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One very important challenge in the field of multimedia is the implementation of fast and detailed Object Detection and 

Recognition systems. In particular, in the current state-of-the-art mobile multimedia systems, it is highly desirable to detect 

and locate certain objects within a video frame in real time. Although a significant number of Object Detection and 
Recognition schemes have been developed and implemented, triggering very accurate results, the vast majority of them 

cannot be applied in state-of-the-art mobile multimedia devices; this is mainly due to the fact that they are highly complex 

schemes that require a significant amount of processing power, while they are also time consuming and very power hungry. 
In this paper, we present a novel FPGA-based embedded implementation of a very efficient object recognition algorithm 

called Receptive Field Cooccurrence Histograms Algorithm (RFCH). Our main focus was to increase its performance so as 

to be able to handle the object recognition task of today’s highly sophisticated embedded multimedia systems while 
keeping its energy consumption at very low levels. Our low-power embedded reconfigurable system is at least 15 times 

faster than the software implementation on a low-voltage high-end CPU, while consuming at least 60 times less energy. 

Our novel system is also 88 times more energy efficient than the recently introduced low-power multi-core Intel devices 
which are optimized for embedded systems. This is, to the best of our knowledge, the first system presented that can 

execute the complete complex object recognition task at a multi frame per second rate while consuming minimal amounts 

of energy, making it an ideal candidate for future embedded multimedia systems. 

Categories and Subject Descriptors: C.3 SPECIAL-PURPOSE AND APPLICATION-BASED SYSTEMS, I.4 IMAGE 

PROCESSING AND COMPUTER VISION, I.5.1 PATTERN RECOGNITION Applications – Computer Vision  

Additional Key Words and Phrases: Multimedia, Embedded design, Computer Vision, Object Detection, Performance, 
FPGAs   

1. INTRODUCTION 

Multimedia is a technology which has been enjoying considerable attention for many years. 

Multimedia involves the use of multiple forms of media such as audio, images and video in an 

integrated manner. A computer user interacts in a daily basis with a huge amount of multimedia 

data mostly through the internet. Multimedia usually carries useful but raw and unsorted 

information. It is an emerging need for the user to be able to search in a content base through 

multimedia content such as images and video. For this reason object recognition gives today 

multimedia applications new potentials that enable the previously poorly sorted media data to be 

classified and unified with the rest of today information. 

 

In the Content-based image retrieval applications we try to find all images in a larger set of images 

which have a specific content. The content can be specified for example in terms of similarity 

relative a target image (e.g find all images similar to image X or find all images showing the 

specific object depicted in image X).  

 

Google recently introduced image search based on content as well as the Google’s Goggles 

android application which enables the user to search real world objects by taking a picture. In a 

desktop environment already Apple’s iPhoto and Google’s Picasa featuring face detection and 

recognition technology in order to classify user’s photos according to the persons depicted in the 

photo. 

 

By extending the above object recognition approaches we are also now able to search objects or 

persons in large video streams; this is called Content based Video Retrieval and it is a very 

important application for numerous future multimedia systems. This problem can also be defined 

as a generalized Video Mining problem where we are trying to discover patterns and objects, in an 

unsupervised way, within video streams. In such video streams the amount of data that has to be 

analyzed can be tremendous; this is the case for example for YouTube or for all the TV broadcast 

networks. In general, the classification of thousands of video hours is impossible to be done in a 

supervised way and even in an unsupervised way the processing time is a crucial factor. Moreover, 

such a classification is also needed in state-of-the-art mobile multimedia systems which can 
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display and store several Gigabytes of high-quality video; in such systems low energy 

consumption is also crucial. 

 

Moving to the game industry we recently met alternative input systems based around a webcam-

style peripheral such as the Microsoft Kinect [XBOX]. Kinect enables users, by recognizing their 

gestures (i.e. performing certain object recognition tasks), to control and interact with the Xbox 

360 game console without the need to touch a game controller. Such gesture recognition systems 

are also being introduced in different embedded multimedia systems including interactive shop 

windows, portable game consoles and smart TVs. 

 

The critical factors in all those discrete yet interrelated applications are the accuracy of the system 

and well as its response time. Moreover, since in many cases those object recognition systems are 

utilized in mobile environments the energy consumption is also a critical issue.  The object 

recognition problem itself is a complex and computational intensive task for today 

microprocessors no matter if they are power-hungry desktop CPUs or low-power embedded ones. 

This complexity further increases since totally or slightly different objects can appear anywhere in 

the image (in different light conditions) and the system should also report where those objects are 

(i.e. localize them). As a result, even when executed on high-end mobile CPUs, such applications 

cannot be performed at multi-frame per second rates, whereas when optimized for speed they 

typically give only target specific responses (i.e. a car found in coordinates x,y) .  

  

This paper presents a complete generalized object detection system implemented on a 

reconfigurable device that can execute a very efficient such algorithm at a rate of more than one 

frame per second while consuming about 60 times less energy than a low-power CPU executing 

the exact same algorithm. 

 

We clearly demonstrate that such a complex task can, probably for the first time, be addressed by 

a single chip solution running on minimal power; this is achieved by exploiting the heterogeneity 

of custom hardware and a low power embedded CPU. We present such a single chip prototype in 

this paper while our ideal target single-chip platform is the already announced  by Xilinx Zynq-

7000 single chip device featuring a dual-core ARM CPU and FPGA reconfigurable logic in the 

same silicon [DS190]. 

 

Moreover, due to the programmability features of the FPGAs, the system can support the 

requested object recognition tasks only when needed; based on the multimedia applications’ 

requirements, at any given time, this same FPGA can also perform other similar tasks that are 

executed efficiently on reconfigurable devices such as 3D image reconstruction 

[HADJITHEOPHANOUS et al. 2010] or face detection [CHANGJIAN et al. 2008] also met in 

various embedded multimedia applications. 

