
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Security in MPSoCs: A NoC Firewall and an
Evaluation Framework

Miltos D. Grammatikakis, Kyprianos Papadimitriou, Polydoros Petrakis, Antonis Papagrigoriou, George Kornaros,
Ioannis Christoforakis, Othon Tomoutzoglou, George Tsamis, and Marcello Coppola

Abstract—In multiprocessor system-on-chip (MPSoC), a CPU
can access physical resources, such as on-chip memory or I/O
devices. Along with normal requests, malevolent ones, generated
by malicious processes running in one or more CPUs, could occur.
A protection mechanism is therefore required to prevent injection
of malicious instructions or data across the system. We propose
a self-contained Network-on-Chip (NoC) firewall at the network
interface (NI) layer which, by checking the physical address
against a set of rules, rejects untrusted CPU requests to the on-
chip memory, thus protecting all legitimate processes running in
a multicore SoC. To sustain high performance, we implement the
firewall in hardware, with rule-checking performed at segment-
level based on deny rules. Furthermore, to evaluate its impact, we
develop a novel framework on top of gem5 simulation environ-
ment, coupling ARM technology and an instance of a commercial
point-to-point interconnect from STMicroelectronics (STNoC).
Simulation tests include scenarios in which legitimate and mali-
cious processes, running in different CPUs, request access to
shared memory. Our results indicate that a firewall implementa-
tion at the NI can have a positive effect on network performance
by reducing both end-to-end network delay and power consump-
tion. We also show that our coarse-grain firewall can prevent
saturation of the on-chip network and performs better than
fine-grain alternatives that perform rule checking at page-level.
Simulation results are accompanied with field measurements per-
formed on a Zedboard platform running Linux, whereas the NoC
Firewall is implemented as a reconfigurable, memory-mapped
device on top of AMBA AXI4 interconnect fabric.

Index Terms—Deny rules, firewall, MPSoC, network-on-chip,
segment-level security, Spidergon STNoC.

I. INTRODUCTION

NOWADAYS, there is an increasing interest in solu-
tions for trusted computing mainly driven by the eco-

nomic consequences when failing to ensure security in
embedded applications [1]. MPSoCs and related on-chip
communication architectures for connecting together SoC
components have been widely studied during the last decade,
e.g., NoC [2] or bus [3], while security aspects have only

Manuscript received July 10, 2014; revised November 18, 2014 and
March 14, 2015; accepted May 5, 2015. This work was supported by EU
FP7-ICT: TRESCCA under Grant 318036 and DREAMS under Grant 610640.
This paper was recommended by Associate Editor O. Sinanoglu.

M. D. Grammatikakis, K. Papadimitriou, P. Petrakis, A. Papagrigoriou,
G. Kornaros, I. Christoforakis, O. Tomoutzoglou, and G. Tsamis are with
the Technological Educational Institute of Crete, Heraklion 71004, Greece
(e-mail: mdgramma@cs.teicrete.gr).

M. Coppola is with STMicroelectronics, Grenoble, France.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCAD.2015.2448684

recently attracted interest. The lack of proper and efficient iso-
lation of program code and data among trusted and untrusted
applications constitutes a major challenge in shaping a secure
architectural solution without jeopardizing performance.

Within this context, we explore the effect of security, and
show that in the presence of malicious processes a security
mechanism can reduce NoC power and end-to-end trans-
mission delay. In [4], we presented a hardware-based NoC
firewall performing efficient rule-checking of memory requests
at segment-level, and a scalable modeling infrastructure rely-
ing on ARM and Spidergon STNoC augmented with security
features. This paper extends that publication with the following
contributions:

1) extensive experiments with multiple legitimate and mali-
cious processes requesting access to memory;

2) a quantitative analysis of the effect of security on
network delay and power consumption;

3) studying the extent to which a security mechanism can
prevent NoC from entering a saturation phase;

4) performance comparison of our coarse-grain versus a
fine-grain approach;

5) an implementation of the firewall on a field pro-
grammable gate array (Zynq-7020 FPGA) with
GNU/Linux system driver, along with performance and
area results.

