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Abstract

The object of this work is the study of a direct blind equalization algorithm which appeared recently in the literature. It
is a least-squares (LS) equalization method in the blind context, assuming a linear FIR communication channel and a linear
equalizer. If channel order is known, blind LS equalizers can be constructed that entirely suppress intersymbol interference
in noiseless signal transmission. In practice, though, channels may be comprised of a few “big” consecutive taps, which we
call “signi6cant part”, surrounded by a lot of smaller leading and=or trailing “tail” terms. In such an environment, channel
order is harder to de6ne while the value used by the algorithm is critical to its performance. We carry out both theoretical
analysis, making use of perturbation theory arguments, and simulations for the cases where channel order determination
procedure has yielded an estimate greater than (“e&ective overmodeling”) or equal to the order of the signi6cant part. Our
purpose is to compare the performance of blind LS algorithm with that of its non-blind counterpart. We conclude that (a)
when channel does not possess leading tail terms, blind LS is robust to e&ective overmodeling, meaning that it behaves
very much like non-blind LS, and (b) when leading tail terms are present, blind LS will generally not work satisfactorily
in the e&ective overmodeling scenario. In either case, when the order of the signi6cant part is identi6ed correctly and the
actual signi6cant parts of subchannels are su9ciently diverse, the algorithm behaves well. ? 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Intersymbol interference (ISI) is one of the main factors obstructing reliable digital communications. It
indicates the spreading in time of the transmitted symbols by the propagation medium and may be destructive
at high enough symbol rates. In order to remove the corrupting e&ects of ISI, a special device is employed
at the receiver called an equalizer.
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Conventional equalizer design techniques rely on the periodic transmission of data already known to the
receiver, referred to as training sequences. A priori knowledge of such data allows for either the direct
computation of the equalizer or the computation of the channel coe9cients as a preliminary step before
equalizer determination [9].
Training sequences clearly result in a waste of some of the channel’s capacity. In order to allocate the

maximum possible transmitting capacity to the users, blind equalization algorithms have received extensive
attention. They do not make use of training sequences but rely solely on the output of the communication
channel to achieve the desired equalization task.
The more traditional of these techniques sample the output of the channel at the baud rate. Therefore, they

inevitably use higher-than second-order statistics (HOS) of the sampled symbols since only in this way is it
possible to retrieve channel phase information. Nonetheless, this characteristic is responsible for two important
disadvantages, namely: need for large sample sizes and potential capture in undesirable local minima.
In the pioneering work of [13] it is proved that channel phase information is present in channel output

second-order statistics (SOS) if the input is observed through more than one su9ciently diverse channels.
This amounts to oversampling the channel output and=or using several antennas at the receiver. These im-
plementations are equivalent at a higher level of abstraction since they can all be modeled as a number of
separate “virtual” channels driven by the same input. This setting has been named SIMO in the literature after
“single-input multiple-output”. Hence, the equalizers follow a “multiple-input single-output” (MISO) setting,
in that they exploit each of the multiple virtual channel outputs to yield the equalized output for the actual
channel.
SOS techniques alleviate the problems of HOS techniques and are therefore advantageous. Several algorithms

have been developed with the SOS-SIMO setting in mind that either directly estimate the equalizer [2,3,8,11]
or estimate the channel [1,7,14] at an initial step. What will ultimately determine the usefulness of these
techniques is their robustness to real-world conditions which, more often than not, stray from theoretical
assumptions. It is well known that most blind channel identi6cation methods are very sensitive to channel
overmodeling. Direct blind equalization algorithms were developed in the hope of overcoming this kind of
sensitivity. It remains to be studied, however, if this is really the case.
One representative of the class of blind SOS algorithms that directly compute the equalizer is described in

[10]. It is the blind analog of non-blind LS equalization. BrieNy put, if the order of the channel is M and
its output is oversampled by a factor of p, then an equalizer of order Leq¿M=(p − 1) − 1 can be found
that will entirely suppress the ISI introduced in the noiseless transmission of a white input sequence. In a
typical implementation, a channel order determination procedure is employed to furnish an estimate that is
subsequently fed into the algorithm.
Of particular interest is the case where a rather long channel of order M is incorrectly detected to be of

order L+ 1 where L+ 1¡M . Long channels appear in the context of microwave radio links [5,6] and they
are usually comprised of a few big consecutive taps (with, probably, some small intermediate taps), called
“signi6cant part” throughout the paper and whose order we symbolize by L∗ + 1, while the rest of them are
rather small leading and trailing terms and are referred to as “tails”.
In this work, we attempt to examine the robustness properties of [10] in the 1-input=2-output channel context

when the channel has a total order of M and the equalizer order is L¡M − 1, that is, shorter than required
for perfect input reconstruction. Furthermore, we assume that all participating statistical quantities are known
with in6nite precision and the system is noiseless. Our aim is to unveil potential sensitivity of the algorithm
to the channel-order mismatch. Statistical inaccuracies and additive channel noise are naturally expected to
deteriorate system performance. It is interesting to remark at this point that the e&ect of long, small tail terms
is equivalent with the presence of coloured noise in the system.
The rest of our paper is organized as follows: In Section 2, we present the channel model used and

we review the algorithm developed in [10]. Section 3 is devoted to our contribution, i.e., the performance
analysis of blind LS. In Sections 3.1 and 3.2, we decompose the “equalization” of the M th-order channel
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by the Lth-order equalizer into an “ideal” part plus a perturbation that is su9ciently small. The ideal part
conforms to the theoretical assumptions of [10]. The perturbation causes the violation of these assumptions.
We perform a 6rst-order perturbation analysis and we outline the key results of it. In Section 3.3 we use the
results of the perturbation analysis and the 6ndings of [4] to relate the performance of blind LS to that of
non-blind LS. In particular, we compute the order of magnitude of the Euclidean distance of the combined
responses (i.e., the cascade of channel + equalizer) furnished by each algorithm. This distance, along with the
already known behaviour of non-blind LS [4], allows anticipation of performance of blind LS. The conclusions
drawn boil down to the following points:
Trailing tails only: In the somewhat unrealistic case where the channel does not possess any leading small

terms, we prove that blind LS algorithm is robust to “e&ective channel overmodeling”. That is, when the
estimated channel order is greater than the order of the actual signi6cant part of the channel, in symbols when
L+1¿L∗+1, blind LS algorithm will produce well-behaving equalizers, in the sense that their performance
will be close to that of their non-blind counterparts. More speci6cally, if the actual signi6cant parts of
subchannels are su9ciently diverse, then blind LS equalizers for L¿L∗ and delays d = 0; : : : ; L + (L∗ + 1)
will o&er good equalization performance while for d=L+(L∗+1)+1; : : : ; 2L+1 performance will be generally
poor.
Leading and trailing tails: If the channel possesses small tail terms surrounding its signi6cant part, the

behaviour of blind LS algorithm is di&erent depending on the accuracy of the channel order determination
procedure: In the case of e&ective channel overmodeling, poor equalization performance should generally be
expected for every delay. In the “exact order case”, however, (i.e., when L+1=L∗+1) if the actual signi6cant
parts of subchannels are su9ciently diverse, then blind equalizer performance is satisfactory for each possible
delay.

