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Abstract

We assess the impact of the channel and the carrier frequafsat (CFO) estimation errors on the performance of single
carrier systems with MMSE linear equalizers. Performanegrabation is caused by the fact thamésmatchedVIMSE linear
equalizer is applied to channel output samples witperfectly cancelecCFO. Assuming a single-block training, we develop an
asymptotic expression for the excess mean square error EEMi8uced by the channel and CFO estimation errors andeariv
simple EMSE approximation which reveals that

1) performance degradation is mainly caused by the impiyfeanceled CFO;
2) the EMSE is approximately proportional to the CFO estiamaerror variance, with the factor of proportionality bgin
independent of the training sequence.

We also highlight the fact that the placement of the trairihghe middle of the transmitted packet is a good practice.

|. INTRODUCTION

A problem that frequently arises in packet-based wirelesanounication systems is thjeint estimation of the frequency
selective channel and the CFO [1], [2]. Optimal TS designtifis problem has been considered in [2], where the optimized
cost function was thesymptoticCramér-Rao bound (CRB). However, in [2], the channel an® @&stimation errors were
assigned equal weight which might beboptimalsince “.. presumably channel estimation errors will have a dédfeérimpact,
e.g., on bit-error rate, than frequency estimation erfof2].

It seems that thenequal weightingproblem cannot be resolved unless we consider specific caoneation systems. Ciblat
et al. considered a single-carrier system with an MMSE linear Bzgraand computed the second-order statistics (power
spectrum) of the TS that, under certain assumptions, magisnthe mean square estimation error [3].

In this work, we consider the same system but our aim is differPerformance degradation is caused by the fact that a
mismatchedMSE linear equalizer is applied to channel output sampligls imperfectly cancele@€FO. Our aim is to uncover
the relative importance of these error sources. We assusirggke-blocktraining and develop an asymptotic expression for the
induced EMSE which, however, is difficult to interpfet.

Our main contribution lies in the fact that, assumisigall ideal MMSE we derive a simple and informative EMSE
approximation, which reveals that

1) the dominant error source is the imperfectly canceled CFO
2) the EMSE is approximately proportional to the CFO estiomatrror variance, with the factor of proportionality bgin
independentf the TS?

We also highlight the fact that the placement of the TS at thieidia of the transmitted packet is a good practice.

Notation: Superscripts’, # and* denote transpose, conjugate transpose and elementwigegaton, respectivelytr(-)
denotes the trace operat@te{-} denotes the real part of a complex number, &pddenotes theMl x M identity matrix.
Omax(*)s Omin(-), || - ll2, || - ||7, @andk2(-) denote, respectively, the maximum singular value, the mmima singular value, the
spectral norm, the Frobenius norm, and the condition nunaér respect to the spectral norm of the matrix argumé&px’]
denotes the expected value &t P ) and P%z(A) denote, respectively, the orthogonal projector onto tHamno space of
matrix A and onto its orthogonal complement.

Il. CHANNEL AND CFOESTIMATION
A. The channel model
We consider a packet-based communication system with ipacket lengthV. We assume that the baseband-equivalent
frequency-selective channel has impulse respdnsAe [ho---h]T, angular CFOw and phasep. Then, the output at time
The authors are with the Department of Electronic and CoetpiEngineering, Technical University of Crete, GREECE. &#m(liavas, de-
spoina)@telecom.tuc.gr. A. P. Liavas was partially sumgebby the FP-6 FET Open Project COOPCOM.

1We note that the same expression in terms of frequency doquaintities has been derived in [3].
2Thus, optimal TS design for CFO estimation is also highlgvaht forjoint channel and CFO estimation.



instantn, forn=1,..., N+ 1L, is

L
T'n = ej(wn+¢) Z hlan—l + Wy, (1)
=0

where {a,, }_, and {w, }) ¥~ denote the channel input and additive channel noise, régglyc The input symbols are
i.i.d. unit variance circular. The noise samples are igittular Gaussian, with varianeg,. In the sequel, we absorb terr’
into channelh.

The channel output vectat,.,, s = [rn -+ r_m]T can be expressed as
nin—-M = Fn:nfM(w)Han:nfokI + Wnin—M (2)
where A ‘ ‘
T (w) = diag(e?@”, ... e/ =M)y, 3)

andH is the (M + 1) x (M + L + 1) Toeplitz filtering matrix constructed bl.

