
A Novel Low-power Embedded Object Recognition System
working at multi-frames per second

ANTONIS NIKITAKIS, Technical University of Crete

SAVVAS PAPAIOANNOU, Technical University of Crete

IOANNIS PAPAEFSTATHIOU, Technical University of Crete

One very important challenge in the field of multimedia is the implementation of fast and detailed Object Detection and

Recognition systems. In particular, in the current state-of-the-art mobile multimedia systems, it is highly desirable to detect

and locate certain objects within a video frame in real time. Although a significant number of Object Detection and
Recognition schemes have been developed and implemented, triggering very accurate results, the vast majority of them

cannot be applied in state-of-the-art mobile multimedia devices; this is mainly due to the fact that they are highly complex

schemes that require a significant amount of processing power, while they are also time consuming and very power hungry.
In this paper, we present a novel FPGA-based embedded implementation of a very efficient object recognition algorithm

called Receptive Field Cooccurrence Histograms Algorithm (RFCH). Our main focus was to increase its performance so as

to be able to handle the object recognition task of today’s highly sophisticated embedded multimedia systems while
keeping its energy consumption at very low levels. Our low-power embedded reconfigurable system is at least 15 times

faster than the software implementation on a low-voltage high-end CPU, while consuming at least 60 times less energy.

Our novel system is also 88 times more energy efficient than the recently introduced low-power multi-core Intel devices
which are optimized for embedded systems. This is, to the best of our knowledge, the first system presented that can

execute the complete complex object recognition task at a multi frame per second rate while consuming minimal amounts

of energy, making it an ideal candidate for future embedded multimedia systems.

Categories and Subject Descriptors: C.3 SPECIAL-PURPOSE AND APPLICATION-BASED SYSTEMS, I.4 IMAGE

PROCESSING AND COMPUTER VISION, I.5.1 PATTERN RECOGNITION Applications – Computer Vision

Additional Key Words and Phrases: Multimedia, Embedded design, Computer Vision, Object Detection, Performance,
FPGAs

1. INTRODUCTION

Multimedia is a technology which has been enjoying considerable attention for many years.

Multimedia involves the use of multiple forms of media such as audio, images and video in an

integrated manner. A computer user interacts in a daily basis with a huge amount of multimedia

data mostly through the internet. Multimedia usually carries useful but raw and unsorted

information. It is an emerging need for the user to be able to search in a content base through

multimedia content such as images and video. For this reason object recognition gives today

multimedia applications new potentials that enable the previously poorly sorted media data to be

classified and unified with the rest of today information.

In the Content-based image retrieval applications we try to find all images in a larger set of images

which have a specific content. The content can be specified for example in terms of similarity

relative a target image (e.g find all images similar to image X or find all images showing the

specific object depicted in image X).

Google recently introduced image search based on content as well as the Google’s Goggles

android application which enables the user to search real world objects by taking a picture. In a

desktop environment already Apple’s iPhoto and Google’s Picasa featuring face detection and

recognition technology in order to classify user’s photos according to the persons depicted in the

photo.

By extending the above object recognition approaches we are also now able to search objects or

persons in large video streams; this is called Content based Video Retrieval and it is a very

important application for numerous future multimedia systems. This problem can also be defined

as a generalized Video Mining problem where we are trying to discover patterns and objects, in an

unsupervised way, within video streams. In such video streams the amount of data that has to be

analyzed can be tremendous; this is the case for example for YouTube or for all the TV broadcast

networks. In general, the classification of thousands of video hours is impossible to be done in a

supervised way and even in an unsupervised way the processing time is a crucial factor. Moreover,

such a classification is also needed in state-of-the-art mobile multimedia systems which can

39

display and store several Gigabytes of high-quality video; in such systems low energy

consumption is also crucial.

Moving to the game industry we recently met alternative input systems based around a webcam-

style peripheral such as the Microsoft Kinect [XBOX]. Kinect enables users, by recognizing their

gestures (i.e. performing certain object recognition tasks), to control and interact with the Xbox

360 game console without the need to touch a game controller. Such gesture recognition systems

are also being introduced in different embedded multimedia systems including interactive shop

windows, portable game consoles and smart TVs.

The critical factors in all those discrete yet interrelated applications are the accuracy of the system

and well as its response time. Moreover, since in many cases those object recognition systems are

utilized in mobile environments the energy consumption is also a critical issue. The object

recognition problem itself is a complex and computational intensive task for today

microprocessors no matter if they are power-hungry desktop CPUs or low-power embedded ones.

This complexity further increases since totally or slightly different objects can appear anywhere in

the image (in different light conditions) and the system should also report where those objects are

(i.e. localize them). As a result, even when executed on high-end mobile CPUs, such applications

cannot be performed at multi-frame per second rates, whereas when optimized for speed they

typically give only target specific responses (i.e. a car found in coordinates x,y) .

This paper presents a complete generalized object detection system implemented on a

reconfigurable device that can execute a very efficient such algorithm at a rate of more than one

frame per second while consuming about 60 times less energy than a low-power CPU executing

the exact same algorithm.

We clearly demonstrate that such a complex task can, probably for the first time, be addressed by

a single chip solution running on minimal power; this is achieved by exploiting the heterogeneity

of custom hardware and a low power embedded CPU. We present such a single chip prototype in

this paper while our ideal target single-chip platform is the already announced by Xilinx Zynq-

7000 single chip device featuring a dual-core ARM CPU and FPGA reconfigurable logic in the

same silicon [DS190].

Moreover, due to the programmability features of the FPGAs, the system can support the

requested object recognition tasks only when needed; based on the multimedia applications’

requirements, at any given time, this same FPGA can also perform other similar tasks that are

executed efficiently on reconfigurable devices such as 3D image reconstruction

[HADJITHEOPHANOUS et al. 2010] or face detection [CHANGJIAN et al. 2008] also met in

various embedded multimedia applications.

2. RELATED WORK

Even though no complete low-power multi-frame per second object recognition system exists,

there are several FPGA-based systems implementing certain face recognition algorithms as well as

some hardware systems executing specific sub-parts of the object recognition algorithms that are

related, in a certain manner, to our work.

