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Single-carrier systems with MMSE linear
equalizers: performance degradation due to channel

and CFO estimation errors
Athanasios P. Liavas,Member IEEE, and Despoina Tsipouridou

Abstract

We assess the impact of the channel and the carrier frequencyoffset (CFO) estimation errors on the performance of single-
carrier systems with MMSE linear equalizers. Performance degradation is caused by the fact that amismatchedMMSE linear
equalizer is applied to channel output samples withimperfectly canceledCFO. Assuming a single-block training, we develop an
asymptotic expression for the excess mean square error (EMSE) induced by the channel and CFO estimation errors and derive a
simple EMSE approximation which reveals that

1) performance degradation is mainly caused by the imperfectly canceled CFO;
2) the EMSE is approximately proportional to the CFO estimation error variance, with the factor of proportionality being

independent of the training sequence.
We also highlight the fact that the placement of the trainingat the middle of the transmitted packet is a good practice.

I. I NTRODUCTION

A problem that frequently arises in packet-based wireless communication systems is thejoint estimation of the frequency
selective channel and the CFO [1], [2]. Optimal TS design forthis problem has been considered in [2], where the optimized
cost function was theasymptoticCramér-Rao bound (CRB). However, in [2], the channel and CFO estimation errors were
assigned equal weight which might besuboptimalsince “... presumably channel estimation errors will have a different impact,
e.g., on bit-error rate, than frequency estimation errors” [2].

It seems that theunequal weightingproblem cannot be resolved unless we consider specific communication systems. Ciblat
et al. considered a single-carrier system with an MMSE linear equalizer and computed the second-order statistics (power
spectrum) of the TS that, under certain assumptions, minimizes the mean square estimation error [3].

In this work, we consider the same system but our aim is different. Performance degradation is caused by the fact that a
mismatchedMMSE linear equalizer is applied to channel output samples with imperfectly canceledCFO. Our aim is to uncover
the relative importance of these error sources. We assume asingle-blocktraining and develop an asymptotic expression for the
induced EMSE which, however, is difficult to interpret.1

Our main contribution lies in the fact that, assumingsmall ideal MMSE, we derive a simple and informative EMSE
approximation, which reveals that

1) the dominant error source is the imperfectly canceled CFO;
2) the EMSE is approximately proportional to the CFO estimation error variance, with the factor of proportionality being

independentof the TS.2

We also highlight the fact that the placement of the TS at the middle of the transmitted packet is a good practice.
Notation: SuperscriptsT , H and ∗ denote transpose, conjugate transpose and elementwise conjugation, respectively.tr(·)

denotes the trace operator,Re{·} denotes the real part of a complex number, andIM denotes theM × M identity matrix.
σmax(·), σmin(·), ‖ · ‖2, ‖ · ‖F , andk2(·) denote, respectively, the maximum singular value, the minimum singular value, the
spectral norm, the Frobenius norm, and the condition number, with respect to the spectral norm of the matrix argument.E [X ]
denotes the expected value ofX . PR(A) andP⊥

R(A) denote, respectively, the orthogonal projector onto the column space of
matrix A and onto its orthogonal complement.

II. CHANNEL AND CFO ESTIMATION

A. The channel model

We consider a packet-based communication system with inputpacket lengthN . We assume that the baseband-equivalent

frequency-selective channel has impulse responseh
△
= [h0 · · ·hL]

T , angular CFOω and phaseφ. Then, the output at time

The authors are with the Department of Electronic and Computer Engineering, Technical University of Crete, GREECE. E-mail: (liavas, de-
spoina)@telecom.tuc.gr. A. P. Liavas was partially supported by the FP-6 FET Open Project COOPCOM.

1We note that the same expression in terms of frequency domainquantities has been derived in [3].
2Thus, optimal TS design for CFO estimation is also highly relevant forjoint channel and CFO estimation.
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instantn, for n = 1, . . . , N + L, is

rn = ej(ωn+φ)
L∑

l=0

hlan−l + wn, (1)

where{an}Nn=1 and {wn}N+L−1
n=1 denote the channel input and additive channel noise, respectively. The input symbols are

i.i.d. unit variance circular. The noise samples are i.i.d.circular Gaussian, with varianceσ2
w. In the sequel, we absorb termejφ

into channelh.
The channel output vectorrn:n−M

△
= [rn · · · rn−M ]T can be expressed as

rn:n−M = Γn:n−M (ω)Han:n−L−M +wn:n−M (2)

where
Γn:n−M (ω)

△
= diag(ejωn, . . . , ejω(n−M)). (3)

andH is the (M + 1)× (M + L+ 1) Toeplitz filtering matrix constructed byh.

B. Channel and CFO estimation

TheNtr consecutive symbolsatr
△
= [an1

· · · an2
]T , with Ntr

△
= n2 − n1 + 1, are used for training.3 We collect the output

samples that dependonly on the training and construct

y
△
= rn2:n1+L = Γn2:n1+L(ω)Ah+wn2:n1+L (4)

whereA is the(Ntr − L)× (L+ 1) Hankel matrix

A
△
=






an2
· · · an2−L

...
. . .