B. Channel and CFO estimation

The Ny, consecutive symbolsy, = [@n, -+ any]T, wWith Ny, 2 ny —ny + 1, are used for trainingd.We collect the output
samples that depernmhly on the training and construct

A
Y =Ty +L = Fnz:n1+L(W)Ah + Whomy+L (4)

whereA is the (Vy, — L) x (L + 1) Hankel matrix

an2 .« e an27L
AS (5)
an1+L oo anl
The joint ML CFO and channel estimates are [1]
W= arg{nax{yHI‘m:nl+L(J1)A(AHA)71AHI‘£I2:M+L(&)y} (6)
and R
h=(A"A)TTATT L, @)y @)

The estimation errors arAw = @w —w and Ah = h — h. We assume thalvy, is sufficiently large so that the above ML
estimates are unbiased and efficient. Thus, the secondstedistics ofAw and Ah are determined by thinite sampleCRBs
[2]. More specifically, if we define

K édiag(ng,...,nl + L), (8)
then, working as in [2], we can show that
oA = Ef(aw)?] = T (©)
2tr (W AMKP , KAD)
W £ £ [AhALY] = 62 (AT A) " + 0% (ATA) 'AYKAhh? APKA (AT A)~! (10)
¥, 2 [AhARWT] = —02 (AT A)"'APKAhhT ATKA*(AFA)~7 (11)
¥ 2 E[AwAh] = j ol (AT A)"'AYKAD. (12)

SinceK depends on the training positions, it seems that the qiemntefined in (9)—(12) also depend on the training positions
However, if we expres¥ as
K =n2ln,- —Dn,-r-1, (13)

with D; 2 diag(0,1,...,4), then we can show that
1 -1
A =503 {tr (hHAHDNtr,L,lP#i(A)DNtr,L,lAh)} . (14)
That is,o2 , is independenbf the training positions.

3Training schemes with two or more blocks are beyond the scbplis work.



On the other hand, the accuracylofs determined by the CFO estimation error that exists,in.,, (&) and depends on
the training positions. The structure Bf,,.,,, + . (&) suggests that an accurate channel estimate might be adbi&iwe absorb

term /¢, with € 2 ny + Nutl ‘je.,, ¢ is the middle position of, into channekh, getting the “new channelh’ 2 giwtp A
In this case, the channel output is expressed as

L
ry = /98 Z hj@n—i + wy, (15)
1=0
and (4) can be written as
y = I‘M_l:_u (w)Ahl + Whging +L- (16)
In the sequel, we assume that the true system model is givéh3)y The ML estimate ofv is still given by (6), while

' = (A7YA)TATTH (@)y. (17)

Ner—L 4. Ng—L
2 : 2

We define

1, -
2

(18)

Ni, — L Niy — L
K'édiag( ¢ ¢ )

andAh/ 2 i’ — I, The estimation error second-order statistics, denotell’a®;, +’, ando?2 , are given by (10)—(12) and
(14), with h and K substituted byh’ and K’, respectively. Finally, we assume that the noise variangg,is known at the
receiver, i.e., the noise variance estimation error isigdgé compared with the channel and CFO estimation error.

I11. CFO CORRECTION ANDMMSE LINEAR EQUALIZATION
A. The ideal case
If we know the CFO, then we can perfectly cancel it before égaton. If we know the channel, then we can compute
the orderd/ delayd MMSE linear equalizerf = [fo --- fu]*, as [4, Section 2.7.3]

f= (HH" 4 021y11)  Hes=R;'He, (19)

wheree, is the (M + L +1) x 1 vector with 1 at the(d + 1)-st position and zeros elsewhere. It can be shown that the IMS
symbol estimation error is

MSE(f) =1 — f¥R_f. (20)

B. Mismatched CFO correction and MMSE equalization

If we do not know the true channel and CFO, then we can adopgdkmalled mismatched approach, that is, estimate them
and use their estimates as if they were the true values.
The mismatched MMSE equalizer is (see (19))

. o -1,
f— (H'H'H n anIMH) Hey 1)
with mismatchAf St After CFO correction, we obtain
Sn 2 e IC=8)p (22)
Vectors,,.,— s Which can be expressed as
Snin—M = ejAng‘n:n—M(_AW)H/an:n—L—M + ejw‘grn:n—]\/f(_d))wn:n—M- (23)

The input symbol estimation error at the output of the misimed equalizer at time instantis

LA

€n = fHSn:nfM - edHan:nfoM (24)
and the time-dependent mean square error is given by (2®)edbp of this page.

4We shall say more on this topic later.



~ N A “
MSE, (f,&) = Ea,w [| €n]?] (25)
= (Coon—ar (—Aw)HHTL, 3 (—Aw) + 02T011) £ = 2Re{e? 2 £y (—Aw)H'eq} + 1.
T, 2 tr(Rgl (R*®'R” + GE*GY + GUR” + R*\I/;GH)) (30)
T (n) 2 oA Re{fD/? _, Hey} (31)
T3(n) 2 203, ,Re {W"ATK'A(A"A)"'R"R.'D),,,,_,,Hes —hWTATK'A*(AYA)"TG"R'D,,,,,_,,Hes} (32)

IV. EMSE ANALYSIS
The EMSE at time instant is defined as

EMSE, (f,&) 2 Ean.aw[MSE, (f,&)] — MSE(F). (26)

Using slightly different notation, it has been proved in €8}, (22) and (27)] that the mismatched equalzean be expressed
as

f=f- R (R'AN + GAW™) + O (]|AN|]?) (27)

where
1) Ris the(M + 1) x (L + 1) Hankel matrix constructed by vector

rec—ey (28)

wherec is the combined (channel-equalizer) impulse responsepi.:Ae H' Tf*,
2) G 2 H'FT, whereF is the (L + 1) x (L + M + 1) Toeplitz filtering matrix constructed bf.
The following proposition provides an asymptotic EMSE egsion. We note that the same result, expressed in terms of
frequency domain quantities, has been derived in [3].

