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ABSTRACT
Cooperative communications is a rapidly evolving research area.
Most of the cooperative protocols that have appeared in the liter-
ature assume slow flat fading channels and Gaussian codebooks.
In many cases the relays must fully decode their input. It is well
known that cooperation is most effective at low SNR where binary
input is optimal. Furthermore, energy and cost effectiveness make
simple relays most attractive. Motivated by these two facts, we
consider a half-duplex orthogonal cooperation protocol with binary
input and relays that simply forward their symbol-by-symbol deci-
sions to the destination which performs algebraic decoding; we call
it Demodulate-and-Forward (DmF). We assume independent slow
Rayleigh flat fading channels with full channel state information
(CSI) at the destination and compute an upper bound for the outage
capacity of the DmF protocol. For low SNR and small outage
probability, we derive a simple approximation to this bound. For
comparison purposes, we compute the outage capacity of direct
binary transmission and a simple low-SNR small-outage-probability
approximation. We observe that for very small outage probability
the DmF protocol significantly outperforms direct transmission.
However, for (relatively) high outage probability, the opposite may
happen.

Index Terms— Cooperation diversity, outage capacity.

I. INTRODUCTION
Cooperative diversity is a concept that has recently at-

tracted significant research interest. Its origin can be found

in the information theoretic relay channel model studied by

Van der Meulen [1] and Cover and El Gamal [2] more

than thirty years ago. The work of Sendonaris et al. [3]
and Laneman et al. [4] renewed the interest in the concept
of cooperation and has led to the development of many

cooperation protocols like the amplify-and-forward, decode-

and-forward and their selective and incremental variations

[4], and coded diversity protocols [5]. Outage probability,

diversity order, and diversity-multiplexing tradeoff have been

the main performance measures used in the study of the

above protocols [4], [6]. We note that most of the above

protocols assume Gaussian codebooks.

It is well established that cooperation is most effective at

low SNR where binary input is optimal [7]. Furthermore,
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energy consumption and manufacturing costs make simple

relays most attractive. Thus, cooperation protocols with

binary input and simple relays, that is, relays that do not
have to fully decode their input but simply forward to the

destination their symbol-by-symbol decisions, are of great

importance. However, no information theoretic study of such

a scheme has appeared in the literature.

In this work, we consider an orthogonal cooperative pro-

tocol with binary input and relays that forward their symbol-

by-symbol decisions to the destination, which performs ale-

graic decoding;1 we call it demodulate-and-forward (DmF). 2
First, we compute the capacity of a channel with binary input

and two independent looks at the output. Using this capacity

expression and assuming independent slow Rayleigh flat

fading channels, we compute an upper bound of the outage

capacity of DmF. Then, we derive a simple approximation to

this bound for the important case of small outage probability

and low SNR. For comparison purposes, we also compute

the outage capacity of direct binary transmission and its

low-SNR small-outage-probability approximation. Using a

mixture of analysis and simulations, we conclude that, for

very small outage probability, the DmF protocol attains

significantly higher outage capacity than direct transmission

over a wide range of SNR values. However, for moderate

and high outage probability the opposite may happen.

II. THE DMF PROTOCOL
We consider the relay channel model depicted in Fig. 1

and assume independent slow Rayleigh flat fading channels.

Thus, hsd, hsr, and hrd are independent complex-valued

circular Gaussian random variables with variances σ2
sd, σ

2
sr ,

and σ2
rd, respectively. The transmit power at both the source

and the relay is P . The input of the relay and the destination
is corrupted by white circular Gaussian noise with variance

N0. The transmit SNR is denoted by Γ := P
N0
. The

instantaneous receive SNRs γsd, γsr , and γrd are exponential

1Derivation of closed-form expressions for the cases where the destina-
tion performs soft-decision decoding seems very difficult.
2The DmF protocol has been considered in the uncoded case in [8].
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Fig. 1. Relay channel model

random variables with means Γsd := σ2
sdΓ, Γsr := σ2

srΓ,
and Γrd := σ2

rdΓ, respectively.
The DmF protocol assumes half-duplex relays and or-

thogonal transmissions. By assuming orthogonality in time,

the DmF protocol occupies two time slots and operates as

follows. During the first time slot, the source emits a length-

N binary codeword to the destination overheard by the relay.
The signals received at the destination and relay at time

instants i = 1, . . . , N are given by

y1i
= hsd xi + w1i

,

yRi
= hsr xi + wRi

.

The relay uses perfect instantaneous CSI and performs

symbol-by-symbol coherent demodulation to decide in favor

of

x̂i = sgn (Re(h∗

sr yRi
))

with error probability ρsr = Q(
√

2γsr). During the second
time slot, the relay forwards its decisions to the destination

which receives

y2i
= hrd x̂i + w2i

.

The destination performs algebraic decoding, that is, at first

demodulates its input to obtain

x̂1i
= sgn (Re(h∗

sd y1i
)) , x̂2i

= sgn (Re(h∗

rd y2i
))

with probability of error ρsd = Q(
√

2γsd) and ρrd =
Q(

√
2γrd), respectively, and then, using all error probabili-

ties, performs full decoding.

