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On the Sensitivity of a Suboptimal Precoding Scheme
for Frequency-Selective Block-Based Channels

With Respect to Channel Inaccuracies

Athanasios P. Liavas

Abstract—Water-filling is the precoding scheme that achieves capacity
in Gaussian parallel or block-based channels. A suboptimal precoding
scheme, which has been observed to perform quite close to water-filling, in
some cases of great interest, is when all “active” eigenvectors of the input
data covariance matrix receive the same power. Both techniques require
perfect channel knowledge at the transmitter. In this work, we consider
the sensitivity of the suboptimal scheme when a channel estimate is used at
the transmitter as if it were the true channel. Using tools from matrix per-
turbation theory, we derive closed-form expressions and bounds relating
the channel estimation error covariance matrix with the mean mutual
information decrease. We thus uncover the factors that determine the
behavior of the suboptimal precoding scheme under channel uncertainties.
Simulations are in agreement with our theoretical results.

Index Terms—Channel uncertainties, invariant subspaces, perturbation
expansions, precoding, water-filling.

I. INTRODUCTION

Block-based transmission is common in communications, with ex-
amples including packet-based transmission over frequency-selective
channels, orthogonal frequency-division multiplexing (OFDM), dis-
crete multitone (DMT), and flat-fading multiple-input multiple-output
(MIMO) wireless communications.

If the channel is known at the transmitter, due to, e.g., feedback, then
it is possible to maximize the information rate by precoding the channel
input. This problem has been considered for frequency-selective chan-
nels in [1] and [2] and for MIMO channels in [3], which compute the
input data covariancematrix that maximizes themutual information be-
tween the channel input and output in the white Gaussian noise case. It
turns out [3], that the eigenvectors of the optimal input covariance ma-
trix are the right singular vectors of the channel matrix, while its eigen-
values are computed through water-filling using the (squared) singular
values of the channel matrix. A significant observation of [1] is that a
suboptimal input data covariance matrix, having all its nonzero eigen-
values equal, leads, in some important cases, e.g., digital subscriber
line (DSL), to a mutual information that almost coincides with that ob-
tained through water-filling.

A question that is directly related with the practical success of the
aforementioned precoding schemes concerns their sensitivity with re-
spect to channel and noise statistics inaccuracies. In this work, we con-
sider the behavior of the suboptimal scheme when we use at the trans-
mitter a channel estimate as if it were the true channel. This problem is
of importance because the suboptimal scheme is computationally sim-
pler than the optimal, while its performance has been observed to be
very close to the optimal (practically, the same) in many cases of great
interest (i.e., DSL, high signal-to-noise ratio (SNR)).
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Communication under channel uncertainty is a vast area, nicely sum-
marized in [4] (see also references therein).More recent studies treating
the impact of imperfect channel knowledge at the receiver include [5],
[6]. Studies pursuing optimal training in frequency-selective block-
based fading channels appear in [7], [8].

Using tools from matrix perturbation theory, we derive closed-form
expressions and bounds relating the mean mutual information decrease
with the channel estimation error covariance matrix. We thus uncover
the factors that determine the sensitivity of the suboptimal precoding
scheme under channel uncertainties. We observe that, for sufficiently
good channel estimation, the mutual information degradation is in-
significant.
Notation: Superscripts ( � )T ;

�( � ); ( � )H and ( � )] denote, re-
spectively, transpose, element-wise conjugate, Hermitian transpose,
and pseudoinverse. Ii denotes the i-dimensional identity matrix, ei
denotes the ith canonical vector, that is, the vector with a 1 at the
ith position and zeros elsewhere, 1i denotes the i-dimensional vector
composed of ones and 0m�n denotes the m � n zero matrix (when
its dimensions are clear from the context, they are omitted). k � k and
k � kF denote, respectively, the matrix or vector 2-norm and the matrix
Frobenious norm. We remind that the 2-norm of a positive semidefinite
matrix equals its largest eigenvalue. E [ � ] denotes expectation, while
R( � ); j � j; and Tr( � ) denote, respectively, the column space, the
determinant, and the trace of the matrix argument. For compatible
matrices A and B, it holds that Tr(AB) = Tr(BA). Symbol 

denotes the Kronecker product. For compatible matrices A;B; and C ,
it holds that

vec(ABC) = (CT 
A) vec(B)

where vec( � ) denotes the vectorization operator. We remind that the
eigenvalues ofA
B equal the products of the eigenvalues ofA andB.

