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ABSTRACT

The maximization of a full-rank quadratic form over a finite alpha-
bet is NP-hard in both a worst-case sense and an average sense.
Interestingly, if the rank of the form is not a function of the problem
size, then it can be maximized in polynomial time. An algorithm
for the efficient computation of the binary vector that maximizes
a rank-deficient quadratic form is developed based on an analytic
procedure. Auxiliary spherical coordinates are introduced and the
multi-dimensional space is partitioned into a polynomial-size set of
regions; each region corresponds to a distinct binary vector. The
binary vector that maximizes the rank-deficient quadratic form is
shown to belong to the polynomial-size set of candidate vectors.
Thus, the size of the feasible set is efficiently reduced from expo-
nential to polynomial.

Index Terms — Optimization.

1. INTRODUCTION

The maximization of a full-rank quadratic form over a finite

alphabet is NP-hard in both a worst-case sense [1] and an

average sense [2]. Interestingly, it has been recently proven

that the maximization of a quadratic form with a binary vec-

tor argument is no longer NP-hard if the rank of the form

is not a function of the problem size. Indeed, [3] presents

an algorithm that computes the binary vector that maximizes

a rank-2 quadratic form with log-linear complexity. In [4],

the same idea is extended to the maximization of a rank-3

quadratic form, resulting in an algorithm that computes the

optimal binary vector with log-quadratic complexity. It does

so by utilizing auxiliary spherical coordinates and partition-

ing the three-dimensional space into a quadratic-size set of

regions, where each region corresponds to a distinct binary

vector. The binary vector that maximizes the rank-3 quadratic
form is shown to belong to the quadratic-size set of candidate

vectors. Thus, the method in [4] efficiently reduces the size of

the feasible set from exponential to quadratic. From a differ-

ent perspective, based on results from computational geome-

try (CG), it has been identified that the maximization of any

This work was supported in part by the Sixth European Union Frame-
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reduced-rank quadratic form over the binary field can be at-

tained in polynomial time through a variety of CG algorithms,

such as the incremental algorithm for cell enumeration in ar-

rangements [5] and the reverse search [6].1

In the present work, we follow an analytic procedure to

generalize the approach in [3], [4] and build an efficient algo-

rithm for the computation of the binary vector that maximizes

a reduced-rank quadratic form.2 We prove that the proposed
algorithm is at least one order of magnitude faster than reverse

search. In addition, the proposed method is completely par-

allelizable and rank-scalable. Finally, due to its nature, it can

be appropriately modified to perform ML block noncoherent

MPSK detection [11] (the algorithm in [8] treats only BPSK

and QPSK).

2. PROBLEM STATEMENT

We consider the quadratic form

xT Ax (1)

where A ∈ R
N×N is a symmetric matrix and x ∈ {±1}N

is a binary vector argument. Since A is symmetric, it can be

decomposed as A =
∑N

n=1 λnqnqT
n , λ1 ≥ λ2 ≥ · · · ≥ λN ,

‖qn‖ = 1, qT
nqk = 0, n �= k, n, k = 1, 2, . . . , N, where λn

and qn are its nth eigenvalue and eigenvector, respectively.
We are interested in computing the binary vector that

maximizes the quadratic form

xopt
Δ
= arg max

x∈{±1}N

xT Ax. (2)

Without loss of generality (w.l.o.g.) we assume that λN = 0.
Thus, A is semidefinite positive with rank D ≤ N − 1, i.e.
A =

∑D

n=1 λnqnqT
n , λ1 ≥ λ2 ≥ · · · ≥ λD > 0. Further-

more, since λn > 0, n = 1, 2, . . . , D, we define the weighted

principal component vn
�
=

√
λnqn, n = 1, 2, . . . , D, and the

corresponding N × D matrix V
�
= [v1v2 . . .vD] such that

1 The reverse-search-based maximization over the 0/1 field has been used

for near-ML MUD [7] and ML block noncoherent detection of BPSK and

QPSK signals [8] while the incremental algorithm [5] has been identified as

a tool for ML block noncoherent detection of MPSK signals [9].
2 Due to space limitation, we refer the interested reader to the journal

version [10] for the proofs of our arguments.
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A = VVT and

xopt = arg max
x∈{±1}N

{xT VVT x}. (3)

Notice thatV is full-rank and the matricesA andV have the

same rankD ≤ N − 1.