2. Least-squares equalization

2.1. Channel model

We adopt the baseband SIMO FIR channel model. The transmitted (scalar) sequence s(n) is 6ltered by
p FIR linear 6lters, yielding p (scalar) sequences xi(n) (i = 1; : : : ; p) at the output of the communication
system. Each FIR 6lter is of order M , i.e., it consists of M + 1 taps, and will be called “subchannel” in
the sequel. It proves handy to view the output of the system as the vector x(n) = [x1(n) · · · xp(n)]T. Now,
let hi be the p-component vector containing the ith tap of each subchannel. The output is then given by
the convolution: x(n) =

∑M
i=0 hisn−i. By stacking the L + 1 most recent outputs, we construct the vector

XL(n) = [x(n)T · · · x(n− L)T]T. This vector can be expressed as: XL(n) =TL(HM )sL+M (n) where

TL(HM ) =

 h0 · · · · · · hM
. . .

. . .
h0 · · · · · · hM


is a p(L+1)× (L+M +1) generalized Sylvester matrix, sL+M (n) = [s(n) · · · s(n− L−M)]T is an (L+M)th
order vector grouping past input samples and HM = [h(0)T · · · h(M)T]T is the vector grouping all subchannels
taps. If p(L + 1)¿L + M + 1 and the subchannels posses no common zeros, then matrix TL(HM ) is of
full-column rank. These are the conditions which virtually all SOS-based blind identi6cation=equalization
algorithms build on and are commonly referred to as the zero-forcing conditions. The full-column rank
property of TL(HM ) ensures that it is left invertible, i.e., it holds T]

L(HM )TL(HM ) = I, where ] denotes
Moore–Penrose pseudoinversion and I the identity matrix. The left invertibility of the matrix is synonymous
with the equalizability of the system.
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2.2. Blind, non-blind MMSE equalizers

In [10], a novel algorithm for blind channel equalization using SOS is presented. Under the assumption
that the zero-forcing conditions hold, it computes an equalizer gL; i that minimizes the mean square error
in the estimation of the input symbols. In other words, if the estimated symbol at the output of gL; i is
z(n) = gHL; iXL(n) then E{‖z(n) − s(n − i)‖22} is minimized, in the presence of uncorrelated with the input
signal, additive, white noise at the output of each subchannel. When noise is absent, the equalizer computed
this way will exactly recover the input sequence s(n − i). The desired Lth order, i-delay equalizer is found
by solving the Wiener–Hopf equation:

E{XL(n)XH
L (n)}gL; i = E{XL(n)s∗n−i};

where {·}∗ denotes complex conjugation and {·}H denotes Hermitian transposition. In the following, we will
use the notation RL;0(HM ), E{XL(n)XH

L (n)}. Assuming a white, unit-variance input sequence there hold the
following in the noiseless case:

RL;0(HM ) =TL(HM )TH
L (HM ); E{XL(n)s∗n−i}=TL(HM )(:; i + 1), Ĥi ; (1)

where in (1) we have made use of standard Matlab notation A(:; i + 1) to denote the (i + 1)st column of
matrix A, in this particular case A being TL(HM ).
Thus, the Wiener–Hopf equation transforms into

(TL(HM )TH
L (HM ))gL; i = Ĥi : (2)

Since the output SOS can be computed without knowledge of the input, it is easily seen that what hinders the
solution of (2) in the blind context is the unknown Ĥi. The main contribution of [10] lies into furnishing a
method of acquiring Ĥi without training sequences under the sole assumption that the zero-forcing conditions
hold.
In the sequel, we present the steps employed to recover Ĥi. Let Ji be the Jordan matrix. This is a square

matrix with zero entries except for the ith lower subdiagonal, where its entries equal to 1. For i = 0, J0 = I.
Let us de6ne

RL; i(HM ), E{XL(n+ i)XH
L (n)}:

Then

RL; i(HM ) =TL(HM )JiL+M+1T
H
L (HM );

where JiL+M+1 is the respective (L+M + 1)× (L+M + 1) Jordan matrix.
In [10] it is proved that if we de6ne

Di , RL; i(HM )R]L;0(HM )RH
L; i(HM ); (3)

then

�Di , Di −Di+1 = ĤiĤ
H
i ;

that is, �Di is a rank-one non-negative de6nite matrix. Its non-zero eigenvalue is �i=‖Ĥi‖22 and the respective
eigenspace is spanned by any non-zero multiple of Ĥi. By means of the EVD, we can compute Ĥi within a
sign ambiguity, i.e., Ĥi ,

√
�iv=±Ĥi, where v a unit 2-norm vector in the range space of �Di. Using Ĥi to

solve the Wiener–Hopf equation, we can identify the input also within a sign ambiguity, i.e., z(n)=±s(n− i).
This is the best we can hope for any algorithm of the blind SOS class.



A.D. Beikos, A.P. Liavas / Signal Processing 82 (2002) 1233–1253 1237

3. Performance analysis of the Lth-order blind LS equalizer

Recalling the zero-forcing conditions, we note that the equalizer must be of at least a minimum order,
directly related to the subchannels order and number. Therefore, as a 6rst step towards the implementation
of the algorithm, a (sub-)channel-order determination procedure must be employed, in order to allow for the
suitable choice of the equalizer order. However, it may happen that the order M of the subchannels of HM is
rather large, while our procedure comes up with an order estimation of L+1, where L+1¡M . In the sequel,
we will consider the behaviour of the Lth-order equalizer, in the two subchannel case, i.e., when p= 2.
We note that for two M th-order subchannels, the zero forcing conditions demand the use of an equalizer with

order greater than or equal to M−1. However, since the estimation procedure has yielded the misleading output
that the subchannels are of order L+1, we are justi6ed to use an equalizer of order L, as this is the shortest
possible prescribed by the zero forcing conditions for two subchannels of order L+1 each. Nevertheless, since
in reality L¡M − 1 we unintentionally violate the zero forcing conditions and it is worthwhile to examine
the behaviour of the blind LS algorithm in this scenario. In order to study the behaviour of the Lth-order blind
LS algorithm when applied to the M th-order channel HM , we 6nd it convenient to introduce the following
partition [4–6]:

HM =Hz
L+1 +Dz

L+1;

where

Hz
L+1 =

0T · · · 0T︸ ︷︷ ︸
m1

hTm1
· · · hTm2︸ ︷︷ ︸
L+2

0T · · · 0T︸ ︷︷ ︸
M−m2


T

; Dz
L+1 =

hT0 · · · hTm1−1︸ ︷︷ ︸
m1

0T · · · 0T︸ ︷︷ ︸
L+2

hTm2+1 · · · hTM︸ ︷︷ ︸
M−m2


T

(4)

and 06m1¡m2 , m1 + L + 16M . Here, Hz
L+1 groups the L + 2 consecutive block-terms of HM having

the largest energy while replacing all the rest by zeros. We will call Hz
L+1 the “(L + 1)st-order zero-padded

signi6cant part” of HM . On the other hand, Dz
L+1 is the complement of Hz

L+1 and will simply be referred
to as the “unmodeled tails”. We also de6ne an additional vector containing exclusively the signi6cant part
as HL+1 , [hTm1