 

2. RELATED WORK 

Even though no complete low-power multi-frame per second object recognition system exists, 

there are several FPGA-based systems implementing certain face recognition algorithms as well as 

some hardware systems executing specific sub-parts of the object recognition algorithms that are 

related, in a certain manner, to our work.  

 

In [CHANGJIAN et al. 2008] the authors present a novel approach, utilizing a state-of-the-art 

FPGA, so as to accelerate the Haar-classifier face detection algorithm. By utilizing a large number 

of parallel arithmetic units in the FPGA they achieved real-time performance, with very high 

detection rates and very low false positives. Their implementation is tailored to a HiTech Global 

PCIe card that contains a Xilinx XC5VLX110T FPGA device. Moreover in [KYRKOU et al. 2010] 

another Haar-based face detection scheme is described which outperforms all the existing such 

schemes implemented in FPGAs. However, all those systems are optimized for face-detection and 

cannot be efficiently applied to general object-recognition. 

  



The authors in [WENHAO et al. 2008] proposed a novel self-adaptive Canny edge detection 

scheme while they also present an FPGA implementation optimized for mobile robotic systems. 

Their system utilizes an Altera Cyclone EP1C60240C8 and can detect the edges of a certain, pre-

defined, object on a grey-scale image at an analysis of 360x280 in 2.5ms (or in other words at a 

speed of 400 frames per second). In [GENTSOS et al. 2010] the authors present another 

implementation of the Canny edge detector that processes 4-pixels in parallel; this approach 

increases the throughput of the design without increasing the required on-chip cache memories. By 

increasing the parallelism of their scheme their can processes high resolution images (up to 

1.2Mpixels) in 3.09ms (i.e. at about 300 frames per second) when their scheme is implemented on 

a Xilinx Spartan-6 FPGA clocked at 200MHz. However, their system implements only the edge 

detection task while the rest of the object recognition process is not supported or even discussed.   

 

In [DEEPAYAN et al. 2006] a hardware implementation of an object classification system based 

on moment invariants and Kohonen neural networks is presented capable to classify objects in 

real-time. The authors implemented the classification phase in hardware while leaving the training 

of the Kohonen network into software; in particular the computation of the moment invariants has 

been implemented in hardware along with a set of sixteen parallel Kohonen neurons for the 

classification of an unknown object, demonstrating a possible real-time solution for object 

classification; unfortunately no specific performance numbers are given. 

 

In [VINOD et al. 2005] the authors present an FPGA-Based People Detection System. They use 

JPEG-compressed frames from a network camera which after pre-processing (i.e. feature 

extraction), are sent to a machine-learning detector, implemented on a Virtex-II 2V1000;  the 

FPGA executes the actual detection process. The system is demonstrated on an automated video 

surveillance application detecting people accurately at a rate of about 2.5 frames per second when 

clocked at 75 MHz. 

 

In [GOSHORN et al. 2010] the authors present an object detection system that can detect a single 

object at a rate of 266 frames per second.  However, they did not present any data about its 

accuracy and since they use a very poor correlation method based on the sum of absolute 

differences (SAD), the accuracy of their system is heavily questioned; moreover, their device can 

detect only a pre-defined single object in a single scene while they only roughly localize it (i.e. 

localize only the center of the object and they do not report any bounding box). 

 

Finally in [SHOTTON et al. 2011] the authors propose a new method to predict 3D positions of 

body joints from a single depth image at up to 200fps on consumer hardware. However they use a 

depth camera such as Microsoft Kinect [XBOX] which consists of an infrared laser projector 

combined with a monochrome CMOS sensor. They also don’t generalize their method to other 

object detection tasks that may be useful in multimedia systems. 

 

When compared with all those existing systems our approach has certain significant advantages 

such as:  

1) It is the only one supporting the complete general, multi-object recognition and 

localization task at more than one frame per second. 

2) This is, to the best of our knowledge, the only embedded system that has been 

specifically designed so as, not only to be real-time, but also to consume as less energy as possible, 

in order to address the needs of today’s embedded multimedia devices. 

3) It is the only system that can work simultaneously on multiple features (i.e. 7 features) 

which significantly increase the robustness of the system while still supporting a multi frame per 

second rate in real-world environments. 

4) Even when compared with the different face detection systems, it is the only one 

performing efficiently in hardware the on-line training phase utilizing only a single training 

sample per object; the Haar-based systems need hundreds of training samples per object and thus 

they do the training off-line which severally limits their efficiency. 

5) The algorithm utilized is probably one of the most accurate generalized object 

recognition algorithms presented so far as described in [EKVALL et al. 2005]. 



 

Based on the above, we believe that this is the first system addressing all the needs of the real-time 

embedded multimedia devices, recently introduced, that involve complex object recognition tasks. 

The rest of the paper is organized as follows: Section 3 presents the algorithm that has been 

implemented while Section 4 demonstrates how we ended up with the optimal hardware/software 

partioning for our final embedded system. Section 5 presents, in detail, the high-level as well as 

the micro-architecture of the system while it also highlights how the complete embedded device 

has been verified. In Section 6 we reveal the silicon cost of the embedded system whereas in 

Section 7 we demonstrate the real-world performance results of the end-device. Finally, Section 8 

discusses the limitations of the current system as well as some direction for future work and 

Section 9 concludes our paper.    

 

3. RECEPTIVE FIELD COOCCURRENCE HISTOGRAM FOR OBJECT DETECTION 

A Receptive Field Histogram is a statistical representation of the occurrence of several descriptor 

responses within an image. Examples of such image descriptors are color intensity, gradient 

magnitude and Laplace response. If only color descriptors are taken into account, the histograms 

produced are called regular color histograms. 