Proposition 1. The EMSE induced by the channel and CFO estimation errorisngt instant., for n € D 2 {d+1,...,n1+
d—1}U{ns+d+1,...,N +d}}° can be expressed as

EMSE,, (f,&) ~ Ty + Ta(n) + Ts(n) (29)
whereT;, T2(n), andTs(n) are defined in (30)—(32) at the top of the next page,

D,y = diag((n—€),...,(n— M —¢)) (33)

andR 2 N, — L.
Proof: The proof is provided in the Appendix. |
Remark 1:.TermT; involves only the channel estimation error second-orasissics; it is the EMSE that would result if the
mismatched equalizer were applied to perfectly CFO-cterechannel output samples [5, eq. (28)]. Téfa(n) involves only
the CFO estimation error variance and is the EMSE that woeddlt if the ideal MMSE equalizer were applied to imperfectl
CFO-corrected samples. Terl(n) involves both the channel and the CFO estimation errors.

V. “SMALL IDEAL MMSE” ASSUMPTION

Expression (29) is complicated and difficult to interpret.drder to derive a simple and insightful EMSE approximation
we assume that thieleal MMSE is sufficiently small, i.e., the equalizer length isfaiéntly large, the SNR is sufficiently
high and the delay is chosen carefully. This assumption ikigt practical importance because it refers to the casesewhe
the MMSE linear equalizer isffective Under this assumption, vector defined in (28), becomes “small.” More specifically,

it has been proved in [5, eq. (29)] thit||3 < MMSE, which implies thatl|r||s = O (\/MMSE). Thus, terms that involve

matrix R, which is constructed by vectet are “small” compared with terms that involve mat(x® Thus, T; andT3(n) of
(30) and (32), respectively, can be approximated as

T, ~ tr (R;'GEGH) (34)
Ts(n) ~ —203, Re{hW"ATK'A*(A"A)""G"R.'D),.,,_,H'eq}. (35)

5We do not compute the EMSE for the training symbaels n = n1, ..., na.
6See the discussion before eq. (30) of [5].



A. Time-average EMSE
In the sequel, we study the EMSE time-average across theitistences that correspond to the unknown data [3]

EMSE(f é ! 3" EMSE, (& (36)
| neD
If we write
D, y=0—-&Iy —Dy (37)
then termsTy(n) of (31) andT3(n) of (35) become
T2(n) = oa,[(n — €)°Re {f"H'eq} — 2(n — &) Re {f"Dy/H'ey} + Re {f' D}, H'eq}] (38)
Ts(n) ~ —20%, Re{h’TATK’A*(AHA)*TGHRgl ((n— €)Ipre1 — Do) H’ed}. (39)
If we defind
Ci = | Z n 2 | Z n (40)
neD neD
then
A 1
T2 = ﬁ T2 (n)
=02, {(c1 — 206 + €?) Re{f"H'eq} —2(Co — &)Re{f" Dy H'es} +Re{f? D3 [H’ed}] (41)
To1 Ta2 Ta3
and
A 1
T3 = |D| Tg (n)
(42)

~ 202 Re{h’TATK’A*(AHA)*TGHR;1 ((c2 — &) Lyt — DM)H’ed}.

t31

B. A simple approximation

Both Ty and T3 depend or€. It turns out that there doewot exist aunique, channel independentthat is optimal, i.e.,
always attains minimum EMSE. If we pdt= C,, then termT5; is minimized and termsT',, andts; vanish. In the sequel,
we use this value of,° which implies that the training is placed “close to the maldif the packet; indeed, using the definition
of ¢ after (16) and the fact that = C,, it can be shown that, ~ % +d - g (We prove it in the Appendix). Then, if
we define

c2e -2 (43)

we obtain
T, = 0x,, [CRe{f"H'es} + Re{f"D3},H'e4}] (44)
T, ~ 202, Re {h'TATK’A*(AHA)—TGHRngMH'ed} . (45)

Thus, the EMSE time-average is approximately equal to time efithe three terms in (34), (44) and (45), which is still
complicated. In Appendix, we prove the following result.

Proposition 2: If £ = C,, Ny, is sufficiently small with respect @, and matricesA and H' are not very ill-conditioned,
then

EMSE(f, &) ~ Co%,,. (46)

That is, the EMSE is approximately proportional to the CF@negtion error variance with the factor of proportionality
being independenbdf the training sequence. Thus, training sequences thab@imal for CFO estimation seem very good
candidates fojoint channel and CFO estimatidf.

