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On the Numerical Stability and Accuracy of the
Conventional Recursive Least Squares Algorithm
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Abstract—We study the nonlinear round-off error accumula-
tion system of the conventional recursive least squares algorithm,
and we derive bounds for the relative precision of the com-
putations in terms of the conditioning of the problem and the
exponential forgetting factor, which guarantee the numerical sta-
bility of the finite-precision implementation of the algorithm; the
positive definiteness of the finite-precision inverse data covariance
matrix is also guaranteed. Bounds for the accumulated round-off
errors in the inverse data covariance matrix are also derived. In
our simulations, the measured accumulated roundoffs satisfied,
in steady state, the analytically predicted bounds. We consider
the phenomenon of explosive divergence using a simplified ap-
proach; we identify the situations that are likely to lead to this
phenomenon; simulations confirm our findings.

I. INTRODUCTION

A DAPTIVE signal processing algorithms are widely used
in many application areas because of their ability to

adapt to changing and/or unknown environments. The theory
of adaptive FIR recursive least squares (RLS) filters is well
developed and provides the user, at each time instant, a set of
parameters optimal in the least-squares sense [1], [2].

A very important “real-life” problem that is inherent in
the continuous use of adaptive algorithms is their behavior
in finite-precision environments. This problem contains the
following subproblems:

• round-off error generation, which is strongly implemen-
tation dependent;

• round-off error propagation, in which a single perturba-
tion is introduced at an arbitrary iteration, and its influence
on subsequent computations is studied;

• round-off error accumulation, in which we study the
composite influence of the previous two subproblems.

If, for a given algorithm, the round-off errors accumulate
without bound, then the algorithm is unsuitable for continuous
use without further intervention.

For the conventional RLS algorithms, the round-off error
propagation is the best studied of the three aforementioned
subproblems [3]–[5]. Such studies typically examine thelin-
earizedround-off error propagation system and focus on the
derivation of its exponential stability; this, in turn, implies
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local exponential stability of the correspondingnonlinear
round-off error propagation system [6, pp. 17–19]. No clear
indication has surfaced, however, as to “how small” the
accumulated error should be so that the influence of the
nonlinear terms does not destroy the stability properties of
the overall system.

An examination of the nonlinear round-off error accumu-
lation system of the conventional RLS algorithm appeared in
[7], where a scenario forexplosive divergencewas developed.
Explosive divergence is the occurence of “sudden big” errors
due to finite-precision effects. This phenomenon has been
linked to the loss of the positive definiteness of the finite-
precision inverse data covariance matrix and the negative value
of a theoretically positive quantity [7]. However, the approach
of [7] is mostly qualitative, and finally, numerical stability is
not guaranteed.

This is our main subject. We perform a detailed study
of the stability properties of thenonlinear round-off error
accumulation system of the conventional RLS algorithm and
we derive the following:

• an upper bound for the relative precision of the compu-
tations in terms of

—the conditioning of the problem;
—the exponential forgetting factor;

which guarantees that the nonlinear round-off error ac-
cumulation system remains BIBO stable; it is also guar-
anteed that the finite-precision inverse data covariance
matrix remains positive definite;

• a corresponding upper bound for the accumulated round-
off error.

In Section II, we review the linear least squares problem
and two classical RLS algorithms. In Section III, we derive
the nonlinear round-off error accumulation system of the
conventional RLS algorithm, which is studied in Section IV.
In Section V, we present simulation results, and conclusions
are drawn in Section VI.