 

A Receptive Field Cooccurrence Histogram (RFCH) is able to capture most of the geometric 

properties of an object. Instead of just counting the descriptor responses for each pixel, the 

histogram is built from pairs of descriptor responses. The pixel pairs can be constrained based on, 

for example, their relative distance. In this way only pixel pairs located within a maximum certain 

distance, dmax, are considered. Thus, the histogram represents not only how common a certain 

descriptor response is in the image but also how often certain combinations of descriptor 

responses occur close to each other. In other words, an RFCH is a representation of how often 

pairs of certain filter responses and colors lie close to each other in the image. This results in a 

representation of the image in which most of the geometric information is preserved thus allowing 

for more accurate object recognition.  Figure 1 below presents the concept of the cooccurrence 

histogram, of a 3bit (8-color) greyscale image, where we search for co-occurrences from left to 

right with dmax = 1. 

3.1 Receptive Field Cooccurrence Histogram for Object Detection 

One of the main advantages of this algorithm is that it can work with numerous different types of 

image descriptors such as Color, Gradient magnitude, Laplacian, Gabor as well as any mixture of 

them. As it is has been proved in [EKVALL et al. 2005] for object recognition the optimal choice 

is to utilize rotationally invariant image descriptors such as Color, Gradient magnitude and 

Laplacian descriptors and the actual choice can depend, among others, on the image characteristics. 

 

 
Figure 1: High level view of algorithm 

 



3.2 Image Quantization  

When utilizing histograms in the recognition process, the computational complexity of the 

algorithm increases exponentially with the dimensions of the histogram. In order to alleviate this 

problem the algorithm firstly clusters the input data, so as to reduce the histogram dimensions. 

Hence, by altering the number of clusters the histogram size may be controlled. The cluster centers 

(N) have a dimensionality equal to the number of image descriptors used. The adopted algorithm 

is using the K-Means clustering algorithm [MACQUEEN et al. 1967] for the dimension reduction. 

In particular, after quantization, each object ends up with its own cluster scheme which is used 

together with the RFCH which has been calculated on the quantized training image. When 

searching for a certain object in a scene, the whole image is quantized with the cluster scheme that 

has been applied in the quantization of this search object. 

3.3 RFCH-based object detection 

After the clustering step, the algorithm creates the object's cooccurrence histograms in the 

clustered descriptor space. In the testing phase the image is scanned using a small search window 

and the RFCH of the window is calculated at any given instance. In each scan the RFCH of the 

window is compared with the object's RFCH. 

 

The similarity between two normalized RFCHs is computed as the histogram intersection: 

 

                             

  

   

 

 

where hi[n] denotes the frequency of receptive field combinations in each discrete interval (bin) n 

for image i, when quantized into N cluster centers. The higher the value of the          the better 

the match between the histograms, and as a result, the better the match between the search object 

and this specific part of the image. 

 

As a summary the algorithm works in two phases and performs the following steps in order to 

detect a certain object in an image: 

 

Training Phase: 

 Extract Features from the Object 

 Calculate Feature Clusters 

 Quantize Object 

 Create object's RFCH 

 

Detection Phase: 

 Quantize image with Object's cluster scheme 

 Calculate the RFCH for a small image window ( for all possible image windows ) 

 Match Object and Image RFCH with histogram intersection (for all windows ) 

 Report the best match 

4.  HARDWARE/SOFTWARE PARTIONING   

In order to create an efficient embedded system, we first analyzed the RFCH application so as to 

be able to perform the optimal hardware software partioning. In order to profile the software 

implementation of the algorithm we have used Intel's VTune Amplifier XE 2011 [VTUNE]. The 

profiling was performed on an Intel SU7300 Dual Core ULV CPU working at 1.3GHz since this is 

a low-power CPU found in embedded multimedia systems (as for example [MS-9A35]).  The 

same profiling results were also produced when executing the same code on an ARM placed in a 

Gumstix device [GUMSTIX]. All of our experiments were conducted using the original optimized 

software provided by the inventors of the underlying algorithm [EKVALL et al. 2005] along with 

images from the most widely used Image Database, the CVAP Object Detection Image Database 

[CVAP], which we have rescaled to 640x480. 



 

After running various tests combining different scenes and objects we concluded that, functions 

CalculateClusters(), ClusterFeatures() and CalculateRFCH() are taking 97.8% in average (and at 

least 96%) of the total execution time. By making the above 3 functions faster, we can 

significantly improve the performance of the overall algorithm; according to Amdahl's Law the 

maximum theoretical speedup in that case is 45x. We have also analyzed the interconnection 

needed if those functions are implemented in hardware and the rest of the functions for  Feature 

Extraction (i.e. Create Image Gauss, Create BW Image etc) and Histogram Intersection (i.e. 

MatchRFCHs) are executed in the CPU and found it to be minimal as described in the next section.  

In particular, even though CalculateRFCH takes only 8% of the total time we implemented it in 

hardware so as to minimize the data transactions between our hardware modules and the 

embedded CPU. 

 

Another important reason for implementing the Feature Extraction as well as the Histogram 

Intersection Algorithms in software is that it allows us to easily change those parts of the 

algorithm depending on the image characteristics (e.g. change the actual descriptor used) thus 

heavily increasing the applicability as well as the accuracy of the end system. Before we have 

actually implemented those functions in hardware, and in order to be able to fully dimension the 

problem, we have also measured the computational complexity of those 3 functions. 

 

CalculateClusters: This function implements an iterative version of the K-Means algorithm, and 

it has been identified as the major hot-spot during the profiling procedure. The computational 

complexity of the above algorithm is O(nfNT) where n is the number of samples, f is the number 

of features, N is the number of clusters and T is the number of iterations until convergence. 