· · · hTm2
]T. Without loss of generality, we assume that ‖HM‖2 = 1 and ‖Dz

L+1‖2 , �. Our
interest will be focused on the cases where � is su9ciently smaller than 1, i.e., when ��1. In these cases, the
size of the unmodeled part is “small” and a 6rst-order perturbation analysis describes the algorithm behaviour
well. In the cases where the size of the unmodeled tails � is not su9ciently smaller than 1 we do not expect
the algorithm to perform well, due to large undermodeling error. Furthermore, in these cases, a 6rst-order
perturbation analysis cannot describe the algorithm behaviour well.
To sum up, we will strive to determine what happens when an Lth-order equalizer attempts to equalize our

real-world M th-order channel HM with L¡M − 1. We will attack the problem in three steps.

3.1. First step: ideal conditions

We assume for a moment an ideal situation whereby our real-world subchannels are described by HL+1.
We can then obtain a zero-forcing equalizer of order L for delay i, by applying the already familiar steps of
the algorithm:

XL(n) =TL(HL+1)s2L+1(n); RL; i(HL+1) =TL(HL+1)Ji2(L+1)T
H
L (HL+1);

Di = RL; i(HL+1)R−1
L;0(HL+1)RH

L; i(HL+1); (5)

�Di =Di −Di+1 =HiHH
i : (6)

A brief comment with respect to (5) is in order. On comparison with (3), we note that pseudoinversion
has changed into inversion. This is because TL(HL+1) is now square and full-column rank (under the
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hypothesis that the subchannels do not share common zeros), thus it is invertible. Hence, RL;0(HL+1) =
TL(HL+1)TH

L (HL+1) is invertible, as well. Similar to the earlier de6nition of Ĥi in (1), Hi in (6) is de6ned
as

Hi ,TL(HL+1)(:; i + 1) (7)

and denotes the (i + 1)st column of matrix TL(HL+1).
Following the discussion of Section 2.2, EVD of �Di will reveal vector Hi =±Hi, that eventually leads

to the desired equalizer:

gL; i = R−1
L;0(HL+1)Hi ; i = 0; : : : ; 2L+ 1:

When we put the equalizer into e&ect, we get the desired (2L+ 1)st-order combined response:

c2(L+1); i = gHL; iTL(HL+1) =± ei+1; i = 0; : : : ; 2L+ 1;

where c2(L+1); i is a vector with 2(L+1) elements. We note that if we replace subchannels HL+1 with the zero
padded ones Hz

L+1, we get

cL+M+1; i = gHL; iTL(Hz
L+1) =± em1+i+1; i = 0; : : : ; 2L+ 1;

where cL+M+1; i is a vector with L+M + 1 elements.

3.2. Second step: realistic conditions

After dealing with the ideal case, we proceed to examine the real-world situation. We still seek an Lth-order
equalizer, only this time we attempt to equalize the subchannels HM . Re-applying the 6rst steps of the
algorithm, we get

X̃L(n) =TL(HM )sL+M (n); RL; i(HM ) =TL(HM )JiL+M+1T
H
L (HM );

D̃i = RL; i(HM )R−1
L;0(HM )RH

L; i(HM ); �̃Di = D̃i − D̃i+1:

The tilde over some of the preceding variables denotes a quantity that is perturbed with respect to its ideal
counterpart. In other words: D̃i=Di+E(Di), �̃Di=�Di+E(�Di), where the E terms are perturbation terms,
resulting from the presence of the tails in the realistic case. Matrix RL; i(HM ) may also be considered as a
perturbation of the ideal matrix RL; i(HL+1). Therefore, we write RL; i(HM ) =RL; i(HL+1) + E(RL; i) where for
simplicity we have dispensed with the tilde in RL; i(HM ) since the same meaning is conveyed by the argument
HM . For the same reason, we symbolize the perturbation term as E(RL; i) instead of the more complicated
E(RL; i(HL+1)).
We should note that, unlike the ideal case, �̃Di need not be a rank-one matrix. By means of the EVD,

computation of �̃i, the maximum eigenvalue of matrix �̃Di, and H̃i, the perturbed version of Hi in (6), is
possible. In practice though, there is always a sign ambiguity as we can only compute H̃i =±H̃i. Therefore,

the perturbed equalizer is given by g̃L; i = R̃
−1
L;0(HM )H̃i and the respective combined response by c̃L+M+1; i =

g̃HL; iTL(HM ).
In the next subsection, we will present the key results of a 6rst-order perturbation analysis with respect

to the size of the unmodeled tails �. The goal of the analysis is to determine how the real-world problem
variables di&er from their ideal counterparts, due to the presence of the unmodeled tails.

3.2.1. Perturbation analysis results
Before we outline the results of our perturbation analysis, we need to introduce some extra notation. In

particular, let l̃i , H̃i=‖H̃i‖2, li , Hi=‖Hi‖2, E(li) , l̃i − li, E(Hi) , H̃i − Hi. We also remind that �̃i
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symbolizes the largest eigenvalue of �̃Di and that �i is the only non-zero eigenvalue of �Di and de6ne
E(�i), �̃i − �i. Finally, P⊥

i = I− lilHi is the projector onto the orthogonal complement of the space spanned
by Hi. For each of the E-terms the following approximations hold to the 9rst order
Approximation 1:

E(Di) = Ti;1 + Ti;2 + Ti;3 + Ti;4 + Ti;5 + Ti;6;

where

Ti;1 =TL(HL+1)Ji2(L+1)T
−1
L (HL+1)TL(Dz

L+1)J
−i
L+M+1T

H
L (H

z
L+1);

Ti;2 =TL(HL+1)Ji2(L+1)T
−1
L (HL+1)TL(Hz

L+1)J
−i
L+M+1T

H
L (D

z
L+1);

Ti;5 =−TL(HL+1)Ji2(L+1)T
−1
L (HL+1)TL(Hz

L+1)T
H
L (D

z
L+1)T

−H
L (HL+1)J−i

2(L+1)T
H
L (HL+1)

and Ti;3 = TH
i;2, Ti;4 = TH

i;1, Ti;6 = TH
i;5.

Approximation 2:

E(�Di) = �Ti;1 + �Ti;2 + �Ti;3 + �Ti;4 + �Ti;5 + �Ti;6

where �Ti; j , Ti; j − Ti+1; j.
Approximation 3:

E(li) = �−1
i P⊥

i E(�Di)li :

Approximation 4:

E(�i) = lHi E(�Di)li :

Approximation 5:

E(Hi) =
1
�i

P⊥
i E(�Di)Hi +

1
2�2i

(HH
i E(�Di)Hi)Hi :

The detailed proofs of all of the preceding results are found in the appendix.