"Observe that; = O(N?), while C2 = O(N).

80bserve thafl'2; = O(N?), while the other component terms @f, and T3 are much smaller.

9However, we do not claim that this value is optimal, in gehera

100ptimal training sequence design for CFO estimation has lee¢ensively studied; see, for example, [8]-[11]. Thisidag beyond the scope of this
paper.



Table |
Channel Impulse Responge

ho = —0.1538 + 0.4229 * j
hi1 = —0.5923 — 0.0134 5
ho = 0.0446 4+ 0.1164 * j
hz = 0.1023 4 0.0621 * j
hg = —0.4077 — 0.0664 * j
hs = 0.4235 4 0.2581 * j

Remark 21n the Appendix, we essentially prove tHabISE ~ T5. Recall thatT'; is the EMSE that would result if a perfect
equalizer were applied to imperfectly CFO-corrected ougamples. Thus, (46) implies that, under the stated assomspt
the main cause of the performance degradation is the ingibrfeanceled CFO.

Remark 3:In the proof, we assumed that(H') is not “very large.” By construction, if just one of the elemtg of h is
nonzero, then the rows df are linearly independent and, thud, has full rank. Thus, in generall is not close to rank
deficient matrices and its condition number is not “very édfg

Remark 4:1t turns out that, for fixed training positions, the EMSE rénsathe samérrespectiveof the value of¢ in (15).
Of course, the values @, T3, andT3; depend or¢. Consideringh’ instead ofh leads to “accurate” channel estimates and,
thus, to “small”T;. Setting¢ = C,, that is, putting the training “at the middle” of the packeas two effects. The first is that
it makesTy much larger tharT'; leading to the simple expression (46). The second, and mggeritant, is that it minimizes
T, which is the most significant EMSE term. Thus, it leads todyperformance.

VI. SIMULATION RESULTS

In this Section, we present simulation results for the cehohthe Table E* We set the equalizer ordéd = 12, the delay
d = 5, the packet lengthV = 250 and the TS lengthVy, = 30. The data symbols are i.i.d. BPSK. The training symbols,
which are also i.i.d. BPSK, have been placed close to the Imidldthe transmitted packet, i.&,= C2. The binary sequence
we use corresponds to the hexadecimal numbBeinD9I7E1.

In Fig. 1, we plot the EMSE versus the time instange$or SNR equal to 25dB (as mentioned above, we do not compute
the EMSE for the known training symbols). The experimegtabmputed EMSE and the EMSE theoretical approximation
(29) practically coincide. We observe that the EMiBEreases as we move away from the training symbol positMesalso
plot the EMSE theoretical approximation (29) for = 1 andn; = N — Ny, +1, i.e., the training block placed at the beginning
and at the end of the packet, respectively. It is obvious pleating the TS close to the middle of the transmitted packad$
to significantly smaller maximum and time-average EMSE.

In Fig. 2, we plot the experimentally computed time-averBYSE, the time-average of the EMSE theoretical approxiomati
in (29), and the time-averages of the three EMSE te€lmsT, andT3 in (30), (31) and (32). We observe that approximation
(29) practically coincides with the true EMSE for SNR higlilean 10dB. We observe thdi, is very close to the EMSE,
while termsT; and T3 are much smaller.

In Fig. 3 we plot the experimental EMSE, the theoretical ENM&I the simple EMSE approximation (46). We observe that
the very simple and informative expression of (46) is indaedery good EMSE approximation.

In Fig. 4 we plot the excess BER for the casespf= % +d— % n; =1andn; = N — Ny, + 1, i.e., the training
block placed close to the middle, at the beginning and at tlieod the transmitted packet, respectively. It is obvioust the
placement of the training at the middle of the packet leadsidnificantly better BER performance.

In the sequel, we keep the parameters used for the previousagion results but we take averages over different random

channel realizations; we assume that the elements arfe i.i.d, withh; ~ CN (0, LLH ,fori=0,...,L.

In Fig. 5, we plot the experimentally computed time-averBSE, the time-average of the EMSE theoretical approxiomati
in (29), and the time-averages of the three EMSE te€lmsT, andT; in (30), (31) and (32), averaged over random channel
realizations.

In Fig. 6 we plot the experimental EMSE, the theoretical EM&t the simple EMSE approximation (46) averaged
over random channels. We observe that the very simple amdniaftive expression of (46) is indeed a very good EMSE
approximation.

In Fig. 7 we plot the channel average excess BER for diffeti@iting positions. We observe that again the placement of
the TS close to the middle of the packet leads to better BERpeance.

