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ABSTRACT

The maximization of a full-rank quadratic form over a finite alpha-
bet is NP-hard in both a worst-case sense and an average sense.
Interestingly, if the rank of the form is not a function of the problem
size, then it can be maximized in polynomial time. An algorithm
for the efficient computation of the binary vector that maximizes
a rank-deficient quadratic form is developed based on an analytic
procedure. Auxiliary spherical coordinates are introduced and the
multi-dimensional space is partitioned into a polynomial-size set of
regions; each region corresponds to a distinct binary vector. The
binary vector that maximizes the rank-deficient quadratic form is
shown to belong to the polynomial-size set of candidate vectors.
Thus, the size of the feasible set is efficiently reduced from expo-
nential to polynomial.

Index Terms — Optimization.

1. INTRODUCTION

The maximization of a full-rank quadratic form over a finite
alphabet is NP-hard in both a worst-case sense [1] and an
average sense [2]. Interestingly, it has been recently proven
that the maximization of a quadratic form with a binary vec-
tor argument is no longer NP-hard if the rank of the form
is not a function of the problem size. Indeed, [3] presents
an algorithm that computes the binary vector that maximizes
a rank-2 quadratic form with log-linear complexity. In [4],
the same idea is extended to the maximization of a rank-3
quadratic form, resulting in an algorithm that computes the
optimal binary vector with log-quadratic complexity. It does
so by utilizing auxiliary spherical coordinates and partition-
ing the three-dimensional space into a quadratic-size set of
regions, where each region corresponds to a distinct binary
vector. The binary vector that maximizes the rank-3 quadratic
form is shown to belong to the quadratic-size set of candidate
vectors. Thus, the method in [4] efficiently reduces the size of
the feasible set from exponential to quadratic. From a differ-
ent perspective, based on results from computational geome-
try (CG), it has been identified that the maximization of any

This work was supported in part by the Sixth European Union Frame-
work Programme under Project MC-IRG-046563-PREMIUM.

1-4244-1484-9/08/$25.00 ©2008 IEEE

3577

reduced-rank quadratic form over the binary field can be at-
tained in polynomial time through a variety of CG algorithms,
such as the incremental algorithm for cell enumeration in ar-
rangements [5] and the reverse search [6].!

In the present work, we follow an analytic procedure to
generalize the approach in [3], [4] and build an efficient algo-
rithm for the computation of the binary vector that maximizes
a reduced-rank quadratic form.> We prove that the proposed
algorithm is at least one order of magnitude faster than reverse
search. In addition, the proposed method is completely par-
allelizable and rank-scalable. Finally, due to its nature, it can
be appropriately modified to perform ML block noncoherent
MPSK detection [11] (the algorithm in [8] treats only BPSK
and QPSK).

2. PROBLEM STATEMENT

We consider the quadratic form
x Ax (1
where A € RV*¥ is a symmetric matrix and x € {+1}"
is a binary vector argument. Since A is symmetric, it can be
decomposed as A = 22[21 AQnQl, A1 > Ag >0 > AN,
lanll =1, 9faqr = 0,n # k,n,k =1,2,..., N, where \,,
and q,, are its nth eigenvalue and eigenvector, respectively.
We are interested in computing the binary vector that
maximizes the quadratic form
Xopt 2 arg xer?iai(}N xT Ax. 2
Without loss of generality (w.l.0.g.) we assume that Ay = 0.
Thus, A is semidefinite positive with rank D < N — 1, i.e.
A = Zle AnQndl, A1 > Ay > -+ > Ap > 0. Further-
more, since A\, > 0,n =1,2,..., D, we define the weighted
principal component v, 2 VA, n=1,2,..., D, and the
corresponding N x D matrix V 2 [viva...vp] such that

! The reverse-search-based maximization over the 0/1 field has been used
for near-ML MUD [7] and ML block noncoherent detection of BPSK and
QPSK signals [8] while the incremental algorithm [5] has been identified as
a tool for ML block noncoherent detection of MPSK signals [9].

2 Due to space limitation, we refer the interested reader to the journal
version [10] for the proofs of our arguments.
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A =VVTand

_ T T

Xopt = arg xel?fﬁjv{x VVix}. 3)

Notice that V is full-rank and the matrices A and V have the
same rank D < N — 1.