3.3. Third step: blind LS vs. non-blind LS algorithm

By now we have developed the tools to assist us in assessing the behaviour of blind LS algorithm. We
will do so by comparing its combined response with the corresponding one of non-blind LS algorithm.
One preliminary word is in order at this point: In the case under investigation, i.e., when L¡M−1, matrix

TL(HM ) is “fat” and, with probability 1, it is a full row-rank matrix. Therefore, the product TL(HM )TH
L (HM )

is an invertible square matrix.
Non-blind LS equalizer is found by solving (2)

ĝL; i = (TL(HM )TH
L (HM ))−1Ĥi :

Blind LS equalizer is found in exactly the same way, only now the estimate H̃i is used instead of the true
column vector Ĥi:

g̃L; i = (TL(HM )TH
L (HM ))−1H̃i :
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Thus, the combined response in the non-blind case is found as

ĉL+M+1; i = ĝHL; iTL(HM ) = Ĥ
H
i (TL(HM )TH

L (HM ))−1TL(HM ) ⇔
ĉL+M+1; i = Ĥ

H
i (T

H
L (HM ))]; (8)

where we have used the property that for a full column-rank matrix A it holds A] = (AHA)−1AH. In an
identical way, the combined response of the blind equalizer is found to be

c̃L+M+1; i = H̃
H
i (T

H
L (HM ))]: (9)

As can be seen from (8) and (9), and was expected anyway, Ĥi and H̃i are responsible for the di&erences in
the combined responses. We note that in this theoretic treatment we have dispensed with the sign ambiguity
that is a triviality of the implementation.
We will proceed using the perturbation analysis as an intermediate step to unveil instances where the

combined responses of the algorithms are very close to each other, subject to the magnitude of the unmodeled
tails �. We distinguish the following cases based on the actual shape of the subchannels:

3.3.1. Trailing tails only
Suppose that the subchannels begin with an actual signi6cant part of order L∗+1. That is to say, terms h0

and hL∗+1 are O(1) in magnitude (some intermediate terms may be smaller) while terms hk for k=L∗+2 : : : M
are O(�) with ��1. As seen in Section 3.2.1, for Hi and H̃i it holds

H̃i =Hi + E(Hi); i = 0; : : : ; 2L+ 1: (10)

In addition, the 6ltering matrix TL(HM ) can be written as

TL(HM ) =TL(Hz
L+1) +TL(Dz

L+1):

By de6ning

di ,TL(Dz
L+1)(:; i + 1) (11)

and taking into account (1), there holds the following for each column of the participating matrices:

Ĥi =TL(Hz
L+1)(:; i + 1) + di ; i = 0; : : : ; L+M: (12)

We also remark that for i = 0; : : : ; 2L+ 1 it holds

TL(Hz
L+1)(:; i + 1) =TL(HL+1)(:; i + 1): (13)

Thus, utilizing (7), (12), (13) we have

Ĥi =Hi + di ; i = 0; : : : ; 2L+ 1: (14)

Hence, combining (10) and (14), we come up with

H̃i = Ĥi − di + E(Hi); i = 0; : : : ; 2L+ 1: (15)

Plugging (15) into (9), we get the following:

c̃L+M+1; i = (Ĥi − di + E(Hi))H(TH
L (HM ))]

(8)⇔
c̃L+M+1; i = ĉL+M+1; i + (−di + E(Hi))H(TH

L (HM ))] ⇔

c̃L+M+1; i − ĉL+M+1; i = (−di + E(Hi))H(TH
L (HM ))]

(A:21)⇔
c̃L+M+1; i − ĉL+M+1; i = (−di + P⊥

i di)H(TH
L (HM ))] ⇔

c̃L+M+1; i − ĉL+M+1; i =
(
− 1
�i

HiHH
i di

)H
(TH

L (HM ))]; i = 0; : : : ; 2L+ 1: (16)
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As i = 0; : : : ; 2L+ 1 vectors Hi and di in (16) run through the following sequences of values, respectively:

Hi =



h0
0
0
...
...
0


;



h1
h0
0
...
...
0


; : : : ;



hL+1

hL
...
...
...
h1


;



0
hL+1
...
...
...
h2


;



0
0

hL+1
...
...
h1


; : : : ;



0

0

0
...
0

hL+1


;

di =



0
0
...
...
...
0


;



0
0
0
...
...
0


; : : : ;



0
0
...
...
...
0


;



hL+2

0
...
...
...
0


;



hL+3

hL+2

0
...
...
0


; : : : ;



h2L+1

h2L
h2L−1

...
hL+2

0


;

where hk = 0 if k ¿M .
It is therefore apparent that HH

i di =0 for every i=0; : : : ; 2L+1. Therefore, the di&erence of c̃L+M+1; i from
ĉL+M+1; i vanishes to the 9rst order. Thus it holds

‖c̃L+M+1; i − ĉL+M+1; i‖2 = O(�2)‖TH
L (HM )]‖2; i = 0; : : : ; 2L+ 1:

In addition, ‖(TH
L (HM ))]‖2 = ‖(TL(HM ))]‖2 = 1=�min where �min is the minimum non-zero singular value

of matrix TL(HM ). So we can write

‖c̃L+M+1; i − ĉL+M+1; i‖2 = O(�2)
1
�min

; i = 0; : : : ; 2L+ 1: (17)

This 6nding has the interpretation that if �min is not very small, then c̃L+M+1; i will be close to ĉL+M+1; i, for
every delay i = 0; : : : ; 2L+ 1 and hence blind LS equalizer performance is close to its non-blind counterpart.
E:ective overmodeling: Of particular interest is the case of e&ective overmodeling. What we mean by that

is the case where L + 1¿L∗ + 1, i.e., our channel-order determination procedure has yielded an estimate
larger than the order of the actual signi6cant part of the channel.
What remains unknown in (17) is the order of magnitude of �min. To this end, we can write TL(HM ) =

TL(Hz
L∗+1) +TL(Dz

L∗+1) where Hz
L∗+1 is de6ned in the exact same spirit as Hz

L+1 in (4) with the exception
that it groups the L∗ +2 terms of the actual signi6cant part. Dz

L∗+1 is the complement of Hz
L∗+1 in the sense

that Dz
L∗+1 =HM −Hz

L∗+1.
In [12, p. 204] it is proved that if E is a perturbation on a matrix A, then for each singular value � of

A it holds |� − �̃|6 ‖E‖2, where | · | denotes absolute value and �̃ the corresponding singular value of the
perturbed matrix Ã = A + E. (Actually, a more general form of this statement is proved but for our purpose
this special case su9ces).
Considering TL(Hz

L∗+1) as A, TL(Dz
L∗+1) as the perturbation and TL(HM ) as Ã, application of the pre-

ceding theorem is straightforward. Moreover, the minimum singular value of matrix TL(Hz
L∗+1) is known to

be equal to zero. Thus |0−�min|6 ‖TL(Dz
L∗+1)‖2 meaning that �min is an O(�) quantity. When 0��min ≈ �,

meaning that �min is much closer to � than to 0, we can write from (17)