...
an1+L · · · an1




 . (5)

The joint ML CFO and channel estimates are [1]

ω̂ = argmax
ω̃

{yHΓn2:n1+L(ω̃)A(AHA)−1AHΓH
n2:n1+L(ω̃)y} (6)

and
ĥ = (AHA)−1AHΓH

n2:n1+L(ω̂)y. (7)

The estimation errors are∆ω
△
= ω̂ − ω and∆h

△
= ĥ − h. We assume thatNtr is sufficiently large so that the above ML

estimates are unbiased and efficient. Thus, the second-order statistics of∆ω and∆h are determined by thefinite sampleCRBs
[2]. More specifically, if we define

K
△
= diag(n2, . . . , n1 + L), (8)

then, working as in [2], we can show that

σ2
∆ω

△
= E

[

(∆ω)2
]

=
σ2
w

2 tr
(

hHAHKP⊥
R(A)KAh

) (9)

Ψ
△
= E

[
∆h∆hH

]
= σ2

w(A
HA)−1 + σ2

∆ω(A
HA)−1AHKAhhHAHKA(AHA)−1 (10)

Ψt
△
= E [∆h∆hT ] = −σ2

∆ω(A
HA)−1AHKAhhTATKA∗(AHA)−T (11)

ψ
△
= E [∆ω∆h] = j σ2

∆ω(A
HA)−1AHKAh. (12)

SinceK depends on the training positions, it seems that the quantities defined in (9)–(12) also depend on the training positions.
However, if we expressK as

K = n2INtr−L −DNtr−L−1, (13)

with Di
△
= diag(0, 1, . . . , i), then we can show that

σ2
∆ω =

1

2
σ2
w

[

tr
(

hHAHDNtr−L−1P
⊥
R(A)DNtr−L−1Ah

)]−1

. (14)

That is,σ2
∆ω is independentof the training positions.

3Training schemes with two or more blocks are beyond the scopeof this work.
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On the other hand, the accuracy ofĥ is determined by the CFO estimation error that exists inΓn2:n1+L(ω̂) and depends on
the training positions. The structure ofΓn2:n1+L(ω̂) suggests that an accurate channel estimate might be obtained if we absorb

term ejωξ, with ξ
△
= n1 +

Ntr+L
2 , i.e.,, ξ is the middle position ofy, into channelh, getting the “new channel”h′ △

= ejωξh.4

In this case, the channel output is expressed as

rn = ejω(n−ξ)
L∑

l=0

h′
lan−l + wn (15)

and (4) can be written as
y = ΓNtr−L

2
−1:−

Ntr−L

2

(ω)Ah′ +wn2:n1+L. (16)

In the sequel, we assume that the true system model is given by(15). The ML estimate ofω is still given by (6), while

ĥ′ = (AHA)−1AHΓH
Ntr−L

2
−1:−

Ntr−L

2

(ω̂)y. (17)

We define
K′ △

= diag
(Ntr − L

2
− 1, . . . ,−Ntr − L

2

)

(18)

and∆h′ △
= ĥ′ −h′. The estimation error second-order statistics, denoted asΨ′, Ψ′

t, ψ
′, andσ2

∆ω, are given by (10)–(12) and
(14), with h andK substituted byh′ andK′, respectively. Finally, we assume that the noise variance,σ2

w, is known at the
receiver, i.e., the noise variance estimation error is negligible compared with the channel and CFO estimation error.

III. CFO CORRECTION ANDMMSE LINEAR EQUALIZATION

A. The ideal case

If we know the CFO, then we can perfectly cancel it before equalization. If we know the channel, then we can compute

the order-M delay-d MMSE linear equalizer,f
△
= [f0 · · · fM ]T , as [4, Section 2.7.3]

f =
(
H′H′H + σ2

wIM+1

)−1
H′ed = R−1

z H′ed (19)

whereed is the(M +L+1)× 1 vector with 1 at the(d+1)-st position and zeros elsewhere. It can be shown that the MMSE
symbol estimation error is

MSE(f) = 1− fHRzf . (20)

B. Mismatched CFO correction and MMSE equalization

If we do not know the true channel and CFO, then we can adopt theso-called mismatched approach, that is, estimate them
and use their estimates as if they were the true values.

The mismatched MMSE equalizer is (see (19))

f̂ =
(

Ĥ′Ĥ′H + σ2
wIM+1

)−1

Ĥ′ed (21)

with mismatch∆f
△
= f̂ − f . After CFO correction, we obtain

sn
△
= e−jω̂(n−ξ)rn. (22)

Vector sn:n−M which can be expressed as

sn:n−M = ej∆ωξΓn:n−M (−∆ω)H′an:n−L−M + ejω̂ξΓn:n−M (−ω̂)wn:n−M . (23)

The input symbol estimation error at the output of the mismatched equalizer at time instantn is

ên
△
= f̂Hsn:n−M − eHd an:n−L−M (24)

and the time-dependent mean square error is given by (25), atthe top of this page.

4We shall say more on this topic later.
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MSEn(f̂ , ω̂)
△
= Ea,w

[
| ên|2

]

= f̂H
(
Γn:n−M (−∆ω)H′H′HΓH

n:n−M (−∆ω) + σ2
wIM+1

)
f̂ − 2Re{ej∆ωξ f̂HΓn:n−M (−∆ω)H′ed}+ 1.

(25)

T1
△
= tr

(

R−1
z

(
R∗Ψ′RT +GΨ′∗GH +GΨ′∗

t R
T +R∗Ψ′

tG
H
))

(30)

T2(n)
△
= σ2

∆ωRe{fHD′ 2
n:n−MH′ed} (31)

T3(n)
△
= 2σ2

∆ωRe
{
h′HAHK′A(AHA)−1RTR−1

z D′
n:n−MH′ed − h′TATK′A∗(AHA)−TGHR−1

z D′
n:n−MH′ed

}
(32)

IV. EMSE ANALYSIS

The EMSE at time instantn is defined as

EMSEn(f̂ , ω̂)
△
= E∆h′,∆ω[MSEn(f̂ , ω̂)]−MSE(f). (26)

Using slightly different notation, it has been proved in [5,eq. (22) and (27)] that the mismatched equalizerf̂ can be expressed
as

f̂ = f −R−1
z

(
R∗∆h′ +G∆h′∗

)
+O

(
‖∆h′‖2

)
(27)

where
1) R is the (M + 1)× (L+ 1) Hankel matrix constructed by vector

r
△
= c− ed (28)

wherec is the combined (channel-equalizer) impulse response, i.e., c
△
= H′T f∗;

2) G
△
= H′FT , whereF is the (L+ 1)× (L +M + 1) Toeplitz filtering matrix constructed byf .

The following proposition provides an asymptotic EMSE expression. We note that the same result, expressed in terms of
frequency domain quantities, has been derived in [3].

