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I. INTRODUCTION

This project aimed in better understanding message passing
algorithms in general by reproducing results of [1]. Due to the
difficulty arising from the problem’s nature (i.e., continuous
distributions, loopy graph), approximate techniques applied
on the message passing procedure, were also studied [2]. A
multiple in-multiple out (MIMO) system, following the model
of Eq. (1), is considered and the goal of the reproduced
algorithm is to estimate all the channel parameters (matrix
H) and jointly detect the transmitted data (matrix X), uti-
lizing the minimum mean squared error (MMSE) criterion.
In contrast to the conventional method of first estimating
the channel parameters using a known training sequence and
then performing detection using the channel’s estimate, the
presented joint channel and data estimation (JCD) algorithm,
which is based on bilinear generalized approximate message
passing (Bi-GAMP) [2], simultaneously estimates and detects
the channel and symbol matrices respectively.

Notation: (·)T and (·)H denote the transpose and the conju-
gate transpose (Hermitian) of the argument. Simple lowercase
letters denote scalars, bold lowercase letter denote vectors
and bold upper case letters denote matrices. Scalar symbols
in the form xk,t denote the element of matrix X located
at row-k, column-t. Symbols in the form νN,K(λ) denote
the matrix formed at iteration λ, by elements νn,k(λ) for
n = 1 . . . N, k = 1 . . .K. Operators �, ÷ denote the element-
wise multiplication and division respectively.

II. SIGNAL MODEL

As stated earlier, a MIMO system is considered as illustrated
in Fig. 1. The receiver is equipped with N antennas and
is capable of serving K, single antenna, users. Each user
transmits in total T = Tt + Td symbols, of which Tt are
used as a training sequence (the sequence is available to the
receiver/base station) and the rest Td are information bearing
symbols. The signal model can then be expressed as:

Y =
1√
K

HX + W, (1)

where Y ∈ CN×T is the complex baseband equivalent of
the received signal, X ∈ CK×T contains the user-transmitted
symbols for (K rows of T symbols each) a time duration of
T and H ∈ CN×K contains the coupling/channel parameters
between the K users and each of the N antennas (K columns
of N rows each). W represents the zero mean additive white
Gaussian noise (AWGN). Each element Wn,t of W is assumed

such that Wn,t ∼ CN
(
0, σ2

w

)
. In the rest of the report, the

product 1√
K
HX may appear as Z , 1√

K
HX.

Fig. 1. Representation of the considered system model as per Eq. (1) for
N = 3, K = 2 and T = 1.

III. ALGORITHM FOUNDATION

The goal of the algorithm is to find the posterior distribu-
tions p(xk,t|Y) ∀ k, t and p(hn,k|Y) ∀ n, k. Then, computing
the expected values of those distributions results to the MMSE
estimates of xk,t and hn,n respectively [3, pp. 316]. Based
on the signal model on Sec. II, the statistical model for the
posterior of the system can be expressed as:

p(X,H|Y) ∝p(Y|Z = HX) p(X) p(H)

=

[
N∏
n=1

T∏
t=1

p(yn,t|zn,t = hn,1:Kx1:K,t)

]

×

[
K∏
k=1

T∏
t=1

p(xk,t)

][
N∏
n=1

K∏
k=1

p(hn,k)

]
. (2)

The above factorization is made due to (by formulation) inde-
pendence of the involved random variables and is represented
in Fig. 2 using a factor graph. The factors appear as square
boxes while random variables as circles. Using Eq. (2), when
a random variable is involved in a factor, an edge is used
to connect the variable’s node (circle) with the factor’s node
(box).

The factor graph of Fig. 2 is the basis for running the loopy
sum-product message passing algorithm which will eventually
result to the aforementioned posteriors. Exchange of messages
between factor nodes and variable nodes results to those
posteriors:
• The message transmitted from a variable node towards a

given edge (towards a factor), is the product of all the
incoming messages to that node, except the one coming
from the recipient of the message.