‖c̃L+M+1; i − ĉL+M+1; i‖2 = O(�); i = 0; : : : ; 2L+ 1: (18)
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Based on the 6ndings of [4], if the actual signi6cant parts of subchannels are su9ciently diverse, then
non-blind LS equalizers for delays i = 0; : : : ; L + (L∗ + 1) exhibit satisfactory performance. Due to (18), the
behaviour of blind LS equalizers for the same delays is roughly the same. Therefore, blind LS equalizers are
expected to behave satisfactorily for i = 0; : : : ; L+ (L∗ + 1).
For the rest of the delays, i.e., i=L+(L∗+1)+1; : : : ; 2L+1, non-blind LS equalizers are known to generally

behave poorly [4]. Therefore, blind LS equalizers will similarly exhibit poor behaviour as they approach the
already erroneous performance of their non-blind counterparts.
Exact order case: It may happen of course that our channel order determination procedure identi6es the

exact order value of the actual signi6cant part, i.e., L+1= L∗ +1. Two things di&erentiate this setting from
e&ective overmodeling, the 6rst being that now all of the 2(L+1) non-blind equalizers are known to behave
satisfactorily, if the actual signi6cant parts of the subchannels are su9ciently diverse [4]. The second is the
order of magnitude of �min.
Same as before, TL(HM ) may be written as TL(HM ) = TL(Hz

L∗+1) + TL(Dz
L∗+1) where 2(L + 1) ×

(L + M + 1) “fat” matrix TL(Hz
L∗+1) has L + (L∗ + 1) + 1 non-zero singular values. Since L = L∗, all of

its 2(L + 1) singular values are non-zero. Thus, if smin is the minimum singular value of TL(Hz
L∗+1), then

|smin − �min|6 ‖TL(Dz
L∗+1)‖2 meaning that smin − ‖TL(Dz

L∗+1)‖26 �min6 smin + ‖TL(Dz
L∗+1)‖2.

It is seen that the order of magnitude of �min is drastically determined by smin, which is a measure of
diversity of the actual signi6cant part of the channel [5]. If ��smin ≈ 1, which means that the actual
signi6cant subchannels are su9ciently diverse, then

‖c̃L+M+1; i − ĉL+M+1; i‖2 = O(�2); i = 0; : : : ; 2L+ 1:

This has the implication that all blind LS equalizers demonstrate good performance since their combined
responses are extremely close to those of the non-blind LS equalizers which are known to behave well.

3.3.2. Subchannels with leading and trailing tails
Now, we suppose that each subchannel is comprised by a signi6cant part of order L∗ + 1 surrounded by

leading and (possibly) trailing O(�) tail terms. The total order of each subchannel is assumed to be M , the
convention used throughout the paper.
Let us de6ne di+m1 , TL(Dz

L+1)(:; i + m1 + 1), Ĥi+m1 , TL(HM )(:; i + m1 + 1). These de6nitions are
identical in spirit with those of di, Ĥi made earlier in (11) and (1). Working along the same lines as before

TL(HM ) =TL(Hz
L+1) +TL(Dz

L+1)

from which it follows that

Ĥi+m1 =TL(Hz
L+1)(:; i + m1 + 1) + di+m1 ; i = 0; : : : ; 2L+ 1: (19)

In addition it holds

TL(Hz
L+1)(:; i + m1 + 1) =Hi ; i = 0; : : : ; 2L+ 1: (20)

where Hi was de6ned in (7).
Combining (19), (20) we deduce the following

Ĥi+m1 =Hi + di+m1 ; i = 0; : : : ; 2L+ 1: (21)
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Eq. (10) is a generic result of our perturbation analysis and we repeat it here for completeness:

H̃i =Hi + E(Hi); i = 0; : : : ; 2L+ 1: (22)

Combining (21) with (22) we get

H̃i = Ĥi+m1 − di+m1 + E(Hi); i = 0; : : : ; 2L+ 1: (23)

Using (23) together with (9) yields

c̃L+M+1; i = (Ĥi+m1 − di+m1 + E(Hi))H(TH
L (HM ))]

(8)⇔
c̃L+M+1; i = ĉL+M+1; i+m1 + (−di+m1 + E(Hi))H(TH

L (HM ))] ⇔
c̃L+M+1; i − ĉL+M+1; i+m1 = (−di+m1 + E(Hi))H(TH

L (HM ))]; i = 0; : : : ; 2L+ 1:

By de6nition, di+m1 is an O(�) quantity. The size of term E(Hi) (see Approximation (5)) can be assessed by
a perturbation bound. However, due to the complex form of E(Hi), such a bound will be based on successive
application of the triangle and submultiplicative matrix norm inequalities and will be quite loose, in general.
(The usefulness of such bounds lies more in revealing potential instability points of the algorithm than in
providing accurate perturbation size assessment.) In our study, since we are interested mostly in the order of
magnitude of the di&erence between the combined responses of blind and non-blind LS equalizers, we may
say that E(Hi) is an O(�) quantity, since every bound we could derive for this quantity is of the form ��,
where � is a constant. Hence, we may write

‖c̃L+M+1; i − ĉL+M+1; i+m1‖2 = O(�)
1
�min

; i = 0; : : : ; 2L+ 1; (24)

where �min symbolizes, again, the minimum singular value of TL(HM ).
E:ective overmodeling: Like before, we assume that the estimate for the subchannels order exceeds the

value of the actual signi6cant part order, i.e., L+1¿L∗+1. All of the discussion made earlier about the order
of magnitude of �min in the case of e&ective overmodeling is valid, so �min proves to be an O(�) quantity.
When 0��min ≈ �, we can write from (24)

‖c̃L+M+1; i − ĉL+M+1; i+m1‖2 = O(1); i = 0; : : : ; 2L+ 1: (25)

In other words, the compared combined responses may di&er by a lot at worst, as (25) suggests. They may
be closer to each other for certain delays but, in general, they diverge. Consequently, even when non-blind LS
equalizers are satisfactory, blind LS equalizers will generally be poor in performance. This fact will be more
pronounced as the amount of overmodeling increases, as we will observe in the simulations section. Therefore,
the case under investigation is recognized to be one where the algorithm does not exhibit robustness, in the
sense that it usually performs poorly and the occasions where performance may be good cannot be predicted
beforehand.
Exact order case: Situation improves in the exact order case (L+1= L∗ +1). Everything that has already

been stated about the order of magnitude of �min is valid. When ���min ≈ 1, i.e., when the actual signi6cant
parts of subchannels are su9ciently diverse, we can write from (24)

‖c̃L+M+1; i − ĉL+M+1; i+m1‖2 = O(�); i = 0; : : : ; 2L+ 1:

In addition, all of the 2(L+1) non-blind LS equalizers are known to perform well, when the actual signi6cant
parts of the subchannels are su9ciently diverse [4]. Thus, all blind LS equalizers are expected to have
satisfactory performance.
Recapitulating, we need to emphasize the critical dependence of algorithm behaviour on channel shape.