In [CHANGJIAN et al. 2008] the authors present a novel approach, utilizing a state-of-the-art

FPGA, so as to accelerate the Haar-classifier face detection algorithm. By utilizing a large number

of parallel arithmetic units in the FPGA they achieved real-time performance, with very high

detection rates and very low false positives. Their implementation is tailored to a HiTech Global

PCIe card that contains a Xilinx XC5VLX110T FPGA device. Moreover in [KYRKOU et al. 2010]

another Haar-based face detection scheme is described which outperforms all the existing such

schemes implemented in FPGAs. However, all those systems are optimized for face-detection and

cannot be efficiently applied to general object-recognition.

The authors in [WENHAO et al. 2008] proposed a novel self-adaptive Canny edge detection

scheme while they also present an FPGA implementation optimized for mobile robotic systems.

Their system utilizes an Altera Cyclone EP1C60240C8 and can detect the edges of a certain, pre-

defined, object on a grey-scale image at an analysis of 360x280 in 2.5ms (or in other words at a

speed of 400 frames per second). In [GENTSOS et al. 2010] the authors present another

implementation of the Canny edge detector that processes 4-pixels in parallel; this approach

increases the throughput of the design without increasing the required on-chip cache memories. By

increasing the parallelism of their scheme their can processes high resolution images (up to

1.2Mpixels) in 3.09ms (i.e. at about 300 frames per second) when their scheme is implemented on

a Xilinx Spartan-6 FPGA clocked at 200MHz. However, their system implements only the edge

detection task while the rest of the object recognition process is not supported or even discussed.

In [DEEPAYAN et al. 2006] a hardware implementation of an object classification system based

on moment invariants and Kohonen neural networks is presented capable to classify objects in

real-time. The authors implemented the classification phase in hardware while leaving the training

of the Kohonen network into software; in particular the computation of the moment invariants has

been implemented in hardware along with a set of sixteen parallel Kohonen neurons for the

classification of an unknown object, demonstrating a possible real-time solution for object

classification; unfortunately no specific performance numbers are given.

In [VINOD et al. 2005] the authors present an FPGA-Based People Detection System. They use

JPEG-compressed frames from a network camera which after pre-processing (i.e. feature

extraction), are sent to a machine-learning detector, implemented on a Virtex-II 2V1000; the

FPGA executes the actual detection process. The system is demonstrated on an automated video

surveillance application detecting people accurately at a rate of about 2.5 frames per second when

clocked at 75 MHz.

In [GOSHORN et al. 2010] the authors present an object detection system that can detect a single

object at a rate of 266 frames per second. However, they did not present any data about its

accuracy and since they use a very poor correlation method based on the sum of absolute

differences (SAD), the accuracy of their system is heavily questioned; moreover, their device can

detect only a pre-defined single object in a single scene while they only roughly localize it (i.e.

localize only the center of the object and they do not report any bounding box).

Finally in [SHOTTON et al. 2011] the authors propose a new method to predict 3D positions of

body joints from a single depth image at up to 200fps on consumer hardware. However they use a

depth camera such as Microsoft Kinect [XBOX] which consists of an infrared laser projector

combined with a monochrome CMOS sensor. They also don’t generalize their method to other

object detection tasks that may be useful in multimedia systems.

When compared with all those existing systems our approach has certain significant advantages

such as:

1) It is the only one supporting the complete general, multi-object recognition and

localization task at more than one frame per second.

2) This is, to the best of our knowledge, the only embedded system that has been

specifically designed so as, not only to be real-time, but also to consume as less energy as possible,

in order to address the needs of today’s embedded multimedia devices.

3) It is the only system that can work simultaneously on multiple features (i.e. 7 features)

which significantly increase the robustness of the system while still supporting a multi frame per

second rate in real-world environments.

4) Even when compared with the different face detection systems, it is the only one

performing efficiently in hardware the on-line training phase utilizing only a single training

sample per object; the Haar-based systems need hundreds of training samples per object and thus

they do the training off-line which severally limits their efficiency.

5) The algorithm utilized is probably one of the most accurate generalized object

recognition algorithms presented so far as described in [EKVALL et al. 2005].

Based on the above, we believe that this is the first system addressing all the needs of the real-time

embedded multimedia devices, recently introduced, that involve complex object recognition tasks.

The rest of the paper is organized as follows: Section 3 presents the algorithm that has been

implemented while Section 4 demonstrates how we ended up with the optimal hardware/software

partioning for our final embedded system. Section 5 presents, in detail, the high-level as well as

the micro-architecture of the system while it also highlights how the complete embedded device

has been verified. In Section 6 we reveal the silicon cost of the embedded system whereas in

Section 7 we demonstrate the real-world performance results of the end-device. Finally, Section 8

discusses the limitations of the current system as well as some direction for future work and

Section 9 concludes our paper.

3. RECEPTIVE FIELD COOCCURRENCE HISTOGRAM FOR OBJECT DETECTION

A Receptive Field Histogram is a statistical representation of the occurrence of several descriptor

responses within an image. Examples of such image descriptors are color intensity, gradient

magnitude and Laplace response. If only color descriptors are taken into account, the histograms

produced are called regular color histograms.

A Receptive Field Cooccurrence Histogram (RFCH) is able to capture most of the geometric

properties of an object. Instead of just counting the descriptor responses for each pixel, the

histogram is built from pairs of descriptor responses. The pixel pairs can be constrained based on,

for example, their relative distance. In this way only pixel pairs located within a maximum certain

distance, dmax, are considered. Thus, the histogram represents not only how common a certain

descriptor response is in the image but also how often certain combinations of descriptor

responses occur close to each other. In other words, an RFCH is a representation of how often

pairs of certain filter responses and colors lie close to each other in the image. This results in a

representation of the image in which most of the geometric information is preserved thus allowing

for more accurate object recognition. Figure 1 below presents the concept of the cooccurrence

histogram, of a 3bit (8-color) greyscale image, where we search for co-occurrences from left to

right with dmax = 1.

3.1 Receptive Field Cooccurrence Histogram for Object Detection

One of the main advantages of this algorithm is that it can work with numerous different types of

image descriptors such as Color, Gradient magnitude, Laplacian, Gabor as well as any mixture of

them. As it is has been proved in [EKVALL et al. 2005] for object recognition the optimal choice

is to utilize rotationally invariant image descriptors such as Color, Gradient magnitude and

Laplacian descriptors and the actual choice can depend, among others, on the image characteristics.

Figure 1: High level view of algorithm

3.2 Image Quantization

When utilizing histograms in the recognition process, the computational complexity of the

algorithm increases exponentially with the dimensions of the histogram. In order to alleviate this

problem the algorithm firstly clusters the input data, so as to reduce the histogram dimensions.