II. RECURSIVE LEAST SQUARES ALGORITHMS

For the standard least squares problem, we are given a
sequence of -dimensional input vectors , plus a reference
sequence and are asked to compute an

-dimensional parameter vector such that

(1)

where is the so-called forgetting factor .
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The recursive solution of (1) gives rise to an RLS algorithm,
for which a standard form appears as

(2)

(3)

The conventional recursive least squares (CLS) algorithm
results if we introduce and apply the matrix
inversion lemma to (3); this gives the familiar recursions

(4)

(5)

(6)

In order to study the finite-precision implementation of the
CLS algorithm, we denote by the finite-precision version
of , we define the intermediate quantity

(7)

and we express the finite-precision time update ofas

(8)

where the term denotes the local round-off error in the
computation of ; in this way, we separate the propagated
from the local round-off errors. In Appendix A, we perform a
detailed analysis of the finite-precision time update of, and
we compute the local round-off error .

III. T HE NONLINEAR ROUND-OFF

ERROR ACCUMULATION SYSTEM

Let us denote by the accumulated round-off error in the
quantity . Then

(9)

(10)

Assuming that , we can expand the second term

of (8) as (11), shown at the bottom of the page.1 Thus, the
nonlinear round-off error accumulation system is described by
(12), shown at the bottom of the page. The study of (12)
is of primordial importance for the “real-life” finite-precision
implementation of the CLS algorithm. However, it seems that
the existence of the higher order terms has been a major
obstacle toward this purpose. In the sequel, we perform a
detailed study of the nonlinear difference equation (12), and
we derive sufficient conditions for its BIBO stability, implying
numerical stability of the CLS algorithm.

A. Assumptions

In order to study (12), the following assumptions are in-
voked.

1) The regression vector is persistently exciting, that is,
there exist and such that and

for all (13)

1Formulas (8) and (9) of [8] contain typos.

(11)

first order terms

higher order

terms

(12)
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This is a well-known condition, which implies that the
data covariance matrix and its inverse exist and are
bounded. Thus, there exist bounded constantsand
such that

and for all (14)

where, here and throughout, denotes the 1-norm
of its argument. The validity of the bounds in (14) for

can be guaranteed by a “soft” start.
2) The regression vector is bounded as

for all (15)

In Appendix A, we show that if therelative precisionof the
computations, which is denoted by, belongs to a certain
interval, then the local round-off is bounded as

for all (16)

where is a bounded constant.
Using (3) and (15), we see that an upper bound foris

given by

(17)

and an upper bound for the condition number of the data
covariance matrix is provided by

(18)

IV. STABILITY ANALYSIS OF THE NONLINEAR

ROUND-OFF ERROR ACCUMULATION SYSTEM

Let us denote by the higher order terms
appearing in (12). Using (10), we can rearrange (12) as

(19)

From (6), we obtain

(20)

so that (19) becomes

(21)

Looking for a moment at the linearized homogeneous system,
we see that

(22)

which gives

(23)

Thus, if the data covariance matrix is bounded from above and
below, then the linearized round-off error propagation system
is exponentially stable, with base of decay[3].2 This implies

2For the� = 1 case, see [1, p. 756] and [9].

that the nonlinear round-off error propagation system islocally
(i.e., for small ) exponentially stable. However, no study
exists, to our knowledge, that provides an indication as to “how
small” should be so that the influence of the nonlinear
and the additive terms in (21) does not destroy these stability
properties. This is our main task in what follows.

At first, we derive the solution of (21) as

(24)

where ; this can be trivially forced by initial-
izing the algorithm with , which can be represented with
no round-off error. Then, if there exists a constantsuch
that for , the following theorem
provides an upper bound for .

Theorem 1: If for and ,
then

(25)

The proof is given in Appendix B.
Now, if we can find an independent of in the range

such that the right-hand side of (25) is less than
or equal to , i.e.,

(26)

then we obtain by induction that for all ,
thereby implying that the accumulated round-off error remains
bounded.