VIl. CONCLUSION

We considered the impact of the channel and CFO estimatimrseon the performance of single-carrier systems with
MMSE equalizers. We uncovered that, in many cases of higttiped importance, the imperfectly canceled CFO is the main

e observed analogous behavior in extensive simulatiotiestu
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time n

MSE, (f,&) = £ (I‘nm,M(wa)H’H’HI‘fm,M(—Aw) + anIMH) £

t1

200

FAFH (I‘nm,M(wa)H’H’HI‘ffm_M(wa) + ai,IMH) Af

ta

+2Re{fH (rm_M(—Aw)H’H’Hr{in_M(—Aw) + aﬁ,IMH) Af}

ts

250

-2 Re{ejA‘*’fle"n:n,M(wa)H’ed} -2 Re{ejA‘*’fAfHI‘nm,M(wa)H’ed} +1.

ta

(47)

cause of the performance degradation. In these cases, ti8EEMapproximately proportional to the CFO estimation rerro
variance, with the factor of proportionality being indedent of the TS. Thus, optimal TS design for CFO estimatiorige a
highly relevant forjoint CFO and channel estimation. We also highlighted the fadtptecing the single-block training at the

middle of the packet is a good practice. An interesting faitiopic is to consider multi-block training.

A. Proof of Proposition 1:

APPENDIX

If we use expression\f 2f_fin (25), we get (47) at the top of the next page. We define
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Fig. 2. Experimentally computed EMSE, EMSE theoreticalragjpation in (29) and the three ternB;, T2 andT's.
ot (—Aw) 2 T, (—Aw). (48)
Using the expressioaxp(z) = 1+ = + § + O(x®), we obtain
A iA 1 A 212 ngo—gf
]-‘n:nfM(* w) = IM+1 —J WDn:nfM - 5 w Dn:n—M + Op R9/2 (49)
/ . / 1 21472 n’ay,
n:n—M(iAw) = IIW+1 - jAWDn:n—M - §(Aw) Dn:n,—M + O:D W . (50)

We will write analytically the five terms defined in (47), ugif49) and (50). We will also take the expected value of each
term with respect taAh’ and Aw.



—*— Theoretical
—&— Experimental
—— Final approximation

Excess MSE

10_3 1 1 1 1 1
0 5 10 15 20 25 30
time n
Fig. 3. Final EMSE theoretical expression in (46).
1) Termt¢;: Using (49) we obtain
(1) (2) 1 @
Ean Awltl] = Ean Aw {fH ((IM+1 — JAWD . — §Aw2Dfm_M)H’H’H

3
(1) ) (2) 1 2( )2 5
X (Inr41 + jAwDym—nr — §Aw D2 _n) + UwIM+1)f}

(11) (12)

= EanAu {fH (HH" 4 02Ty ) + jAt HH D,y f
1 (13) (21)

- 5AoﬂfHH'H'HDim,Mf — jAWFI D, HHTf (51)
(22) (23)

+ AW D, v HH "Dy i f + j%AwngD,m_MH’H’HDfm_Mf

(31) (32)

- %AWQfHDim,MH'H'Hf - j%Aw3fHD$m,MH’H’HDm,Mf

(33)

1 H
+ ZAW4fHD72L:n—]wHIHI Di:n—Mf :
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Fig. 4. Experimentally computed excess BERs for differetpositions.

Using thatéa,[Aw] = 0, Eaw[Aw?®] = 0 (the ML estimator is practically unbiased and Gaussian)taatithe term proportional
to Aw? is practically equal to zero, we obtain

Eaw.awltl] = EIRLE + 0% F Dy HH' D,y

1 1 (52)
- iaiwaH/H/HD?L:nflwf - EUQAwaDi:TLfILIHIHIHf'
We write the last three terms of (52) using tAa},.,,_ys = nly41 — Dy as
1)
02Dy HH "D, = n2 03 FIHHE + 03 _f7D HH "Dy, f 53)
—nod Dy HH"f —nol fPHH""Dyf.
2)
1 1
-3 o FIHH"D2, _f= —5n’ oA FIHH S + nod fAHH "D, f
54)
1 (
- goiwaH’H’HD?wf.
3)
1 1
-3 o D2, HHEf= —zn’ oA FIHH TS + nod f7DyHHf
(55)

1
- QUQAwaD?uH’H’Hf.
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Fig. 5. Experimentally computed EMSE, EMSE theoretical rapimation in (29) and the three ternB;, T> and T3 averaged over random channel
realizations.

Using (53)-(55) in (52) we obtain
5Ah’,Aw[t1] = fHRZf + O‘QAwaD]uH/H/HD]uf
1 1
— o} fTHHD?f - 502AwaD?wH’H’Hf

2

M? o2
_¢H w
=f"R.f+0 (—3 ) .

(56)
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Fig. 6. Final EMSE theoretical expression in (46) averagegl candom channels.

