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Abstract—We consider minimum mean-square error Tom-
linson–Harashima (MMSE-TH) precoding for time-varying
frequency-selective channels. We assume that the receiver esti-
mates the channel and sends the channel state information (CSI)
estimate to the transmitter through a lossless feedback channel
that introduces a certain delay. Thus, the CSI mismatch at the
receiver is due to estimation errors, while the CSI mismatch at
the transmitter is due to both estimation errors and channel
time variations. We exploit a priori statistical channel knowledge,
and we derive an optimal TH precoder, adopting a Bayesian
approach. We use simulations to compare the performance of
the so-derived TH precoder with that of the same-complexity
MMSE decision-feedback equalizer (DFE). We observe that for
low signal-to-noise ratios (SNRs) and sufficiently slow channel
time variations, the optimal TH precoder outperforms the DFE,
while at high SNR, the opposite happens.

Index Terms—Intersymbol interference (ISI), partial channel
knowledge, Rayeigh fading, Tomlinson–Harashima (TH)
precoder.

I. INTRODUCTION

I NTERSYMBOL interference (ISI) is a significant obstacle
against reliable high-speed digital communication through

bandlimited channels. The finite-length minimum mean-square
error decision-feedback equalizer (MMSE-DFE) has proven
an effective structure for combatting ISI. The design of the
MMSE-DFE filters requires the knowledge of the channel state
information (CSI) at the receiver (acquired through training). A
phenomenon that might degrade the MMSE-DFE performance
is catastrophic error propagation. If the CSI is available at the
transmitter (through a feedback channel), then the feedback
portion of the MMSE-DFE can be designed and implemented
at the transmitter, where error propagation is impossible.
This structure is known as the MMSE Tomlinson–Harashima
(MMSE-TH) precoder [1], [2].

In practice, the CSI estimate available at the transmitter is
noisy. Potential noise sources include estimation and/or quanti-
zation errors, feedback channel errors, and channel time varia-
tions. When the quality of the CSI estimate at the transmitter is
poor, the performance of the TH precoder may degrade signifi-
cantly [3], [4]. In this letter, we consider the case where the re-
ceiver estimates the channel using a training sequence and sends
the estimate to the transmitter through a feedback channel that
introduces a certain delay, but no errors. Thus, CSI mismatch
at the receiver is due to estimation errors, while CSI mismatch
at the transmitter is due to both estimation errors and channel
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Fig. 1. Channel model and MMSE-DFE.

time variations. Using a statistical model for the channel time
variations and estimation errors, we derive new cost functions
for the design of the TH precoder, adopting a Bayesian ap-
proach (for related work in different precoding scenarios, see
[5]–[9] and the references therein). We use simulations to com-
pare the performance of the resulting TH precoder with that of
the same-complexity (i.e., same filter lengths) MMSE-DFE that
exploits the statistical channel model. We observe that, at low
signal-to-noise ratios (SNRs) and slow channel time variations,
the resulting TH precoder outperforms the MMSE-DFE (this
fact may be attributed to the use of erroneous previous deci-
sions by the MMSE-DFE). On the other hand, at high SNR, the
MMSE-DFE outperforms the TH precoder.

The rest of the letter is organized as follows. In Section II,
we assume perfect CSI knowledge and we recall known results
for the MMSE-TH precoder. In Section III, we introduce a sta-
tistical channel model, we develop new cost functions, using a
Bayesian approach, and we derive the optimum TH precoder. In
Section IV, we use simulations to compare the performance of
the derived TH precoder with that of MMSE-DFE. Conclusions
are drawn in Section V.

II. FINITE-LENGTH MMSE-TH PRECODING

WITH PERFECT CHANNEL KNOWLEDGE

A. Channel Model

We consider the baseband-equivalent discrete-time noisy
communication channel modeled by the th-order linear
time-invariant system depicted in Fig. 1. Its input–output rela-
tion is given by the convolution

where , is the discrete-time channel finite im-
pulse response, and , , and are, respectively, samples
of the channel input, output, and noise sequences. The channel
transfer function is defined as , and the im-

pulse-response vector is defined as , where su-
perscript denotes transpose. By stacking successive output
samples, we construct the data vector
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Fig. 2. TH precoding.

which can be expressed as

where the filtering matrix is defined as

. . .
. . .

and the definitions of and are obvious.

B. Finite-Length MMSE-TH Precoding

Our aim is to recover (a delayed version of) the transmitted
sequence for . A structure that has
been widely used for this purpose is the MMSE-DFE, which is
also depicted in Fig. 1. The finite-length MMSE-DFE is com-
posed of the following filters:

1) the length- feedforward filter determined by the

vector , where denotes
Hermitian transpose and denotes complex conju-
gate. The transfer function of the feedforward filter is

;
2) the length- feedback filter determined by the vector

, with .
The block labeled in Fig. 1 represents a symbol decision
device.