 

ClusterFeatures: This function is responsible for the quantization of the image according to the 

pre-calculated cluster centers. The function has a complexity of O(nfN). The function takes as 

input the Feature Array and the Cluster Point Array and produces the Binned Image Array. 

 

CalculateRFCH: The complexity of this function is approximately O(nd
2
), where n is the Image 

Size and d is the maximum distance (dmax).   

5. SYSTEM ARCHITECTURE 

Moving to the implementation of the previously identified hot-spots of the presented scheme, we 

have decided to use a Xilinx Virtex-6 FPGA, which resides on the ML605 Xilinx Evaluation 

Board [UG534].  Those designs have been implemented manually in VHDL and we have 

synthesized, mapped, placed and routed them using Xilinx ISE 13.3. 

 

The main concept of our approach is that the three HW accelerated functions are placed one next 

to the other in such a way so as to minimize the data being sent from and to the CPU executing the 

rest of the functions in software. By adopting this approach we don’t need to have 3 independent 

data transactions to the reconfigurable fabric which will trigger a significant communication 

overhead. In the proposed architecture, demonstrated in Figure 2 we transfer data from the CPU to 

the FPGA practically only when loading the Feature memory; then our hardware modules process 

those data until the complete image slice is fully processed. The loading time for the feature 

memory is very low and up to about 0.05msec for the 640 x 480 images (for a typical 100MHz 

bus as in [PCI BUS]) while the software processing does not need more than 1msec at any 

experiment conducted. Moreover, as it is demonstrated in the next section, we have utilized a 

double buffering scheme in order to pipeline the loading and software processing time of the 

different slices of every image with the actual hardware processing of them. The write back time is 

negligible as the only thing we need to transfer is the RFCH result which is a 80x80x11 bits datum 

and this is only needed once for each complete image. Figure 2 also demonstrates the data flow 

through the implemented modules. 
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Figure 2: High Level Architecture 

5.1 Calculate Clusters Module 

The CalculateClusters function is responsible for the clustering of the features array, and it mainly 

implements an iterative version of the K-Means algorithm. It is applied during the training phase 

of the algorithm and it works in 3 distinct phases: Phase 1 and 2 perform the actual calculations 

while phase 3 updates the cluster centers. The overall micro-architecture of this module is 

demonstrated in Figure 3. Processing Unit A (PUA) is calculating the cluster centers and it utilizes 

16 cores. Each core can perform the necessary processing on a small image slice of size 640 x 2 

(which consists actually of 2 lines of the feature image). The whole feature image (640x480 x7 

features-8bit) is pre-segmented by the software and it is sent in slices (i.e. 32 lines per processing 

cycle) to the hardware module.  As a result the Feature Array/Memory utilized in each core is 640 

x 2 x 7 bytes, and with the proposed configuration, each module can process 16 feature image 

blocks (640 x 2 x 7) simultaneously. In each processing core we have to execute a critical 

multiply-and-accumulate (MAC) operation; in order to speed up this function we have utilized a 

pipelined Digital Signal Processor (DSP) built-in core, found in those Xilinx Virtex6 devices. 

 

When the processing is completed, Processing Unit B (PUB) sums all the intermediate results 

produced by the 16 cores. When the sum is fully calculated, PUB triggers Processing Unit C 

which is responsible for updating the cluster centers as well as the clusterPoint array; the latter is 

also split into 16 slices. The clusterPoint array holds the calculated clusters information needed for 

the clusterFeatures module as it is described in the next paragraph.  

 

 
Figure 3: Calculate Cluster HW implementation 

 



5.2 Cluster Features Module 

This module implements the image quantization task and it also utilizes 16 parallel cores. The 

inputs of this module are a) the feature array and b) the clusterPoint array calculated from the 

CalculateClusters module. Concerning how the data are decomposed and processed in parallel the 

exact same technique with the one described in the last section is applied. 

 

In particular, we used images of sizes 640 x 480 and utilized 7 distinct features. This means that 

our feature array is equal to 640x480x7(x8bits) = 2.15 Mbytes which cannot fit in the on-chip 

RAM.  In order to be able to load the feature array on-chip, while also processing a sub-part of it, 

we have split it in 15 slices; in this way we load a certain slice to the FPGA while simultaneously 

we  process the previous slide. Those 15 slices are of size 2.15/15 = 0.13 MB each. In that way in 

order to process the whole feature array, we have to process 15 slices. 

 

Then we split further the on-chip slice into 16 blocks with size (640x480x7)/240 = 8.75 KB each 

and then we pass each block to a distinct processing core (i.e we utilize all 16 parallel processing 

cores in order to process one slice). The above procedure is depicted in Figure 4. 

 

The high level architecture of the cluster feature module is demonstrated in Figure 5. Each slice of 

the feature image array (640 x 32 x 7) is fitted in 16 distinct feature Memories (RAMs). Each 

Feature RAM can hold a block equal to 640 x 2 x 7 (using 8-bit color). The clusterPoint array of 

size 7 x 80 is initially loaded into the 16 distinct clusterPoint  RAMs each of size 7 x 80x 8 bits. 

The actual processing comprises of each core quantizing an image block of 640 x 2 pixels (i.e 2 

lines) as follows: The first core quantizes the image pixels 0 to 1279, the second core quantize the 

pixels 1280 to 2559 and so on. Again we process each image block simultaneously thus fully 

utilizing the 16 distinct processing cores. Each core also has a dedicated BRAM for storing the 

results. This BRAM is the binnedImage memory with a total size of 640 x 2 x 8 bits.  Each core 

performs the same MAC operation, as in the CalculateClusters case, so we also utilize here a fully 

pipelined built-in DSP core; in total we need 16 DSP slices to support this module. 

 

 
Figure 4: Feature Array decomposition 

 

When all the cores have completed the corresponding processing, an image slice has been fully 

quantized and the results reside in the 16 binnedImage RAMs. The control unit for the 

ClusterFeatures module is quite simple. It just monitors when all the cores have finished their 

processing and then it loads the next block.  