2) Termty: Using (49) we obtain

3
H 1) . (2) 1 2( )2 1y H
Ean Awlte] = Ean Aw [Af ((IM+1 — JAWD . — §Aw D, _y)HH

3
nm @ 1 2< )2 ,
X (IM+1 + jAWD, . — §Aw Dnm_M) + U,U,I]LI-Q—I)Af}
(11) (12)
= Ean Aw [AfH (HH" + 02141 Af + jAATHH D,y AF
(13)

(21)

1

B §AWQAfHH/H/HDT2L:n—]WAf - jAWAfHDn:nfle/H/HAf (57)
(22) i (23)
T AGPAFID,,.,, yHED,,. i AF + j5AoﬁAfHDM_MH'H'HDim,MAf
(31) (32)

1 2 A pHN2 ey H 1 3ApHT2 ey H

— 5AWAFTD2 HHAf — jS A AFTDY,, HH D, AF

(33)
1 H
+ ZALL;‘*AfHDim,MH’H’ D2 Af].
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Fig. 7. Experimentally computed channel average excesssB&Rdifferent TS positions.

We keep second and third-order error term& (keep third-order terms just to see the lower-order termneglect fort,).
Then

Eaw awltz] = Eanaw |[AFTRAF + jAWATTH'H D,y s AF

_ jAwAfHDM,MH’H’HAf] . 9)
We write the last two terms of (58) using thBY,.,,— s = nIy+1 — Dy as
1)
Ent. | JACAFTHH Dy v AF| = Eaw au[jn AwAFTHE Af] .
— Ean.Aw [jAwAfHH’H’HDMAf] 9
2)
Enmt | — FAWAETD o\ HHAL] = Enw au[ — 0 AwAFTHH Af] 0

+ Eaw Aw [jAwAfHDMH’H’HAf} .
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Using (59)-(60) in (58) we obtain
Ean awltz] = Ean,aw [AfHRZAf} + Ean,Aw [ — jAwAfHH’H’HDMAf]
+ Ean,au [JAWALTDy HH Af]

61
= EanAw [AfHRZAf} + 2Re{5Ah,_Aw [jAwAfHDMH'H'HAf} } (61)
H MU?L
= EAw Au [Af RZAf} e ( i
3) Termts: Using (49) we obtain
W @) A
gAh’,Aw [ﬁg] = QRG{gAhr7Aw [fH ((IM+1 — jJAWD . — §Aw2Di:n7M)H/H/H
(1) @) @
X (a1 + jAwDnnoar = FA0D, ) + aiIMH)Af} }
(11) (12)
—9 Re{SAm Ao [fH (HH" + 021y ) Af + At HH D,y AF
o oy (62)

1
- 5AcﬁfHH’H'HDfm,MAf — jAWFI D, HH Y Af
(22) . (23)
+ AW D, .y HH D, AF + j5AwsfHDn:n_MH’H’HDi:n_MAf
(31) (32)
1 20 H 12 ey H 1 3pHTH2 ey H
— A IDT A HTAR — o ACEID] o HH Dy Af
(33)
1
+ ZAof*fﬂDim,MH'H'HD?m,MAf} }
We keep first and second-order error terme (keep second-order terms just to see the lower-order teznmeglect forts).
We will write the second-order terms of (62) in detail usihgttD,,.,,_ s = nIy;41 — Dy

1)
2Re{ Eaw au [AWTTHH D,y Af| } = 2Re{Eaw a0 [jn ActTHE " Af] |
- 2Re{5Ah,,Aw [jAwaH'H’HDMAf} } ©9
2)
2 Re{ Eam e | — JAGETD 0 HH AF| L = 2 Re{ €aw [ n At TEE AF] | o0

+2 Re{EAh/Aw [jAwaDMH’H’HAf} }
Thus, using (63)-(64) in (62), and by ignoring terms of higheder, we obtain
Ean,awlts] = 2Re{5Ah,,Aw [fHRZAf} } —9 Re{gAh,,Aw {jAwaH’H’HDMAf} }
+2 Re{gAh,,Aw [jAwaDMH’H’HAf} }
= 2Re{ Eaw au [ef I AF| } — 2Re{ Eaw au [jAwt TH'H "Dy Af] | (65)
+2 Re{sAh/_,Aw [jAwaDMH’H’HAf] }

= 2Re{5Ah/.,Aw [egH/HAfH +0 (J\gjﬂ)

where we have used thét= R, 'H'e,.



4) Termty: Using (50) we obtain
Ean pwltd] & —2 Re{eAh,,Aw [ejﬂwﬁerm_M(_Aw)H'ed} }
) Re{EAh/,Aw [er;m,M(—Aw)H'ed} }
-2 Re{fHH'ed} 42 Re{SAhg Ao [jAwaD;m,MH'ed} }
+ Re{gAh,, Aw {AwaHDﬁn_MH’ed} }
Using thatéa,[Aw] = 0, we get
Ean Awlts] = —2 Re{fHH’ed} + Re{sAh/,Aw [AwaHDiin_MH’ed} }
5) Termts: Using (50) we obtain
Ean.awlts] ~ —2 Re{SAh/VAw [ejA“’EAfHI‘n:n,M(—Aw)H’ed} }
=2 Re{SAh/VAw [AfHI‘;m_M(—Aw)H’ed} }
) Re{EAh/Aw [AfHH’ed} } +2 Re{gAh,,Aw [jAwAfHD;m_MH’ed} }

+ Re{gAh’,Aw [AWQAfHDﬁn*MH/ed} }

=9 Re{EAh/,Aw [AfHH/edH +0 (ﬁ%) .