When subchannels begin with “big” taps, blind LS performance is impervious to e&ective overmodeling.
Blind LS equalizers will share the same performance pattern with their non-blind counterparts. Situation is
radically di&erent when subchannels incorporate leading “small” terms. In this case, e&ective overmodeling
should be avoided as it generally results in poor equalization performance.
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4. Simulations

We begin by constructing a signi6cant part of order 3 for each of two subchannels. We are already
familiar with the single vector representation: H3 = [0:1949 0:7626 −0:2186 −0:3478 0:2766 0:0136
−0:3465 0:1224]T. In other words, the signi6cant parts of the subchannels are: H(1)

3 = [0:1949 −0:2186
0:2766 − 0:3465]T, H(2)

3 = [0:7626 − 0:3478 0:0136 0:1224]T. Their taps are drawn from a uniform
distribution in the interval [ − 1; 1] and ‖H3‖2 = 1. We will add tail terms to these signi6cant parts such
that the total order of each subchannel equals to 33. In the familiar notation, the total channel is represented
by vector H33 and the zero padded signi6cant part as Hz

33. The magnitude of the tails is chosen such that:
10 log10 (‖H3‖22=‖H33 − Hz

33‖22) = 40 dB. To illustrate the di&erences in algorithm behaviour depending on
channel shape we add the tail terms in two ways: (1) We add all 30 tail terms after the signi6cant part of
each subchannel (2) We add 7 tail terms before the signi6cant part of each subchannel and we leave the rest
23 after it. In both cases we use the same tail terms originally acquired from a random generator such that
the aforementioned magnitude constraint is met.
For each channel we run blind LS algorithm for varying equalizer orders covering both e&ective overmod-

eling and exact order case. We compute blind LS equalizers for every possible delay. Simultaneously, we run
non-blind LS algorithm for the same equalizer orders and all possible delays. As a stand alone measure for
the equalization quality of blind LS algorithm we use open eye measure (OEM) de6ned for a vector c as:

OEM(c) =

(∑
i

|ci| −max
i
|ci|
)/

max
i

|ci|:

The smaller the OEM the better the equalization performance. We support our theoretic treatment by means
of three graphs for the experiments made on each channel. We will comment on these graphs in the sequel.
Trailing tails only: Fig. 1 illustrates an e&ectively overmodeled case and consists of two subgraphs. The 6rst

one depicts the Euclidean distance of blind LS combined response from the closest non-blind LS combined
response, as a function of the delay parameter for a 6xed value of equalizer order L = 6. In it there are
two horizontal lines that correspond to quantities �=�min and �2=�min presented in the theoretic exposition. The
second subgraph depicts OEM values of blind LS, again as a function of the delay parameter for the same
equalizer order L= 6.
Our analysis predicts that the distance of the combined responses will be an O(�2=�min) quantity. Our

prediction is consistent with the 6rst subgraph of Fig. 1. Moreover, we assert that the equalizers corresponding
to delay parameters from i=0; : : : ; L+(L∗+1)=0; : : : ; 9 will perform well. This fact is veri6ed by the second
subgraph.
In Fig. 2, we present the distance of combined responses vs. the delay parameter for varying values of

equalizer orders. We begin at L = 2 (exact order case) and we proceed up to L = 6. Theory claims this
distance to be on the order of O(�2=�min) for every delay and equalizer order. What plays prominent role in
the setting, though, is the value of �min, which is larger for the exact order case. Thus blind equalizers for
this case will be closer to the non-blind ones than in the e&ectively overmodeled cases. The e&ect of �min is
veri6ed by Fig. 2.
Fig. 3 sketches the OEM of blind LS vs. the delay parameter for the same equalizer orders as in Fig.

2. We are able to recon6rm our assertion that for a speci6c order L, the equalizers corresponding to delay
parameters i=0; : : : ; L+(L∗+1) perform satisfactorily. We also notice that among those equalizers who work
well the ones of larger order behave better (smaller OEM). This is a known result in the context of non-blind
LS equalization and since blind LS equalizers are close to their non-blind counterparts, they behave similarly.
Leading and trailing tails: Fig. 4 is the corresponding of Fig. 1 and likewise examines an e&ectively

overmodeled case. The horizontal lines depict once more the values �=�min, �2=�min as discussed in the the-
oretic section. The order of the equalizer used is again L = 6. Based on our theoretic 6ndings we expect
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Fig. 1. Subchannels with trailing tail terms only, actual signi6cant part order L∗+1=3, equalizer order L=6, i.e. e&ective overmodeling.
Upper subplot: Euclidean distance of blind and non-blind LS combined responses vs. blind LS delay parameter. Lower subplot: Open
eye measure for blind LS vs. blind LS delay parameter.
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Fig. 2. Subchannels with trailing tail terms only, actual signi6cant part order L∗ + 1 = 3, varying equalizer order L (exact order case:
L = 2). Euclidean distance of blind and non-blind LS combined responses vs. blind LS delay parameter.
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Fig. 3. Subchannels with trailing tail terms only, actual signi6cant part order L∗ + 1 = 3, varying equalizer order L (exact order case:
L = 2). Open eye measure for blind LS vs. blind LS delay parameter.
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Fig. 4. Subchannels with leading and trailing tail terms, actual signi6cant part order L∗ + 1 = 3, equalizer order L = 6, i.e. e&ective
overmodeling. Upper subplot: Euclidean distance of blind and non-blind LS combined responses vs. blind LS delay parameter. Lower
subplot: Open eye measure for blind LS vs. blind LS delay parameter.
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Fig. 5. Subchannels with leading and trailing tail terms, actual signi6cant part order L∗ + 1 = 3, varying equalizer order L (exact order
case: L = 2). Euclidean distance of blind and non-blind LS combined responses vs. blind LS delay parameter.

the distance of the combined responses to be on the order of O(�=�min), which is roughly O(1) for e&ective
overmodeling. We generally expect non-satisfactory behaviour for every blind LS equalizer. Both of our
expectations are con6rmed in Fig. 4.
Fig. 5 is the counterpart of Fig. 2. We compute the distance of the combined responses for equalizer orders

ranging from L=2 to 6 and every possible value of delay parameter thereof. Our analysis predicts this distance
to be on the order of O(�=�min). Again �min plays a critical role in di&erentiating the exact order from the
e&ectively overmodeled cases. Thus for the former the distance is roughly O(�) while for the latter is O(1).
This is exactly the situation depicted in Fig. 5.
Finally, Fig. 6 is the corresponding of Fig. 3. Here we can see the OEM values for blind LS equalizers

of order L = 2; : : : ; 6 for every possible value of the delay parameter. Exact order case equalizers (L = 2)
perform well for every delay, as we originally expected. The rest of the equalizers, all corresponding to
e&ectively overmodeled cases, perform worse. The deterioration in performance is more severe as the order
of the equalizer used is increased. We also notice that for the e&ectively overmodeled case where L= 3 and
i = 1 the equalizer performance is rather good. We have come across this situation in our experiments in
cases where we have e&ective overmodeling by a small number of taps. In these cases, some equalizers may
perform favourably. The fact is, though, that equalizers will be unable to cope with their prescribed task once
overmodeling gets larger, which indicates the sensitivity of the algorithm to this setting. To sum up, situation
in Fig. 6 is perfectly in tune with our theoretic expectations.