Proposition 1. The EMSE induced by the channel and CFO estimation errors at time instantn, for n ∈ D △
= {d+1, . . . , n1+

d− 1} ∪ {n2 + d+ 1, . . . , N + d},5 can be expressed as

EMSEn(f̂ , ω̂) ≈ T1 +T2(n) +T3(n) (29)

whereT1, T2(n), andT3(n) are defined in (30)–(32) at the top of the next page,

D′
n:n−M

△
= diag((n− ξ), . . . , (n−M − ξ)) (33)

andR
△
= Ntr − L.

Proof: The proof is provided in the Appendix. 2

Remark 1:TermT1 involves only the channel estimation error second-order statistics; it is the EMSE that would result if the
mismatched equalizer were applied to perfectly CFO-corrected channel output samples [5, eq. (28)]. TermT2(n) involves only
the CFO estimation error variance and is the EMSE that would result if the ideal MMSE equalizer were applied to imperfectly
CFO-corrected samples. TermT3(n) involves both the channel and the CFO estimation errors.

V. “SMALL IDEAL MMSE” ASSUMPTION

Expression (29) is complicated and difficult to interpret. In order to derive a simple and insightful EMSE approximation,
we assume that theideal MMSE is sufficiently small, i.e., the equalizer length is sufficiently large, the SNR is sufficiently
high and the delay is chosen carefully. This assumption is ofhigh practical importance because it refers to the cases where
the MMSE linear equalizer iseffective. Under this assumption, vectorr, defined in (28), becomes “small.” More specifically,
it has been proved in [5, eq. (29)] that‖r‖22 ≤ MMSE, which implies that‖r‖2 = O

(√
MMSE

)

. Thus, terms that involve

matrix R, which is constructed by vectorr, are “small” compared with terms that involve matrixG.6 Thus,T1 andT3(n) of
(30) and (32), respectively, can be approximated as

T1 ≈ tr
(
R−1

z GΨ′∗GH
)

(34)

T3(n) ≈ −2σ2
∆ω Re

{
h′TATK′A∗(AHA)−TGHR−1

z D′
n:n−MH′ed

}
. (35)

5We do not compute the EMSE for the training symbolsan, n = n1, . . . , n2.
6See the discussion before eq. (30) of [5].
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A. Time-average EMSE

In the sequel, we study the EMSE time-average across the timeinstances that correspond to the unknown data [3]

EMSE(f̂ , ω̂)
△
=

1

|D|
∑

n∈D

EMSEn(f̂ , ω̂). (36)

If we write
D′

n:n−M = (n− ξ) IM+1 −DM (37)

then termsT2(n) of (31) andT3(n) of (35) become

T2(n) = σ2
∆ω

[
(n− ξ)2 Re {fHH′ed} − 2(n− ξ)Re {fHDMH′ed}+Re {fHD2

MH′ed}
]

(38)

T3(n) ≈ −2σ2
∆ω Re

{

h′TATK′A∗(AHA)−TGHR−1
z ((n− ξ) IM+1 −DM )H′ed

}

. (39)

If we define7

C1 △
=

1

|D|
∑

n∈D

n2, C2 △
=

1

|D|
∑

n∈D

n (40)

then

T2
△
=

1

|D| T2(n)

= σ2
∆ω

[(
C1 − 2 C2ξ + ξ2

)
Re{fHH′ed}

︸ ︷︷ ︸

T21

−2(C2 − ξ)Re{fHDMH′ed}
︸ ︷︷ ︸

T22

+Re{fHD2
MH′ed}

︸ ︷︷ ︸

T23

] (41)

and

T3
△
=

1

|D|T3(n)

≈ −2σ2
∆ω Re

{

h′TATK′A∗(AHA)−TGHR−1
z

(

(C2 − ξ)
︸ ︷︷ ︸

t31

IM+1 −DM

)

H′ed

}

.
(42)

B. A simple approximation

Both T2 andT3 depend onξ. It turns out that there doesnot exist aunique, channel independent,ξ that is optimal, i.e.,
always attains minimum EMSE. If we putξ = C2, then termT21 is minimized8 and termsT22 andt31 vanish. In the sequel,
we use this value ofξ,9 which implies that the training is placed “close to the middle” of the packet; indeed, using the definition
of ξ after (16) and the fact thatξ = C2, it can be shown thatn1 ≈ N−Ntr

2 + d − L
2 (We prove it in the Appendix). Then, if

we define

C △
= C1 − C2

2
(43)

we obtain
T2 = σ2

∆ω

[
CRe{fHH′ed}+Re{fHD2

MH′ed}
]

(44)

T3 ≈ 2σ2
∆ω Re

{

h′TATK′A∗(AHA)−TGHR−1
z DMH′ed

}

. (45)

Thus, the EMSE time-average is approximately equal to the sum of the three terms in (34), (44) and (45), which is still
complicated. In Appendix, we prove the following result.

Proposition 2: If ξ = C2, Ntr is sufficiently small with respect toN , and matricesA andH′ are not very ill-conditioned,
then

EMSE(f̂ , ω̂) ≃ Cσ2
∆ω. (46)

That is, the EMSE is approximately proportional to the CFO estimation error variance with the factor of proportionalityC
being independentof the training sequence. Thus, training sequences that areoptimal for CFO estimation seem very good
candidates forjoint channel and CFO estimation.10

7Observe thatC1 = O(N2), while C2 = O(N).
8Observe thatT21 = O(N2), while the other component terms ofT2 andT3 are much smaller.
9However, we do not claim that this value is optimal, in general.
10Optimal training sequence design for CFO estimation has been extensively studied; see, for example, [8]–[11]. This topic is beyond the scope of this

paper.
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Table I
Channel Impulse Responseh

h0 = −0.1538 + 0.4229 ∗ j

h1 = −0.5923− 0.0134 ∗ j

h2 = 0.0446 + 0.1164 ∗ j

h3 = 0.1023 + 0.0621 ∗ j

h4 = −0.4077− 0.0664 ∗ j

h5 = 0.4235 + 0.2581 ∗ j

Remark 2:In the Appendix, we essentially prove thatEMSE ≈ T2. Recall thatT2 is the EMSE that would result if a perfect
equalizer were applied to imperfectly CFO-corrected output samples. Thus, (46) implies that, under the stated assumptions,
the main cause of the performance degradation is the imperfectly canceled CFO.

