) ~
7’:pg:i 14 VAL + ALA; Fi(r)
P2 AL+ As then||AP;|| < r for all k. We can derive an upper bound for

] ] ) o e by using the maximization point df (r) for » € (0,71] as
and the maximum of,(r) is attained at = p} < ro. Thus,

an upper bound for the relative precision that quarantees BIBO e<e 2 1- )‘FjL (p1) (39)
stability of the round-off error accumulation system given N £
R, ®, A, and £ is provided by where
Al_)‘ 0 A \/0424-061./42
e< e = WFo(pl)- (31) p% = 2 1-— ﬁ . (40)

The corresponding bound for the accumulated round-off error )
is The corresponding bound for the round-off accumulated error

IS

AP < p?, forall k. 32
AP < p (32) AP < pt, for all k. (41)

Remark: Bound (31) seems to be conservative, mainly ' . ]
because during the calculations in Appendix B, we have used?emark: Bound (39) is much less conservative than (31),
the condition numbek. as an upper bound fdfP,R;||. We mainly beca_use during the calculations in Apper_wdlx C, we
emphasize that the bound so obtained applies in the gend}&Ye approximatedF, /.|| by 1 and not byk’, which was

nonstationary case. A sharper bound, however, can be obtaiH¥j case in Appendix B. _
if the input data are stationary, as we now pursue. By simple manipulations of (37) and (38) and using (71)
from Appendix A, we can show that

A. The Stationary Case 1—A
. . . e<e < —— (42)
When the input sequencg is stationary, then the approx- K
imation which establishes a relation between the conditioning of the
PR~ (33) problem and the numerical stability of the CLS algorithm;
ke fh—1 ™ this is a well-known claim in the general context of adaptive
is often used in steady-state and farvery close to 1 [1, &lgorithms [1, p. 738], [11]. We also observe that the relative
p. 713], [10]. This approximation affords the derivation oPrecision is proportional té — A, which means that fok very
bounds that are much less pessimistic than (31) and (32). ¢lose to 1, the round-off error accumulation is more significant,

In this case, the round-off error accumulation system Y¢hich is as to be expected. _
It has been widely observed that the sudden big errors due

given by
R to finite-precision effects are related to the loss of the positive
AP, = AP, 1+ f(k,APy_1) + €Fy (34) definiteness of the finite-precision inverse data covariance
matrix P, [7]. In the sequel, we show that if we use (39) for
and thus the calculation of the relative precision of the computations,
1 p then P, remains positive definite.
1Al = 1-X (mfm G, APl + 86)' (35) Theorem 3:If a persistently exciting data sequenge is

fed as input to the CLS algorithm, which is implemented with
relative precisiore calculated by (39), then the finite-precision
inverse data covariance matri, remains positive definite

Assuming that|AP;|| < r for ¢ = 1,...,k — 1, the next
theorem provides a bound fgA Py ||.
Theorem 2: Let ¢, be a stationary sequencebe very close for all

: . ;= _ s A
o LllaB] <rfori=1,...k—1 andr <. Then Proof: It is a well-known result in matrix perturbation
1 theory [12, p. 118] that if

D2((1— NP2 +3—2\) 12 Ee " 1
< ). = _—
NI= V0= &%) +1 _)\(_ ) A=A+AA and ||A4| < a1 (43)
(36) )
The proof is given in Appendix C. then A is perforce nonsingular.
BIBO stability is guaranteed if the right-hand side of (36) Thus, if [AP|| R < 1, then||AP:|| | Rx|| < 1, meaning

is less than or equal ta Putting in (36)c = 0, gives an upper that Py is perforce nonsingular. From (36) and (37), we obtain

bound forr as i IIAP||<’_)\2(1_)\)<1_)\<1_)\_1<i
é)‘(l_)‘) (37) » = ar + As aq 2 R™R

ar +As (44)