3. EFFICIENT MAXIMIZATION OF A
RANK-DEFICIENT QUADRATIC FORMWITH A

BINARY VECTOR ARGUMENT

SincexT VVT x = ‖VT x‖2, from (3) our optimization prob-

lem becomes

xopt = arg max
x∈{±1}N

‖VT x‖. (4)

We recall that V is a full-rank N × D matrix, D ≤ N − 1.
W.l.o.g. we assume that each row of V has at least one

nonzero element, i.e. Vn,1:D �= 01×D, and Vn,1 �= 0,
n = 1, 2, . . . , N . To develop an efficient method for the
maximization in (4), we introduce the spherical coordi-

nates φ1 ∈ (−π, π], φ2, . . . , φD−1 ∈ (−π
2 , π

2 ], define

φi:j
�
= [φi, φi+1, . . . , φj ]

T and the hyperpolar vector

c(φ1:D−1)
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sinφ1

cosφ1 sin φ2

cosφ1 cosφ2 sin φ3

...

cosφ1 cosφ2 . . . sin φD−1

cosφ1 cosφ2 . . . cosφD−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

and turn our interest into the equivalent problem

max
x∈{±1}N

max
φ

1:D−1
∈(−π,π]×(−π

2
, π

2
]D−2

{
xT Vc(φ1:D−1)

}
(6)

which results from Cauchy-Schwartz Inequality, since, for

any a ∈ R
D, aT c(φ1:D−1) ≤ ‖a‖‖c(φ1:D−1)‖ with equal-

ity if and only if φ1, . . . , φD−1 are the hyperspherical coordi-

nates of a. We interchange the maximizations in (6) to obtain

the equivalent problem

max
φ

1:D−1
∈(−π,π]×(−π

2
, π

2
]D−2

N∑
n=1

max
xn=±1

{
xnVn,1:Dc(φ1:D−1)

}
.

(7)

For a given pointφ1:D−1 ∈ (−π, π]×(−π
2 , π

2

]D−2
, the max-

imizing argument of each term of the sum in (7) depends only
on the corresponding row ofV and is determined by

Vn,1:D c(φ1:D−1)
xn=+1

≷
xn=−1

0, n = 1, . . . , N. (8)

Motivated by the decision rule in (8), for eachD× 1 vector v
we define the decision function x that maps φ1:D−1 to +1 or
−1 according to

x(vT ; φ1:D−1)
�
= arg max

x=±1

{
xvT c(φ1:D−1)

}
= sgn(vT c(φ1:D−1)).

(9)

Then, for the givenN ×D matrixV, each point in (−π, π]×(−π
2 , π

2

]D−2
is mapped to a candidate binary vector3

x(VN×D; φ1:D−1)
�
= sgn(VN×Dc(φ1:D−1)) (10)

and the optimal vector xopt in (4) belogs to

⋃
φ

1:D−1
∈(−π,π]×(−π

2
, π

2
]D−2

x(VN×D; φ1:D−1). (11)

Before we proceed, we note that

x(vT ; φ1 − π, φ2:D−1) = −x(vT ; φ1, φ2:D−1) (12)

for any v ∈ R
D and φ1:D−1 ∈ (−π, π] × (−π

2 , π
2

]D−2
, im-

plying thatx(VN×D; φ1−π, φ2:D−1) = −x(VN×D; φ1, φ2:D−1)

for any real matrixVN×D andφ1:D−1 ∈ (−π, π]×(−π
2 , π

2

]D−2
.