• A message transmitted from a factor node towards a given
edge (towards a variable) is defined as the integral of the



Fig. 2. Graphical representation of factorization in Eq. (2). The representation
is made for N = 3, K = 2 and T = 1.

product of the factor and all incoming messages from
other nodes, except the incoming from the recipient.

It should be noted that message exchange is performed only
between a variable and a factor. The posterior for a given
variable is the product of all the incoming messages. The
message passing procedure is executed in an iterative man-
ner (messages are continuously updated) until a convergence
criterion is satisfied.

In the studied works [1], [2], the messages take the form
of log-pdfs with arbitrary constant offsets. For example, based
on Fig. 2, the message from factor node p(y11|z11) impinging
on variable x11 at iteration ξ is defined as:

µ(ξ)
p11→x11

(x11) = log

∫
h11,h12,x21

factor︷ ︸︸ ︷
p(y11|z11 = h11x11 + h12x21)

× eµ
(ξ)
p11←x21

(x21)+µ
(ξ)
p11←h11

(h11)+µ
(ξ)
p11←h12

(h12)︸ ︷︷ ︸
incoming messages

+c,

(3)

where c arbitrary constant introduced due to the modeling of
messages. As it can be seen, when the number of variables in-
volved is large, integration could be challenging. To overcome
this problem, approximate expressions are used for evaluating
the messages (and of course updating them) based on central
limit theorem (CLT) and Taylor series expansion. The above
approximations result to Gaussian modeling of the messages
and tractable expressions for update rules, involving just the
first two moments (mean and variance).

Executing this approximate message passing procedure re-
sults to breaking the initial problem of finding the posterior
means (i.e., the MMSE estimates) of H,X, to two Gaussian
scalar estimation problems (each scalar problem corresponds
to each element of X,H to be estimated) with a trivial solu-
tion. At each iteration, the algorithm emulates the observation
of each element hn,k ∈ H as though it was observed through
a Gaussian channel:

q̂n,k = hn,k + nhn,k, (4)

where nhn,k ∼ CN
(

0, νqn,k

)
. hn,k is assumed to be a circularly

symmetric complex normal r.v, i.e. hn,k ∼ CN
(
0, σ2

h

)
. That

way q̂n,k is also a complex normal random variable with

q̂n,k ∼ CN
(

0, σ2
h + νqn,k

)
. Having stated the above, the bayes-

optimal MMSE estimator (which is defined as the posterior
mean E[hn,k | q̂n,k] ) coincides with the linear MMSE esti-
mator [3, pp.350] and the MMSE estimate of hn,k can be
acquired by:

ˆhn,k =
σq̂h

σ2
h + νqn,k

q̂n,k =
σ2
h

σ2
h + νqn,k

q̂n,k. (5)

In a similar manner, each xk,t ∈ X, during each iteration is
considered to be observed through another gaussian channel:

r̂k,t = xk,t + nxk,t, (6)

where nxk,t ∼ CN
(

0, νrn,k

)
. If the symbols are equiprobable

and drawn from a 4-QAM constellation the detector can be
shown to take the form [4]:

ˆxk,t =
1√
2

tanh

(
2<{r̂k,t}√

2νrk,t

)
+ j

1√
2

tanh

(
2={r̂k,t}√

2νrk,t

)
.

(7)

At each iteration, the message passing procedure updates
the parameters of the above equations which result to new
estimates used in the next iteration, until a convergence
criterion is satisfied or a maximum iteration number has been
reached.

A. Description

The algorithm implemented is the one presented in [1].
This algorithm is based on the results of [2] appropriately
modified to fit the MIMO model as described in Sec. II.
A notable difference between the two, is the fact that a
part of matrix X is known (training sequence). Due to the
approximations described earlier, every calculation involves
just matrix multiplications. In lines 9, 17 & 19 the MMSE
estimates of Z, X & H can be seen respectively.

Although the implementation, given the pseudo-code, may
seem trivial, there is a number of problems when someone
tries to reproduce the results of the work. In order to make
it work, for the purposes of the project, a small number
of modifications were made to the algorithm of [1]. These
modifications are listed below.

