Address InterLeaving for Low-Cost NoCs

Miltos D. Grammatikakis, <u>Kyprianos Papadimitriou,</u> Polydoros Petrakis, Marcello Coppola, and Michael Soulie

ReCoSoC Symposium, Tallinn, June 27-29, 2016

Interconnection in MPSoCs

SHAPES *EU project* MORPHEUS *EU project*

Why Networks-on-Chip?

- Bus-based solutions don't scale
 - contention, electrical characteristics, timing, ...
- Really want point-to-point links
- Full connectivity is too expensive
 - area, power, delay, ...
- Ad-hoc wiring is too expensive
 - design, verification, ...
- Need efficient, scalable communication fabric on chip: NoC
 - building blocks (circuits, microarchitecture)
 - topologies
 - routing & flow control schemes
 - quality-of-service (QoS)

The on-chip environment

- Wires are cheap
 - favors wider interfaces and more channels, but...
- Buffers are expensive
 - provide "just enough" buffering
 - e.g. credit round trip
 - minimize occupancy & turnaround time
 - efficient flow control required
- Power budget is limiting factor for current chip designs
 - minimize power required for moving things around
 - maximize power available for doing actual work
 - NoC typically consumes > 30% of chip's power

Our contribution: in NoC's QoS

- QoS-related feature
 - address Interleaving implemented at the NI
 - relies on the concept of interleaved memory
 - low-cost and low-power: with narrow links
 - estimate HW overcost
- Other QoS-related parameters
 - number of VCs
 - traffic policies
 - preemption (packet/flit interleaving)
 - fair bandwidth allocation (FBA)

Our proposal is spreading memory..

...across contiguous nodes

*platform.inoc_system_settings (platform.inoc) 🛛 🔍 🗢 platform

Memory Map Last Level

♦ STNoC

Address Interleaving

Default View

Memory Map width: 4 GB

size

Add Range Delete

 $\overline{\mathbf{A}}$

 $\overline{}$

v

i	Ν	0	С
•	•••	•	

- -

INI STBUS 64

36

IMR and IMRSets

- 1 channel can have multiple Interleaved Memory Regions (IMRs)
 - each of these belongs to a different IMRSet
- IMRs belonging to different channels are grouped in 1 IMRSet
 - interleaving within 1 IMRSet <-> different channels!
- Up to 16 IMRSets can be supported
 - requires de-interleaving implementation at target NI
 - we experimented with 1 IMRSet only

Hardware cost

- Non-disruptive modification of STNoC routing
 - address comparators enhanced with an output signal indicating whether incoming address belongs to an IMR
- Typical configuration adds 5% more gates
 - synthesized in 28nm FDSOI ST technology

Address interleaving: then and now

- Initially it was proposed to hide the memory refresh time of DRAMs; used in IBM 360/85, Ultrasparc III, Cray-Y MP
- Different channels to balance network load amongst them; balance also the traffic in the NoC itself
- Implemented in the initiator's network interface (INI)
- Transactions are split and interleaved within the interconnect and the NIs
- Decision to which channel a transaction belongs, depends on the transaction address

Benefits

Experimental system parameters

- Interleaving step
 - pace with which an initiator changes destination (0-64)
- Different amount of nodes and setups
 - #CPUs / #MEMs / #DMA Engines / #DDR2 Controllers
 - 8, 16, 32 nodes
- Packet injection rate
 - #packets per cycle per CPU
 - does not apply in DMA; a DMA engine initiates a transaction upon completion of its previous one
- Different link-widths
 - 8, 16, 32 Bytes
- Packet size=128 Bytes, #VCs=2, FBA is disabled

Experimental framework

- gem5 Simulator
 - detailed memory systems and interconnect models
- ..enhanced with Spidergon STNoC
 - time-annotated from RTL
- .. to measure the effect of address interleaving
 - end-to-end delivery times, i.e. NoC transfer delay
 - throughput
 - power consumption

Setup with CPUs

- 8 nodes: 4 CPUs and 1/2/4 channels
- Different packet injection rates
- Interleaving step: 1, 2, 4,...64
- Link-width: 16 Bytes
- Aim of study:
 - best interleaving step
 - saturation point
 - #channels

Saturation point

- Reason of saturation is congestion
 - buffers are filled-up, problem propagates to entire network
 - system unable to break-down the packets within reasonable time
- Range of packet injection rate per clock cycle for each CPU – beyond which NoC saturates
 - ...when NoC delay changes dramatically, e.g. from 60 to 500 cycles when increasing slightly the rate (+0.005 p/cc/CPU)
 - saturation begins when injection rate is 0.025-0.03 [1]

[1] K. Papadimitriou, P. Petrakis, M. D. Grammatikakis, M. Coppola, "Security enhancements for building saturation-free, low-power NoC-based MPSoCs", in Proc. CNS 2015, pp. 594-600

TEI of Crete

Results from experiments with CPUs

# channels	packet injection rate (w/o causing NoC saturation)	improvement
w/o interleaving	0.03	-
2 channels	0.05	1.66x
4 channels	0.07	<mark>2.33x</mark>

- Best interleaving step value is 1
 - change destination node after every transaction
- Address interleaving
 - reduces transfer delay on NoC
 - remedies NoC saturation
 - allows for higher injection rates
- Improvement increases with the #channels

<u>we observe:</u> interleaving can result in balancing effectively network load, and in less busy queues

Setup with DMAs

- 16 nodes: 7 DMA engines and 1/2/4/8 channels
- 32 nodes: 23 DMA engines and 1/2/4/8 channels
- Link-width: 8,16,32 Bytes
- Interleaving step: 1

 most effective value
- Aim of study:
 - best link-width (LW)
 - aggregate throughput

Results from experiments with DMAs

	Aggregate throughput (MB/sec)			
# channels	LW = 8 By	vtes	LW = 16 Bytes	LW = 32 Bytes
1 (w/o interleaving)	10,710		15,119	15,960
2	16,181		18,306	18,882
4	17,676		18,850	19,264
8	18,170		19,056	19,280
max improvement	69,64%		26,04%	20.8%

Address interleaving

DMA transfer = 128 Bytes

- allows for configuring NoC with narrow link-width

- increases aggregate throughput
- Improvement increases with the *#channels* we noticed this before (in experiments with CPUs)

Results from experiments with DMAs

	Router power (watt)			
# channels	LW = 8 By	rtes	LW = 16 Bytes	LW = 32 Bytes
1 (w/o interleaving)	1,194		1,721	2,759
2	1,274		1,769	2,823
4	1,307		1,786	2,845
8	1,321		1,798	2,856
max power overhead added	10,63%		4,47%	3,51%

- Router's clock power doubles when link-width doubles
- Narrow link-width of NoC allows for power savings at the routers

Summary - Effect of interleaving

- Address interleaving
 - allows for configuring NoC with 8-Bytes link-width
 - reduces transfer delay on NoC
 - remedies NoC saturation
 - allows for higher injection rates
 - increases aggregate throughput
- Best interleaving step value is 1
 - change destination node per transaction
- Improvement increases with the #channels

<u>we observed:</u> interleaving can result in balancing effectively network load and in less busy queues

- more info
 - <u>kpapadim@cs.teicrete.gr</u>
 - <u>mdgramma@cs.teicrete.gr</u>
- work done in the context of DREAMS project <u>http://www.dreams-project.eu/</u>
- extensions added in gem5
 <u>http://www.m5sim.org/Publications</u>