The DmF protocol can be modeled by the structure of

binary symmetric channels (BSCs) depicted in Fig. 2. Of

course, the lower branch can be replaced by one BSC with

crossover probability ρsr + ρrd − 2ρsrρrd.

In the sequel, we perform an information theoretic study

of the DmF protocol. A function that will prove very useful

towards this purpose is

H(ρ) := −ρ log2 ρ− (1−ρ) log2(1−ρ), ρ ∈
[
0,

1

2

]
. (1)

H(ρ) is concave and strictly increasing; its derivative H′(ρ)
is strictly decreasing. With Hinv(x), x ∈ [0, 1], we denote
its inverse function. We recall that the capacity of a BSC

with crossover probability ρ is CBSC
ρ = 1 −H(ρ).
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Fig. 2. Demodulate-and-Forward with algebraic decoding at
the destination.
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Fig. 3. Channel with binary input and two independent looks
at the output.

III. CHANNEL WITH BINARY INPUT AND TWO
INDEPENDENT LOOKS AT THE OUTPUT

We consider the channel with binary input X and two

independent looks at the output X̂1 and X̂2, depicted in Fig.

3. The analysis of this channel is fundamental for the study

of the DmF protocol in the next section. Its capacity is given

by the following proposition.

Proposition 1: The capacity of a channel with binary input
X , two independent looks at the output X̂1 and X̂2, and

crossover probabilities ρ1 and ρ2, respectively, is achieved

for uniform input and is given by

Cρ1,ρ2 = 1 + H(ρ1 + ρ2 − 2ρ1ρ2) −H(ρ1) −H(ρ2). (2)

Proof: Due to space limitation, we refer the interested
reader to [9]. �

In the next section, we shall make use of the following

Lemma.

Lemma 1: Let ρ1, ρ2 ∈ [0, 1
2 ]. Then

H (2ρ1ρ2) ≤ H(ρ1) + H(ρ2) −H(ρ1 + ρ2 − 2ρ1ρ2). (3)

Proof: The proof is based on the inequality

f(y) ≤ f(x) + f ′(x)(y − x) (4)

which holds for any concave function f with derivative f ′

[10, p. 70] and the fact that H′(ρ) is decreasing for ρ ∈[
0, 1

2

]
. Let us assume that ρ1 ≤ ρ2. Applying (4) twice, we

obtain

H(2ρ1ρ2) ≤ H(ρ1) + H′(ρ1) (2ρ1ρ2 − ρ1)︸ ︷︷ ︸
α

,

H(ρ1 + ρ2 − 2ρ1ρ2) ≤ H(ρ2) + H′(ρ2)(ρ1 − 2ρ1ρ2).
(5)
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Since ρ1 ≤ ρ2, we have H′(ρ1)−H′(ρ2) ≥ 0. Furthermore,
for any ρ1, ρ2 ∈ [

0, 1
2

]
, it can be shown that α ≤ 0.

Inequality (3) is proved if we add the inequalities in (5)

and observe that α (H′(ρ1) −H′(ρ2)) is nonpositive. �

IV. INFORMATION THEORETIC ANALYSIS OF
THE DMF PROTOCOL

We assume independent slow Rayleigh flat fading chan-

nels and algebraic decoding at the destination. If we set

ρ1 := ρsd and ρ2 := ρsr + ρrd − 2ρsrρrd, then the DmF

scheme of Fig. 2 is equivalent to the channel with two

independent looks of Fig. 3 besides the fact that a channel

use of the DmF protocol needs twice the time needed by a

channel use of the channel with two independent looks. This

occurs because the transmission of one codeword with the

DmF protocol needs two time slots. Thus, for fixed γsr , γsd,

and γrd, the instantaneous capacity of the DmF scheme is

CDmF
ρ1,ρ2

=
1

2
Cρ1,ρ2 . (6)

The outage probability of the DmF protocol for rate R ∈[
0, 1

2

]
is defined as

PDmF
out (R) := P

[
CDmF

ρ1,ρ2
< R

]
. (7)

Since ρsr, ρrd ∈ [0, 1/2],

ρ2 ≥ max{ρsr, ρrd} =: ρsrd. (8)

We define γsrd := min{γsr, γrd}. γsrd is an exponential

random variable with mean

Γsrd :=
ΓsrΓrd

Γsr + Γrd

=
σ2

srσ
2
rd

σ2
sr + σ2

rd

Γ. (9)

The outage probability of the DmF protocol is upper

bounded as follows: 3

PDmF
out (R) = P [1+H(ρ1+ρ2−2ρ1ρ2)−H(ρ1)−H(ρ2) < 2R]

(3)

≥ P [H(2ρ1ρ2) > 1 − 2R]

= P [ ρ1ρ2 >
1

2
Hinv(1 − 2R)︸ ︷︷ ︸

c1(R)