A problem that might be encountered when using the
MMSE-DFE is catastrophic error propagation. If the channel
is known at the transmitter, then the feedback section may be
designed and implemented at the transmitter, resulting in the
TH precoder, depicted in Fig. 2. The modulo operation

is defined as , where is the unique integer
multiple of for which . If the input
to the modulo operator is complex-valued, then the modulo
operation is applied separately to the real and the imaginary
parts of the input.

An equivalent structure is shown in Fig. 3, where de-

notes the inverse filter of , , is the
ISI term, and is noise filtered by the feedforward filter

[10]. We observe that incorporates a delay of time
units. This may be convenient when the channel possesses
“small” leading terms (a case that is commonly encountered,
due to pulse shaping, in bandwidth-efficient systems).

The objective of the MMSE-TH precoder is the minimization
of the power of the ISI and the filtered noise terms,
[10], where denotes expectation with respect to the input
and the noise. The ISI term is given by

(1)

where (for notation compactness) we defined
, with denoting the zero

Fig. 3. TH precoding (equivalent structure).

matrix, and . The filtered-noise
term is given by

In order to simplify notation in the following, we shall omit the
subscripts from and .

Expanding terms and using the independence of the zero-
mean sequences and , we obtain

(2)

where and . This cost function
coincides with the cost function for the MMSE-DFE (with

replacing ) [11, eq. (11)]. If the input is a sequence
of independent, identically distributed (i.i.d.) samples, then
a common assumption in the TH precoding literature is that
the output of the modulo operator , , is a sequence
of independent random variables uniformly distributed in

. Assuming that the real and imaginary parts
of are independent, we obtain , where

and denotes the identity matrix.
The optimal finite-length MMSE-TH filters, and , can

be computed by following steps analogous to those of [11].
More specifically, if we define

and

where

then the optimal filters are given by [11]

where is the vector with 1 at its first position, and 0 elsewhere.
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III. MMSE-TH PRECODING WITH

PARTIAL CHANNEL KNOWLEDGE

In the previous section, we assumed exact CSI at both the
receiver and the transmitter. However, this setting seems unre-
alistic, especially in time-varying environments. In this section,
we assume that the receiver possesses an estimate (acquired
through training) of the true (unknown) current channel , while
the transmitter possesses an estimate of the true (unknown)
channel seconds before , ( is the time needed for the
feedback of the channel estimate from the receiver to the trans-
mitter). Furthermore, we assume that the feedback channel does
not introduce errors, due to powerful error-control coding (the
lossless feedback channel assumption is essential for the satis-
factory performance of the derived structures, and is common
in all works [5]–[9] that exploit partial channel information at
the transmitter). Consequently, the receiver knows, and can use,
both and .

Thus, due to estimation errors, the receiver possesses a (hope-
fully, slightly) erroneous CSI. On the other hand, due to esti-
mation errors, channel time variations, and feedback delay, the
transmitter possesses a (hopefully, slightly) erroneous estimate
of a (hopefully, slightly) outdated CSI.

A. Statistical Channel Model

In this subsection, we provide statistical models for the true
and outdated channel and their estimates. More specifically, we
assume the following.

1) The true channels and are frequency-selective
Rayleigh fading, drawn from the same statistical distri-
bution. Their taps are modeled as independent zero-mean
complex Gaussian random variables, i.e.,

with the determined by the channel power-delay
profile. The channel taps are time varying, according
to Jakes’ model, with common maximum Doppler fre-
quency . Since is the channel realization seconds
before , and can be modeled as jointly Gaussian
with their joint statistics described by the cross-correla-
tion matrix

is the normalized correlation coefficient specified by
the Jakes model, , where is the
zeroth-order Bessel function of the first kind. Thus, we
may model the channel time variations as follows:

where is independent of and , and it can be easily
seen that it obeys the statistical model

2) The channel estimates and are maximum-likeli-
hood (ML) estimates of and , respectively, acquired
through training, and can be expressed as follows:

The estimation errors and are independent of all
other stochastic quantities, and are drawn from the same
statistical distribution

It is well known in the ML estimation literature [12,
p. 786] that using an ideal unit-power length- training
sequence to estimate a channel with order , when the
channel noise is additive zero-mean white Gaussian with
variance , yields (
is the number of equations we use to solve the resulting
least-squares problem). Under the above assumptions,
we obtain

B. The New TH Structure

The transmitter, possessing , exploits the above statistical
channel description that relates its channel estimate with the
true channel , by minimizing the conditional expectation

In order to compute the above quantity, we need to com-
pute terms and (recall the definition
of in (2), and that ). We start by
computing the conditional expectation (MMSE estimate) of ,
denoted [13, p. 324]

The corresponding (diagonal) covariance matrix is given by

Thus, if and , , denote, respectively, the
elements of and the diagonal elements of , then

if
otherwise.