Since opposite binary vectors x and −x result in the same

metric in (4), we can ignore the values of φ1 in
(−π,−π

2

] ∪(
π
2 , π

]
and rewrite the optimization problem in (7) as

max
φ

1:D−1
∈ΦD−1

N∑
n=1

max
xn=±1

{
xnVn,1:Dc(φ1:D−1)

}
(13)

where Φ
�
= (−π

2 , π
2 ]. Finally, we collect all candidate binary

vectors into set

X (VN×D)
�
=

⋃
φ

1:D−1
∈ΦD−1

{
x(VN×D; φ1:D−1)

}
(14)

and observe that argmaxx∈{±1}N

{
xT VVT x

} ∈ X (V),
i.e.

xopt = arg max
x∈X (V)

{
xT VVT x

}
. (15)

In the following, we (i) show that |X (VN×D)| =
∑D−1

d=0

(
N−1

d

)
and (ii) develop an algorithm for the construction ofX (VN×D)
with complexityO(ND).
We begin by observing that the decision function x in

(9) determines a hypersurface that partitions the (D − 1)-
dimensional hypercube Φ

D−1 into two regions; one cor-

responds to x(vT ; φ1:D−1) = +1 and the other corre-
sponds to x(vT ; φ1:D−1) = −1. Indeed, it can be shown
that for any v ∈ R

D with v1 �= 0 the function φ1 =

tan−1
(
−v

T

2:D
c(φ

2:D−1
)

v1

)
is equivalent to vT c(φ1:D−1) = 0

and determines a hypersurfaceS(vT ) which partitionsΦD−1

into two regions that correspond to two opposite values

x(vT ; φ1:D−1) = ±1. As a result, theN ×D matrixVN×D

is associated with N hypersurfaces S(V1,1:D), S(V2,1:D),
. . . , S(VN,1:D) that constitute a simple arrangement and
partition the hypercube Φ

D−1 into K cells C1, C2, . . . , CK

3When the dimensions of the N × D matrix V matter we denote it by
VN×D , otherwise we denote it byV.
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such that
⋃K

k=1 Ck = Φ
D−1, Ck ∩Cj �= 0 if k �= j, and each

cell Ck corresponds to a unique xk ∈ {±1}N .

Let ID−1
�
= {i1, i2, . . . , iD−1} ⊂ {1, 2, . . . , N} de-

note a subset of D − 1 indices (that correspond to hy-
persurfaces) and φ (VN×D; ID−1) ∈ Φ

D−1 equal the

vector of coordinates of the intersection of hypersurfaces

S(Vi1,1:D), S(Vi2,1:D), . . . , S(ViD−1,1:D). Then,φ (VN×D;
ID−1) “leads” a cell, say C (VN×D; ID−1), associated
with a unique vector x (VN×D; ID−1) in the sense that
x

(
VN×D; φ1:D−1

)
= x (VN×D; ID−1) ∀ φ1:D−1 ∈

C (VN×D; ID−1). We collect all such vectors into

J(VN×D)
�
=

⋃
ID−1⊂{1,...,N}

{x (VN×D; ID−1)} (16)

and observe that J(VN×D) ⊆ {±1}N and |J(VN×D)| =(
N

D−1

)
. In other words, J(VN×D) contains

(
N

D−1

)
binary

vectors; each vector is associated with a cell in Φ
D−1 that

minimizes its φD−1 component at a single point which con-

stitutes the intersection of the corresponding D − 1 hyper-
surfaces. We also note that there exist cells that are not as-

sociated with such a vertex and contain uncountably many

points of the form (φ1, . . . , φD−2,−π
2 ). However, every such

a cell can be ignored since there exists another cell that con-

tains points of the form (−φ1, . . . ,−φD−2,
π
2 ), is associated

with the opposite vector, and is “led” by a vertex-intersection

(thus, it belongs to J(VN×D)) unless φD−2 = ±π
2 . Indeed,

if φD−2 = ±π
2 for a particular cell, then this cell “exists”