Hence, by altering the number of clusters the histogram size may be controlled. The cluster centers

(N) have a dimensionality equal to the number of image descriptors used. The adopted algorithm

is using the K-Means clustering algorithm [MACQUEEN et al. 1967] for the dimension reduction.

In particular, after quantization, each object ends up with its own cluster scheme which is used

together with the RFCH which has been calculated on the quantized training image. When

searching for a certain object in a scene, the whole image is quantized with the cluster scheme that

has been applied in the quantization of this search object.

3.3 RFCH-based object detection

After the clustering step, the algorithm creates the object's cooccurrence histograms in the

clustered descriptor space. In the testing phase the image is scanned using a small search window

and the RFCH of the window is calculated at any given instance. In each scan the RFCH of the

window is compared with the object's RFCH.

The similarity between two normalized RFCHs is computed as the histogram intersection:

where hi[n] denotes the frequency of receptive field combinations in each discrete interval (bin) n

for image i, when quantized into N cluster centers. The higher the value of the the better

the match between the histograms, and as a result, the better the match between the search object

and this specific part of the image.

As a summary the algorithm works in two phases and performs the following steps in order to

detect a certain object in an image:

Training Phase:

 Extract Features from the Object

 Calculate Feature Clusters

 Quantize Object

 Create object's RFCH

Detection Phase:

 Quantize image with Object's cluster scheme

 Calculate the RFCH for a small image window (for all possible image windows)

 Match Object and Image RFCH with histogram intersection (for all windows)

 Report the best match

4. HARDWARE/SOFTWARE PARTIONING

In order to create an efficient embedded system, we first analyzed the RFCH application so as to

be able to perform the optimal hardware software partioning. In order to profile the software

implementation of the algorithm we have used Intel's VTune Amplifier XE 2011 [VTUNE]. The

profiling was performed on an Intel SU7300 Dual Core ULV CPU working at 1.3GHz since this is

a low-power CPU found in embedded multimedia systems (as for example [MS-9A35]). The

same profiling results were also produced when executing the same code on an ARM placed in a

Gumstix device [GUMSTIX]. All of our experiments were conducted using the original optimized

software provided by the inventors of the underlying algorithm [EKVALL et al. 2005] along with

images from the most widely used Image Database, the CVAP Object Detection Image Database

[CVAP], which we have rescaled to 640x480.

After running various tests combining different scenes and objects we concluded that, functions

CalculateClusters(), ClusterFeatures() and CalculateRFCH() are taking 97.8% in average (and at

least 96%) of the total execution time. By making the above 3 functions faster, we can

significantly improve the performance of the overall algorithm; according to Amdahl's Law the

maximum theoretical speedup in that case is 45x. We have also analyzed the interconnection

needed if those functions are implemented in hardware and the rest of the functions for Feature

Extraction (i.e. Create Image Gauss, Create BW Image etc) and Histogram Intersection (i.e.

MatchRFCHs) are executed in the CPU and found it to be minimal as described in the next section.

In particular, even though CalculateRFCH takes only 8% of the total time we implemented it in

hardware so as to minimize the data transactions between our hardware modules and the

embedded CPU.

Another important reason for implementing the Feature Extraction as well as the Histogram

Intersection Algorithms in software is that it allows us to easily change those parts of the

algorithm depending on the image characteristics (e.g. change the actual descriptor used) thus

heavily increasing the applicability as well as the accuracy of the end system. Before we have

actually implemented those functions in hardware, and in order to be able to fully dimension the

problem, we have also measured the computational complexity of those 3 functions.

CalculateClusters: This function implements an iterative version of the K-Means algorithm, and

it has been identified as the major hot-spot during the profiling procedure. The computational

complexity of the above algorithm is O(nfNT) where n is the number of samples, f is the number

of features, N is the number of clusters and T is the number of iterations until convergence.

ClusterFeatures: This function is responsible for the quantization of the image according to the

pre-calculated cluster centers. The function has a complexity of O(nfN). The function takes as

input the Feature Array and the Cluster Point Array and produces the Binned Image Array.

CalculateRFCH: The complexity of this function is approximately O(nd
2
), where n is the Image

Size and d is the maximum distance (dmax).

5. SYSTEM ARCHITECTURE

Moving to the implementation of the previously identified hot-spots of the presented scheme, we

have decided to use a Xilinx Virtex-6 FPGA, which resides on the ML605 Xilinx Evaluation

Board [UG534]. Those designs have been implemented manually in VHDL and we have

synthesized, mapped, placed and routed them using Xilinx ISE 13.3.

The main concept of our approach is that the three HW accelerated functions are placed one next

to the other in such a way so as to minimize the data being sent from and to the CPU executing the

rest of the functions in software. By adopting this approach we don’t need to have 3 independent

data transactions to the reconfigurable fabric which will trigger a significant communication

overhead. In the proposed architecture, demonstrated in Figure 2 we transfer data from the CPU to

the FPGA practically only when loading the Feature memory; then our hardware modules process

those data until the complete image slice is fully processed. The loading time for the feature

memory is very low and up to about 0.05msec for the 640 x 480 images (for a typical 100MHz

bus as in [PCI BUS]) while the software processing does not need more than 1msec at any

experiment conducted. Moreover, as it is demonstrated in the next section, we have utilized a

double buffering scheme in order to pipeline the loading and software processing time of the

different slices of every image with the actual hardware processing of them. The write back time is

negligible as the only thing we need to transfer is the RFCH result which is a 80x80x11 bits datum

and this is only needed once for each complete image. Figure 2 also demonstrates the data flow

through the implemented modules.

Calculate
RFCH

Cluster
Features

Calculate
Clusters

Feature
memory

Data
Bus

RFCH
result

Write back time

I/O time Computation time

Data

Data

Data Data

CPU

Data

RFCH
Software
Functions

Figure 2: High Level Architecture

5.1 Calculate Clusters Module

The CalculateClusters function is responsible for the clustering of the features array, and it mainly

implements an iterative version of the K-Means algorithm. It is applied during the training phase

of the algorithm and it works in 3 distinct phases: Phase 1 and 2 perform the actual calculations

while phase 3 updates the cluster centers. The overall micro-architecture of this module is

demonstrated in Figure 3. Processing Unit A (PUA) is calculating the cluster centers and it utilizes

16 cores. Each core can perform the necessary processing on a small image slice of size 640 x 2

(which consists actually of 2 lines of the feature image). The whole feature image (640x480 x7

features-8bit) is pre-segmented by the software and it is sent in slices (i.e. 32 lines per processing

cycle) to the hardware module. As a result the Feature Array/Memory utilized in each core is 640

x 2 x 7 bytes, and with the proposed configuration, each module can process 16 feature image

blocks (640 x 2 x 7) simultaneously. In each processing core we have to execute a critical

multiply-and-accumulate (MAC) operation; in order to speed up this function we have utilized a

pipelined Digital Signal Processor (DSP) built-in core, found in those Xilinx Virtex6 devices.