3. EFFICIENT MAXIMIZATION OF A
RANK-DEFICIENT QUADRATIC FORM WITH A
BINARY VECTOR ARGUMENT

Since x’ VVTx = ||[VTx||2, from (3) our optimization prob-
lem becomes

Xopt = arg_max [|V'x]. €

We recall that V is a full-rank N x D matrix, D < N — 1.
W.lo.g. we assume that each row of V has at least one
nonzero element, ie. V,1.p # Oixp, and V,,1 # 0,
n = 1,2,...,N. To develop an efficient method for the
maximization in (4), we introduce the spherical coordi-

nates ¢y € (-7, 7, ¢2,...,¢9p_1 € (—F,F], define
d)i:j = [Diy Pit1y .- .7¢j]T and the hyperpolar vector

I sin (251 i
COs ¢1 sin ¢g
COS (1 COS 2 Sin ¢3

C(¢1:D—1) : ’ (5)

COS ¢p1 COS ¢ .. .SinPpp_1
| COS¢1COSh2...COSPp_1 |

1>

and turn our interest into the equivalent problem

{x"Ve(¢.p_1)} ©6)

max max

x€{£1}N ¢.p_ 1 E(—7,7|X(=F,F]P~2
which results from Cauchy-Schwartz Inequality, since, for
any a € R”, a’c(¢y.p_1) < ||alllle(pr.p_1)| with equal-
ity if and only if ¢, ..., ¢p_1 are the hyperspherical coordi-
nates of a. We interchange the maximizations in (6) to obtain
the equivalent problem

N
max max {ZnVn 1:.0¢(P;. .
¢1;D,1e<—m]x<—§»%}m,;“:ﬂ{ Vel
Do (N

Fora givenpoint ¢y, € (—m, @] x (=%,%]" ~, the max-

imizing argument of each term of the sum in (7) depends only
on the corresponding row of V and is determined by

rp=+1
Voi:pce(P1.p-1)
=

2 o,
Motivated by the decision rule in (8), for each D x 1 vector v
we define the decision function x that maps ¢,.,_; to +1 or
—1 according to

n=1,...,N. (8)

A
a(v'iprp_y) = arg max {avie(dr.p-1)}

©))
= sgn(vTC(d)LD—l))'

Then, for the given N x D matrix V, each point in (—, 7] X

(-5.2]""

X(VNxpi®1.p 1) 2 sgn(Vnxpe(éi.p_1)) (10)

2, . .
is mapped to a candidate binary vector?

and the optimal vector X, in (4) belogs to

U x(Vnxpid1.p_1). (1)

¢1.p_1E(—m, X (=5, 5]P~2
Before we proceed, we note that

x(vTa ¢1 -, ¢2:D71) = _1.(va d)l? ¢2:D71) (12)

]D72 .

forany v € RP and ¢y, _; € (—m, 7] x (=5, % , Im-
plying that x(V N« p; 01—, ¢o.p_1) = —X(VNxD; P1, Po.p_1)

. D-2
f(?rany real n.latrl).c Vnxpand ¢q.p_q € (—, 7r]>< (-%’ g] .
Since opposite binary vectors x and —x result in the same
metric in (4), we can ignore the values of ¢1 in (—m, -] U

(%, 7r] and rewrite the optimization problem in (7) as

N
max Y max, {znVarpe(dpy)}  (13)

D—-1 ==+
P1.p-1€P netm

where ¢ 2 (=%, %]. Finally, we collect all candidate binary
vectors into set

1>

X(VnxD) U {(x(Vnxpid1.p_1)} (14)

¢1.p_1€PPT

and observe that argmax,c(41yv {x? VVIx} € X(V),
ie.

Xopt = argxerrgfa()@) {XTVVTX} . (15)
In the following, we (i) show that | X' (V yxp)| = 5;01 (Nd_l)
and (i) develop an algorithm for the construction of X(V nxp)
with complexity O(NP).

We begin by observing that the decision function z in
(9) determines a hypersurface that partitions the (D — 1)-
dimensional hypercube $P~! into two regions; one cor-
responds to z(v';¢;.p_y) = +1 and the other corre-
sponds to z(vT;¢;.p 1) = —1. Indeed, it can be shown
that for any v € RP with vy # 0 the function ¢; =

tan—?! (_"QT:DC(+2:D—1)

) is equivalent to v'c(¢y.p_4) = 0
and determines a hypersurface S(vT) which partitions #2~1
into two regions that correspond to two opposite values
2(vT;¢1.p_1) = £1. Asaresult, the N x D matrix V yxp
is associated with N hypersurfaces S(V1,1.p), S(V2,1.p),
..., S(Vn1.p) that constitute a simple arrangement and

partition the hypercube dP~1 into K cells C1,Cs,...,Ckx

3When the dimensions of the N X D matrix V matter we denote it by
V N x D, otherwise we denote it by V.
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such that Ule Cr = ®P~1,C,NC; #0if k # j, and each
cell Cy, corresponds to a unique x, € {£1}7.