[AR| <

Al

<
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Fig. 1. Twenty-bit precision; 1-norm aP; (thick line), 1-norm of AP, (solid line), and bound predicted by formula (37).

which means that the sufficient condition (43) is always sdfie value of; (after each floating-point operation, we truncate
isfied, implying nonsingularity of the finite-precision invers¢he mantissa to 20 bits without affecting the exponent). In
data covariance matri®; for all k. This fact implies that Fig. 1, we plot the 1-norm of the inverse data covariance
1 matrix || Px||, the 1-norm of the accumulated round-off error
AP |2 < = = Amin(Fr) (45) ||AP.||, and the bound predicted by our theory; we observe
[1£2x]]2 that the bound is always satisfied (we used the double precision
where || -||2 denotes the matrix 2-norm andl,,(P:) the variables as the reference variables). We have repeated this
minimum eigenvalue of’, because we can always finsP; experiment with many different types of data and for millions
such that of iterations; the accumulated error satisfied, in steady-state,
the bound predicted by our theory.
= Amin(Fr) (46)  An interesting question, which is not answered directly by
our theory, is if these sufficient conditions for BIBO stability

which renders?, = P, + AP, nonsingular [12, p. 120]. Then, are necessary as well. We attempt to give an answer to this

APl =
IRz

since guestion using a simplified approach. An approximate round-
off error accumulation system for the CLS algorithm can be
INi(AP)| < [JAP]|2 < Amin(Pr) given as
we obtain [13, p. 411] AP, = AAP, 1 + ¢, (48)

)\min(ﬁ)k) Z )\min(Pk) + )\min(APk) >0 (47) . . . . - . .
This expression is more likely to be valid in cases in which

implying that the finite-precision inverse data covariance méhie round-off terms dominate the nonlinear terms; a careful

trix remains positive definite. O inspection of (36) reveals that this may happen widens
neither very large nor very small (this can be achieved by
V. SIMULATIONS scaling the input data)® should not be very large because

. : . : it magnifies the nonlinear terms, and it should not be ver
In the previous section, we studied the nonlinear round- g y

off error accumulation system of the CLS algorithm, and w mall because, in that case, for a given condition nunier,
. y ; gonthm, Becomes very large; thuA Py || may become large, resulting
derived an upper bound on the relative precisign(resp.,

¢1), which guarantees that the accumulated round-off erriFr)lra domination of the nonlinear terms with respect to the local
1 y - _ . - .
is bounded byp? (resp.pt). This gives sufficient conditions dund-off terms. Then, using (71) from Appendix A, we obtain

for the BIBO stability of the round-off error accumulation Pe

system and provides an upper bound for the accuracy of the AP < 37— (49)
computations. In this section, we perform simulations to check

our theoretical results. A usual rule of thumb is that if a numerical analysis round-

In the first simulation study, we generate input data byff error bound isAe, then it is more realistic to expect that
passing white Gaussian noise with standard deviation Otfie roundoff is typically of ordes/Ae [14, p. 52]. This results
through the AR model with pole&.85, 0.7+ .45, and—0.4+ from the independence of the various roundoffs and the central
.6j. We run, in double-precision floating-point arithmetic, théimit theorem. Thus, a more realistic estimation|j@ P, || is
CLS algorithm with orderAl = 5 and A = 0.99, and we

derive the following estimatesP = 8.0467, & = 1.3913, AP ~ P 50
yielding K = Z2- = 1.5577 x 10%. Then, we use (39), (41), IAPy] ~ 1—2°" (50)

and (71) to derive upper bounds for the relative precision and
the accumulated round-off error ag = 1.3322 x 10~¢ and Since the matrix 1-norm is subordinate to the vector 1-norm,

p! = 0.0021, respectively. We implement the CLS algorithnthere is a matrixA A with [[AA|| = ;35 such thatd + AA
with 20-bit precision floating-point arithmetic, as indicated bis nonsingular [12, p. 120]. IfAFP|| =~ % then we are close
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Fig. 2. Occurence of explosive divergence with 11-bit precision; 1-normd?ofthick line), 1-norm of A P, (solid line).
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Fig. 3. (a) Nonstationary AR data. (b) Eighteen-bit precision: 1-noriofthick line), 1-norm ofA Py, (solid line) and bound predicted by the stationary case.

to loss of the positive definiteness %. Thus, if Similar behavior has been observed in most of the cases
studied in our simulations.
V1= For data obtained by slowly time-varying systems, the
e JPR (31)  approximation
Pkkal ~ I

then it is likely that explosive divergence may occur.