We define matrix M as

M
�
=

1N�1 

I�+1

0N�(�+1)
I�+1

: (1)

Finally, we define implicitly the commutation matrixK as [12, p. 115]

vec(H) = Kvec(HT ):

Structure: In Section II, we present the frequency-selective block-
based channel model. In Section III, we consider the mutual informa-
tion achieved by a suboptimal precoding scheme in the ideal and non-
ideal cases, i.e., perfect and imperfect channel state information (CSI)
at the transmitter, respectively. In Section IV, we derive a second-order
approximation, with respect to channel estimation errors, to the mutual
information decrease. In Section V, we develop expressions and bounds
relating the mean mutual information degradation with the channel es-
timation error covariance matrix. In Section VI, we check our theoret-
ical results with numerical simulations and in Section VII we present
some conclusions.

II. THE CHANNEL MODEL

We consider the baseband-equivalent discrete-time frequency-selec-
tive noisy communication channel modeled by the �th order linear
time-invariant system with input–output relation [1]

yl =

�

i=0

hixl�i + wl; l = k; . . . ; k +N � 1 (2)
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where h
�
= [h0 � � � h� ]

T is the channel impulse response vector and
xl; wl; and yl denote, respectively, the samples of the channel input,
noise, and output. Defining the vectors

y
�
= [yk+N�1 � � � yk]

T

x
�
= [xk+N�1 � � � xk�� ]

T

and

w
�
= [wk+N�1 � � � wk]

T

we may rewrite (2) in matrix form as

y = Hx+ w

where H is the N � (N + �) filtering matrix defined as

H
�
=

h0 � � � � � � h�
. . .

. . .

h0 � � � � � � h�

: (3)

The noise vector is composed of independent and identically dis-
tributed complex-valued zero-mean circularly symmetric Gaussian
random variables with covariance matrix

Rw
�
= E [wwH ] = �

2
wIN :

The input symbols comprising x are complex-valued zero-mean circu-
larly symmetric Gaussian (in order to achieve capacity), independent
of the noise, with covariance matrix

Rx
�
= E [xxH ]:

III. CAPACITY ANALYSIS

A. Ideal Case: Perfect CSI at the Transmitter

A problem that has been considered in [1]–[3], is the computation
of the input covariance matrix that maximizes the mutual information
I(X; Y ) between the input vector X and the output vector Y of the
above block-based channel.

Toward this end, the following singular value factorizations will
prove useful:

H = V [�1=2 0]UH (4)

A
�
= H

H
H = U

� 0

0 0
U
H (5)

where V and U are, respectively, N �N and (N + �)� (N + �)
unitary matrices consisted of the singular vectors of H and
�

�
= diag(�1; . . . ; �N), with �i being the ith largest eigenvalue

of A. For later use, we define the ith column of U and V as ui and vi,
respectively, and the matrices composed of the first n columns of U
and V as Un and Vn, respectively. Matrices U and V are partitioned
as U =[Un U c

n] and V =[Vn V c
n ], with the definitions of U c

n and V c
n

being obvious. Finally, we define �n
�
= diag(�1; . . . ; �n) and

�c
n
�
= diag(�n+1; . . . ; �N ; 0; . . . ; 0

�

):

It turns out that the optimal input data covariance matrix is [3]

R
opt
x = U diag(�1; . . . ; �N ; 0; . . . ; 0

�

)UH

where terms �i; i = 1; . . . ; N are computed throughwater-filling using
the eigenvalues ofA. A suboptimal approach, which has been observed
to perform very close to the optimal in some cases of great interest [1],
is to assume that all the nonzero eigenvalues of Ropt

x are equal, i.e.,

� = �1 = �2 = � � � = �n =
E

n

where E is the total input power and n � N . In this case, the input
data covariance matrix is Rx = � UnU

H
n .