B. Modifications

1) Variable Initialization: To initialize the variables, au-
thors of [1] suggest to assign zero values to every involved
variable except of course those who are related to or represent
variances, which are assigned to value 1. Some of the variables
initialized with the value 0, are part of denominators in
fractions. When the simulation software tries to calculate those
fractions, something will probably go wrong. And in fact that
happens, simulator throws NaN (not a number) values and the
algorithm just does not work. To overcome this problem, the
respective variables are initialized to 10−5 instead of 0.

Variables denoted as ν are initialized with value 1. Every
other variable is initialized to 10−5 except the known part of
X̂ which is initialized with the training sequence.



Algorithm 1 (slightly) Modified GAMP-based JCD
Input: Y, priors p(H) and p(X), training sequence XTt

1: for λ = 1 : λmax do
2: νpN,Tt

(λ) = νhN,K(λ) |XTt
|2;

3: p̂N,Tt
(λ) = Ĥ(λ)XTt

− ŝN,Tt
(λ− 1)�νpN,Tt

(λ) ;

4: ν̄pN,Td
(λ) = |Ĥ(λ)|2νxK,Td

(λ) + νhN,K(λ) |X̂Td
(λ)|2;

5: p̄N,Td
(λ) = Ĥ(λ) X̂Td

(λ) ;
6: νpN,Td

(λ) = ν̄pN,Td
(λ) + νhN,K(λ) νxK,Td

(λ) ;
7: p̂N,Td

(λ) = p̄N,Td
(λ)− ŝN,Td

(λ− 1)� ν̄pN,Td
(λ) ;

8: νzN,T (λ) = Var
{
Z | p̂N,T (λ) , νpN,T (λ)

}
;

9: Ẑ(λ) = E
{
Z | p̂N,T (λ) , νpN,T (λ)

}
;

10: νsN,T (λ) =
(

1− νzN,T (λ)÷ νpN,T (λ)
)
÷ νpN,T (λ) ;

11: ŝN,T (λ) =
(
Ẑ(λ)− p̂N,T (λ)

)
÷ νpN,T (λ) ;

12: νrK,T (λ) = 1÷
(
|Ĥ(λ)

T|2νsN,T (λ)
)

;

13: r̂K,T (λ) = X̂(λ)�(1−νrK,T(λ)�(νhN,K(λ)TνsN,T (λ)))

+νrK,T (λ)�
(
Ĥ(λ)

H
ŝN,T (λ)

)
;

14: νqN,K(λ) = 1÷ (νsN,Tt
(λ) |XT

Tt
|2 + νsN,Td

(λ) |X̂T
Td
|2);

15: q̂N,K(λ)=Ĥ(λ)�(1−νqN,K(λ)�(νsN,Td
(λ)νxK,Td

(λ)T))

+νqN,K(λ)�
(
ŝN,Tt

(λ)XH
Tt

+ ŝN,Td
(λ) X̂H

Td
(λ)
)

;

16: νxK,Td
(λ+ 1) = Var

{
XTd
| r̂K,Td

(λ) , νrK,Td
(λ)
}

;

17: X̂Td
(λ+ 1) = E

{
XK,Td

| r̂K,Td
(λ) , νrK,Td

(λ)
}

;

18: νhN,K(λ+ 1) = Var
{
H | q̂N,K(λ) , νqN,K(λ)

}
;

19: Ĥ(λ+ 1) = E
{
H | q̂N,K(λ) , νqN,K(λ)

}
;

20: ε(λ) = ||p̄N,T (λ)− p̄N,T (λ− 1) ||2F/||p̄N,T (λ) ||2F
21: end for
22: λ∗ = argmin

λ
ε(λ)

Output: Ĥ(λ∗), X̂(λ∗)

2) Damping: After several unsuccessful attempts of trying
to run the algorithm in order to offer acceptable performance,
damping as shown in [2, Sec.IV-A] and [4] was considered.
Damping is a method for preventing specific variables from
attaining large values. The following changes were applied the
referenced lines of algorithm 1:

Line 2: νpN,Tt
(λ) = (1− β) νpN,Tt

(λ− 1) + βνhN,K(λ) |XTt
|2

(8)
Line 4: ν̄pN,Td

(λ) = (1− β) ν̄pN,Td
(λ− 1)

+ β
(
|Ĥ(λ) |2νxK,Td

(λ) + νhN,K(λ) |X̂Td
(λ) |2

)
(9)

Line 6: νpN,Td
(λ) = (1− β) νpN,Td

(λ− 1)
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Fig. 3. Channel NMSE vs SNR for N = 200, K = 50, β = 0.1.

+ β
(
ν̄pN,Td

(λ) + νhN,K(λ) νxK,Td
(λ)
)

(10)

Line 10: νsN,T (λ) = (1− β) νsN,T (λ− 1)

+ β
((

1− νzN,T (λ)÷ νpN,T (λ)
)
÷ νpN,T (λ)

)
(11)

Line 11: ŝN,T (λ) = (1− β)ŝN,T (λ− 1)

+ β
((

ẐN,T (λ)− p̂N,T (λ)
)
÷ νpN,T (λ)

)
, (12)

where β ∈ (0, 1] defines the amount of damping applied to
the variables. As it can be seen, for β = 1 the algorithm runs
without damping. Damping is also applied to lines 12 − 15,
where the variables Ĥ(λ),X̂(λ) are replaced by H(λ),X(λ),
where:

H(λ) = βĤ(λ) + (1− β)H(λ− 1) , (13)

X(λ) = βX̂(λ) + (1− β)X(λ− 1) . (14)

3) Convergence Criterion: The convergence condition of
[2, Table III] was utilized. However no stopping threshold
was used. Instead a maximum number of iterations, λmax,
was defined and at the end of each iteration the convergence
condition/error was saved in a vector ε(λ) (line 20 of Al-
gorithm 1). After λmax iterations, value λ∗ corresponding to
the position of minimum in vector ε, was chosen and Ĥ(λ∗),
X̂(λ∗) were returned by the algorithm. This modification was
made due to the fact, in the implementation performed for
the project, that not a constant threshold criterion in the con-
vergence condition was able to offer acceptable performance
when various cases (i.e., different values for N , K, β etc.)
were tested. Besides that, it was noticed that after iteration
λ∗ the algorithm diverged, i.e., ε(λ) attained large values
compared to ε(λ∗). Value λmax was chosen after observing
the number of iterations needed for the algorithm to offer the
best performance with respect to symbol error rate.

IV. PERFORMANCE RESULTS

The algorithm was implemented in MATLAB. Extensive
trial & error, with respect to algorithm tuning, attempts were
made in order to achieve acceptable performance. Different
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Fig. 4. Symbol error rate for N = 200, β = 0.1 and T = Tt + Td =
100 + 400.

combinations of N , K, Tt and β were tried, various parts
of the algorithm itself were experimentally modified in the
quest for performance gain. The trials were made mainly by
observing the symbol error rate (SER), giving less attention
to channel normalized mean squared error (NMSE, defined as(
||Ĥ(λ∗)−H||F
||H||F

)2
).

To compile the plots, for each SNR (defined as SNR =
1/σ2

w) value, both SER and channel NMSE was averaged
across 104 channel realizations of Eq. (1) (different H and
W per realization). The algorithm was run on each realization
with λmax = 30, value chosen after observing that the
algorithm chose always λ∗ ≤ 25.

Fig. 4 offers the symbol error rate of the reproduced algo-
rithm. Damping factor was β = 0.1. Attempts with β = 1 (i.e.,
no damping) resulted to unacceptable performance (high SER
throughout the SNR range). In Fig. 3 the channel estimation
performance can be seen. The obtained error is clearly high.
This may be due to implementation error or misleading content
of [1] (as informed by author of [4]), regarding channel
estimation initialization (i.e., value of Ĥ(0)).
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