When the processing is completed, Processing Unit B (PUB) sums all the intermediate results

produced by the 16 cores. When the sum is fully calculated, PUB triggers Processing Unit C

which is responsible for updating the cluster centers as well as the clusterPoint array; the latter is

also split into 16 slices. The clusterPoint array holds the calculated clusters information needed for

the clusterFeatures module as it is described in the next paragraph.

Figure 3: Calculate Cluster HW implementation

5.2 Cluster Features Module

This module implements the image quantization task and it also utilizes 16 parallel cores. The

inputs of this module are a) the feature array and b) the clusterPoint array calculated from the

CalculateClusters module. Concerning how the data are decomposed and processed in parallel the

exact same technique with the one described in the last section is applied.

In particular, we used images of sizes 640 x 480 and utilized 7 distinct features. This means that

our feature array is equal to 640x480x7(x8bits) = 2.15 Mbytes which cannot fit in the on-chip

RAM. In order to be able to load the feature array on-chip, while also processing a sub-part of it,

we have split it in 15 slices; in this way we load a certain slice to the FPGA while simultaneously

we process the previous slide. Those 15 slices are of size 2.15/15 = 0.13 MB each. In that way in

order to process the whole feature array, we have to process 15 slices.

Then we split further the on-chip slice into 16 blocks with size (640x480x7)/240 = 8.75 KB each

and then we pass each block to a distinct processing core (i.e we utilize all 16 parallel processing

cores in order to process one slice). The above procedure is depicted in Figure 4.

The high level architecture of the cluster feature module is demonstrated in Figure 5. Each slice of

the feature image array (640 x 32 x 7) is fitted in 16 distinct feature Memories (RAMs). Each

Feature RAM can hold a block equal to 640 x 2 x 7 (using 8-bit color). The clusterPoint array of

size 7 x 80 is initially loaded into the 16 distinct clusterPoint RAMs each of size 7 x 80x 8 bits.

The actual processing comprises of each core quantizing an image block of 640 x 2 pixels (i.e 2

lines) as follows: The first core quantizes the image pixels 0 to 1279, the second core quantize the

pixels 1280 to 2559 and so on. Again we process each image block simultaneously thus fully

utilizing the 16 distinct processing cores. Each core also has a dedicated BRAM for storing the

results. This BRAM is the binnedImage memory with a total size of 640 x 2 x 8 bits. Each core

performs the same MAC operation, as in the CalculateClusters case, so we also utilize here a fully

pipelined built-in DSP core; in total we need 16 DSP slices to support this module.

Figure 4: Feature Array decomposition

When all the cores have completed the corresponding processing, an image slice has been fully

quantized and the results reside in the 16 binnedImage RAMs. The control unit for the

ClusterFeatures module is quite simple. It just monitors when all the cores have finished their

processing and then it loads the next block.

Figure 5: Cluster Features module

5.3 Calculate RFCH Module

This module calculates the required receptive fields’ cooccurrence histograms. The overall

architecture of the module is presented in Figure 6. The module utilizes 8 processing cores as it is

less demanding, in terms of processing time, than the other two modules.

The RFCH is calculated based on the BinnedImage data. The binnedImage array is of size 640 x

480 and, as we presented in the last section, it is the quantized version of the image. In order to

calculate the RFCH for each binnedImage slice of size 640 x 32 we need to process the data

coming from two continuous blocks; the additional block/slice is needed since we need 4 extra

lines in order to serve the dmax=4 condition (i.e. each core should look up to 4 lines ahead thus

utilizing the data of the next slice). The last block of the current slice is paired with the first block

of the next slice in order to keep the dmax condition valid between image slices. The above

procedure is shown in the Figure 7.

binnedImage

slice

RFCH

partial

8 RFCH Cores

1 ... 16
binnedImage

slice

1 ... 8
RFCH

partial

+

RFCH result

control

Figure 6: Calculate RFCH module organization

Each of the eight cores calculates the cooccurrences of a binnedImage block of size 640x4. This

means that the 8 cores together can calculate the cooccurrences of a binnedImage slice equal to

640x32. As previously mentioned, in the current version of the system, the cooccurrenses are

calculated based on a specific value of dmax (dmax = 4) which gives very high accuracy as

described in [EKVALL et al. 2005]. If, for any reason, we decide to use a larger value for dmax,

we will have to utilize more memory since the RAM blocks needed, in the presented architecture,

are equal to 2dmax. Each processing core maintains a dedicated memory block for its output in

which a partial RFCH is stored; the required memory size is 80x80 x 11 bits. In order to calculate

the RFCH of the whole binnedImage of size 640 x 480 we have to process 15 binnedImage slices

of 640x32 each and update the corresponding memories. After we process all the slices we store

the results in the corresponding 8 RFCH memories; then those stored results are summed in order

to form the final RFCH for the image and this is the end-result sent to the CPU for further

processing.

Lines 0-3 + 4-7

640

Lines 4-7 + 8-11

Lines 8-11 + 12-15

Lines 12-15 + 16-19

...

Lines 28-31 + 32-35

Binned Image slice

decomposition

640x32 (slice1)

640x4 (1st block fo slice 2

640

640x32 (slice 32)

480 ...

64

Binned Image

core 1 core 2 core 3 core 4

core 5 core 6 core 7 core 8

Figure 7: Binned Image Array Decomposition

The control of this module is quite complicated since it contains various termination criteria and

jump conditions involved in the cooccurrence histogram computation. In particular it is

implemented as a 14-state Finite State Machine and it has been fine-tuned in order to achieve the

maximum possible clock rate.