If we momentarily set in (26), we deduce that can
be no larger than

(27)

Next, for each , the upper bound on, for which
(26) remains true and, hence, for all , is found as

(28)

In order to maximize the relative precision, that is, minimize
the wordlength, which guarantees that the accumulated round-
off error remains bounded, we have to maximize the function

in the interval . The extremal points of are
the solutions to , leading to the second-order
equation

(29)
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This has as solutions

(30)

and the maximum of is attained at . Thus,
an upper bound for the relative precision that quarantees BIBO
stability of the round-off error accumulation system given

and is provided by

(31)

The corresponding bound for the accumulated round-off error
is

for all (32)

Remark: Bound (31) seems to be conservative, mainly
because during the calculations in Appendix B, we have used
the condition number as an upper bound for . We
emphasize that the bound so obtained applies in the general
nonstationary case. A sharper bound, however, can be obtained
if the input data are stationary, as we now pursue.

A. The Stationary Case

When the input sequence is stationary, then the approx-
imation

(33)

is often used in steady-state and forvery close to 1 [1,
p. 713], [10]. This approximation affords the derivation of
bounds that are much less pessimistic than (31) and (32).

In this case, the round-off error accumulation system is
given by

(34)

and thus

(35)

Assuming that for , the next
theorem provides a bound for .

Theorem 2: Let be a stationary sequence,be very close
to 1, for , and . Then

(36)
The proof is given in Appendix C.

BIBO stability is guaranteed if the right-hand side of (36)
is less than or equal to. Putting in (36) , gives an upper
bound for as

(37)

For each , if

(38)

then for all . We can derive an upper bound for
by using the maximization point of for as

(39)

where

(40)

The corresponding bound for the round-off accumulated error
is

for all (41)

Remark: Bound (39) is much less conservative than (31),
mainly because during the calculations in Appendix C, we
have approximated by 1 and not by , which was
the case in Appendix B.

By simple manipulations of (37) and (38) and using (71)
from Appendix A, we can show that

(42)

which establishes a relation between the conditioning of the
problem and the numerical stability of the CLS algorithm;
this is a well-known claim in the general context of adaptive
algorithms [1, p. 738], [11]. We also observe that the relative
precision is proportional to , which means that for very
close to 1, the round-off error accumulation is more significant,
which is as to be expected.

It has been widely observed that the sudden big errors due
to finite-precision effects are related to the loss of the positive
definiteness of the finite-precision inverse data covariance
matrix [7]. In the sequel, we show that if we use (39) for
the calculation of the relative precision of the computations,
then remains positive definite.

Theorem 3: If a persistently exciting data sequence is
fed as input to the CLS algorithm, which is implemented with
relative precision calculated by (39), then the finite-precision
inverse data covariance matrix remains positive definite
for all .

Proof: It is a well-known result in matrix perturbation
theory [12, p. 118] that if

and (43)

then is perforce nonsingular.
Thus, if , then , meaning

that is perforce nonsingular. From (36) and (37), we obtain

(44)
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Fig. 1. Twenty-bit precision; 1-norm ofPk (thick line), 1-norm of�Pk (solid line), and bound predicted by formula (37).

which means that the sufficient condition (43) is always sat-
isfied, implying nonsingularity of the finite-precision inverse
data covariance matrix for all . This fact implies that

(45)

where denotes the matrix 2-norm and the
minimum eigenvalue of because we can always find
such that

(46)

which renders nonsingular [12, p. 120]. Then,
since

we obtain [13, p. 411]

(47)

implying that the finite-precision inverse data covariance ma-
trix remains positive definite.

V. SIMULATIONS

In the previous section, we studied the nonlinear round-
off error accumulation system of the CLS algorithm, and we
derived an upper bound on the relative precision(resp.,

), which guarantees that the accumulated round-off error
is bounded by (resp. ). This gives sufficient conditions
for the BIBO stability of the round-off error accumulation
system and provides an upper bound for the accuracy of the
computations. In this section, we perform simulations to check
our theoretical results.