In order to check this approach, we use '.[he same (_Jlata_\ ?%I’ds for X close to 1, and the results derived for the stationary
Now, we compute the relative precision using (51), yieldin

¢ = 6.4608 x 10~*, implying 11-bit precision; we expect gase can be applied to these cases as well. We present such

that explosive divergence will occur. We plot the results if case in Fig. 3.‘ InPg. 3(a), we plot a segment .Of th_e data

Fig. 2. We observe that the accumulated roundoff exhibi erived by passing TGsamples of a zero-mean unit-variance
2 N . s N wshite Gaussian noise sequengethrough the second order

a “stationary” behavior, and suddenly, a “big error oceurs, o model

Then, the algorithm reconverges and the same scenario may

re-commence. At the moments of “big” errors, the finite- 2

precision inverse data covariance matrix loses its positive Yt = Zai(t)yt—i+et (52)

=1

definiteness, as has been observed in the literature, e.g., [7].



94 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 1, JANUARY 1999

whose coefficients vary according to the model (For the definition ofy,; and a discussion of the importance
. of the constant and th€(c?) terms in the error bounds, see
a(t) = 0999 (=D b wi(®), i=12 o (14, pp. 70-74]). Then

a1(1)=1.4, ax(1l)=0.65
e ) FUSLPe16x) = (1 + 660) (Pocr + 8Pi1)dnc (58)
where w;(t) is a white noise sequence with varianeg = < <
10~%. We use (39), (41), and (71) to derive = 5.0783 x where||6¢x|| < yarllpnll; 16Pk—1ll < varl|Pr—1]l, @and
10~%, implying 18-bit precision, anghl = 3.9985 x 10~°. SUPe1¢n9iPr—1)
In Fig. 3(b), we plot||f’k||, ||APk||_and the bound predicted = (Pot + 6P ) prdh(Pecy + 6P_1)+ 6. (59)
by the theory concerning the stationary case. We observe that R
the bound is satisfied. However, we note that in the genevdnere||é1|| < ||Pr—1 ¢} Pr—1||+ O(e?). The computed;

nonstationary case, these results may not apply, and bo@aé be expressed as

(31) should be used. . 1
P, = \ <Pk—1
VI. CONCLUSION (Bt 6Pi_1)pr @i (Pr—1 + 6Pe—1) + 61 p
We considered the problem of the finite-precision imple- A+ (¢ + 661 (Pr—1 + 6Pr_1)ér + 62 3
mentation of the CLS algorithm. Most previous studies have (60)

focused on the study of the linearized round-off error propa-, . ) )

gation system and, thus, fall short of establishing conditioddth [62] < e +O(e%), and||83]| < 2¢| Pi[| + O(e”) so that

guaranteeing the numerical stability of the finite-precisiohx becomes

implementation of the algorithm. Ao L <P Dot Do + A+ 61> 46 (61)
We denve(_j upper_bounds for the relative precision of & = A\ TR A+ QL Pu 11 + Ay 3

the computations, which guarantee the BIBO stability of the

nonlinear round-off error accumulation system, implying navhere [[Awll < 2yyl|PooillllgrdfPresll + O(e*), and

merical stability of the implementation. These bounds depefid2ll < 2varll@Llll[ Pa-illll¢xll + O(e?). (Term é; has been

on the conditioning of the problem through the quantitiegonsidered small with respect ty, and has been neglected).