5.4 Verification of the complete System

In order to verify the correct functionality of our approach and mainly the feasibility of our

complete system being implemented in a single chip, we integrated all the hardware modules as

well as the software code in an embedded design platform based on a Virtex 6 FPGA board

[UG534]. For this proof of concept we have selected the on-chip Xilinx Microblaze [UG081]

softcore processor for the software execution, connected to the AXI / AMBA bus. We used the

ΑΧΙ Βlock Ram Controller provided by the Xilinx EDK 13.3 environment to make all the

necessary data transfers between the CPU and the reconfigurable modules. The controller occupies

the first port of a dual port configuration RAM leaving the second port to run on the custom-made

hardware side at a different clock domain (i.e the Frequency of the Microblaze CPU was fixed at

150 MHZ while our custom hardware works at 350MHz).

We also used the AXI IP Interface modules (IPIF) to utilize user specific software accessible

registers. In that way we were able to control and monitor the status of our custom accelerator

from the software side. In this particular platform a soft core CPU was the only choice as the

Virtex 6 family is not equipped with any hard core CPUs (like the ARM found in the already

announced Virtex-7 FPGA under the codename Zynq-7000 [DS190]). Unfortunately the

Microblaze is performing poorly when implementing the software functions and as a result it

degrades the overall performance of the system (to an overall speedup when compared with the

reference Intel CPU, of about 3.5x); thus we used it only for verification and feasibility purposes.

We also used the compact flash peripheral in order to load the test images and verify the results.

Figure shows an overview of the proof-of-concept embedded platform.

The Microblaze talks to an external DDR SDRAM in which we place images from a well known

image database [CVAP] as well as real-world multimedia data (i.e. real-world videos). The

Microblaze executes the part of the RFCH algorithm that we mapped to the CPU, when

performing the hardware/software partioning, while it additionally controls all the system’s

peripherals. In this initial single-chip approach the functions that were implemented in hardware

have been called by the corresponding software drivers independently (i.e. 3 different calls, one

for each hardware module) since that allowed for much faster and easier debugging of the

hardware cores. The RFCH controller is the hardware module supervising the interconnection

between the Microblaze and the RFCH hardware accelerator, and it is attached as an AXI slave

IPIF module. This module is basically an AXI4lite slave [DS768], which provides a bi-directional

control/status interface between the RFCH hardware accelerator and the AXI bus. After executing

the complete algorithm in the specified FPGA platform we compared the end results residing in

the DRAM with those triggered by the pure software solutions and they were identical.

Compact
Flash

RFCH HW
Accelerator

AXI
Busmicroblaze

RFCH
Software
Functions

DDR3
SODIMM

RFCH
controller

AXI4lite

slave

SysACE
Controller

AXI BRAM
Controller
AXI4 slave

Status
Registers

BLOCK RAM

Figure 8: Micro-Architecture of our proof of concept single-chip approach

It should also be stressed that in numerous current embedded devices the image size is 640 x 480.

As a result our prototype hardware implementation, as well as the performance results of the next

sections, are all based on that image size. However, our system can seamlessly (i.e. with a simple

change in a couple of control modules) process any images up to 1920 x 1080 (High Definition-

HD) pixels; and this is an analysis that will soon been incorporated even in mobile embedded

multimedia systems. The only difference will be that those HD images will consist of more slices

and therefore more time will be needed in order to process a complete such image.

6. HARDWARE IMPLEMENTATION

The following table shows the utilization of each function on both a Virtex-6 VLX75T and a

Virtex-6 VLX130T device. The total utilization of the three functions leaves room for more cores

to be implemented in both devices if needed.

Table 1 : Hardware Cost on a Virtex-6 VLX75T device

(16 Cores C.Clusters and Cluster Features, 8 cores for Calculate RFCH)

Module Slice Registers Slice LUT Block

RAM

DSP

Slices

Calculate

Clusters

26,082/93,120
28%

23,691/46560
50%

112/312
35%

17/288
5%

Cluster

Features

4,176/93,120

4%

5,840/46,560

12%

112/312

35%

16/288

5%

Calculate

RFCH

1,066/93,120
1%

3,465/46,560
7%

16/312
5%

0/288
0%

Total 31,324/93,120
33%

32,996/46,560
70%

240/312
76%

33/288
11%

As demonstrated in Table 1 by using small image slices (as described in Section 5) we minimized

the RAM usage while exploiting high levels of parallelization. The small footprint of our design,

in terms of Slice LUTs, is giving as the choice to double the cores in the current design and assign

1 image line per core with neither increasing the amount of utilized Block RAMs nor the control

complexity. The utilization for this system is demonstrated in Table 2. This approach almost

doubles the performance of our system, as the next section clearly demonstrates, while making the

LUT-to-BRAM factor very close to the LUT-to-BRAM factor of the available resources in the

middle Virtex-6 FPGAs.
Table 2 : Hardware Cost on a Virtex-6 VLX130T device

 (32 Cores C.Clusters and Cluster Features, 8 cores for Calculate RFCH)

Module Slice Registers Slice LUT Block RAM DSP Slices

Calculate

Clusters

5,4642/160,000

34%

48,121/80,000

60%

112/528

21%

32/480

6%

Cluster

Features

8,769/160,000

5%

11,986/80,000

15%

112/528

21%

32/480

6%

Calculate

RFCH

1,066/160,000

1%

3,465/80,000

4%

16/528

3%

0/480

(0%)

Total 64,477/160,000

40%

63,572/80,000

79%

240/528

45%

64/480

13%

Since our system can process different images totally independently of one another, by adding

more memory and logic resources we will trigger a further speedup and we expect that the

performance will scale linearly with the device utilization. In order to further support this case we

have placed two instances of the system described in the last paragraph to a Virtex-6 VLX240T

(the total utilization for both BRAMs and Slices was close to 95%) and since the I/O was not the

bottleneck, we managed to eventually double the supported bandwidth. As will be explained

further in the next section, even if the loading time is doubled due to the sharing of the bus

bandwidth among the two cores it is still far less than the processing time. This fact in addition

with a double buffering scheme eliminates any I/O overhead. However, since we mainly focus on

low-energy, relatively low-cost multimedia embedded applications, the performance results

demonstrated in the next sections, cover the implementations of our system on both a Virtex-6

VLX75T and a Virtex-6 VLX130T low-cost devices connected to a low-cost ARM core.