From the definition of the EMSE and using (56), (61), (65),)(&fd (68) we get
EMSE, (f,&) = Ean.aw [AfHRZAf + AW?Re{f D2, _, Hey}

) n?od M? o2
+ 2Re{jAwAfHD;un7MH/ed}} +0 (W) +0 ( B ) .

In the sequel, we ignore th@,(-) terms. Then
EMSE, (f,&) = Ean.aw {AfHRZAf + Aw?Re{f"D?2, _, He,}
+ 2Re{ jAwAfHD;:n_MH’ed}} :
The three terms of (70) are computed as follows
T 2 Ean aw [AFTR.Af]
D am aw [(ANPRT + ARTGY) R (R AN + GAR™)]
MY (R (ROWRT 4+ GE G+ GEPRT + ROWIGH) ).
Ta(n) = Ean, Aw [Aw2Re{fHDﬁn_MH'edH
oA Re{f"D?2 _, Hey}.
Eanaw [2Re{jAWALTD) . H'es}]
@ 9Re{Ean awljAw (AWTRT + ARTGH)RIIDY,, , H'ey]}
=203, Re {(W"A"K'A(A"A)T'RTR;'D],,,_,,H'ey
—hTATK'A*(A"A)TGHR. D)., Heq}.

T3(n)

Proposition 1 is proved.

B. Components o®’
If the covariance matrix of the training sequenceRisthen [8, Appendix A]

1 1
—ATA=R+0O|(=
RA"A=R+0(5)

15

(66)

(67)

(68)

(69)

(70)

(71)
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and

1 1
— AUDR_  A=R+0(=). (72)
z R
If R is invertible, then, using the first-order expansion
(A+AA) T =A"1—ATTAAAT L O(|AAP). (73)
we obtain ) )
Ha— 1 _ L 51 L -2
(A7A)" =R +O<R2>R : (74)
Furthermore,
AFK'A = AH (—DR_1 + (5 — 1) IR) A
H R H
= —A"Dp A+ (5—1) AHA
2
=L R-0®)+ <§ - 1) (RR +0(1))
= O(R). (75)
Then

ATKA (A7A) " o) (R0 () )

1
=0()R'+0 (E) R~2
=0(1). (76)
Using (76) and (90) it is easy to see that the second terd’as O (%Qg) while, using (74) we obtain that the first term of

v is O % . Thus, if the covariance of the training sequence is inbkrt{and not very ill-conditioned), then the first term
of ¥’ is much larger than the second.

C. Proof of Proposition 2
1) TermT;: From (34) and the definition ofx (below (28)), we obtain

Ty~ tr (¥ G'R;'G) = tr (9" FH"R;'HF").
Using the facts (i)A > B implies thatA~" <B~"' [6, p. 471] and (i)P g =) < Ir; 41, We obtain
1H 1y H 20\ ey 1H e HY o
<
H (HH +aw1) H <H (HH ) H -
= PH/H S I]\,]+L+1.
Using (77) andir (ABA™) < A\ax (B) tr (AA) [7, p. 44], we obtain (recall the definition &t in (19))
T, ~ tr (III’*F*H’HRz_lH’FT)
S tr (BPFFT) < Aoy (9/) tr (F*FT) (78)
= Amax (') [IF[|% = Amax (27) (L + 1|13

Using asymptotic arguments, we proved in the Appendix B, tfiad 7 A is invertible (and not very ill-conditioned), then the
first term of @’ is much larger than the second. Thig,.x (¥') ~ 02 /Amin (A7 A) and
T, < L33

~ )\min(AHA)

2) TermTy: TermRe{f"H’e,} is the (d + 1)-st coefficient of the combined (channel-equalizer) impukssponse. Using
the definition off in (19) and expression (77), it can be shown tRa{fH'e,} is always smaller than 1, and, under the
small MMSE assumption, it is very close to 1. Th@B;; ~ C. On the other hand, using the definition bfin (19), the
submultiplicative property of the matrix norms, and thegsilar value decomposition (SVD) df’, it can be shown that
Tas = 2Re{f# D2, H'e,} < 2M?ko(H'). If N is sufficiently large with respect td/ andH’ is not very ill-conditioned, then
To1 > Tos and

(79)

Ty ~ Coi,,. (80)
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3) TermT3: In order to simplify termT'3 we first prove the following two lemmas.
Lemma 1. Using the SVD ofA, it can be shown that