In the first simulation study, we generate input data by
passing white Gaussian noise with standard deviation 0.1,
through the AR model with poles and

. We run, in double-precision floating-point arithmetic, the
CLS algorithm with order and , and we
derive the following estimates:
yielding . Then, we use (39), (41),
and (71) to derive upper bounds for the relative precision and
the accumulated round-off error as and

, respectively. We implement the CLS algorithm
with 20-bit precision floating-point arithmetic, as indicated by

the value of (after each floating-point operation, we truncate
the mantissa to 20 bits without affecting the exponent). In
Fig. 1, we plot the 1-norm of the inverse data covariance
matrix , the 1-norm of the accumulated round-off error

, and the bound predicted by our theory; we observe
that the bound is always satisfied (we used the double precision
variables as the reference variables). We have repeated this
experiment with many different types of data and for millions
of iterations; the accumulated error satisfied, in steady-state,
the bound predicted by our theory.

An interesting question, which is not answered directly by
our theory, is if these sufficient conditions for BIBO stability
are necessary as well. We attempt to give an answer to this
question using a simplified approach. An approximate round-
off error accumulation system for the CLS algorithm can be
given as

(48)

This expression is more likely to be valid in cases in which
the round-off terms dominate the nonlinear terms; a careful
inspection of (36) reveals that this may happen whenis
neither very large nor very small (this can be achieved by
scaling the input data); should not be very large because
it magnifies the nonlinear terms, and it should not be very
small because, in that case, for a given condition number,
becomes very large; thus, may become large, resulting
in a domination of the nonlinear terms with respect to the local
round-off terms. Then, using (71) from Appendix A, we obtain

(49)

A usual rule of thumb is that if a numerical analysis round-
off error bound is , then it is more realistic to expect that
the roundoff is typically of order [14, p. 52]. This results
from the independence of the various roundoffs and the central
limit theorem. Thus, a more realistic estimation of is

(50)

Since the matrix 1-norm is subordinate to the vector 1-norm,
there is a matrix with such that
is nonsingular [12, p. 120]. If , then we are close
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Fig. 2. Occurence of explosive divergence with 11-bit precision; 1-norm ofPk (thick line), 1-norm of�Pk (solid line).

(a)

(b)

Fig. 3. (a) Nonstationary AR data. (b) Eighteen-bit precision: 1-norm ofPk (thick line), 1-norm of�Pk (solid line) and bound predicted by the stationary case.

to loss of the positive definiteness of . Thus, if

(51)

then it is likely that explosive divergence may occur.
In order to check this approach, we use the same data set.

Now, we compute the relative precision using (51), yielding
, implying 11-bit precision; we expect

that explosive divergence will occur. We plot the results in
Fig. 2. We observe that the accumulated roundoff exhibits
a “stationary” behavior, and suddenly, a “big error” occurs.
Then, the algorithm reconverges and the same scenario may
re-commence. At the moments of “big” errors, the finite-
precision inverse data covariance matrix loses its positive
definiteness, as has been observed in the literature, e.g., [7].

Similar behavior has been observed in most of the cases
studied in our simulations.

For data obtained by slowly time-varying systems, the
approximation

holds for close to 1, and the results derived for the stationary
case can be applied to these cases as well. We present such
a case in Fig. 3. In Fig. 3(a), we plot a segment of the data
derived by passing 104 samples of a zero-mean unit-variance
white Gaussian noise sequencethrough the second order
AR model

(52)
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whose coefficients vary according to the model

(53)

where is a white noise sequence with variance
. We use (39), (41), and (71) to derive
, implying 18-bit precision, and .

In Fig. 3(b), we plot and the bound predicted
by the theory concerning the stationary case. We observe that
the bound is satisfied. However, we note that in the general
nonstationary case, these results may not apply, and bound
(31) should be used.

VI. CONCLUSION

We considered the problem of the finite-precision imple-
mentation of the CLS algorithm. Most previous studies have
focused on the study of the linearized round-off error propa-
gation system and, thus, fall short of establishing conditions
guaranteeing the numerical stability of the finite-precision
implementation of the algorithm.