 



 
Figure 5: Cluster Features module 

  

5.3 Calculate RFCH Module 

This module calculates the required receptive fields’ cooccurrence histograms. The overall 

architecture of the module is presented in Figure 6. The module utilizes 8 processing cores as it is 

less demanding, in terms of processing time, than the other two modules.  

The RFCH is calculated based on the BinnedImage data. The binnedImage array is of size 640 x 

480 and, as we presented in the last section, it is the quantized version of the image. In order to 

calculate the RFCH for each binnedImage slice of size 640 x 32 we need to process the data 

coming from two continuous blocks; the additional block/slice is needed since we need 4 extra 

lines in order to serve the dmax=4 condition (i.e. each core should look up to 4 lines ahead thus 

utilizing the data of the next slice). The last block of the current slice is paired with the first block 

of the next slice in order to keep the dmax condition valid between image slices. The above 

procedure is shown in the Figure 7. 
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Figure 6: Calculate RFCH module organization 

 

Each of the eight cores calculates the cooccurrences of a binnedImage block of size 640x4. This 

means that the 8 cores together can calculate the cooccurrences of a binnedImage slice equal to 

640x32. As previously mentioned, in the current version of the system, the cooccurrenses are 

calculated based on a specific value of dmax (dmax = 4) which gives very high accuracy as 

described in [EKVALL et al. 2005]. If, for any reason, we decide to use a larger value for dmax, 

we will have to utilize more memory since the RAM blocks needed, in the presented architecture, 

are equal to 2dmax. Each processing core maintains a dedicated memory block for its output in 



which a partial RFCH is stored; the required memory size is 80x80 x 11 bits. In order to calculate 

the RFCH of the whole binnedImage of size 640 x 480 we have to process 15 binnedImage slices 

of 640x32 each and update the corresponding memories. After we process all the slices we store 

the results in the corresponding 8 RFCH memories; then those stored results are summed in order 

to form the final RFCH for the image and this is the end-result sent to the CPU for further 

processing.  
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Figure 7:  Binned Image Array Decomposition 

 

 

The control of this module is quite complicated since it contains various termination criteria and 

jump conditions involved in the cooccurrence histogram computation. In particular it is 

implemented as a 14-state Finite State Machine and it has been fine-tuned in order to achieve the 

maximum possible clock rate. 

5.4 Verification of the complete System 

In order to verify the correct functionality of our approach and mainly the feasibility of our 

complete system being implemented in a single chip, we integrated all the hardware modules as 

well as the software code in an embedded design platform based on a Virtex 6 FPGA board 

[UG534].  For this proof of concept we have selected the on-chip Xilinx Microblaze [UG081] 

softcore processor for the software execution, connected to the AXI / AMBA bus. We used the 

ΑΧΙ Βlock Ram Controller provided by the Xilinx EDK 13.3 environment to make all the 

necessary data transfers between the CPU and the reconfigurable modules. The controller occupies 

the first port of a dual port configuration RAM leaving the second port to run on the custom-made 

hardware side at a different clock domain (i.e the Frequency of the Microblaze CPU was fixed at 

150 MHZ while our custom hardware works at 350MHz). 

 

We also used the AXI IP Interface modules (IPIF) to utilize user specific software accessible 

registers. In that way we were able to control and monitor the status of our custom accelerator 

from the software side. In this particular platform a soft core CPU was the only choice as the 

Virtex 6 family is not equipped with any hard core CPUs (like the ARM found in the already 

announced Virtex-7 FPGA under the codename Zynq-7000 [DS190]). Unfortunately the 

Microblaze is performing poorly when implementing the software functions and as a result it 

degrades the overall performance of the system (to an overall speedup when compared with the 

reference Intel CPU, of about 3.5x); thus we used it only for verification and feasibility purposes. 

We also used the compact flash peripheral in order to load the test images and verify the results. 

Figure  shows an overview of the proof-of-concept embedded platform.  

 



The Microblaze talks to an external DDR SDRAM in which we place images from a well known 

image database [CVAP] as well as real-world multimedia data (i.e. real-world videos). The 

Microblaze executes the part of the RFCH algorithm that we mapped to the CPU, when 

performing the hardware/software partioning, while it additionally controls all the system’s 

peripherals. In this initial single-chip approach the functions that were implemented in hardware 

have been called by the corresponding software drivers independently (i.e. 3 different calls, one 

for each hardware module) since that allowed for much faster and easier debugging of the 

hardware cores. The RFCH controller is the hardware module supervising the interconnection 

between the Microblaze and the RFCH hardware accelerator, and it is attached as an AXI slave 

IPIF module. This module is basically an AXI4lite slave [DS768], which provides a bi-directional 

control/status interface between the RFCH hardware accelerator and the AXI bus. After executing 

the complete algorithm in the specified FPGA platform we compared the end results residing in 

the DRAM with those triggered by the pure software solutions and they were identical.  
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Figure 8: Micro-Architecture of our proof of concept single-chip approach 

 

It should also be stressed that in numerous current embedded devices the image size is 640 x 480. 

As a result our prototype hardware implementation, as well as the performance results of the next 

sections, are all based on that image size. However, our system can seamlessly (i.e. with a simple 

change in a couple of control modules) process any images up to 1920 x 1080 (High Definition-

HD) pixels; and this is an analysis that will soon been incorporated even in mobile embedded 

multimedia systems. The only difference will be that those HD images will consist of more slices 

and therefore more time will be needed in order to process a complete such image. 

6. HARDWARE IMPLEMENTATION 

The following table shows the utilization of each function on both a Virtex-6 VLX75T and a 

Virtex-6 VLX130T device. The total utilization of the three functions leaves room for more cores 

to be implemented in both devices if needed. 