The mutual information per input sample between the channel input
and output in the suboptimal case is given by [3]

I(X;Y ) =
1

N + �
log2 IN +

1

�2w
HRxH

H

=
1

N + �
log2 IN+� +

1

�2w
H

H
HRx

=
1

N + �
log2 IN+� +

�

�2w
UN�NU

H
N UnU

H
n

=
1

N + �
log2 In +

�

�2w
U
H
n UN�NU

H
N Un

=
1

N + �
log2 In +

�

�2w
�n

=
1

N + �
log2

�

�2w
�n +

�2w

�
In : (6)

If we define

A
�
= �n +

�2w

�
In (7)

and �i its ith eigenvalue (note that �i = �i +
�

�
, then

I(X;Y ) =
1

N + �
log2

n

i=1

�

�2w
�i

=
n

N + �
log2

�

�2w

c

+
1

N + �

n

i=1

log2 �i: (8)

B. Nonideal Case: Imperfect CSI at the Transmitter

In practice, we do not know the true channel h but, instead, its es-
timate ĥ. Using at the transmitter ĥ as if it were the true channel, we
compute

Â
�
= Ĥ

H
Ĥ = Û

�̂ 0

0 0
Û
H = ÛN �̂N Û

H
N :

In this case, we consider as “optimal” the input covariancematrix R̂x =
� ÛnÛ

H
n . The corresponding input and output random vectors are de-

noted as X̂ and Ŷ , in order to be distinguished from the ideal-case
quantities X and Y .

We define the errors in ĥ; Ĥ; and Ûn and the first-order error in Â
as follows:

�h
�
= ĥ� h; �H

�
= Ĥ �H; �Un

�
= Ûn � Un (9)

�A
�
= Â� A = H

H�H +�HH
H +O(k�hk2): (10)

The mutual information between X̂ and Ŷ is

I(X̂; Ŷ ) =
1

N + �
log2 IN +

1

�2w
HR̂xH

H

=
1

N + �
log2 IN+� +

1

�2w
H

H
HR̂x

=
1

N + �
log2 IN+� +

�

�2w
UN�NU

H
N ÛnÛ

H
n

=
1

N + �
log2 In +

�

�2w
Û
H
n UN�NU

H
N Ûn

=
1

N + �
log2

�

�2w
Â (11)

where

Â = A+�A (12)
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with

�A
�
= �UH

n UN�NU
H
N Un + U

H
n UN�NU

H
N�Un

+�UH
n UN�NU

H
N�Un

= �UH
n Un�n +�nU

H
n �Un +�UH

n UN�NU
H
N�Un: (13)

Thus,

I(X̂; Ŷ ) = c+
1

N + �

n

i=1

log2 �̂i (14)

where �̂i denotes the ith eigenvalue of Â. The eigenvalue perturbation
is defined as

��i
�
= �̂i � �i: (15)

In order to determine the influence of the channel estimation errors on
the performance of the suboptimal precoding scheme, we must assess
the difference between the mutual information achieved in the ideal and
the nonideal cases, defined as

�I
�
= I(X;Y )� I(X̂; Ŷ ): (16)

IV. PERTURBATION ANALYSIS

A. Perturbations of Invariant Subspaces and Eigenvalues

In order to compute �I , we must relate the ideal and perturbed
eigenvalues �i and �̂i, which in turn needs relating matrices Un and
Ûn. Toward this end, we shall use tools from matrix perturbation
theory.

We start by considering perturbations of invariant subspaces. The-
orem 2.7 of [9, p. 236] gives the conditions under which if the columns
of Un and U c

n form orthonormal bases for simple invariant subspaces
of A (as it happens in our case for n � N (see (5)), then there is a
unique (N + � � n)� n matrix P such that the columns of

Ûn = (Un + U
c
nP ) (In + P

H
P )�1=2 (17)

and

Û
c
n = U

c
n � UnP

H (IN+��n + PP
H)�1=2 (18)

form orthonormal bases for simple orthogonal invariant subspaces of
Â = A + �A.

Loosely speaking, we can find such aP if the perturbation�A is suf-
ficiently smaller than �n� �n+1, that is, the gap between the smallest
eigenvalue associated with Un and the largest eigenvalue associated
withU c

n. Since in this work we are mainly interested in perturbation ex-
pansions, we will assume that the perturbations are sufficiently small,
guaranteeing the existence ofP , andwewill derive perturbation expan-
sions, whose accuracy will be tested by simulations. Under the suffi-
ciently small perturbation assumption, P can be computed by solving a
nonlinearmatrix equation. More specifically, sinceR(Ûn) andR(Û c

n)
are orthogonal invariant subspaces of Â, we have [9, p. 220]

Û
cH
n Â Ûn = 0:

Using (17) and (18), we obtain

U
cH
n � PU

H
n (A+�A) (Un + U

c
nP ) = 0 (19)

which is nonlinear in P . This implies that it is very difficult, if not im-
possible, to find a closed-form expression for P . It holds that P =
O(k�Ak) [9, p. 236], which, using (10), gives P = O(k�hk). By
performing calculations in (19), ignoring higher order terms, that is,
terms involving products of P and�A, and using (5), we construct the

linearized version of the above equation for the first-order approxima-
tion ~P of P (i.e., ~P = P +O(k�hk2)), as follows (see also [10]):

�c
n
~P � ~P�n = �U cH

n �AUn: (20)

Applying the vectorization operator at both sides of the previous equa-
tion, we obtain the closed-form expression for ~P

(In 
 �c
n � �n 
 IN+��n) vec( ~P ) = �vec U

cH
n �AUn : (21)

Now, we turn to perturbations of eigenvalues.

Result: For Hermitian matrices A and Â = A + �A, if � is a
simple eigenvalue ofA with associated eigenvector e, then there exists
�̂ unique eigenvalue of Â such that

�̂ = �+ e
H�Ae+O(k�Ak2): (22)

Proof: This result can be proved using Theorem 2.3 of [9, p. 183],
which holds in the general non-Hermitian case, by noting that, in the
Hermitian case, the left and right eigenvectors coincide.

B. Second-Order Approximation to �I

In this subsection, we derive a second-order approximation to �I .
We start by providing second-order approximations to �A and ��i.

Lemma 1: Let �A be the perturbation to A defined in (13) and ~P
the first-order approximation to P defined in (20). Then

�A = �
1

2
�n

~PH ~P �
1

2
~PH ~P�n + ~PH�c

n
~P +O(k�hk3): (23)

Proof: The proof is provided in Appendix I.

Notice that �A = O(k ~Pk2) = O(k�hk2).
Assuming that the eigenvalues of the diagonal matrix A are simple,

we obtain that its eigenvectors are the canonical vectors ei. This leads
to the following second-order approximation to the eigenvalue pertur-
bation.

Lemma 2: Let��i be the perturbation on �i defined in (15). Then

��i = �eHi ~PH (�iIN+��n � �c
n)

S

~Pei +O(k�hk3): (24)

Proof: Using (22) and (23) and the fact that �nei = �iei, we
obtain

��i = �
1

2
e
H
i �n

~PH ~Pei �
1

2
e
H
i
~PH ~P�nei

+ e
H
i
~PH�c

n
~Pei +O(k�hk3)

= ��ie
H
i
~PH ~Pei + e

H
i
~PH�c

n
~Pei +O(k�hk3)

which is (24) and proves the lemma.

Notice that j��ij = O(k�hk2).
We can now provide a second-order approximation to the mutual

information decrease due to channel estimation errors.

Proposition 1: Let �I be the difference between the mutual infor-
mation achieved in the ideal and the nonideal cases defined in (16).
Then

�I =
log2 e

N + �

n

i=1

1

�i
e
H
i
~PHSi ~Pei +O(k�hk3) (25)

where Si is defined in (24).
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Proof: Using (14) and (15), we obtain

I(X̂; Ŷ ) = c+
1

N + �

n

i=1

log2 �̂i

= c+
1

N + �

n

i=1

log2 (�i +��i)

= c+
1

N + �

n

i=1

log2 �i 1 +
��i
�i

(a)
= I(X;Y ) +

1

N + �

n

i=1

log2 1 +
��i
�i

(b)
= I(X;Y ) +

log2 e

N + �

n

i=1

��i
�i

+O(j��ij
2)

(c)
= I(X;Y )�

log2 e

N + �

n

i=1

1

�i
eHi ~PHSi ~Pei +O(k�hk3)

where at (a) we used (8), at (b) we used the first-order expansion
ln(1 + �x) = �x +O(j�xj2), and at (c) we used (24). Using (16),
we obtain (25) to prove the proposition.

We observe that if the perturbations are sufficiently small, then we
will always have decrease of the mutual information because the sum
in (25) is nonnegative.

In the sequel, in order to simplify notation, we shall omit the O( � )
terms, because they are obvious from the above analysis.