Remark 3:In the proof, we assumed thatk2(H′) is not “very large.” By construction, if just one of the elements of h is
nonzero, then the rows ofH are linearly independent and, thus,H has full rank. Thus, in general,H is not close to rank
deficient matrices and its condition number is not “very large.”

Remark 4:It turns out that, for fixed training positions, the EMSE remains the sameirrespectiveof the value ofξ in (15).
Of course, the values ofT1, T2, andT3 depend onξ. Consideringh′ instead ofh leads to “accurate” channel estimates and,
thus, to “small”T1. Settingξ = C2, that is, putting the training “at the middle” of the packet,has two effects. The first is that
it makesT2 much larger thanT3 leading to the simple expression (46). The second, and more important, is that it minimizes
T21, which is the most significant EMSE term. Thus, it leads to good performance.

VI. SIMULATION RESULTS

In this Section, we present simulation results for the channel of the Table I.11 We set the equalizer orderM = 12, the delay
d = 5, the packet lengthN = 250 and the TS lengthNtr = 30. The data symbols are i.i.d. BPSK. The training symbols,
which are also i.i.d. BPSK, have been placed close to the middle of the transmitted packet, i.e.,ξ = C2. The binary sequence
we use corresponds to the hexadecimal number172D97E1.

In Fig. 1, we plot the EMSE versus the time instancesn, for SNR equal to 25 dB (as mentioned above, we do not compute
the EMSE for the known training symbols). The experimentally computed EMSE and the EMSE theoretical approximation
(29) practically coincide. We observe that the EMSEincreases as we move away from the training symbol positions. We also
plot the EMSE theoretical approximation (29) forn1 = 1 andn1 = N−Ntr+1, i.e., the training block placed at the beginning
and at the end of the packet, respectively. It is obvious thatplacing the TS close to the middle of the transmitted packet leads
to significantly smaller maximum and time-average EMSE.

In Fig. 2, we plot the experimentally computed time-averageEMSE, the time-average of the EMSE theoretical approximation
in (29), and the time-averages of the three EMSE termsT1, T2 andT3 in (30), (31) and (32). We observe that approximation
(29) practically coincides with the true EMSE for SNR higherthan 10 dB. We observe thatT2 is very close to the EMSE,
while termsT1 andT3 are much smaller.

In Fig. 3 we plot the experimental EMSE, the theoretical EMSEand the simple EMSE approximation (46). We observe that
the very simple and informative expression of (46) is indeeda very good EMSE approximation.

In Fig. 4 we plot the excess BER for the cases ofn1 = N−Ntr

2 + d− L
2 , n1 = 1 andn1 = N −Ntr + 1, i.e., the training

block placed close to the middle, at the beginning and at the end of the transmitted packet, respectively. It is obvious that the
placement of the training at the middle of the packet leads tosignificantly better BER performance.

In the sequel, we keep the parameters used for the previous simulation results but we take averages over different random
channel realizations; we assume that the elements ofh are i.i.d, withhi ∼ CN

(

0, 1
L+1

)

, for i = 0, . . . , L.
In Fig. 5, we plot the experimentally computed time-averageEMSE, the time-average of the EMSE theoretical approximation

in (29), and the time-averages of the three EMSE termsT1, T2 andT3 in (30), (31) and (32), averaged over random channel
realizations.

In Fig. 6 we plot the experimental EMSE, the theoretical EMSEand the simple EMSE approximation (46) averaged
over random channels. We observe that the very simple and informative expression of (46) is indeed a very good EMSE
approximation.

In Fig. 7 we plot the channel average excess BER for differenttraining positions. We observe that again the placement of
the TS close to the middle of the packet leads to better BER performance.

VII. C ONCLUSION

We considered the impact of the channel and CFO estimation errors on the performance of single-carrier systems with
MMSE equalizers. We uncovered that, in many cases of high practical importance, the imperfectly canceled CFO is the main

11We observed analogous behavior in extensive simulation studies.
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Fig. 1. Experimentally computed EMSE and EMSE theoretical approximation in (29) versusn, for different TS positions.

MSEn(f̂ , ω̂) = fH
(

Γn:n−M (−∆ω)H′H′HΓH
n:n−M (−∆ω) + σ2

wIM+1

)

f
︸ ︷︷ ︸

t1

+∆fH
(

Γn:n−M (−∆ω)H′H′HΓH
n:n−M (−∆ω) + σ2

wIM+1

)

∆f
︸ ︷︷ ︸

t2

+2Re{fH
(

Γn:n−M (−∆ω)H′H′HΓH
n:n−M (−∆ω) + σ2

wIM+1

)

∆f}
︸ ︷︷ ︸

t3

−2Re{ej∆ωξfHΓn:n−M (−∆ω)H′ed}
︸ ︷︷ ︸

t4

−2Re{ej∆ωξ∆fHΓn:n−M (−∆ω)H′ed}
︸ ︷︷ ︸

t5

+1.

(47)

cause of the performance degradation. In these cases, the EMSE is approximately proportional to the CFO estimation error
variance, with the factor of proportionality being independent of the TS. Thus, optimal TS design for CFO estimation is also
highly relevant forjoint CFO and channel estimation. We also highlighted the fact that placing the single-block training at the
middle of the packet is a good practice. An interesting future topic is to consider multi-block training.

APPENDIX

A. Proof of Proposition 1:

If we use expression∆f
△
= f̂ − f in (25), we get (47) at the top of the next page. We define
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Fig. 2. Experimentally computed EMSE, EMSE theoretical approximation in (29) and the three termsT1, T2 andT3.