 
Table  1 : Hardware Cost on a Virtex-6 VLX75T device  

(16 Cores C.Clusters and Cluster Features, 8 cores for Calculate RFCH) 

Module Slice Registers Slice LUT Block 

RAM 

DSP 

Slices 

Calculate 

Clusters 

26,082/93,120 
28% 

23,691/46560 
50% 

112/312 
35% 

17/288 
5% 

Cluster 

Features 

4,176/93,120 

4% 

5,840/46,560 

12% 

112/312 

35% 

16/288 

5% 

Calculate 

RFCH 

1,066/93,120 
1% 

3,465/46,560 
7% 

16/312 
5% 

0/288 
0% 



Total 31,324/93,120 
33% 

32,996/46,560 
70% 

240/312 
76% 

33/288 
11% 

 

As demonstrated in Table 1 by using small image slices (as described in Section 5) we minimized 

the RAM usage while exploiting high levels of parallelization. The small footprint of our design, 

in terms of Slice LUTs, is giving as the choice to double the cores in the current design and assign 

1 image line per core with neither increasing the amount of utilized Block RAMs nor the control 

complexity. The utilization for this system is demonstrated in Table 2. This approach almost 

doubles the performance of our system, as the next section clearly demonstrates, while making the 

LUT-to-BRAM factor very close to the LUT-to-BRAM factor of the available resources in the 

middle Virtex-6 FPGAs.  
Table  2 : Hardware Cost on a Virtex-6 VLX130T device 

 (32 Cores C.Clusters and Cluster Features, 8 cores for Calculate RFCH) 

Module Slice Registers Slice LUT Block RAM DSP Slices 

Calculate 

Clusters 

5,4642/160,000 

34% 

48,121/80,000 

60% 

112/528 

21% 

32/480 

6% 

Cluster 

Features 

8,769/160,000 

5% 

11,986/80,000 

15% 

112/528 

21% 

32/480 

6% 

Calculate 

RFCH 

1,066/160,000 

1% 

3,465/80,000 

4% 

16/528 

3% 

0/480 

(0%) 

Total 64,477/160,000 

40% 

63,572/80,000 

79% 

240/528 

45% 

64/480 

13% 

 

 

Since our system can process different images totally independently of one another, by adding 

more memory and logic resources we will trigger a further speedup and we expect that the 

performance will scale linearly with the device utilization. In order to further support this case we 

have placed two instances of the system described in the last paragraph to a Virtex-6 VLX240T 

(the total utilization for both BRAMs and Slices was close to 95%) and since the I/O was not the 

bottleneck, we managed to eventually double the supported bandwidth. As will be explained 

further in the next section, even if the loading time is doubled due to the sharing of the bus 

bandwidth among the two cores it is still far less than the processing time. This fact in addition 

with a double buffering scheme eliminates any I/O overhead. However, since we mainly focus on 

low-energy, relatively low-cost multimedia embedded applications, the performance results 

demonstrated in the next sections, cover the implementations of our system on both a Virtex-6 

VLX75T and a Virtex-6 VLX130T low-cost devices connected to a low-cost ARM core.  

 

Since our aim was to implement a low-power embedded multimedia system, special care has been 

taken so as to reduce the overall power consumption of our novel device. In particular, we 

implemented, in each module, numerous parallel simple cores working at smaller speeds instead 

of creating complex cores with large and complicated control working at higher speeds. In order to 

achieve that we decomposed the actual processing, in each module, in smaller parts; special care 

has been taken so to reduce the, triggered by this decomposition, overhead in terms of memory 

repetition and/or memory reads/writes. The resulted reduction in the energy consumption by 

adopting this technique was up to 17%. 

 

We have also introduced the pipeline of Figure 2 so as to minimize the data moving to/from the 

CPU; for example, by implementing the “Calculate RFCH” module in hardware we heavily 

decreased the intercommunication  needed with the CPU and that resulted to a 12% reduction in 

the overall power consumption.  

 



Additionally, with the aim of the FPGA design tools, we have placed the logic as close as possible 

to the Memory Banks therefore minimizing the necessary routing while we have also hand-

designed from scratch all the processing cores (so as to eliminate any unnecessary silicon), instead 

of using the ready-made IP cores provided by third parties; those techniques reduced the overall 

power consumption by an additional 11%. 

 

Moreover, we have utilized a double buffering scheme, as demonstrated in the next section, which, 

together with the introduced pipeline of Figure 2, allow us to utilize all the hardware resources at 

any given time. Since, certain hardware units consume power even when they are idle (i.e. do not 

produce any useful results), by effectively removing any idle states we decreased the actual energy 

consumed when the complete application is executed by a further 20%.  

7. EVALUATION AND PERFORMANCE RESULTS 

In this Section we demonstrate the performance of our FPGA-based hardware and we compare it 

with the optimized single threaded software provided by the inventors of the algorithm when 

executed on a state-of-the-art low power Intel SU7300 dual-core ULV CPU @ 1.3GHz; such a 

CPU can typically be used in an embedded multimedia device. 

 

The configuration of the embedded system demonstrated is as follows: 

ˆ Number of Calculate Clusters cores: 16/32 

ˆ Number of Cluster Features cores: 16/32 

ˆ Number of Calculate RFCH cores: 8 

ˆ Image Size: 640 x 480 

ˆ Number of Clusters(N): 80 

ˆ Number of features(f): 7 

ˆ Maximum distance (dmax): 4 

 

Those configurations trigger the best performance-to-silicon results while the selected algorithm’s 

parameters trigger the optimal accuracy-to-processing ratio based on [EKVALL et al. 2005]. The 

modules are clocked at 350 MHz on both FPGAs. Table  3 and Table  4 show the average time 

needed for each function  in order to process and classify a common object/scene of the CODID 

dataset [CVAP] in our FPGA-based system. The performance variance when processing different 

images is negligible (in terms of processing time for each function invocation). The speedup 

triggered over the optimized software is about 20-60 times for the first two functions, whereas for 

CalculateRFCH is only 6.7 times; however this last function takes less than 10% of the total 

processing time and, as it has been described in Section 4, the main reason for implementing it in 

the reconfigurable hardware was to minimize the amount of data that should be sent to and from 

the CPU.  It should be noted that in those numbers the I/O overhead has not been taken into 

account but this has been separated from the critical path due a double buffering scheme we have 

implemented; this scheme is analytically described in the next paragraph.  