Let Zp_y 2 {i1,iz,...,ip_1} C {1,2,...,N} de-
note a subset of D — 1 indices (that correspond to hy-
persurfaces) and @ (Vyxp;Zp_1) € P71 equal the
vector of coordinates of the intersection of hypersurfaces
S(Vz‘l’l;p), S(VZ‘QJ;D), ey S(ViD_l,l:D)- Then, ¢ (VN><D§
Ip-1) “leads” a cell, say C (Vyxp;Zp—1), associated
with a unique vector x (Vyxp;Zp—1) in the sense that

X(VNXD;¢1:D—1) = xX(Vnxp;Ip-1) V¢1.p1 €
C (VNxp;Zp—1). We collect all such vectors into
JVaxp)= | {x(VaxpiIp1)}  (16)

Ip-1C{1,...,N}

and observe that J(Vyxp) C {£1}" and |J(VNxD)| =
(Djil). In other words, J(V nxp) contains (D]L) binary
vectors; each vector is associated with a cell in P~ that
minimizes its ¢ p_1 component at a single point which con-
stitutes the intersection of the corresponding D — 1 hyper-
surfaces. We also note that there exist cells that are not as-
sociated with such a vertex and contain uncountably many
points of the form (¢1, ..., ¢p_2, —F ). However, every such
a cell can be ignored since there exists another cell that con-
tains points of the form (—¢1,...,—¢p_2, T), is associated
with the opposite vector, and is “led” by a vertex-intersection
(thus, it belongs to J(V nxp)) unless ¢p_» = 5. Indeed,
if pp_2 = +7 for a particular cell, then this cell “exists”
forany ¢pp_; € (fg, %} , implying that we can ignore ¢p_
(o, say, set it to an arbitrary value ¢’,_,), set ¢p_a to +3,
and consider cells defined on ¢P~3 x {jzg} X {QS’D_l } Fi-
nally, the cells that are defined when ¢p_o = fg are as-
sociated with vectors that are opposite to the vectors that are
associated with cells defined when ¢p_o = 5. Therefore,
we can ignore the case ¢p 2 = —73, set ¢p_»o to 3, ig-
nore ¢p_1, and identify the cells that are determined by the
reduced-size matrix V y (p_o) over the hypercube ¢2~3.
Hence, X(Vnxp) = J(VNxp) UX(Vyx(p-2)) and, by
induction, Vd = 3,4,...,D

o X(Vivxa) = J(Vaxa) UX(Viva-2)) (A7)
which implies that

X(VNXD) == J(VNxD) U...uU J(VNX(D72|~D;1J))
| 222 ]
= U J(VNX(D—2d)>a
d=0
since X(Vyx1) = J(Vx1), |[X(Vix1)| = |J(Vx1)
land X (Vyx2) = J(VNx2), [X(Vyx2)| = [T (Vixz)

N [3]. As a result, the cardinality of X’ }V NxD) s
|X(VN><D)| = |J(VN><D)| .+ | (VNx(D—QL%J)”

(") oo By

| 25 ] 1
= > (D—]lv—Qd) _2 (Nd_1>'
19)

(18)

d=0
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To summarize the developments so far, we have utilized
D — 1 auxiliary spherical coordinates, partitioned the hy-
percube P! into dD:_Ol (Nd_l) cells that are associated
with distinct binary vectors which constitute X(V yxp) C
{£1}¥, and proved that x,pt € X(Vnxp). Therefore,
the initial problem in (4) has been converted into numerical
maximization of ||[VTx|| among all vectors x € X(V xw«p).
2o (V) = or
comparisons upon construction of X'(Vyxp). An efficient
algorithm for the construction of X (V yx p) follows.

Let Vnyxp be a real matrix that satisfies the assump-
tions made in the beginning of Section IIl. According to
(18), the construction of X'(V yxp) reduces to the parallel
construction of J(Vnxp), J(VNx(D=2)),--->J(VNx2) if
D is even and J(VNxp), J(VNnx(p=2))s---»J(VNx1) if
D is odd. Recall that J(Vx1),J(VNx2), and J(V nxs)
can be obtained with complexity O(N), O(N log N), and
O(N?log N), respectively [3], [4]. Therefore, it remains
to describe a way to construct J(V yxq) for any d > 3.
Interestingly, from (16), we observe that the construction
of J(Vnxa) can also be parallelized since the candidate
vector x (Vyxa;Z4—1) can be obtained independently for
each Zy—1 C {1,2,...,N}. As a result, we only need to
present a method for the computation of x (V nxa;Zd—1)
VZ4g-1C{1,2,...,N},de{3,4,...,N}.