Γ′
n:n−M (−∆ω)

△
= ej∆ωξΓn:n−M (−∆ω). (48)

Using the expressionexp(x) = 1 + x+ x2

2 +O(x3), we obtain

Γn:n−M (−∆ω) = IM+1 − j∆ωDn:n−M − 1

2
∆ω2D2

n:n−M +Op

(
n3σ3

w

R9/2

)

(49)

Γ′
n:n−M (−∆ω) = IM+1 − j∆ωD′

n:n−M − 1

2
(∆ω)2D′2

n:n−M +Op

(
n3σ3

w

R9/2

)

. (50)

We will write analytically the five terms defined in (47), using (49) and (50). We will also take the expected value of each
term with respect to∆h′ and∆ω.
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Fig. 3. Final EMSE theoretical expression in (46).

1) Termt1: Using (49) we obtain

E∆h′,∆ω[t1] = E∆h′,∆ω

[

fH
(( (1)

IM+1 −
(2)

j∆ωDn:n−M −
(3)

1

2
∆ω2D2

n:n−M

)
H′H′H

×
( (1)

IM+1 +
(2)

j∆ωDn:n−M −
(3)

1

2
∆ω2D2

n:n−M

)
+ σ2

wIM+1

)

f
]

= E∆h′,∆ω

[

fH
(

(11)

H′H′H + σ2
wIM+1

)
f +

(12)

j∆ωfHH′H′HDn:n−M f

−
(13)

1

2
∆ω2fHH′H′HD2

n:n−M f −
(21)

j∆ωfHDn:n−MH′H′Hf

+

(22)

∆ω2fHDn:n−MH′H′HDn:n−M f +

(23)

j
1

2
∆ω3fHDn:n−MH′H′HD2

n:n−M f

−
(31)

1

2
∆ω2fHD2

n:n−MH′H′Hf −
(32)

j
1

2
∆ω3fHD2

n:n−MH′H′HDn:n−M f

+

(33)

1

4
∆ω4fHD2

n:n−MH′H′HD2
n:n−M f

]

.

(51)
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Fig. 4. Experimentally computed excess BERs for different TS positions.

Using thatE∆ω[∆ω] = 0, E∆ω[∆ω3] = 0 (the ML estimator is practically unbiased and Gaussian) andthat the term proportional
to ∆ω4 is practically equal to zero, we obtain

E∆h′,∆ω[t1] = fHRzf + σ2
∆ωf

HDn:n−MH′H′HDn:n−M f

− 1

2
σ2
∆ωf

HH′H′HD2
n:n−M f − 1

2
σ2
∆ωf

HD2
n:n−MH′H′Hf .

(52)

We write the last three terms of (52) using thatDn:n−M = nIM+1 −DM as

1)

σ2
∆ωf

HDn:n−MH′H′HDn:n−M f = n2 σ2
∆ωf

HH′H′Hf + σ2
∆ωf

HDMH′H′HDM f

− nσ2
∆ωf

HDMH′H′Hf − nσ2
∆ωf

HH′H′HDM f .
(53)

2)

−1

2
σ2
∆ωf

HH′H′HD2
n:n−M f = −1

2
n2 σ2

∆ωf
HH′H′Hf + nσ2

∆ωf
HH′H′HDM f

− 1

2
σ2
∆ωf

HH′H′HD2
M f .

(54)

3)

−1

2
σ2
∆ωf

HD2
n:n−MH′H′Hf = −1

2
n2 σ2

∆ωf
HH′H′Hf + nσ2

∆ωf
HDMH′H′Hf

− 1

2
σ2
∆ωf

HD2
MH′H′Hf .

(55)
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Fig. 5. Experimentally computed EMSE, EMSE theoretical approximation in (29) and the three termsT1, T2 and T3 averaged over random channel
realizations.

Using (53)-(55) in (52) we obtain

E∆h′,∆ω[t1] = fHRzf + σ2
∆ωf

HDMH′H′HDM f

− 1

2
σ2
∆ωf

HH′H′HD2
M f − 1

2
σ2
∆ωf

HD2
MH′H′Hf

= fHRzf +O
(
M2 σ2

w

R3

)

.

(56)
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Fig. 6. Final EMSE theoretical expression in (46) averaged over random channels.

2) Termt2: Using (49) we obtain

E∆h′,∆ω[t2] = E∆h′,∆ω

[

∆fH
(( (1)

IM+1 −
(2)

j∆ωDn:n−M −
(3)

1

2
∆ω2D2

n:n−M

)
H′H′H

×
( (1)

IM+1 +
(2)

j∆ωDn:n−M −
(3)

1

2
∆ω2D2

n:n−M

)
+ σ2

wIM+1

)

∆f
]

= E∆h′,∆ω

[

∆fH
(

(11)

H′H′H + σ2
wIM+1

)
∆f +

(12)

j∆ω∆fHH′H′HDn:n−M∆f

−
(13)

1

2
∆ω2∆fHH′H′HD2

n:n−M∆f −
(21)

j∆ω∆fHDn:n−MH′H′H∆f

+

(22)

∆ω2∆fHDn:n−MH′H′HDn:n−M∆f +

(23)

j
1

2
∆ω3∆fHDn:n−MH′H′HD2

n:n−M∆f

−
(31)

1

2
∆ω2∆fHD2

n:n−MH′H′H∆f −
(32)

j
1

2
∆ω3∆fHD2

n:n−MH′H′HDn:n−M∆f

+

(33)

1

4
∆ω4∆f

H
D2

n:n−MH′H′HD2
n:n−M∆f

]

.

(57)
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Fig. 7. Experimentally computed channel average excess BERs for different TS positions.