 
Table  3 : Typical Speedup achieved for processing of a CODID image - 16 cores 

Module SW Time (sec) HW Time 

(sec) - 

Speedup1 

Calc.Clust./obj  0.3200 0.0170 18.8 

ClusterFeat. /obj 0.5000 0.0175 28.8 

ClusterFeat./scene 1.8100 0.0927 19.5 

 
1 Without the I/O time and CPU processing time  



Calc.RFCH/obj 0.0500 0.0074 6.72 

 

Figure  demonstrates our proposed double buffering scheme which isolates the 

intercommunication overhead, between the CPU and our hardware modules, from the critical path. 

In order to measure the communication cost we calculate the transactions needed in order to fully 

load the Feature memory with 144Kbits, assuming a typical 32bit bus with 4-byte burst mode 

clocked at 100MHz. In a typical AMBA bus those 4480 transaction needed a total of less than 

0.05msec. Moreover, the measured 0.002msec write back time is indeed very low as we need to 

transfer the RFCH result only 1 time per image (not per image slice). The internal hardware is 

always clocked at 350Mhz. Since our processing time can take, in the very best case, 1.39msec 

and we use double buffering in the Feature memory (i.e. when we load a certain slice in one part 

of the Feature memory we simultaneously process the previous slice from the other part), our 

critical path consists only of the actual processing on our cores.  

 
Table  4 : Typical Speedup achieved for processing of a CODID image - 32 cores 

Module SW Time (sec) HW Time 

(sec) 

Speedup2 

Calc.Clust./obj  0.3200 0.0086 37.6 

ClusterFeat./obj  0.5000 0.0088 57.6 

ClusterFeat./scene 1.8100 0.0463 39.0 

Calc.RFCH /obj 0.0500 0.0074 6.72 

 

By trying various dataset configurations with different numbers of objects and different scenes 

(thus changing the number of times each module processes a certain slice of the image), the 

performance triggered is listed in  

Table 5. 

 

 
Table 5: Overall Speedup at 350 MHz including the software execution 

Configuration Overall 

Speedup at 350 MHz 

(16 cores) 

fps Overall 

Speedup at 350 MHz 

(32 cores) 

fps 

3 objects  
- 1 scene 

11.5 1.1fps 19.65 1.87 fps 

10 objects 
 - 1 scene 

15.9 1.2fps 27.12 2.04 fps 

10 objects 

 - 10 scenes 

15.1 1 fps 25.67 1.7 

fps 

 

The slight decrease when we go from 1 scene to 10 scenes is due to the fact that the time 

consumed by the ClusterFeatures and the CalculateRFCH functions is growing while the time 

consumed by the CalculateCluster stays stable between the two cases. This is because Calculate 

Clusters is executed only during training; in the testing case only the two other functions are 

 
2 We keep the same 8 cores between the two implementation since each such core must be able to process 

the next 4 lines (i.e. 32 lines in total), based on the fact that we have selected the distance parameter to be 

equal to 4, and we process in both cases 32 lines at any given time.  



executed (several times each one), and as CalculateRFCH has a lower speed up over the others it 

slightly decreases the overall performance. The average frame per second number demonstrated 

includes both the detection and the training of the subjects in different scenes. Moreover, it should 

be noted that the variance between the different experiments was insignificant. 
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Figure 9: Timing Distribution when a 32bit Bus clocked at 100Mhz is used for I/O 

 

 

Those results clearly demonstrate that our system which can trigger a speed of about two fps can 

be utilized in a state-of-art multimedia system whereas no existing object recognition system 

running in software can be utilized even at those relatively low object recognition speeds. 

 

Moreover our system is significantly less power and energy hungry than the conventional software 

approach. The specified Intel CPU consumes, on average, about 8W, when executing the specified 

three tasks on a single core and the other core is disabled, whereas its maximum power 

consumption is up to 10W[ULV][SU7300]. All the software power measurements are based on 

Intel’s Power Gadget 2.0 tool. On the other hand, our larger Virtex-6 VLX130T consumes about 

2.7W on average (with a peak of less than 3.5W) (based on the Xilinx XPower Estimator (XPE) 

[UG440]) while it is also from 20 to 25 times faster than the CPU. As a result, the total energy 

consumed by our FPGA system is 60 to 80 times less than that of the existing single-threaded, 

purely software based approach.  

 

In order to investigate how our algorithm behaves on a multi-core, multi-threading environment 

we have also developed an openMP version of the original algorithm which we have hand-

optimized so as to get the best possible parallelism. As clearly demonstrated in [AHMED et al. 

2010] and [VIJAYALAKSHMI et al. 2011] the power consumption is increased when more cores 

and/or more threads are utilized in a multi-core, multi-threaded system. As a result we investigated 

if the increased speedup triggered by utilizing numerous cores and threads can counterbalance the 

increased demands in terms of power; if this is the case the total energy needed for the execution 

of our application can be reduced.  

 

In our experiments we have utilized two Intel multi-cores each with a nominal power consumption 

of 80 Watts per CPU. “Talos” is a dual processor machine hosting a 4-core CPU on each socket 

(Intel® Xeon® Processor E5620 with 12M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI) while it also 

supports hypertheading (i.e. it has 8 physical cores while it can support 16 active threads in total). 