]

(8)

≥ P [ρsd ρsrd > c1(R)]

= P
[
Q(

√
2γsd)Q(

√
2γsrd) > c1(R)

]
(a)

≥ P
[
Q2(

√
γsd + γsrd) > c1(R)

]
= P [ γsd + γsrd < Q2

inv(
√

c1(R))︸ ︷︷ ︸
c2(R)

]

= 1 − 1

Γsd − Γsrd

(
Γsd e

−
c2(R)
Γsd − Γsrd e

−
c2(R)
Γsrd

)

≈ c2
2(R)

2ΓsdΓsrd

3Due to space limitation, we ignore the case Γsrd = Γsd .

where inequality (a) can be proved using the convexity of
ln Q(

√
x) and the approximation at the last line is accurate

for sufficiently small outage probability. To compute an

upper bound for the ε-outage capacity of the DmF protocol
RDmF

ε , we replace P DmF
out (R) and R by ε and RDmF

ε ,

respectively, and obtain

c2
2(R

DmF
ε )

2ΓsdΓsrd

� ε

which is equivalent to

RDmF
ε �

1

2

(
1 −H

(
2Q2(4

√
2ΓsdΓsrd ε)

))
. (10)

For small ε, Γsd, and Γsrd, using Taylor expansions, we

approximate the right-hand side of (10) and obtain

RDmF
ε �

2 log2 e

π

√
2ΓsdΓsrd ε. (11)

We observe that the (approximate) upper bound for the

outage capacity of the DmF protocol is proportional to Γ
√

ε,
implying that, if this bound is tight, then the DmF protocol

offers second-order diversity [7].

IV-A. Outage capacity of direct transmission
For comparison purposes, we compute the ε-outage capac-
ity of direct transmission by assuming a slow Rayleigh flat

fading channel hsd with binary input and algebraic decoding.

This channel can be modeled as a BSC with crossover

probability ρ′

sd = Q(
√

2γ′

sd). In order to perform a fair
comparison with the DmF protocol, we assume that, in direct

transmission, the transmitted source power is 2P . Thus, γ ′

sd

is an exponential random variable with mean Γ′

sd = 2Γsd.

The capacity of this channel is CBSC
ρ′

sd
= 1 −H(ρ′

sd) and

the outage probability for rate R ∈ [0, 1] is

PBSC
out (R) = P

[
CBSC

ρ′

sd
< R

]
= P [1 −H(ρ′

sd) < R]

= P [ρ′sd > Hinv(1 − R)]

= P

[
Q(

√
2γ′

sd) > Hinv(1 − R)

]

= P

[√
2γ′

sd < Qinv (Hinv(1 − R))

]

= P

[
γ′

sd <
1

2
Q2

inv (Hinv(1 − R))

]

= 1 − e
−

Q2
inv(Hinv(1−R))

2Γ′
sd .

(12)

To find the ε-outage capacity of direct transmission, we solve
for RBSC

ε in

PBSC
out (RBSC

ε ) = ε

and obtain

RBSC
ε = 1 −H

(
Q

(√
−2Γ′

sd ln(1 − ε)

))
. (13)
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Fig. 4. Experimentally computed true outage capacity of
the DmF protocol, upper bound (10), approximate bound

(11), true outage capacity of direct transmission (13) and its

approximation (14), for outage probability ε = 0.001 (a) and
ε = 0.01 (b).

For small ε and Γ′

sd, using Taylor expansions, we obtain

RBSC
ε ≈ 2 log2 e

π
Γ′

sd ε. (14)

We observe that the outage capacity of the direct transmis-

sion is (approximately) proportional to Γε, implying, non-
surprisingly, first-order diversity.

V. NUMERICAL RESULTS
As an illustration of our theoretical results, we consider

a simple scenario where Γsd = Γsr = Γrd = Γ. In this
case, Γsrd = Γ

2 . In Fig. 4, we plot the experimentally

computed true outage capacity of the DmF protocol, its

upper bound (10), and its approximation (11) as well as

the true outage capacity of direct transmission (13) and its

approximation (14), for outage probability 0.001 and 0.01.
In Fig. 4a, we observe that for outage probability ε = 0.001
the DmF protocol offers significantly higher outage capacity

than direct transmission over a wide range of SNR values.

For higher outage probability, the DmF protocol is superior

to direct transmission at moderate SNR and inferior at low

and high SNR (see Fig. 4b). For high outage probability (not

shown in the figure), direct transmission always outperforms

DmF. Finally, we observe that bound (10) is tight for high

SNR while approximations (14) and (11) are accurate for

small ε and Γ.

VI. CONCLUSION
We considered an orthogonal cooperation protocol with

binary input, relays that forward their symbol-by-symbol

decisions and algebraic decoding at the destination. We com-

puted an upper bound for the outage capacity of this protocol

and a simple approximation to this bound. Comparison of

the outage capacity of DmF with that of direct transmission

reveals that the DmF cooperative protocol is most effective

at very low outage probability.
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