We keep second and third-order error terms (we keep third-order terms just to see the lower-order term weneglect fort2).
Then

E∆h′,∆ω[t2] = E∆h′,∆ω

[

∆fHRz∆f + j∆ω∆fHH′H′HDn:n−M∆f

− j∆ω∆fHDn:n−MH′H′H∆f
]

.
(58)

We write the last two terms of (58) using thatDn:n−M = nIM+1 −DM as

1)

E∆h′,∆ω

[

j∆ω∆fHH′H′HDn:n−M∆f
]

= E∆h′,∆ω

[

j n∆ω∆fHH′H′H∆f
]

− E∆h′,∆ω

[

j∆ω∆fHH′H′HDM∆f
]

.
(59)

2)

E∆h′,∆ω

[

− j∆ω∆fHDn:n−MH′H′H∆f
]

= E∆h′,∆ω

[

− j n∆ω∆fHH′H′H∆f
]

+ E∆h′,∆ω

[

j∆ω∆fHDMH′H′H∆f
]

.
(60)
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Using (59)-(60) in (58) we obtain

E∆h′,∆ω[t2] = E∆h′,∆ω

[

∆fHRz∆f
]

+ E∆h′,∆ω

[

− j∆ω∆fHH′H′HDM∆f
]

+ E∆h′,∆ω

[

j∆ω∆fHDMH′H′H∆f
]

= E∆h′,∆ω

[

∆f
H
Rz∆f

]

+ 2Re
{

E∆h′,∆ω

[

j∆ω∆f
H
DMH′H′H∆f

]}

= E∆h′,∆ω

[

∆fHRz∆f
]

+O
(
M σ3

w

R5/2

)

.

(61)

3) Termt3: Using (49) we obtain

E∆h′,∆ω[t3] = 2Re
{

E∆h′,∆ω

[

fH
(( (1)

IM+1 −
(2)

j∆ωDn:n−M −
(3)

1

2
∆ω2D2

n:n−M

)
H′H′H

×
( (1)

IM+1 +
(2)

j∆ωDn:n−M −
(3)

1

2
∆ω2D2

n:n−M

)
+ σ2

wIM+1

)

∆f
]}

= 2Re
{

E∆h′,∆ω

[

fH
(

(11)

H′H′H + σ2
wIM+1

)
∆f +

(12)

j∆ωfHH′H′HDn:n−M∆f

−
(13)

1

2
∆ω2fHH′H′HD2

n:n−M∆f −
(21)

j∆ωfHDn:n−MH′H′H∆f

+

(22)

∆ω2fHDn:n−MH′H′HDn:n−M∆f +

(23)

j
1

2
∆ω3fHDn:n−MH′H′HD2

n:n−M∆f

−
(31)

1

2
∆ω2fHD2

n:n−MH′H′H∆f −
(32)

j
1

2
∆ω3fHD2

n:n−MH′H′HDn:n−M∆f

+

(33)

1

4
∆ω4fHD2

n:n−MH′H′HD2
n:n−M∆f

]}

.

(62)

We keep first and second-order error terms (we keep second-order terms just to see the lower-order term we neglect fort3).
We will write the second-order terms of (62) in detail using thatDn:n−M = nIM+1 −DM

1)

2Re
{

E∆h′,∆ω

[

j∆ωfHH′H′HDn:n−M∆f
]}

= 2Re
{

E∆h′,∆ω

[

j n∆ωfHH′H′H∆f
]}

− 2Re
{

E∆h′,∆ω

[

j∆ωfHH′H′HDM∆f
]}

.
(63)

2)

2Re
{

E∆h′,∆ω

[

− j∆ωfHDn:n−MH′H′H∆f
]}

= −2Re
{

E∆h′,∆ω

[

j n∆ωfHH′H′H∆f
]}

+ 2Re
{

E∆h′,∆ω

[

j∆ωfHDMH′H′H∆f
]}

.
(64)

Thus, using (63)-(64) in (62), and by ignoring terms of higher order, we obtain

E∆h′,∆ω[t3] = 2Re
{

E∆h′,∆ω

[

fHRz∆f
]}

− 2Re
{

E∆h′,∆ω

[

j∆ωfHH′H′HDM∆f
]}

+ 2Re
{

E∆h′,∆ω

[

j∆ωfHDMH′H′H∆f
]}

= 2Re
{

E∆h′,∆ω

[

eHd H′H∆f
]}

− 2Re
{

E∆h′,∆ω

[

j∆ωfHH′H′HDM∆f
]}

+ 2Re
{

E∆h′,∆ω

[

j∆ωfHDMH′H′H∆f
]}

= 2Re
{

E∆h′,∆ω

[

eHd H′H∆f
]}

+O
(
M σ2

w

R3

)

(65)

where we have used thatf = R−1
z H′ed.
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4) Termt4: Using (50) we obtain

E∆h′,∆ω[t4] ≈ −2Re
{

E∆h′,∆ω

[

ej∆ωξfHΓn:n−M (−∆ω)H′ed

]}

= −2Re
{

E∆h′,∆ω

[

fHΓ′
n:n−M (−∆ω)H′ed

]}

= −2Re
{

fHH′ed

}

+ 2Re
{

E∆h′,∆ω

[

j∆ωfHD′
n:n−MH′ed

]}

+Re
{

E∆h′,∆ω

[

∆ω2fHD′2
n:n−MH′ed

]}

.

(66)

Using thatE∆ω[∆ω] = 0, we get

E∆h′,∆ω[t4] ≈ −2Re
{

fHH′ed

}

+Re
{

E∆h′,∆ω

[

∆ω2fHD′2
n:n−MH′ed

]}

. (67)

5) Termt5: Using (50) we obtain

E∆h′,∆ω[t5] ≈ −2Re
{

E∆h′,∆ω

[

ej∆ωξ∆fHΓn:n−M (−∆ω)H′ed

]}

= −2Re
{

E∆h′,∆ω

[

∆fHΓ′
n:n−M (−∆ω)H′ed

]}

= −2Re
{

E∆h′,∆ω

[

∆fHH′ed

]}

+ 2Re
{

E∆h′,∆ω

[

j∆ω∆fHD′
n:n−MH′ed

]}

+Re
{

E∆h′,∆ω

[

∆ω2∆fHD′2
n:n−MH′ed

]}

= −2Re
{

E∆h′,∆ω

[

∆fHH′ed

]}

+O
(
n2 σ3

w

R7/2

)

.