Since the hypersurface arrangement is simple, only the
d—1hypersurfaces S(Vi, 1:4), S(Viy.1:d)5 - - - S(Viy_, 1:d)
pass through the “leading vertex” ¢ (V nxa;Za—1) of cell
C (VNxd;Za—1). Therefore,if n € {1,2,...,N} —ZIp_1,
then the corresponding hypersurface S(V,, 1.4) does not
pass through ¢ (V nx4; Za—1), implying that the sign of the
corresponding binary element x, (Vyxa;Za—1) is well-
determined at the “leading vertex.” On the other hand,
if n € Zy_q, say n = 4, then hypersurface S(Vy 1.q)
passes through ¢ (Vnxa;Z4—1) leading to an ambigu-
ous decision = (Vp1:4; #(VNxd;Za—1)) = =£1. In such
a case, ambiguity is avoided if we ignore S(V,, 1.4) and
consider the intersection of the remaining d — 2 hypersur-
faces at g1 = 7. To describe how the vector of coor-
dinates ¢ (V nxd;Z4—1) is obtained efficiently, we recall
that ¢ (Vnxd;Zi—1) represents the unique intersection of
S(Vz'l,l:d)» S(Vig,lzd)7 ey S(Vid,l,lzd)7 i.e. the unique
solution of

Such an optimization costs O (

Vz, 11:a¢(@1.4-1) = 0@—1)x1- (20)
The following proposition identifies the vector of interest.

Proposition 1 Consider a full-rank (d — 1) x d real matrix
V. Then, the equation

Ve(éi.q-1) = O0@-1)x1

has a unique solution ¢(V) € =1 which consists of the

hyperspherical coordinates of the zero left singular vector of
V. O

2D



Therefore, to obtain ¢ (V yxa;Z4—1) We just need to com-
pute the zero left singular vector of Vz, | 1.4 and calculate
its hyperspherical coordinates. In fact, since we are inter-
ested only in c(¢), the latter conversion into hyperspheri-
cal coordinates in not necessary. Indeed, if u is the zero left
singular vector of V7, | 1.4, then we only need to calculate
Zn, = 8g0(Vy 1:.qu) if n ¢ Tg_1 and act similarly (upon rank
reduction) if n € Z4_;.

The algorithm for the construction of X(V y«p) is pro-
vided at http://www.telecom.tuc.gr/~karystinos. The algo-
rithm visits independently the |X(Vyxp)| = O(NP1)
intersections and computes the candidate binary vector for
each intersection. The calculation of the zero left singu-
lar vector of Vz, | 1.4 costs O(d?) while the operation
sgn(Vy, 1.q4u) costs O(d). Since u’ is computed for each
n € Z4_1, the cost of the algorithm for each combination
Zy—1is O(d?)+(N—d+1)O(d)+(d—1) ((’)(dz) + O(d)) =
O(d® + Nd). Therefore, the overall complexity of the
algorithm for the computation of X(Vyxp) with fixed
D < N — 1 becomes O(NP~HO(N) = O(NP). We
recall that the corresponding complexity of the reverse search
[6]is O(NPLP(N, D)) where LP(N, D) denotes the time to
solve a linear programming (LP) optimization problem with
N inequalities and D variables. Provided that the complexity
of LP(N, D) is linear in N [12], it turns out that the reverse
search costs O(NP*1) calculations. Therefore, the proposed
algorithm in this present work is at least /N times faster than
reverse search. In addition, the computation of the candidate
vectors of X'(V yxp) is performed independently from cell
to cell, which means that the proposed algorithm is fully
parallelizable and the memory utilization is efficiently mini-
mized, in contrast to the incremental algorithm in [5] which
is very complicated to implement due to its large memory
requirement. Finally, the proposed method is rank-scalable
and, due to its nature, can be appropriately modified to serve
complex-domain rank-deficient quadratic form maximization
[11].

As an illustration, we revisit the familiar CDMA multiuser
detection problem, convert the detection rule into a maximiza-
tion of a full-rank quadratic form, and approximate the form
with a reduced-rank one by keeping its D strongest principal
compoments. The spreading gain is L = 16 and K = 10
users transmit synchronously and with identical powers. In
Fig. 1, we plot the average bit error rate (BER) as a function
of the user SNR, when D = 1,...,5. As a reference, we
plot the BER of the optimal multiuser detector. We observe
that a rank-4 approximation of the rank-11 quadratic form is
enough for attaining practically ML performance.
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