Since our aim was to implement a low-power embedded multimedia system, special care has been

taken so as to reduce the overall power consumption of our novel device. In particular, we

implemented, in each module, numerous parallel simple cores working at smaller speeds instead

of creating complex cores with large and complicated control working at higher speeds. In order to

achieve that we decomposed the actual processing, in each module, in smaller parts; special care

has been taken so to reduce the, triggered by this decomposition, overhead in terms of memory

repetition and/or memory reads/writes. The resulted reduction in the energy consumption by

adopting this technique was up to 17%.

We have also introduced the pipeline of Figure 2 so as to minimize the data moving to/from the

CPU; for example, by implementing the “Calculate RFCH” module in hardware we heavily

decreased the intercommunication needed with the CPU and that resulted to a 12% reduction in

the overall power consumption.

Additionally, with the aim of the FPGA design tools, we have placed the logic as close as possible

to the Memory Banks therefore minimizing the necessary routing while we have also hand-

designed from scratch all the processing cores (so as to eliminate any unnecessary silicon), instead

of using the ready-made IP cores provided by third parties; those techniques reduced the overall

power consumption by an additional 11%.

Moreover, we have utilized a double buffering scheme, as demonstrated in the next section, which,

together with the introduced pipeline of Figure 2, allow us to utilize all the hardware resources at

any given time. Since, certain hardware units consume power even when they are idle (i.e. do not

produce any useful results), by effectively removing any idle states we decreased the actual energy

consumed when the complete application is executed by a further 20%.

7. EVALUATION AND PERFORMANCE RESULTS

In this Section we demonstrate the performance of our FPGA-based hardware and we compare it

with the optimized single threaded software provided by the inventors of the algorithm when

executed on a state-of-the-art low power Intel SU7300 dual-core ULV CPU @ 1.3GHz; such a

CPU can typically be used in an embedded multimedia device.

The configuration of the embedded system demonstrated is as follows:

ˆ Number of Calculate Clusters cores: 16/32

ˆ Number of Cluster Features cores: 16/32

ˆ Number of Calculate RFCH cores: 8

ˆ Image Size: 640 x 480

ˆ Number of Clusters(N): 80

ˆ Number of features(f): 7

ˆ Maximum distance (dmax): 4

Those configurations trigger the best performance-to-silicon results while the selected algorithm’s

parameters trigger the optimal accuracy-to-processing ratio based on [EKVALL et al. 2005]. The

modules are clocked at 350 MHz on both FPGAs. Table 3 and Table 4 show the average time

needed for each function in order to process and classify a common object/scene of the CODID

dataset [CVAP] in our FPGA-based system. The performance variance when processing different

images is negligible (in terms of processing time for each function invocation). The speedup

triggered over the optimized software is about 20-60 times for the first two functions, whereas for

CalculateRFCH is only 6.7 times; however this last function takes less than 10% of the total

processing time and, as it has been described in Section 4, the main reason for implementing it in

the reconfigurable hardware was to minimize the amount of data that should be sent to and from

the CPU. It should be noted that in those numbers the I/O overhead has not been taken into

account but this has been separated from the critical path due a double buffering scheme we have

implemented; this scheme is analytically described in the next paragraph.

Table 3 : Typical Speedup achieved for processing of a CODID image - 16 cores

Module SW Time (sec) HW Time

(sec) -

Speedup1

Calc.Clust./obj 0.3200 0.0170 18.8

ClusterFeat. /obj 0.5000 0.0175 28.8

ClusterFeat./scene 1.8100 0.0927 19.5

1 Without the I/O time and CPU processing time

Calc.RFCH/obj 0.0500 0.0074 6.72

Figure demonstrates our proposed double buffering scheme which isolates the

intercommunication overhead, between the CPU and our hardware modules, from the critical path.

In order to measure the communication cost we calculate the transactions needed in order to fully

load the Feature memory with 144Kbits, assuming a typical 32bit bus with 4-byte burst mode

clocked at 100MHz. In a typical AMBA bus those 4480 transaction needed a total of less than

0.05msec. Moreover, the measured 0.002msec write back time is indeed very low as we need to

transfer the RFCH result only 1 time per image (not per image slice). The internal hardware is

always clocked at 350Mhz. Since our processing time can take, in the very best case, 1.39msec

and we use double buffering in the Feature memory (i.e. when we load a certain slice in one part

of the Feature memory we simultaneously process the previous slice from the other part), our

critical path consists only of the actual processing on our cores.

Table 4 : Typical Speedup achieved for processing of a CODID image - 32 cores

Module SW Time (sec) HW Time

(sec)

Speedup2

Calc.Clust./obj 0.3200 0.0086 37.6

ClusterFeat./obj 0.5000 0.0088 57.6

ClusterFeat./scene 1.8100 0.0463 39.0

Calc.RFCH /obj 0.0500 0.0074 6.72

By trying various dataset configurations with different numbers of objects and different scenes

(thus changing the number of times each module processes a certain slice of the image), the

performance triggered is listed in

Table 5.

Table 5: Overall Speedup at 350 MHz including the software execution

Configuration Overall

Speedup at 350 MHz

(16 cores)

fps Overall

Speedup at 350 MHz

(32 cores)

fps

3 objects
- 1 scene

11.5 1.1fps 19.65 1.87 fps

10 objects
 - 1 scene

15.9 1.2fps 27.12 2.04 fps

10 objects

 - 10 scenes

15.1 1 fps 25.67 1.7

fps

The slight decrease when we go from 1 scene to 10 scenes is due to the fact that the time

consumed by the ClusterFeatures and the CalculateRFCH functions is growing while the time

consumed by the CalculateCluster stays stable between the two cases. This is because Calculate

Clusters is executed only during training; in the testing case only the two other functions are

2 We keep the same 8 cores between the two implementation since each such core must be able to process

the next 4 lines (i.e. 32 lines in total), based on the fact that we have selected the distance parameter to be

equal to 4, and we process in both cases 32 lines at any given time.

executed (several times each one), and as CalculateRFCH has a lower speed up over the others it

slightly decreases the overall performance. The average frame per second number demonstrated

includes both the detection and the training of the subjects in different scenes. Moreover, it should

be noted that the variance between the different experiments was insignificant.

Calculate
RFCH

Cluster
FeaturesCalculate

Clusters

Feature
memory

Cluster
Point
memory

Binned
memory

Double
Buffered

100
MHZ
Bus

RFCH
memory

0,56msec 0,58msec 0,24msec

0,002msec

Double
Buffed

0.044msec

1.39 msec per slice

Figure 9: Timing Distribution when a 32bit Bus clocked at 100Mhz is used for I/O

Those results clearly demonstrate that our system which can trigger a speed of about two fps can

be utilized in a state-of-art multimedia system whereas no existing object recognition system

running in software can be utilized even at those relatively low object recognition speeds.