5. Conclusions

We studied a blind LS algorithm for the construction of linear FIR equalizers in the FIR-SIMO channel
setting. Our aim was to highlight instances where algorithm’s erroneous perception of channel characteristics
has a substantial impact on its performance. As errors in channel order determination are inevitable, information
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Fig. 6. Subchannels with leading and trailing tail terms, actual signi6cant part order L∗ + 1 = 3, varying equalizer order L (exact order
case: L = 2). Open eye measure for blind LS vs. blind LS delay parameter.

about their inNuence on output quality is of signi6cant practical interest. Microwave channels are usually
comprised by a few large taps, which we called signi6cant part and whose order we symbolized by L∗ + 1,
while the rest of them are smaller in magnitude. In this work, we examined the cases where channel order
estimation led to the use of equalizers of order L¿L∗. The analysis culminated in the performance comparison
with non-blind LS. Our conclusions, veri6ed by simulations, are summarized in the following: If channel
does not contain any leading small terms then blind LS will behave similarly to non-blind LS irrespective
of potential channel order estimation error. On the contrary, when channel possesses leading small terms,
satisfactory results are generally expected only in the case where signi6cant part order L∗ + 1 is accurately
identi6ed. If order estimate is larger, performance of blind LS will generally be poor.
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Appendix A

A.1. First-order perturbation expansion of RL; i(HM )

To start o& with our perturbation analysis we note a useful equality with respect to the correlation matrix:

RL; i(HL+1) =TL(HL+1)Ji2(L+1)T
H
L (HL+1)

=TL(Hz
L+1)J

i
L+M+1T

H
L (H

z
L+1) = RL; i(Hz

L+1): (A.1)
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That is to say, the correlation matrix is invariable to the zero-padding operation of its argument. The true
correlation matrix can be analyzed as follows:

RL; i(HM ) = TL(HM )JiL+M+1T
H
L (HM )

= {TL(Hz
L+1) +TL(Dz

L+1)}JiL+M+1{TL(Hz
L+1) +TL(Dz

L+1)}H:
By omitting the second-order perturbation term TL(Dz

L+1)J
i
L+M+1T

H
L (D

z
L+1) we reach the 6rst-order expan-

sion:

RL; i(HM ) = RL; i(Hz
L+1) + E(RL; i); (A.2)

where

E(RL; i) =TL(Hz
L+1)J

i
L+M+1T

H
L (D

z
L+1) +TL(Dz

L+1)J
i
L+M+1T

H
L (H

z
L+1): (A.3)

Combining (A.1) and (A.2), we deduce the 6rst-order perturbation expansion connecting the correlation
matrices of real and ideal cases:

RL; i(HM ) = RL; i(HL+1) + E(RL; i): (A.4)

A.2. First-order perturbation expansion of D̃i

D̃i is given by

D̃i = RL; i(HM )R−1
L;0(HM )RH

L; i(HM ): (A.5)

For RL;0(HM ) it holds to the 6rst-order RL;0(HM )=RL;0(HL+1)+E(RL;0) from (A.4). The 6rst-order pertur-
bation in its inverse is thus found to be [12, p. 130]

R−1
L;0(HM ) = R−1

L;0(HL+1)− R−1
L;0(HL+1)E(RL;0)R−1

L;0(HL+1): (A.6)

Plugging (A.4) and (A.6) into (A.5) and ignoring higher-order error terms, we get

D̃i = RL; i(HL+1)R−1
L;0(HL+1)RH

L; i(HL+1) + Ti;A + Ti;B + Ti;C ⇔

D̃i =Di + Ti;A + Ti;B + Ti;C ;

where terms Ti;A, Ti;B, Ti;C are analyzed as

Ti;A = RL; i(HL+1)R−1
L;0(HL+1)E(RL; i)H

Ti;B =−RL; i(HL+1)R−1
L;0(HL+1)E(RL;0)R−1

L;0(HL+1)RH
L; i(HL+1);

Ti;C = E(RL; i)R−1
L;0(HL+1)RH

L; i(HL+1) = TH
i;A:

By substituting for RL; i(HL+1) and RL;0(HL+1) and employing (A.3) for E(RL; i) and E(RL;0), we can further
expand Ti;A (hence Ti;C), Ti;B as follows:

Ti;A = Ti;1 + Ti;2; Ti;C = Ti;3 + Ti;4 = TH
i;2 + TH

i;1; Ti;B = Ti;5 + Ti;6;
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where

Ti;1 =TL(HL+1)Ji2(L+1)T
−1
L (HL+1)TL(Dz

L+1)J
−i
L+M+1T

H
L (H

z
L+1);

Ti;2 =TL(HL+1)Ji2(L+1)T
−1
L (HL+1)TL(Hz

L+1)J
−i
L+M+1T

H
L (D

z
L+1);

Ti;3 = TH
i;2; Ti;4 = TH

i;1;

Ti;5 =−TL(HL+1)Ji2(L+1)T
−1
L (HL+1)TL(Hz

L+1)T
H
L (D

z
L+1)T

−H
L (HL+1)J−i

2(L+1)T
H
L (HL+1);

Ti;6 = TH
i;5: (A.7)

That is to say, the 6rst-order perturbation expansion for D̃i, with the aid of the terms above, shapes into the
following:

D̃i =Di + E(Di); (A.8)

where

E(Di) = Ti;1 + Ti;2 + Ti;3 + Ti;4 + Ti;5 + Ti;6:

A.3. First-order perturbation expansion of �̃Di

Since D̃i is as in (A.8), �̃Di will equal to

�̃Di = �Di + E(�Di); (A.9)

where

E(�Di) = E(Di)− E(Di+1) = �Ti;1 + �Ti;2 + �Ti;3 + �Ti;4 + �Ti;5 + �Ti;6;

where �Ti; j , Ti; j − Ti+1; j :

A.3.1. Trailing tail terms only
We will 6rst present the case where the tails strictly follow the signi6cant part. For this special case, a lot

of cancellations take place and this has a pronounced impact on the subsequent stages of the analysis.
Knowing Ti;2 from (A.7), we can further simplify as follows:

Ti;2 =TL(HL+1)Ji2(L+1)T
−1
L (HL+1)[TL(HL+1) 02(L+1)×(M−L−1)]J−i

L+M+1T
H
L (D

z
L+1)

= [TL(HL+1)Ji2(L+1) 02(L+1)×(M−L−1)]J−i
L+M+1T

H
L (D

z
L+1) (A.10)

= [02(L+1)×i TL(HL+1)Ji2(L+1) 02(L+1)×(M−L−1−i)]TH
L (D

z
L+1): (A.11)

In the transition from (A.10) to (A.11) we note that right multiplication by matrix J−i
L+M+1 merely equals to

a shift of the preceding matrix i columns to the right.
Upon a little reNection we deduce that