V. COMPUTATION OF THE MEAN MUTUAL INFORMATION DECREASE

In this section, we assume that the channel estimation error �h is
zero-mean, circular, i.e., Ef�h�hT g = 0(�+1)�(�+1), with covari-

ance matrix R�h
�
= Ef�h�hHg, and we derive second-order ap-

proximations to the mean degradation of the mutual information due
to channel inaccuracies as

Ef�Ig =
log2 e

N + �

n

i=1

1

�i
E Tr eHi ~PHSi ~Pei (26)

where the expectation is with respect to the channel errors.

A. Case n = N : Exact Expression

The case n = N seems the most natural since we distribute equally
the power to all available degrees of freedom. Furthermore, it leads to
simple expressions. For these reasons, we consider it first.

Proposition 2: The mean mutual information degradation of the
suboptimal scheme due to channel estimation errors with covariance
matrix R�h for n = N is

Ef�Ig =
log2 e

N + �
Tr RT

�hM
H �VNA

�1V T

N 
 U c

NU
cH

N M :

(27)

Proof: The proof is provided in Appendix II.

Expression (27) relates the channel estimation error covariance ma-
trix with the mean mutual information decrease. Matrix M depends
only on the channel order � and the block size N , while matrices �VN
and U c

N have orthonormal columns. Thus, for fixed � andN , the term
that mainly determines the magnification of the channel estimation er-
rors isA�1, whose norm is large if �N and ((�2w)=�) are small. How-
ever, it seems difficult to quantify precisely how large the magnification
may be. A related bound is derived in the next subsection.

Any reasonable channel estimation procedure results in a channel es-
timation error covariance matrix that tends to zero as the noise variance

tends to zero. On the other hand, as the noise variance tends to zero,
kA�1k tends to 1

�
, which is finite. Thus, we obtain the intuitively

satisfying fact that the mean mutual information degradation tends to
zero as the noise variance tends to zero.

B. Case n = N : Bound

A case that is commonly encountered in practice is R�h =
�2�hI�+1 [11, p. 786], giving Efk�hk2g = (� + 1)�2�h. Using the
inequality [12, p. 44]

Tr(XHY X) � �max(Y )Tr(X
HX) (28)

for a positive semidefinite matrix Y and the relations

�VNA
�1V T

N 
 U c

NU
cH

N = kA�1k (29)

Tr(MHM) = kMk2F = N(� + 1) (30)

we obtain an upper bound for the mean mutual information decrease
as

Ef�Ig =
log2 e �

2
�h

N + �
Tr MH �VNA

�1V T

N 
 U c

NU
cH

N M

�
N(� + 1) log2 e�

2
�h

N + �
kA�1k

=
N(� + 1) log2 e �

2
�h

(N + �) �N +
�

�

�
log2 e

�N +
�

�

Efk�hk2g: (31)

This bound implies that the channel estimation error may be signifi-
cantly magnified if the smallest nonzero singular value of HHH; �N ,
and term �

�
are small.

We may go one step further and relate �2�h with the noise variance
�2w . For example, if we use the maximum-likelihood channel estima-
tion procedure described in [11, p. 784], then

�2�h =
�2w

Px(Ntr � �)

where Px is the power per input sample, i.e., (N + �)Px = N�, and
Ntr is the number of training symbols used for the channel estimation.
Then, substituting the value of �2�h in the third line of (31), we obtain

Ef�Ig �
log2 e (� + 1)

(Ntr � �)

d

�2w
��N + �2w

= d
1

1 + ��

�

(32)

where the term d depends only on the channel order and the number
of training symbols. Thus, the mean mutual information degradation
bound depends mainly on the ratio ��

�
(note that ��N is the power

of the noiseless channel output corresponding to the N th eigenvector
uN ). If this ratio is large, then the mutual information degradation will
be small, otherwise the degradation may be significant.

C. Case n � N : Exact Expression

Proposition 3: The mean mutual information degradation of the
suboptimal scheme due to channel estimation errors with covariance
matrix R�h for n � N is

Ef�Ig =
log2 e

N + �
Tr RT

�hB +R� C (33)

where

B
�
=MH

n

i=1

�i
�i

�viv
T

i 
 U c

nS
�1
i U cH

n M (34)
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C
�
=MHKH

n

i=1

1

�i
�uiu

T
i 
 V

c
n�

c 1=2H
�n S�1i �c 1=2

�n V
cH
n KM

(35)

and �c1=2
�n is the (N + � � n)� (N � n) matrix defined as

�c1=2
�n

�
=

�
1=2
n+1

. . .