for any φD−1 ∈ (−π
2 , π

2

]
, implying that we can ignore φD−1

(or, say, set it to an arbitrary value φ′
D−1), set φD−2 to ±π

2 ,

and consider cells defined on Φ
D−3 ×{±π

2

}×{
φ′

D−1

}
. Fi-

nally, the cells that are defined when φD−2 = −π
2 are as-

sociated with vectors that are opposite to the vectors that are

associated with cells defined when φD−2 = π
2 . Therefore,

we can ignore the case φD−2 = −π
2 , set φD−2 to

π
2 , ig-

nore φD−1, and identify the cells that are determined by the

reduced-size matrix VN×(D−2) over the hypercube Φ
D−3.

Hence, X (VN×D) = J(VN×D) ∪ X (VN×(D−2)) and, by
induction, ∀d = 3, 4, . . . , D

X (VN×d) = J(VN×d) ∪ X (VN×(d−2)) (17)
which implies that

X (VN×D) = J(VN×D) ∪ . . . ∪ J(V
N×(D−2
D−1

2
�))

=


D−1

2
�⋃

d=0

J(VN×(D−2d)), (18)

since X (VN×1) = J(VN×1), |X (VN×1)| = |J(VN×1)| =
1 and X (VN×2) = J(VN×2), |X (VN×2)| = |J(VN×2)| =
N [3]. As a result, the cardinality of X (VN×D) is
|X (VN×D)| = |J(VN×D)| + . . . + |J(V

N×(D−2
D−1

2
�))|

=

(
N

D − 1

)
+ . . . +

(
N

D − 1 − 2
⌊

D−1
2

⌋
)

=


D−1

2
�∑

d=0

(
N

D − 1 − 2d

)
=

D−1∑
d=0

(
N − 1

d

)
.

(19)

To summarize the developments so far, we have utilized

D − 1 auxiliary spherical coordinates, partitioned the hy-
percube Φ

D−1 into
∑D−1

d=0

(
N−1

d

)
cells that are associated

with distinct binary vectors which constitute X (VN×D) ⊆
{±1}N , and proved that xopt ∈ X (VN×D). Therefore,
the initial problem in (4) has been converted into numerical

maximization of ||VT x|| among all vectors x ∈ X (VN×D).

Such an optimization costs O
(∑D−1

d=0

(
N−1

d

))
= O(ND−1)

comparisons upon construction of X (VN×D). An efficient
algorithm for the construction of X (VN×D) follows.
Let VN×D be a real matrix that satisfies the assump-

tions made in the beginning of Section III. According to

(18), the construction of X (VN×D) reduces to the parallel
construction of J(VN×D), J(VN×(D−2)), . . . , J(VN×2) if
D is even and J(VN×D), J(VN×(D−2)), . . . , J(VN×1) if
D is odd. Recall that J(VN×1), J(VN×2), and J(VN×3)
can be obtained with complexity O(N),O(N log N), and
O(N2 log N), respectively [3], [4]. Therefore, it remains
to describe a way to construct J(VN×d) for any d > 3.
Interestingly, from (16), we observe that the construction

of J(VN×d) can also be parallelized since the candidate
vector x (VN×d; Id−1) can be obtained independently for
each Id−1 ⊂ {1, 2, . . . , N}. As a result, we only need to
present a method for the computation of x (VN×d; Id−1)
∀ Id−1 ⊂ {1, 2, . . . , N}, d ∈ {3, 4, . . . , N}.
Since the hypersurface arrangement is simple, only the

d−1 hypersurfacesS(Vi1,1:d), S(Vi2,1:d), . . . , S(Vid−1,1:d)
pass through the “leading vertex” φ (VN×d; Id−1) of cell
C (VN×d; Id−1). Therefore, if n ∈ {1, 2, . . . , N} − ID−1,

then the corresponding hypersurface S(Vn,1:d) does not
pass through φ (VN×d; Id−1), implying that the sign of the
corresponding binary element xn (VN×d; Id−1) is well-
determined at the “leading vertex.” On the other hand,

if n ∈ Id−1, say n = ik, then hypersurface S(Vn,1:d)
passes through φ (VN×d; Id−1) leading to an ambigu-
ous decision x (Vn,1:d; φ(VN×d; Id−1)) = ±1. In such
a case, ambiguity is avoided if we ignore S(Vn,1:d) and
consider the intersection of the remaining d − 2 hypersur-
faces at φd−1 = π