The remaining paper is organized as follows. Section II
overviews related work on hardware security. Section III
describes the components and functionality of the proposed
hardware NoC firewall. In Section IV, we define the threat
model and type of traffic we generated to test our approach.
Section V discusses the experimental framework. Section VI
covers the different scenarios that examine the effect of
the security mechanism when both legitimate and malicious
requests occur. Section VII discusses our results for packet
delivery time and NoC power consumption. In that section,
we also compare the performance of our HW approach against
a SW solution for reference purposes. In Section VIII, we
contrast the performance of our coarse-grain approach against
a fine-grain solution. Section IX examines an FPGA-based
implementation under GNU/Linux in terms of performance
and area costs. Finally, Section X summarizes this paper and
outlines future work.

II. BACKGROUND AND MOTIVATION

NoC firewall mechanisms provide domain protection
by controlling memory access rights through hardware

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:mdgramma@cs.teicrete.gr
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

multicompartment isolation [5]–[8], therefore ensuring a well-
defined end-user service agreement and billing model. The
main purpose of memory protection is to prevent a process
from accessing shared memory that has not been allocated
to it. This prevents a malicious process (or a bug within
a process) from affecting other processes, or the OS itself,
issuing a segmentation fault or storage violation exception
to the offending process which generally causes abnormal
termination (killing the process).

Memory protection in multiprocessor operating systems
includes high-level security techniques, such as address space
layout randomization and executable space protection. In most
previous memory protection schemes, fine-grain page-level
security is proposed. Thus, decisions are made on whether
to accept or reject a specific request based on rules hidden
within a page-level memory descriptor or via an indepen-
dent memory unit. Unlike fine-grain page-level protection, we
consider coarse-grain, segment-level protection based on the
physical address of the NoC transaction request. Our approach
not only supports isolation, but also attempts to harmonize
the system security infrastructure by implementing the NoC
firewall module as a new distributed platform service at the
network interface (NI) layer. These low-level HW/SW plat-
form services enable advanced features in modern MPSoC
applications.

Unlike the hardware memory protection module of
Porquet et al. [7] and Wiggings et al. [8] considered page-
level security, the proposed NoC firewall relies on segment-
level protection. Since rules are configured and used directly
at the NI, the proposed scheme has relatively less area over-
head and latency. Our NoC firewall is integrated in the NI,
similar to [5] and [6]. However, while [5], [6] use dedicated
virtual channels to pass specialized rule-checking information
processor and thread identifiers, we consider generic segment-
level rules based on the NoC transaction’s physical address
bits (excluding offset). In addition, while [5], [6] compare
different initiator and target implementations of the memory
protection module in terms of area and power cost, we con-
centrate only on the initiator side, aiming at examining the
processor requests rather than the memory accesses.

III. HARDWARE NOC FIREWALL

We propose a lightweight, nonintrusive security module
composed of a hardware IP (and corresponding driver com-
ponents) providing isolation in integrated NoC-based MPSoC
solutions. The module is placed between the network-on-chip
and a system component, e.g., CPU, memory controller or
hardware accelerator, ideally at the NI. It acts as a firewall,
adapting concepts from enterprise network firewalls to the on-
chip communication architecture of MPSoC. Typically, there
are multiple NoC firewalls distributed in the system, i.e., typi-
cally one for each initiator IP. Within each firewall component
different access rules can be configured in order to control
access to the protected memory regions.

Executable system-level specifications have been developed
for a coarse-grain firewall solution implemented at the NI
layer of a network-on-chip. We developed and validated both a

Fig. 1. Top-level NoC firewall module.

bit-accurate, cycle-accurate SystemC virtual prototype and an
equivalent gem5 model, which we time-annotated from reg-
ister transfer level (RTL) simulation. Below, we examine the
architecture and behavioral-level characteristics of the firewall.
It operates at the NI layer by the following.

1) Statically or dynamically configuring rules for system or
user processes that access segments of physical memory.

2) Filtering the underlying transactions and ensuring that
security rules are obeyed at the NI of each initiator by
providing fast and efficient access to rules; this implies
that a compromised process cannot access data owned by
a secure process, thus successfully subverting distributed
denial-of-service (DDoS), eavesdropping, malware
attacks on data and hardware/software vulnerabilities,
including corrupt accesses from memory-mapped
devices. These security threats are usually classified
as medium probability events, but have very high to
extremely high (DDoS) impact. The associated security
risk is usually identified by the product of frequency
and magnitude of loss (often seen as monetary value).
It can be visualized nicely using heat maps [9].