We derived upper bounds for the relative precision of
the computations, which guarantee the BIBO stability of the
nonlinear round-off error accumulation system, implying nu-
merical stability of the implementation. These bounds depend
on the conditioning of the problem through the quantities

and and the forgetting factor . Preservation of
the positive definiteness of the finite-precision inverse data
covariance matrix is also guaranteed.

Our approach resembles a numerical analysis one, where
the derivation of the bounds is based on the application of
the triangle and submultiplicative norm inequalities. This fact
makes the derived bounds somewhat conservative, especially
in the general nonstationary case. In all the simulations we
performed, the accumulated round-off error satisfied, in steady-
state, the analytically predicted bounds.

We considered the phenomenon of explosive divergence
using a simplified approach; we identified the conditions
that are likely to lead to this kind of numerical instability;
simulations are in agreement with our findings.

APPENDIX A

In order to compute the round-off error generated during one
iteration of the CLS algorithm, we must model the respective
floating-point matrix operations. Assuming thatand are

matrices, and are -dimensional vectors, and
is a scalar, we obtain [14, pp. 69–76]

(54)

(55)

(56)

It can be shown that

(57)

(For the definition of and a discussion of the importance
of the constant and the terms in the error bounds, see
[14, pp. 70–74]). Then

(58)

where , and

(59)

where . The computed
can be expressed as

(60)

with , and so that
becomes

(61)

where , and
. (Term has been

considered small with respect to and has been neglected).
Thus

(62)

The error due to roundoff is

(63)

In the nonstationary case

(64)

and

(65)

In order to derive the simplest possible bound, we ignore
the small multiplicative terms, i.e., , 2, and the

terms, and we replace the term, which is strongly
dependent on the summation strategy [14, p. 70], by. Then

(66)

Note the difference between a first-order approximation to the
relative precision , which is assumed to be “small,” and a
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first-order approximation to the accumulated round-off error
performed in most of the existing studies, which, however,
may be much larger than.

In the stationary case and forvery close to 1, using (33)
and (83), we derive

(67)

Thus

(68)

and a very simple bound is

(69)

Note that in a finite-precision implementation of the algorithm,
should be replaced by its finite-precision version

. In the sequel, we show that ; recall
that in (44), we obtained

Thus, by replacing with in the previous calculations,
we obtain

(70)

or by ignoring the term 2

(71)

APPENDIX B

From (12), we obtain that the higher order terms
are given by

(72)

The following relation, which can be easily proved using (4)
and (6), will be used in the sequel:

(73)

Proof of Theorem 1:From (24), we obtain

(74)
We will bound by the sum
of the bounds of the norms of each subterm.

In order to compute a bound for , we
express the argument of the norm as

(75)

which, using (73), becomes

(76)

Since is positive definite, (4) gives that . Thus,
and using (14), (15), , and for

, (76) gives

(77)

From (72) and (73), we get that the second term is

(78)

and thus

(79)

The same bound holds for the third term. In the same manner,
we can show that

(80)

For the term concerning the roundoff, we get

(81)

Combining (77), (79), (80), (81), and (74), we verify (25) to
prove Theorem 1.

APPENDIX C

Proof of Theorem 2:In view of (35), in order to prove
Theorem 2, we must compute a bound for .
We will bound by the sum of the bounds of
the subterms. From (72) and (73), we obtain

(82)

From (3) and (33), we obtain

(83)
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Thus

(84)

From (72) and (73), we get

(85)

Thus

(86)

The same bound holds for the third term. In the same manner,
we can show

(87)

Combining (35), (84), (86), and (87), we obtain (36), which
proves Theorem 2.
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Télécommunications, Evry, France, with research interests focused in
adaptive signal processing.

Dr. Regalia serves as an Associate Editor for the IEEE TRANSACTIONS

ON SIGNAL PROCESSING, and as an editor for theInternational Journal of
Adaptive Control and Signal Processing.