�
1=2
N

0��(N�n)

Proof: The proof is given in Appendix III.

Of course, for n = N , expression (33) coincides with (27), because
�
c1=2
�n and, thus, C become zero. The magnification of the channel esti-

mation errors is determined bymatricesB and C. In the next subsection,
we obtain related bounds.

D. Case n � N : Bound

For R�h = �2�hI�+1 we have

Ef�Ig =
log2 e�

2
�h

N + �
(Tr(B) + Tr(C)):

From (28) and (30), we obtain

Tr(B) �

n

i=1

�i

�i
�viv

T
i 
 U

c
nS

�1
i U

cH
n N(� + 1):

It can be seen that, due to the orthogonality of vi, the sum inside the
norm is of the form

n

i=1

�iMi

with �i > 0;Mi positive semidefinite and MH
i Mj = 0, for j 6= i.

Thus, its 2-norm equals

max
i

(�ikMik) = max
i

�i

�i
S�1i = max

i

�i

�i(�i � �n+1)

= max
i

�i

�i +
�

�
(�i � �n+1)

:

By computing the derivative, we obtain that the function

f(�)
�
=

�

(� +
�

�
)(� � �n+1)

increases for decreasing �, for � � �n+1, and thus the above max-
imum is

�n

�n(�n � �n+1)
:

Using similar arguments, it can be shown that

Tr(C) �
N(� + 1)

�n
�c1=2H
�n S�1n �c1=2

�n =
N(� + 1)�n+1
�n(�n � �n+1)

:

Thus, a bound for the mean mutual information degradation is as fol-
lows:

Ef�Ig �
2 log2 eN(� + 1)�n�

2
�h

(N + �)�n(�n � �n+1)
:

If we assume, as in Subsection V-B, that �2�h =
�

P (N ��)
, with

Px = n�
N+�

, we obtain

Ef�Ig �
2 log2 e(� + 1)N

n(Ntr � �)

1

1�
�

�

1

1 + ��
�

: (36)

This bound is small, implying that the degradation will be small, if
�n+1 � �n and ��n � �2w . It is large, implying that the degradation
may be significant if �n � �n+1 and/or ��n � �2w .

VI. SIMULATIONS

In this section, we use numerical simulations to illustrate our the-
oretical results. We assume that the power per input data sample is
Px = 1 and the total input power is E = Px(N + �), with block
lengthN = 50. The power of the additive white Gaussian noise is �2w
and the SNR is defined as SNR

�
= P

�
. The true channel is generated

randomly and then normalized to unit 2-norm. It has order � = 5 and
the realization we consider is

h = [0:3871� 0:6087� 0:1006� 0:4675 0:1611� 0:4713]T :

In Fig. 1, we plot the mutual information I(X;Y ) that results from
water-filling (implemented as “power loading algorithm #1” of [2]) and
the suboptimal approach for n = 50 and n = 30, by assuming perfect
channel knowledge. We observe the following.

1) For SNR higher than 4 dB, the water-filling and the suboptimal
scheme for n = N practically coincide, supporting the obser-
vations of [1].

2) For SNR higher than 5 dB, the suboptimal scheme for n = N

is superior than the one with n = 30, because it exploits more
efficiently the degrees of freedom of the block channel. The dif-
ference increases for increasing the SNR. For very low SNR, the
suboptimal scheme with n = 30 is slightly better than the one
with n = N .

In order to check the accuracy of our approximation for n = N ,
we assume that the channel is estimated using Ntr = 12 data samples
of an ideal training sequence, giving that R�h =

�

P (N ��)
I�+1 [11,

p. 786]. In Fig. 2, we plot the experimentally computed (over 104 inde-
pendent noise realizations) mean mutual information degradation, the
corresponding second-order approximation (27), and bound (32) for
varying the SNR. We observe that for SNR higher than 15 dB, the ex-
perimentally computed degradation and the approximation practically
coincide, showing the usefulness of our results.We note that for SNR=
15 dB, the noise variance is �2w = 0:0316, givingR�h = 0:0045I�+1.
This yields

E(k�hk2) = 0:0045(� + 1) = 0:0270

(recall that khk2 = 1). Thus, we observe that the second-order approx-
imation becomes accurate for

10 log10
khk2

E(k�hk2)
� 15.7 dB:

Furthermore, we observe that for SNR higher than 15 dB, the mean
mutual information degradation is of the order of 10�2 (and smaller),
implying that, for sufficiently high SNR, the degradation becomes neg-
ligible.