Moreover our system is significantly less power and energy hungry than the conventional software

approach. The specified Intel CPU consumes, on average, about 8W, when executing the specified

three tasks on a single core and the other core is disabled, whereas its maximum power

consumption is up to 10W[ULV][SU7300]. All the software power measurements are based on

Intel’s Power Gadget 2.0 tool. On the other hand, our larger Virtex-6 VLX130T consumes about

2.7W on average (with a peak of less than 3.5W) (based on the Xilinx XPower Estimator (XPE)

[UG440]) while it is also from 20 to 25 times faster than the CPU. As a result, the total energy

consumed by our FPGA system is 60 to 80 times less than that of the existing single-threaded,

purely software based approach.

In order to investigate how our algorithm behaves on a multi-core, multi-threading environment

we have also developed an openMP version of the original algorithm which we have hand-

optimized so as to get the best possible parallelism. As clearly demonstrated in [AHMED et al.

2010] and [VIJAYALAKSHMI et al. 2011] the power consumption is increased when more cores

and/or more threads are utilized in a multi-core, multi-threaded system. As a result we investigated

if the increased speedup triggered by utilizing numerous cores and threads can counterbalance the

increased demands in terms of power; if this is the case the total energy needed for the execution

of our application can be reduced.

In our experiments we have utilized two Intel multi-cores each with a nominal power consumption

of 80 Watts per CPU. “Talos” is a dual processor machine hosting a 4-core CPU on each socket

(Intel® Xeon® Processor E5620 with 12M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI) while it also

supports hypertheading (i.e. it has 8 physical cores while it can support 16 active threads in total).

The other machine “Iraklis” hosts two CPUs with 4 cores each that do not support hyperthreading

(Intel® Xeon® Processor E5430, 12M Cache, 2.66 GHz, 1333 MHz FSB).

In order to investigate how the system behaves when the number of utilized cores and threads

increases we executed a number of experiments each exploiting a different number of threads. The

speedup is expressed relative to the performance of the single-threaded software; our aim is to

demonstrate how efficiently the reference software can be parallelized in terms of both power and

performance. As Figure 10 clearly demonstrates, the maximum speedup achieved in our

experiments is about 5x; this speedup is triggered when we utilized more than 32 threads which

were executed on the 8 available cores. From those results, it is clear that the multi-threaded

software is faster than the single-threaded one, since the application very frequently moves data

from the memory to the CPU, and the utilization of multiple threads hides this memory latency.

Another interesting conclusion is that Iraklis performs much better than Talos (as shown in Figure

11) although it features an older CPU without hyperthreading while both systems feature the same

amount of cache (12MB per CPU, 24MB in total). The difference in the performance comes from

the fact that the memory sub-system of Iraklis is faster than that of Talos due to a faster CPU-

memory interconnect system.

Moving to the power consumption both CPUs consume very close to their nominal power (i.e.

80Watts) when triggering the maximum speedup (i.e. 5x for Iraklis and 3x for Talos), whereas the

power consumption in all the experiments was more than 60 Watts. As a result the processors

consume about 150Watts in total while processing, in the best case, a single CODID image every

about 1.7 sec. When comparing those numbers with the corresponding ones achieved by our

FPGA system (2.7Watts for 0.5 sec per CODID image) our novel device is about 188 times better

in terms of energy consumption.

At the same time the recently introduced 8-core power efficient Xeon CPU (E5-2448), which is

optimized for embedded applications [XEON2400], has a nominal power of 70W while it includes

8 cores working at 1.8GHz each. So even if this new 1.8Ghz device has the same performance

with our reference 2.66GHz multi-core system, our FPGA-based device will still be 88 times more

energy-efficient than this state-of-the-art Intel multi-core.

Figure 10 : Speedup vs Number of Threads for our experiments

Figure 11 : Execution time (sec) for 14 CODID images vs Number of Threads

The recently introduced ARM-based Cortex-A9, implemented in the newest CMOS technology,

has a processing time which is very close to that of the reference Intel CPU; on the other hand this

power-optimized ARM consumes about 400mW per core [CORTEXA9]. As a result our novel

reconfigurable system is from 10 to 12 times more power efficient than even this state-of-the-art

ARM CPU when executing the exact same object recognition scheme. Also looking at the future

ARM-based multi-cores, they are expected to be “up to an order of magnitude more power

efficient” than the current Intel-based ones [BOLARIA 2009]; as a result, and based on our real-

world measurements on the Intel multi-core, our FPGA-based device will still be at least 8 times

more energy efficient that those future power-optimized ARM-based multi-cores.

8. LIMITATIONS AND FUTURE WORK

Although our novel embedded approach can achieve a significant speedup over the conventional

purely-software approach, the single-chip validation platform we have used proved to be

inappropriate for high performance embedded multimedia systems; this is due to the fact that the

Microblaze was very slow when executing the specified double-precision floating point software

routines. In particular, Microblaze’s low clock rates combined with a slow Floating Point Unit,

degraded the overall performance and finally undermined the accelerated functions effect. In the

near future we are going to upgrade our system to the upcoming Zynq FPGA[DS190], which

employs a hard core ARM CPU. Our system is already fully compatible with any ARM-based

embedded framework as it is built around ARM’s AXI bus which is also the standard bus for the

Zynq Platform. The performance of the software functions is expected, based on our initial

measurements on a stand-alone Cortex A8 CPU, to be equal with that of the Intel processor used

as a reference, therefore the final single chip solution will exploit the full speedup of our hardware

implementation. Furthermore, we are about to convert the floating point arithmetic to fixed point

arithmetic since, based on our experiments, the dynamic range of all the internal variables is

limited; this will certainly increase even more the performance on both the software and the

hardware sides.

9. CONCLUSIONS

This paper describes a complete low-power embedded object recognition system that can support

multi frames per second speeds and can efficiently be utilized in multimedia systems performing

complex object recognition (such as fixed and mobile game consoles or tomorrow’s smartphones).

The system implements one of the most efficient Object Recognition Algorithms, the Receptive

Fields Cooccurrence Histograms (RFCH) one. This system is highly flexible since it is not fixed to

a specific image size but instead it is designed to support image sizes up to High Definition (HD),

allowing it to be utilized in numerous distinct multimedia applications. Additionally, the number

of features and the number of clusters that are supported are not fixed either and they can be

altered by just changing the software part of the system which offers even greater flexibility.