(68)

From the definition of the EMSE and using (56), (61), (65), (67) and (68) we get

EMSEn(f̂ , ω̂) = E∆h′,∆ω

[

∆fHRz∆f +∆ω2Re{fHD′2
n:n−MH′ed}

+ 2Re{j∆ω∆fHD′
n:n−MH′ed}

]

+O
(
n2 σ3

w

R7/2

)

+O
(
M2 σ2

w

R3

)

.
(69)

In the sequel, we ignore theOp(·) terms. Then

EMSEn(f̂ , ω̂) = E∆h′,∆ω

[

∆fHRz∆f +∆ω2Re{fHD′2
n:n−MH′ed}

+ 2Re{j∆ω∆fHD′
n:n−MH′ed}

]

.
(70)

The three terms of (70) are computed as follows

T1
△
= E∆h′,∆ω

[
∆f

H
Rz∆f

]

(27)
= E∆h′,∆ω

[(
∆h′HRT +∆h′TGH

)
R−1

z

(
R∗∆h′ +G∆h′∗

)]

(10),(11)
= tr

(

R−1
z

(
R∗Ψ′RT +GΨ′∗GH +GΨ′∗

t R
T +R∗Ψ′

tG
H
))

.

T2(n)
△
= E∆h′,∆ω

[
∆ω2Re{fHD′2

n:n−MH′ed}
]

= σ2
∆ωRe{fHD′2

n:n−MH′ed}.
T3(n)

△
= E∆h′,∆ω

[
2Re{j∆ω∆fHD′

n:n−MH′ed}
]

(27)
= 2Re

{
E∆h′,∆ω

[
j∆ω

(
∆h′HRT +∆h′TGH

)
R−1

z D′
n:n−MH′ed

]}

= 2σ2
∆ω Re

{
h′HAHK′A(AHA)−1RTR−1

z D′
n:n−MH′ed

− h′TATK′A∗(AHA)−TGHR−1
z D′

n:n−MH′ed
}
.

Proposition 1 is proved. �

B. Components ofΨ′

If the covariance matrix of the training sequence isR, then [8, Appendix A]

1

R
AHA = R+O

(
1

R

)

(71)
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and
1
R2

2

AHDR−1A = R+O
(
1

R

)

. (72)

If R is invertible, then, using the first-order expansion

(A+∆A)−1 = A−1 −A−1∆AA−1 +O(‖∆A‖2). (73)

we obtain
(
AHA

)−1
=

1

R
R−1 +O

(
1

R2

)

R−2. (74)

Furthermore,

AHK′A = AH

(

−DR−1 +

(
R

2
− 1

)

IR

)

A

= −AHDR−1A+

(
R

2
− 1

)

AHA

= −R2

2
R−O(R) +

(
R

2
− 1

)

(RR+O(1))

= O(R). (75)

Then

AHK′A
(
AHA

)−1
= O(R)

(
1

R
R−1 +O

(
1

R2

)

R−2

)

= O(1)R−1 +O
(
1

R

)

R−2

= O(1). (76)

Using (76) and (90) it is easy to see that the second term ofΨ′ is O
(

σ2
w

R3

)

, while, using (74) we obtain that the first term of

Ψ′ is O
(

σ2
w

R

)

. Thus, if the covariance of the training sequence is invertible (and not very ill-conditioned), then the first term

of Ψ′ is much larger than the second.

C. Proof of Proposition 2

1) TermT1: From (34) and the definition ofG (below (28)), we obtain

T1 ≈ tr
(
Ψ′∗GHR−1

z G
)
= tr

(

Ψ′∗F∗H′HR−1
z H′FT

)

.

Using the facts (i)A ≥ B implies thatA−1 ≤ B−1 [6, p. 471] and (ii)PR(H′H ) ≤ IL+M+1, we obtain

H′H
(

H′H′H + σ2
wI

)−1

H′ ≤ H′H
(

H′H′H
)−1

H′

= PH′H ≤ IM+L+1.
(77)

Using (77) andtr
(
ABAH

)
≤ λmax (B) tr

(
AAH

)
[7, p. 44], we obtain (recall the definition ofRz in (19))

T1 ≈ tr
(

Ψ′∗F∗H′HR−1
z H′FT

)

/ tr
(
Ψ′∗F∗FT

)
≤ λmax (Ψ

′) tr
(
F∗FT

)

= λmax (Ψ
′) ‖F‖2F = λmax (Ψ

′) (L+ 1)‖f‖22.
(78)

Using asymptotic arguments, we proved in the Appendix B that, if AHA is invertible (and not very ill-conditioned), then the
first term ofΨ′ is much larger than the second. Thus,λmax (Ψ

′) ≈ σ2
w/λmin(A

HA) and

T1 /
(L+ 1)‖f‖22 σ2

w

λmin(AHA)
. (79)

2) TermT2: TermRe{fHH′ed} is the(d+ 1)-st coefficient of the combined (channel-equalizer) impulse response. Using
the definition off in (19) and expression (77), it can be shown thatRe{fHH′ed} is always smaller than 1, and, under the
small MMSE assumption, it is very close to 1. Thus,T21 ≈ C. On the other hand, using the definition off in (19), the
submultiplicative property of the matrix norms, and the singular value decomposition (SVD) ofH′, it can be shown that
T23 = 2Re{fHD2

MH′ed} ≤ 2M2k2(H
′). If N is sufficiently large with respect toM andH′ is not very ill-conditioned, then

T21 ≫ T23 and
T2 ≃ Cσ2

∆ω. (80)
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3) TermT3: In order to simplify termT3 we first prove the following two lemmas.
Lemma 1: Using the SVD ofA, it can be shown that

‖ATK′A∗(AHA)−T ‖2 ≤ σmax(A)

σmin(A)
‖K′‖2 =

R

2
k2(A). (81)