P, R, and @ and the forgetting facton. Preservation of Thus

the positive definiteness of the finite-precision inverse data - 1 1 Ao 9
. . P,=—-<FP_1—— 1———|—O(6)

covariance matrix is also guaranteed. )\{ ¢ < 5 )

Our approach resembles a numerical analysis one, where
the derivation of the bounds is based on the application of X (Peo1¢ndiPuc1 + Ay +51)} +63.  (62)
the triangle and submultiplicative norm inequalities. This fact
makes the derived bounds somewhat conservative, especialfg error due to roundoff is
in the general nonstationary case. In all the simulations we Poo19rdi Poo1 D2 A b1 9
performed, the accumulated round-off error satisfied, in steadt))ﬁ-‘ TR TE - V}e; - V}e; +d3 4+ 0(%)
state, the analytically predicted bounds. 1 Ay A 5 ,

We considered the phenomenon of explosive divergence = <Pk - XPk—1>—F vl + 63+ O(e%)
using a simplified approach; we identified the conditions k k k
that are likely to lead to this kind of numerical instability; (63)
simulations are in agreement with our findings. In the nonstationary case

1+ A

1
APPENDIX A Pr— P < ——P. A < 29mP2e? + O(?)

In order to compute the round-off error generated during one 1As]| < 2yM P22 + O() (64)
iteration of the CLS algorithm, we must model the respective B
floating-point matrix operations. Assuming thatand B are and

01 14+ A

(M x M) matrices,x andy are M-dimensional vectors, and _Jp 1P O(2) < e
a is a scalar, we obtain [14, pp. 69-76] ||~ % = | () < b\ P+ 0(<).
Jlla'y] = (@ + 82)'y = a'(y + 69) (63)
6] < varllzll, 16wl < varllyll (54) In order to derive the simplest possible bound, we ignore
FUAD = (A+ 640,  [|5Al < varllAl (55) the small multiplicative terms, ielt2 L., 2, and the
bl — 2 ]". .
Iy = 2ot + 6. ||8]] < an 56 O(e*) terms, and we replace the,, term, which is strongly
Myl =ay + e[} < elly’ (56) dependent on the summation strategy [14, p. 70]c.byhen
It can be shown that 1B — Pi|| < €€ = (P22 + P). (66)
flla(A—B)]=a(A-B)+6 Note the difference between a first-order approximation to the

16]] < 2¢||a(A — B)|| + O(e?). (57) relative precisione, which is assumed to be “small,” and a
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first-order approximation to the accumulated round-off error Proof of Theorem 1:From (24), we obtain
performed in most of the existing studies, which, however,

1 -
may be much larger thaa AP < T max || PR (f(i, AP;_1) + eP;)R; Py
In the stationary case and farvery close to 1, using (33) - ’ (74)
and (83), we derive We will bound || P R; (£ (i, AP,_1) + ¢P,)R; P|| by the sum
1 of the bounds of the norms of each subterm.
‘Pk - kafl ~(1-NP In order to compute a bound fd{P, R;11(i)R; Fi||, we

express the argument of the norm as
IAL| € 29— NP +O(2)  67) T J

1, PoidiiPie = AP _14:)"
Bl 1= NP+ O, L il g p, Z(—l)"((’)cfid)) (75)
pYes A i = (75)
Thus which, using (73), becomes
1B = Pl € e((1 = VP20 + (1= NP +P)  (68) 1 = PLAP_1¢:)"
XPk%(/)EPk Z(—l)n%- (76)
and a very simple bound is n=2 (rs)
1Py — Pp|| < €€ = €P. (69) Since P}, is positive definite, (4) gives tha; > A. Thus,
L < 1 and using (14), (15)y < 2, and||AP|| < r for
Note that in a finite-precision implementation of the a[gorithnq,’“: 1,...,k—1, (76) gives
P, should be replaced by its finite-precision versifh = - ) o
P+ APy. In the sequel, we show thHA Py || < || P.|; recall PN 2.2 L N e
that in (44), we obtained O A ;Z T A= 92p)
1-x_ 1 1 (77)
I8F < m < 5~ = % < i < Il
From (72) and (73), we get that the second term is
Thus, by replacingP,. with P, in the previous calculations, 1
we obtain _XPkRiPid)id)EABflRiPktl(ia AP; 1) (78)
1By — Pi|| < € = 2¢P (70) and thus
or by ignoring the term 2 | PLRiTo () R; Pr|| < 73<I>27IC||t1( JAP, )|
Py — Py|| < € =€P. 71 Pt
1B = Pl < c& = (1) <7P ke (79)
A — @27)
APPENDIX B