2 . To describe how the vector of coor-

dinates φ (VN×d; Id−1) is obtained efficiently, we recall
that φ (VN×d; Id−1) represents the unique intersection of
S(Vi1,1:d), S(Vi2,1:d), . . . , S(Vid−1,1:d), i.e. the unique

solution of

VId−1,1:dc(φ1:d−1) = 0(d−1)×1. (20)

The following proposition identifies the vector of interest.

Proposition 1 Consider a full-rank (d − 1) × d real matrix
V. Then, the equation

Vc(φ1:d−1) = 0(d−1)×1 (21)

has a unique solution φ(V) ∈ Φ
d−1 which consists of the

hyperspherical coordinates of the zero left singular vector of
V. �
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Therefore, to obtain φ (VN×d; Id−1) we just need to com-
pute the zero left singular vector of VId−1,1:d and calculate

its hyperspherical coordinates. In fact, since we are inter-

ested only in c(φ), the latter conversion into hyperspheri-
cal coordinates in not necessary. Indeed, if u is the zero left

singular vector of VId−1,1:d, then we only need to calculate

xn = sgn(Vn,1:du) if n /∈ Id−1 and act similarly (upon rank

reduction) if n ∈ Id−1.

The algorithm for the construction of X (VN×D) is pro-
vided at http://www.telecom.tuc.gr/∼karystinos. The algo-
rithm visits independently the |X (VN×D)| = O(ND−1)
intersections and computes the candidate binary vector for

each intersection. The calculation of the zero left singu-

lar vector of VId−1,1:d costs O(d2) while the operation
sgn(Vn,1:du) costs O(d). Since u′ is computed for each

n ∈ Id−1, the cost of the algorithm for each combination

Id−1 isO(d2)+(N−d+1)O(d)+(d−1)
(O(d2) + O(d)

)
=

O(d3 + Nd). Therefore, the overall complexity of the
algorithm for the computation of X (VN×D) with fixed
D ≤ N − 1 becomes O(ND−1)O(N) = O(ND). We
recall that the corresponding complexity of the reverse search

[6] is O(NDLP(N, D)) where LP(N, D) denotes the time to
solve a linear programming (LP) optimization problem with

N inequalities andD variables. Provided that the complexity
of LP(N, D) is linear in N [12], it turns out that the reverse
search costs O(ND+1) calculations. Therefore, the proposed
algorithm in this present work is at least N times faster than
reverse search. In addition, the computation of the candidate

vectors of X (VN×D) is performed independently from cell
to cell, which means that the proposed algorithm is fully

parallelizable and the memory utilization is efficiently mini-

mized, in contrast to the incremental algorithm in [5] which

is very complicated to implement due to its large memory

requirement. Finally, the proposed method is rank-scalable

and, due to its nature, can be appropriately modified to serve

complex-domain rank-deficient quadratic form maximization

[11].

As an illustration, we revisit the familiar CDMAmultiuser

detection problem, convert the detection rule into a maximiza-

tion of a full-rank quadratic form, and approximate the form

with a reduced-rank one by keeping its D strongest principal
compoments. The spreading gain is L = 16 and K = 10
users transmit synchronously and with identical powers. In

Fig. 1, we plot the average bit error rate (BER) as a function

of the user SNR, when D = 1, . . . , 5. As a reference, we
plot the BER of the optimal multiuser detector. We observe

that a rank-4 approximation of the rank-11 quadratic form is
enough for attaining practically ML performance.
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