The bound (32) follows the general changes of the mean mutual in-
formation degradation but it is not tight, in general.

Analogous results are obtained in the cases where n < N .

VII. CONCLUSION

Water-filling is the optimal precoding scheme for Gaussian parallel
or block-based channels. A suboptimal scheme, which has been
observed to perform quite close to water-filling, is when all “active”
eigenvectors of the input data covariance matrix receive the same
power. Both techniques require perfect channel knowledge at the
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Fig. 1. Mutual information per sample versus SNR: water-filling (solid line), suboptimal scheme n = N (“-�-”), n = 30 (“-o-”).

Fig. 2. Experimental mutual information decrease (solid line), second-order approximation (“-o-”), and bound (32) (“- -”) versus SNR.

transmitter. In this work, we considered the sensitivity of the subop-
timal scheme when a channel estimate is used at the transmitter as if

it were the true channel. Using tools from matrix perturbation theory,
we derived closed-form expressions and bounds relating the channel
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estimation error covariance matrix with the mean mutual information
decrease. We observed that for sufficiently good channel estimation
the mutual information degradation is insignificant. Simulations are in
agreement with our theoretical results.

APPENDIX I

Proof of Lemma 1: We start with an approximation to
(In + PHP )�1=2. Let the singular value decomposition (SVD)
of P be P = U 0�0V 0H (Notice that k�0k = kPk = O(k�hk).)
Then

In + P
H
P = In + V

0�0H�0V 0H = V
0(In +�0H�0)V 0H

:

Using the Taylor expansion

(1 + x
2)�1=2 = 1�

1

2
x
2 +O(x4)

we obtain

(In + P
H
P )�1=2 = V

0(In +�0H�0)�1=2V 0H

= V
0

In �
1

2
�0H�0 +O(k�hk4) V

0H

= In �
1

2
P
H
P +O(k�hk4): (37)

Using (17), (37), and the fact that P = O(k�hk), we obtain

Ûn = Un �
1

2
UnP

H
P + U

c
nP +O(k�hk3)

leading to

�Un = �
1

2
UnP

H
P + U

c
nP +O(k�hk3):

The error terms appearing in �A become (see (13))

�UH
n Un = �

1

2
P
H
P +O(k�hk3)

and

�UH
n UN�NU

H
N�Un = P

H
U
cH
n UN�NU

H
N U

c
nP +O(k�hk3)

= P
H�cnP +O(k�hk3)

leading to

�A = �
1

2
�nP

H
P �

1

2
P
H
P�n + P

H�cnP +O(k�hk3):

This expression is difficult to compute because P is the solution of the
nonlinear matrix (19). Using the facts that

P = O(k�hk) and ~P = P +O(k�hk2)

we obtain

~PH ~P = P
H
P +O(k�hk3)

~PH�cn ~P = P
H�cnP +O(k�hk3)

and thus, we may approximate �A as

�A = �
1

2
�n ~P

H ~P �
1

2
~PH ~P�n + ~PH�cn ~P +O(k�hk3)

to prove the Lemma.

APPENDIX II

Proof of Proposition 2: In the case n = N;�cn = 0��� , giving
(see (24))

Si = �iI� :

Furthermore, from (20), we obtain

~P = U
cH
N �AUN�

�1

N

which, using (10) and (4), gives

~P = U
cH
N �HH

VN�
�1=2
N :

Thus,

~Pei = �
�1=2
i U

cH
N �HH

vi

giving

vec( ~Pei) = �
�1=2
i v

T
i 
 U

cH
N

�

vec(�HH): (38)

It can be easily verified that

vec(�HH) =M ��h: (39)

Thus,

Tr e
H
i
~PHSi ~Pei = �iTr vec( ~Pei)vec( ~Pei)

H

= Tr �iM ��h�hTMH
�
H
i :

Using (26), we obtain

Ef�Ig =
log2 e

N + �

N

i=1

1

�i
Tr �iME ��h�hT MH

�
H
i

=
log2 e

N + �

N

i=1

1

�i
Tr R

T
�hM

H
�
H
i �iM

=
log2 e

N + �
Tr R

T
�hM

H
N

i=1

1

�i
�
H
i �i M :

Using the relation (see (38))

�
H
i �i = �viv

T
i 
 U

c
NU

cH
N

and the fact that A is the diagonal matrix with elements �i (see (7)),
we obtain

N

i=1

1

�i
�
H
i �i =

N

i=1

1

�i
�viv

T
i 
 U

c
NU

cH
N

= �VNA
�1
V
T
N 
 U

c
NU

cH
N

which proves the proposition.