Proof: Using the singular value decomposition (SVD), matrixA can be written as

A = UΣVH (82)

whereU andV are unitary matrices with dimensions(Ntr − L)× (Ntr − L) and(L+ 1)× (L+ 1) respectively, whileΣ is
the (Ntr − L)× (L + 1) matrix with the singular values ofA in its diagonal, and all the off the diagonal elements equal to
zero. Using (82) we obtain

(
AHA

)−T
= V∗Σ1V

T (83)

whereΣ1 =
(
ΣHΣ

)−1
= diag

(
σ−2
1 (A), . . . , σ−2

L+1(A)
)
. Thus, in order to prove (81) we use the submultiplicative property

of the matrix norms and expressions (82) and (83) to get

‖ATK′A∗(AHA)−T ‖2 = ‖V∗ΣTUTK′U∗Σ∗Σ1V
T ‖2

≤ ‖V∗‖2‖ΣT‖2‖UT ‖2‖K′‖2‖U∗‖2‖Σ∗Σ1‖2‖VT ‖2

= σmax(A)‖K′‖2
1

σmin(A)
=

σmax(A)

σmin(A)
‖K′‖2 =

R

2
k2(A)

(84)

where for the last equality we used the definition of matrixK′ and the condition number with respect to the spectral norm.�
Lemma 2: Using the SVD ofH′, it can be shown that

‖GHR−1
z DMH′ed‖2 ≤ ‖F‖2

σmax(H
′)

σmin(H′)
M = M ‖F‖2k2(H′). (85)

Proof: We first write the SVD of matrixH′ as
H′ = U1ΛVH

1 (86)

whereU1 andV1 are unitary matrices with dimensions(M + 1)× (M + 1) and (M + L+ 1)× (M + L+ 1) respectively,
while Λ is the (M + 1) × (M + L + 1) matrix with the singular values ofH′ in its diagonal, and all the off the diagonal
elements equal to zero. Using (86) and the definition ofRz we obtain

R−1
z = U1Λ1U

H
1 (87)

whereΛ1 = diag
(

1
σ2
1
(H′)+σ2

w

, . . . , 1
σ2
M+1

(H′)+σ2
w

)

.

Using (86), (87) and thatG = H′FT we obtain

‖GHR−1
z DMH′ed‖2 = ‖F∗V1Λ

HΛ1U
H
1 DMU1ΛVH

1 ed‖2
(∗)

≤ ‖F‖2
1

σmin(H′)
Mσmax(H

′)

= ‖F‖2
σmax(H

′)

σmin(H′)
M = M ‖F‖2k2(H′)

(88)

where at point (*) we have used thatΛHΛ1 = diag
(

σ1(H
′)

σ2
1
(H′)+σ2

w

, . . . , σM+1(H
′)

σ2
M+1

(H′)+σ2
w

)

≤ diag
(

σ1(H
′)

σ2
1
(H′)

, . . . , σM+1(H
′)

σ2
M+1

(H′)

)

=

diag
(

1
σ1(H′) , . . . ,

1
σM+1(H′)

)

. Thus,‖ΛHΛ1‖2 ≤ 1
σmin(H′) . �

Thus, using (81) and (85)
T3 ≤ (MR ‖F‖2k2(A)k2(H

′)) σ2
∆ω. (89)

4) Comparison ofT2 andT3: If N is sufficiently large andA andH′ are not very ill-conditioned, then, from (80) (recall
that C = O(N2)) and (89), we conclude thatT2 ≫ T3.
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5) Comparison ofT1 andT2: Using [8, eq. (10)], we can derive the following asymptotic expression

σ2
∆ω ≈ 6 σ2

w

R2 hHAHAh
. (90)

Thus

T2 ≈ 6 C σ2
w

R2hHAHAh
. (91)

Using (79) and (91), we derive the following approximate bound

T1

T2
/

(L+ 1)R2 ‖f‖22 hHAHAh

6 C λmin(AHA)

≤ (L+ 1)R2‖f‖22λmax(A
HA)‖h‖22

6 C λmin(AHA)

= k2(A
HA)(L + 1)‖f‖22 ‖h‖22 α

(92)

where

α
△
=

R2

6 C = O
(
R2

N2

)

. (93)

Thus, if α is sufficiently small, i.e.,R is sufficiently small with respect toN (recall thatR = Ntr − L), andA is not very
ill-conditioned, then termT2 ≫ T1. Thus,T2 is much larger thanT1 andT3. Proposition 2 is proved using (80).

D. Value ofn1

We remind the definition ofξ

ξ
△
= n1 +

Ntr + L

2
.

We found that
ξ = C2.

We remind

1 + 2 + · · ·+ n =
n(n+ 1)

2
(94)

n1 + · · ·+ n2 = (1 + · · ·+ n2)− (1 + · · ·+ (n1 − 1))

=
n2(n2 + 1)

2
− (n1 − 1)n

2

=
n2
2 − n2

1 + n2 + n1

2

=
(n2 + n1)(n2 − n1 + 1)

2

=
(n2 + n1)Ntr

2
.

(95)

We computeC2 as follows

C2 =
1

|D|
∑

n∈D

n =
1

N −Ntr
X (96)

where

X =
(

(d+ 1) + · · ·+ (d+ n1 − 1)

+ (d+ n2 + 1) + · · ·+ (d+N)
)

=
(

(1 + · · ·+ (d+N))− (1 + · · ·+ d)

− [(d+ n1) + · · ·+ (d+ n2)]
)

=
(N + d)(N + d+ 1)

2
− d(d+ 1)

2

−Ntrd−
(n2 + n1)Ntr

2

=
N2 + 2dN +N − 2dNtr

2
− (n2 + n1)Ntr

2
.

(97)
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If we solve the equation

n1 +
Ntr + L

2
= C2 (98)

we obtain

n1 =
1

2N

(

N2 + 2dN +N − 2dNtr +Ntr − LN + LNtr −NNtr

)

≈ N −Ntr

2
+ d− L

2
.

(99)
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