Using the above relations, we obtain

and

where is the filtering matrix constructed from , and
denotes the trace of the matrix argument.

The new cost function at the transmitter is expressed as

We observe that in the new cost function, the channel matrix
has been replaced by , and the extra term
has appeared, due to channel uncertainties. For perfect CSI
knowledge, and , of course, coincide.

The optimal feedback filter is computed at the transmitter
by minimizing , following steps analogous to the
ones of Section II-B.
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The receiver knows and exploits the statistical channel
knowledge by optimizing the cost function

[ is appropriately zero-padded; recall the definition of
in terms of after (1)] which is expressed as

where is the filtering matrix constructed from

and

The optimal feedforward filter is given by

IV. SIMULATIONS

In this section, we compare the TH precoder derived in the
previous section (termed robust TH precoder) with the same-
complexity (i.e., same filter lengths) TH precoder that does not
exploit a priori statistical channel knowledge (termed conven-
tional TH precoder), and the same-complexity MMSE-DFE that
exploits the statistical channel model.

For the conventional TH precoder, the transmitter considers
as a perfect estimate of the current channel and, following

steps like those of Section II-B, optimizes the cost function

(3)

with respect to , obtaining . The receiver knows , and
uses its channel estimate to compute the optimum feedforward
filter as

The DFE filters are computed by optimizing, with respect to
and , the conditional mean of the mean-square error (as

defined in (2), but with replacing ), given .
In our simulations, we consider a packet-based system with

packet length data samples, containing
training samples. With each packet, we associate a channel re-
alization with order , obeying the expo-
nential power-delay profile

Fig. 4. BER versus SNR for MMSE-DFE (o-), robust TH precoder (+-), and
conventional TH precoder (�-), for � = 0:99.

Fig. 5. BER versus SNR for MMSE-DFE (o-), robust TH precoder (+-), and
conventional TH precoder (�-), for � = 0:94.

and realizations of and ,
. , , and are constructed from the above quan-

tities, as indicated in Section III-A.
The input is a 4-quadrature amplitude modulation (QAM)

i.i.d. sequence, taking with equal probability the values .
The SNR is defined as

and is the actual signal-power-to-noise-power ratio at the output
of the channel for the MMSE-DFE. This does not apply to the
TH precoder, because the channel input in this case, , has
larger power than (in fact, ). We
consider delay and filter lengths and .

In Figs. 4–6, we plot the bit-error rate (BER) versus SNR of
the robust and the conventional TH precoders and the MMSE-
DFE, for channel correlation coefficient 0.99, 0.94, and
0.85, respectively. Our observations are as follows.
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Fig. 6. BER versus SNR for MMSE-DFE (o-), robust TH precoder (+-), and
conventional TH precoder (�-), for � = 0:85.

1) The robust TH precoder always outperforms the con-
ventional TH precoder, with the performance difference
increasing for increasing the speed of the channel time
variations and the SNR. This is an intuitively satisfying
observation that supports the exploitation of statistical
channel knowledge whenever it is available. We also ob-
serve that both TH precoders exhibit an irreducible error
floor, directly related to the quality of the CSI at the
transmitter.

2) For very slow time variations , i.e., very good
CSI quality at the transmitter, the robust TH precoder
outperforms the MMSE-DFE for low and medium SNRs
(in this case, up to 18 dB). The range of SNRs where
the robust TH precoder outperforms the MMSE-DFE de-
creases for increasing the speed of channel time varia-
tions, i.e., increasing the degradation of CSI at the trans-
mitter. On the other hand, for high SNR and moderate
or fast channel time variations, the MMSE-DFE signifi-
cantly outperforms both TH precoders.

V. CONCLUSIONS

We considered TH precoding with partial channel knowledge.
The CSI mismatch at the receiver was due to estimation errors,

while the CSI mismatch at the transmitter was due to estimation
errors and channel time variations. We designed a robust TH
precoder by exploiting a statistical model for the channel time
variations and estimation errors. We used simulations to com-
pare the performance of the derived TH precoder with that of the
same-complexity MMSE-DFE. We observed that for very slow
channel time variations, the robust TH precoder outperforms the
MMSE-DFE for low and moderate SNR. On the other hand, for
high SNR, the MMSE-DFE significantly outperforms the TH
precoder.
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