APPENDIX III

Proof of Proposition 3: We recall that in the general case (see
(15) and (20))

Si = �iIN+��n � �cn

and

�cn ~P � ~P�n = �U cH
n �AUn:

Postmultiplying the above expression by ei and using (4) and (10), we
obtain

S
1=2
i

~Pei = S
�1=2
i U

cH
n (�HH

H +H
H�H)ui:

The terms of the right-hand side can be expressed as

S
�1=2
i U

cH
n �HH

Hui = �
1=2
i S

�1=2
i U

cH
n �HH

vi

S
�1=2
i U

cH
n H

H�Hui = S
�1=2
i �c 1=2�n V

cH
n �Hui:
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Furthermore

vec(�H) = Kvec(�HT ) = KM�h:

Thus,

vec(S
1=2
i

~Pei) = �
1=2
i vTi 
 S

�1=2
i U cH

n M ��h

+ uTi 
 S
�1=2
i �c 1=2

�n V cH
n KM�h:

From (26), we obtain

Ef�Ig =
log2 e

N + �

n

i=1

1

�i
Tr vec(S1=2 ~Pei)vec(S

1=2 ~Pei)
H :

Working as in Appendix II and using the relations

Ef ��h�hHg = Ef�h�hT g = 0(�+1)�(�+1)

we obtain (33), to prove the proposition.
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Addendum to “On Universal Simulation of Information
Sources Using Training Data”

Neri Merhav, Fellow, IEEE, and
Marcelo J. Weinberger, Senior Member, IEEE

Abstract—In a recent paper [1], we studied the problem of universal sim-
ulation of an unknown information source of a certain parametric family,
given a training sequence from that source and given a limited budget of
purely random bits. The goal was to generate another random sequence (of
the same length or shorter), whose probability law is identical to that of the
given training sequence, but with minimum statistical dependency (min-
imum mutual information) between the input training sequence and the
output sequence. In this addendum, we point out a concrete optimal simu-
lation scheme that is easy to implement, as opposed to the nonconstructive
existence result in that paper, and we make a number of additional obser-
vations on the universal simulation problem.

Index Terms—Enumeration, mutual information, random process simu-
lation, random number generators, typical sequences.

A recent paper [1] studied the following universal simulation
problem: An unknown source P , which is assumed to belong to a
certain parametric family P (like the family of finite-alphabet memo-
ryless sources, Markov sources, finite-state sources, parametric subsets
of these families, etc.), is to be simulated. We are given a training
sequence Xm = (X1; . . . ; Xm) that has emerged from this unknown
source, as well as a string of k purely random bitsUk = (U1; . . . ; Uk),
that are independent of Xm, and our goal is to generate an output
sequence Y n = (Y1; . . . ; Yn); n � m, corresponding to the simulated
process, that satisfies the following three conditions.

C1. The mechanism by which Y n is generated can be represented
by a deterministic function Y n = �(Xm; Uk), where � does
not depend on the unknown source P .

C2. The probability distribution ofY n is exactly then-dimensional
marginal of the probability law P corresponding toXm for all
P 2 P .

C3. The mutual information I(Xm;Y n) is as small as possible,
simultaneously for all P 2 P .

In [1, Sec. IV-B], we referred to the case where n < m and the key
rate, R

4

= k=n, is finite. Unlike the other cases, for which we were
able to demonstrate concrete simulation schemes that satisfy all three
conditions, C1–C3, in this case, we only presented a nonconstructive
existence result in a very large ensemble of schemes [1, Theorem 3].

The primary purpose of this addendum is to suggest a simple simula-
tion scheme that satisfies the above conditions in the case wheren < m
as well. In the sequel, lower case notation such as xm; yn; and uk , will
denote specific realizations of the random vectors Xm; Y n; and Uk ,
respectively. For a given training sequence xm, let

�(xm; uk) = J�1m (Jm(x
m)� df(uk) � jTx j=2ke

n

1
(1)
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