The other machine “Iraklis” hosts two CPUs with 4 cores each that do not support hyperthreading 

(Intel® Xeon® Processor E5430, 12M Cache, 2.66 GHz, 1333 MHz FSB). 

 

In order to investigate how the system behaves when the number of utilized cores and threads 

increases we executed a number of experiments each exploiting a different number of threads. The 

speedup is expressed relative to the performance of the single-threaded software; our aim is to 

demonstrate how efficiently the reference software can be parallelized in terms of both power and 

performance. As Figure 10 clearly demonstrates, the maximum speedup achieved in our 



experiments is about 5x; this speedup is triggered when we utilized more than 32 threads which 

were executed on the 8 available cores.  From those results, it is clear that the multi-threaded 

software is faster than the single-threaded one, since the application very frequently moves data 

from the memory to the CPU, and the utilization of multiple threads hides this memory latency.  

 

Another interesting conclusion is that Iraklis performs much better than Talos (as shown in Figure 

11) although it features an older CPU without hyperthreading while both systems feature the same 

amount of cache (12MB per CPU, 24MB in total). The difference in the performance comes from 

the fact that the memory sub-system of Iraklis is faster than that of Talos due to a faster CPU-

memory interconnect system.  

 

Moving to the power consumption both CPUs consume very close to their nominal power (i.e. 

80Watts) when triggering the maximum speedup (i.e. 5x for Iraklis and 3x for Talos), whereas the 

power consumption in all the experiments was more than 60 Watts. As a result the processors 

consume about 150Watts in total while processing, in the best case, a single CODID image every 

about 1.7 sec. When comparing those numbers with the corresponding ones achieved by our 

FPGA system (2.7Watts for 0.5 sec per CODID image) our novel device is about 188 times better 

in terms of energy consumption.  

 

At the same time the recently introduced 8-core power efficient Xeon CPU (E5-2448), which is 

optimized for embedded applications [XEON2400], has a nominal power of 70W while it includes 

8 cores working at 1.8GHz each. So even if this new 1.8Ghz device has the same performance 

with our reference 2.66GHz multi-core system, our FPGA-based device will still be 88 times more 

energy-efficient than this state-of-the-art Intel multi-core.  

 

 
Figure 10 : Speedup vs Number of Threads for our experiments 

 

 
Figure 11 : Execution time (sec) for 14 CODID images vs Number of Threads 

 

The recently introduced ARM-based Cortex-A9, implemented in the newest CMOS technology, 

has a processing time which is very close to that of the reference Intel CPU; on the other hand this 



power-optimized ARM consumes about 400mW per core [CORTEXA9]. As a result our novel 

reconfigurable system is from 10 to 12 times more power efficient than even this state-of-the-art 

ARM CPU when executing the exact same object recognition scheme. Also looking at the future 

ARM-based multi-cores, they are expected to be “up to an order of magnitude more power 

efficient” than the current Intel-based ones [BOLARIA 2009]; as a result, and based on our real-

world measurements on the Intel multi-core, our FPGA-based device will still be at least 8 times 

more energy efficient that those future power-optimized ARM-based multi-cores.   

8. LIMITATIONS AND FUTURE WORK 

Although our novel embedded approach can achieve a significant speedup over the conventional 

purely-software approach, the single-chip validation platform we have used proved to be 

inappropriate for high performance embedded multimedia systems; this is due to the fact that the 

Microblaze was very slow when executing the specified double-precision floating point software 

routines. In particular, Microblaze’s low clock rates combined with a slow Floating Point Unit, 

degraded the overall performance and finally undermined the accelerated functions effect. In the 

near future we are going to upgrade our system to the upcoming Zynq FPGA[DS190], which 

employs a hard core ARM CPU. Our system is already fully compatible with any ARM-based 

embedded framework as it is built around ARM’s AXI bus which is also the standard bus for the 

Zynq Platform. The  performance of the software functions is expected, based on our initial 

measurements on a stand-alone Cortex A8 CPU, to be equal with that of the Intel processor used 

as a reference, therefore the final single chip solution will exploit the full speedup of our hardware 

implementation. Furthermore, we are about to convert the floating point arithmetic to fixed point 

arithmetic since, based on our experiments, the dynamic range of all the internal variables is 

limited;  this will certainly increase even more the performance on both the software and the 

hardware sides. 

 

9. CONCLUSIONS 

This paper describes a complete low-power embedded object recognition system that can support 

multi frames per second speeds and can efficiently be utilized in multimedia systems performing 

complex object recognition (such as fixed and mobile game consoles or tomorrow’s smartphones). 

The system implements one of the most efficient Object Recognition Algorithms, the Receptive 

Fields Cooccurrence Histograms (RFCH) one. This system is highly flexible since it is not fixed to 

a specific image size but instead it is designed to support image sizes up to High Definition (HD), 

allowing it to be utilized in numerous distinct multimedia applications. Additionally, the number 

of features and the number of clusters that are supported are not fixed either and they can be 

altered by just changing the software part of the system which offers even greater flexibility. 

Moreover, the programmability feature of the FPGA allows our system to be efficiently 

instantiated in numerous distinct multimedia applications; for example in a high-accuracy multi-

object mode it can utilize our algorithm whereas the reconfigurable sub-system can be rapidly re-

programmed to execute a simple face detection algorithm when such a demand is triggered by the 

end-application. The presented system, when implemented on a relatively low-cost Virtex-6 

FPGA connected to an ARM, can be up to 27 times faster than the conventional software approach 

whereas it consumes about two orders of magnitude less energy than either a low-power CPU 

executing the exact same algorithm or the recently introduced low-power multi-cores that are 

optimized for embedded applications. 
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