The same bound holds for the third term. In the same manner,
From (12), we obtain that the higher order termge can show that
f(k,AP,_y) are given by

) DIL2p2
Flk, APu_y) = _X%Q(hAPk_l) Ah — ©2r)
~ k. For the term concerning the roundoff, we get
T1(k) -
2
-3 v t1(k,APy_1) o _
. Tk Combining (77), (79), (80), (81), and (74), we verify (25) to
T, (k) prove Theorem 1. O
1 APu—1019 Pur
A re fulk AR) APPENDIX C
h 75 (k) Proof of Theorem 2:In view of (35), in order to prove
Theorem 2, we must compute a bound fof(¢, AF;_1)||.
1 AP, 1ot AP, ’
-3 k 1¢’ff)k ML to(k, AP,_1). (72) We will bound || f(i, AP,_;)|| by the sum of the bounds of
N "k — the subterms. From (72) and (73), we obtain
Ta(k) (/)tAP & )
1—1%%
The following relation, which can be easily proved using (4) i) = __Pd)zd)tp Z W (82)
and (6), will be used in the sequel: @
Pu_1¢n From (3) and (33), we obtain

—— = Puy. (73)
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Thus [7] G. Bottomley and S. T. Alexander, “A novel approach for stabilizing
4 2 recursive least squares filterdEEE Trans. Signal Processingol. 39,
()| < (1 - X)Po*r (84) pp. 1770-1779, Aug. 1991. _ o
1 )\()\ _ @27,) [8] A. P. Liavas and P. A. Regalia, “Numerical stability issues of the con-

ventional recursive least squares algorithm,"Proc. ICASSP Seattle,

From (72) and (73), we get WA, May 1998. , ,
[9] D. T. M. Slock and T. Kailath, “Numerically stable fast transversal

. 1 " . filters for recursive least squares adaptive filterin§,EE Trans. Signal
TQ('L) = _X-Pi(/)i(/)iAB—ltl('Lv A-Pi—l)- (85) Processing vol. 39, pp. 92-114, Jan. 1991.
[10] E. Eleftheriou and D. Falconer, “Tracking properties and steady-state
Thus performance of RLS adaptive filter algorithmdEEE Trans. Acoust.,
Speech, Signal Processingpl. ASSP-34, pp. 1097-1109, Oct. 1986.
] 1 ] (1-— )\)<1>27>2 [11] J. M. Cioffi, “Limited precision effects in adaptive filtering/EEE
172()| < (X = X)rl[te(é, AP )| < Si—5 - (86) Trans. Circuits Systvol. CAS-34, pp. 821-833, July 1987.
A )‘()‘ - ¢ 7) [12] G. Stewart and J. SuMatrix Perturbation Theory New York: Aca-
. demic, 1990.
The same bound holds for the third term. In the same mannge; G. H. Golub and C. F. Van LoaMatrix ComputationsBaltimore, MD:
we can show Johns Hopkins Univ. Press, 1989.
9 9 [14] N. Higham,Accuracy and Stability of Numerical AlgorithmsPhiladel-
74| < o< (87) phia, PA: SIAM, 1996.
* A — 927)’
Combining (35), (84), (86), and (87), we obtain (36), which
proves Theorem 2. O
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