A) R
ATK A" (AT A) Ty < TmaxB) gy Byon)), 1
H (ATA) Tl < 22T Ko = 5 ka(A) (61)
Proof: Using the singular value decomposition (SVD), matixcan be written as

A=UxVv# (82)

whereU and'V are unitary matrices with dimensio8%;, — L) x (Ny, — L) and (L + 1) x (L + 1) respectively, whileX is
the (NVy, — L) x (L 4+ 1) matrix with the singular values oA in its diagonal, and all the off the diagonal elements eqoal t
zero. Using (82) we obtain

-T

(A"A) " =Vv*E, VT (83)

whereX; = (ZHZ)*1 = diag (07 *(A),...,073,(A)). Thus, in order to prove (81) we use the submultiplicativeperty
of the matrix norms and expressions (82) and (83) to get
|ATK'A* (AT AT, = [V'ETUTK'U* S 2, VT,
< V2S[O 2K |2 [[O 2] S S |2 VT2
1 Omax(A) R
— Omax A KI = ax K/ = — koA
Tmax (MKl — 5 = TR K = 5 ka(A)
where for the last equality we used the definition of makikand the condition number with respect to the spectral narm.
Lemma 2: Using the SVD oH’, it can be shown that

(84)

Omax (H'
HGHR 1DMHI’3dH2 < ||F||2¢

o (07 L = M2k (). )

Proof: We first write the SVD of matrix’ as
= U, AV (86)

whereU; andV; are unitary matrices with dimensioiid/ + 1) x (M + 1) and (M + L+ 1) x (M + L + 1) respectively,
while A is the (M + 1) x (M + L + 1) matrix with the singular values df’ in its diagonal, and all the off the diagonal
elements equal to zero. Using (86) and the definitiolRofwe obtain

R;!'=U,A, U (87)

T 1 1
whereA; = diag (a%(H/HUa ey U?WH(H’HO%,)'

Using (86), (87) and thaG = H'F” we obtain
||GHRZ_1DMH'ed||2 = HF*VlAHAlU{ID]uUlAV{{edHQ

() 1 ,
< HFHQWMUmaX(H) (88)
Omax(H')
F||y 2 M = M ||F ok

= [[Fl2 - ||| /oo (H
i H T o1 (H) on41(H') : o1 (H) o H)) _
where at point (*) we have used that” A, = diag (7itlr. . 224 ) < diag (240, B0 ) =
diag (gl(lH/),..., L) Thus, [AP Ayl < o 0

Thus, using (81) and (85)

T3 < (MR|F|2k2(A)k2(H')) 03, (89)

4) Comparison ofl's and T5: If N is sufficiently large andA andH’ are not very ill-conditioned, then, from (80) (recall
thatC = O(N?)) and (89), we conclude th&, > Ts.
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5) Comparison ofl'y and T Using [8, eq. (10)], we can derive the following asymptotipeession

6 0‘
2
78w~ RIRAAT AR (°0)
Thus
6Cao2
RZhHT AT AR’
Using (79) and (91), we derive the following approximate ibdbu
T _ (L+ 1)R?||f||3hTAH AR
T, ~ 6 C Amin (AT A)
- L+ DR[f]Amax (AT A)|[h[|3 (92)
- 6C Amin(AHFA)
= k2(ATA)(L +D)|£[3|1]3a

~r R? R?
a2 o(N2> (93)

Thus, if « is sufficiently small, i.e.,R is sufficiently small with respect t&v (recall thatR = Ny, — L), and A is not very
ill-conditioned, then ternil's > T;. Thus,T5 is much larger tharT; andT3. Proposition 2 is proved using (80).

Ty ~ (91)

where

D. Value ofn,
We remind the definition of

§ 2 ny + N+ 1
2
We found that
& =0Cs.
We remind
1424 =D (94)

2
n1+...+n2:(1+...+n2)7(1+...+(n171))
na2(n2 +1)  (n1—1D)n

2 2
ng — n% —+ no + Ny

= B) (95)

o (ng + nl)(ng —ny + 1)

n 2

_ (n2 +n1)Ny

I —

We computeCs as follows
Co = |D| o= Nm (96)

neD

where
X=((d+1) 4+ (dbm 1)
F(dHnp+ 1)+ (A4 N))
= (4@ N) = (14 d)

— [(d—l—m)—l—---—i—(d—i—m)]) (97)
_ (N+d)(N+d+1) d(d+1)
2 2
 Nud— (n2 +n1) Ny
2

_ N?242dN + N —2dNy;  (ng +ny) N,

2 2
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If we solve the equation

we

(1]
(2]
[3

(4]
(5]

6]
(8]
El
[20]

—

[11]

[12]

mt et L g, (98)
obtain
= % (N2 +2dN + N = 2dNys + Ny = LN + LNy — NNy
NN L o
2 2
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