Moreover, the programmability feature of the FPGA allows our system to be efficiently

instantiated in numerous distinct multimedia applications; for example in a high-accuracy multi-

object mode it can utilize our algorithm whereas the reconfigurable sub-system can be rapidly re-

programmed to execute a simple face detection algorithm when such a demand is triggered by the

end-application. The presented system, when implemented on a relatively low-cost Virtex-6

FPGA connected to an ARM, can be up to 27 times faster than the conventional software approach

whereas it consumes about two orders of magnitude less energy than either a low-power CPU

executing the exact same algorithm or the recently introduced low-power multi-cores that are

optimized for embedded applications.

ACKNOWLEDGMENTS

This work is partly funded by “A Highly Efficient Adaptive multi-Processor framework” research

project (HEAP, project number: 247615), within the Seventh Framework Program and financed

by Community Funds and by “Increasing EU citizen security by utilizing innovative intelligent

signal processing systems for euro-coin validation and metal quality testing” research project

(SAFEMETAL, project id : 262558), implemented within the Seventh Framework Program and

financed by Community Funds.

REFERENCES

AHMED YOUSSEF, MOHAMED ZAHRAN, MOHAB ANIS, AND MOHAMED ELMASRY, “ On the Power

Management of Simultaneous Multithreading Processors”, in IEEE Transaction on Very Large Scale (VLSI) systems,

vol 18, no 8, August 2010
BOLARIA JAG, “Intel, ARM Battle for Microservers”, Processor Watch, May 17, 2012

CHANGJIAN GAO AND SHIH-LIEN LU, “Novel FPGA based HAAR classier face detection algorithm acceleration”,

International Conference on Field Programmable Logic and Applications, pp.373 - 378, 2008.
CVAP Object Detection Image Database , http://www.nada.kth.se/ ekvall/codid.html"

CORTEXA9. http://www.arm.com/products/processors/cortex-a/cortex-a9.php

DEEPAYAN BHOWMIK, BALASUNDRAM P. AMAVASAI AND TIMOTHY J. MULROY, “Real-time object
classification on FPGA using moment invariants and Kohonen neural networks”, Proc. IEEE SMC UK-RI 5th Chapt.

Conf. Advances in Cybernetic Systems (AICS 2006), pp. 43-48, 2006.
DS768. Xilinx® , DS768AXI Interconnect

DS190. Xilinx® , DS190, Zynq-7000 Extensible Processing Platform Overview

EKVALL S., D.KRAGIC, “Receptive Field Coocuurrence Histograms for Object Detection”, in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 84 - 89, 2005

GENTSOS CHRISTOS, SOTIROPOULOU CALLIOPE-LOUISA, NIKOLAIDIS SPIRIDON AND VASSILIADIS

NIKOLAOS, “Real-Time Canny Edge Detection Parallel Implementation for FPGAs”, International Conference on
Electronics, Circuits, and Systems (ICECS), pp.499, 2010.

GOSHORN DEBORAH, JUNGUK CHO, RYAN KASTNER, SHAHNAM MIRZAEI, "Field Programmable Gate Array

Implementation of Parts-Based Object Detection for Real Time Video Applications", FPL2010
GUMSTIX. http://www.gumstix.com/

HADJITHEOPHANOUS, S.;TTOFIS, C.; GEORGHIADES, A.S.; THEOCHARIDES, T. ,“Towards hardware

stereoscopic 3D reconstruction a real-time FPGA computation of the disparity map”, in IEEE International Conference
on Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1743 – 1748, 2010.

KYRKOU C.,THEOCHARIDES T., "A Flexible Parallel Hardware Architecture for Ada Boost-Based Real-Time Object

Detection," to appear in IEEE Transactions on Very Large Scale Integration (VLSI) Systems (Published online, no.99,
pp.1-14, 2010).

MS-9A35.MSI WindBox III (MS-9A35) Core2Duo Fanless Embedded System

MACQUEEN J. B., “Some Methods for classication and Analysis of Multivariate Observations", Proceedings of 5-th

Berkeley Symposium on Mathematical Statistics and Probability, pp. 1:281-297, University of California Press, 1967.

PCI BUS. Datasheet PCI Bus Bridge Memory Controller, 100 MHZ

SHOTTON J., A. FITZGIBBON, M. COOK, T. SHARP, M. FINOCCHIO, R.MOORE, A. KIPMAN, AND A. BLAKE.
“Real-Time Human Pose Recognition in Parts from a Single Depth Image. In proceedings of the Computer Vision and

Pattern Recognition conference (CVPR), Colorado Springs CO, IEEE, June 2011.

SU7300. http://ark.intel.com/products/42791/Intel-Core2-Duo-Processor-SU7300-(3M-Cache-1_30-GHz-800-MHz-FSB)
ULV. http://ultrabooknews.com/2012/02/07/intel-core-ulv-vs-lv/

UG534. Xilinx® , UG534 ML605 Hardware User Guide

UG081. Xilinx® , UG081 Microblaze processor reference guide
UG440. Xilinx®, UG440 XPower Estimator User Guide

VINOD NAIR AND PIERRE-OLIVIER LAPRISE AND JAMES J. CLARK, “An FPGA-Based People Detection System",

in EURASIP Journal on Applied Signal Processing 2005:7, 1-15.
VIJAYALAKSHMI SARAVANAN, SENTHIL KUMAR CHANDRAN,SASIKUMAR PUNNEKKAT, D. P. KOTHARI ,

“A Study on Factors Influencing Power Consumption in Multithreaded and Multicore CPUs”, WSEAS Transactions

on Computers, Issue 3, Volume 10, March 2011
VTUNE. Intel® VTune. Amplier XE, Intel® VTune, Amplier XE Documentation.

WENHAO HE AND KUI YUAN, “An Improved Canny Edge Detector and its Realization on FPGA”, in Proceedings of

the 7th World Congress on Intelligent Control and Automation June 25 - 27, 2008, Chongqing, China.
XBOX. http://www.xbox.com/kinect

XEON2400. http://www.intel.de/content/dam/www/public/us/en/documents/marketing-briefs/xeon-e5-2400-for-intelligent-

systems-brief.pdf

http://ultrabooknews.com/2012/02/07/intel-core-ulv-vs-lv/