�Ti;2 =Ti;2 − Ti+1;2

= [02(L+1)×i TL(HL+1)(:; i + 1) 02(L+1)×(L+M−i)]TH
L (D

z
L+1)

= [02(L+1)×i Hi 02(L+1)×(L+M−i)]TH
L (D

z
L+1); (A.12)

where we have made use of the shorter notation Hi =TL(HL+1)(:; i + 1).
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In addition, it turns out that Ti;1 =−Ti;6 and Ti;4 =−Ti;5 for all i, meaning that

Ti;1 + Ti;4 + Ti;5 + Ti;6 = 0; Ti+1;1 + Ti+1;4 + Ti+1;5 + Ti+1;6 = 0

and hence

�Ti;1 + �Ti;4 + �Ti;5 + �Ti;6 = 0;

which leaves us with nothing but the very elegant

�̃Di = �Di + �Ti;2 + TH
i;2: (A.13)

In order to prove that Ti;4 =−Ti;5 it su9ces to prove that

TL(Hz
L+1)J

i
L+M+1 =TL(HL+1)Ji2(L+1)T

−1
L (HL+1)TL(Hz

L+1): (A.14)

This claim should be evident upon inspecting Ti;4;Ti;5. Thus, from (A.14), we have equivalently:

[TL(HL+1) 02(L+1)×(M−L−1)]JiL+M+1 = TL(HL+1)Ji2(L+1)T
−1
L (HL+1)[TL(HL+1) 02(L+1)×(M−L−1)] ⇔

[TL(HL+1) 02(L+1)×(M−L−1)]JiL+M+1 = [TL(HL+1)Ji2(L+1) 02(L+1)×(M−L−1)]: (A.15)

The truth of (A.15) should be obvious. Right multiplication by matrix JiL+M+1 amounts to a left shift of
the preceding matrix by i columns. Due to the special form of matrix A , [TL(HL+1)0], it does not make
any di&erence whether we shift it as a whole (left-hand side of (A.15)) or just shift its leftmost submatrix
(right-hand side of (A.15)).
Having proved that Ti;4 =−Ti;5 it is straightforward that Ti;1 =−Ti;6 holds, as Ti;4 = TH

i;1, Ti;5 = TH
i;6.

A.3.2. General case
In the general case, things are pretty much the same as long as �Ti;2 is concerned. Working along the

exact same lines as before we can 6nd that

�Ti;2 = [02(L+1)×m1 02(L+1)×i Hi 02(L+1)×(L+M−m1−i)]T
H
L (D

z
L+1): (A.16)

This is analogous to (A.12), only now there are m1 extra zero columns in the leftmost part of �Ti;2 due to
the presence of the leading tails in the subchannels.
For the rest of the terms, however, the situation is substantially di&erent. Equations Ti;1=−Ti;6, Ti;4=−Ti;5

no longer hold for an i other than i = 0. The counterpart of (A.15) now becomes

[02(L+1)×m1 TL(HL+1) 02(L+1)×(M−L−m1−1)]JiL+M+1

=[02(L+1)×m1 TL(HL+1)Ji2(L+1) 02(L+1)×(M−L−m1−1)];

which is not a valid equality for i �=0 due to the presence of the leading zero submatrices. Therefore, we
are now deprived of the nulli6cation of Ti;1 + Ti;4 + Ti;5 + Ti;6 for i �=0. As a consequence, there is little to
be done to simplify E(�Di). Grouping of some terms can result in a di&erent form for E(�Di), but this has
mainly to do with aesthetics and not the essence of a true simpli6cation. As a result, for the general case we
just stick to (A.9) in its original form.

A.4. First-order perturbation in the largest eigenvalue=eigenvector of �̃Di

The next step of the algorithm amounts to obtaining �̃i, the largest eigenvalue of �̃Di, along with the
corresponding eigenvector. In the ideal case, �Di = HiHH

i , �i = ‖Hi‖22, the corresponding eigenvector is Hi

and its unit-norm counterpart is li = Hi=‖Hi‖2. In [12, p. 240, Section 2.3] we 6nd that to the 6rst order it
holds

E(li), l̃i − li = �−1
i P⊥

i E(�Di)li ; (A.17)
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where l̃i is the perturbed version of li, E(�Di) is the (6rst-order) perturbation in �̃Di and P⊥
i is the projector

onto the complement of the subspace produced by li. Therefore for P⊥
i it holds: P⊥

i = I2(L+1) − lilHi . We
trivially note that in the ideal case Hi = ‖Hi‖2li =

√
�ili. Thus, in the real case we can compute H̃i as:

H̃i =
√
�̃i l̃i.

In addition, in [12, p. 183] we 6nd that

E(�i), �̃i − �i = lHi E(�Di)li =
HH
i

‖Hi‖2E(�Di)
Hi

‖Hi‖2 =
1
�i

HH
i E(�Di)Hi : (A.18)

With the aid of (A.17) and (A.18), we can compute a 6rst-order approximation for E(Hi) , H̃i − Hi. As
a preliminary step we need to know a 6rst-order approximation for

√
�̃i −

√
�i. A 6rst-order expression for

this quantity is found by means of the Taylor series for the function f(x) =
√
x. Keeping only the 6rst-order

terms we have
√
x =

√
x0 +

1
2
√
x0
(x − x0)

from which we deduce√
�̃i −

√
�i =

1
2
√
�i
E(�i):

Thus to the 6rst order,

E(Hi) = H̃i −Hi =
√
�̃i l̃i −

√
�ili =

(√
�i +

1
2
√
�i
E(�i)

)
(li + E(li))−

√
�ili

=
√
�iE(li) +

1
2
√
�i
E(�i)li : (A.19)

Combining (A.17), (A.18) and (A.19), we reach the following 6rst-order result

E(Hi) = H̃i −Hi =
1
�i

P⊥
i E(�Di)Hi +

1
2�2i

(HH
i E(�Di)Hi)Hi : (A.20)

A.4.1. Trailing tail terms only
We can take advantage of the simple form E(�Di) has and obtain a simpler form for (A.20). We remind

that E(�Di) for this particular case is given by (A.12) and (A.13). Thus, we may decompose the 6rst term
of (A.20) as

1
�i

P⊥
i E(�Di)Hi =

1
�i

P⊥
i (�Ti;2 + �TH

i;2)Hi =
1
�i

P⊥
i �TH

i;2Hi

=P⊥
i TL(Dz

L+1)ei+1 = P⊥
i di :

The second term of (A.20) vanishes as subsequent calculations suggest

HH
i E(�Di)Hi =HH

i �Ti;2Hi + (HH
i �Ti;2Hi)H;

where

HH
i �Ti;2Hi = �ieHi+1T

H
L (D

z
L+1)Hi = �idHi Hi :

However, as we explained in detail in Section 3.3.1, dHi Hi = 0 for all i = 0; : : : ; 2L+ 1.
Consequently, (A.20) assumes the simple form

E(Hi) = P⊥
i di : (A.21)
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