Fig. 1 shows the top-level architecture.
1) The operating mode controller (OMC) accepts, decodes

and dispatches NoC firewall commands.
2) The segment-level rule-checking (SLRC) module pro-

cesses incoming memory accesses and configuration
commands; notice that within the SLRC, a number
of memory structures are responsible for implementing
deny rules at segment-level (we assume an allow-by-
default policy). SLRC also includes monitors (timers
and event counters) to record NoC activity, and report
performance and/or security issues to the interrupt
unit (INTU).

3) The INTU accepts (in parallel) interrupt requests from
the OMC block (e.g., invalid commands) and the SLRC
block (resulting from rule-checking). It reports interrupt
contexts to the CPU.

As shown in Fig. 2, a coarse-grain rule-checking approach is
implemented in the SLRC unit. This policy controls accesses
to the memory at segment-level, whereas segment size is vari-
able. SLRC segments are implemented using register sets that
define the (start, end) physical address range of each seg-
ment. Parallel search within these segments is implemented
with comparators which compare the physical address of the
incoming access after extracting lower order bits that corre-
spond to the offset L; the value of L is 12 bits for the ARM
v7 architecture.



IE
EE

Pr
oo

f

GRAMMATIKAKIS et al.: SECURITY IN MPSoCs: A NoC FIREWALL AND AN EVALUATION FRAMEWORK 3

Fig. 2. Range search data structures using register-based parallel search.

This process involves checking whether an incoming phys-
ical address is in any preconfigured segment range. Since we
have implemented a policy based on deny rules, if there is
no match in the SLRC segment structure, then normal access
is allowed to the physical address. Otherwise, if an incom-
ing physical address falls within a particular segment address
range, then the rule table needs to be accessed to examine the
specific rule. In our models, each segment rule is three-bits
long, specifying access control based on any combination of
read, write, and execute privileges.

It is implementation-dependent (based on silicon cost)
whether a context associative memory (CAM) structure is
faster and/or less complex than the register-based compara-
tors shown in Fig. 2. Based on RTL simulation and synthesis
results, it appears that if the number of supported segments
is small (below 128), then the proposed solution solely based
on parallel comparisons using registers is adequate in terms
of performance. This option is much more flexible, since it
allows simpler firewall configuration. Other solutions, such as
a parallel range search approach based on two ternary CAMs
to encode segments using the longest common prefix con-
cept provide nice asymptotics, but complicate significantly the
network interface [10].

IV. THREAT MODEL

We focus on NoC-based multicore SoC architectures in
which a process invoked in any CPU can be potentially mali-
cious. A representative work listing different type of threats
is described in [11]. In our case, we are not concerned about
physical attacks against the SoC, such as fault injection, side-
channel analysis, and chip rewriting. Instead, the kind of
attacks we seek to prevent are as follows.

1) Protection of sensitive software against logical adver-
saries, such as rogue processes, including viruses, tro-
jans, or even corrupt hardware or software stacks of
memory-mapped devices; these threats relate to data
leakage, confidentiality, integrity, and availability issues.
A typical scenario involves isolation of important trusted
services, such as billing, authentication, and telecom-
munication, from an open OS (e.g., Android) executing
uncertified third-party applications.

2) Denial-of-service or DDoS attacks, where malicious
code injected by attackers prevents legitimate users from
using a service, e.g., by saturating the NoC through
massive unauthorized accesses to a memory controller.
A link between DDoS and memory protection can be

established with a network-based scenario by consid-
ering protection of the Linux kernel socket interface
(e.g., when a server process forks to accept new network
connections), or a distributed cache thrashing scenario
which drains memory resources.

Later in Section VI, we present the traffic scenarios we
deployed to study the behavior of the on-chip-network under
different workloads, either legitimate, malicious, or mixed
ones. To do this we generated real workload of different sizes
as described in Section V. Although we have used real network
traffic, measuring application execution time (e.g., by run-
ning PARSEC benchmarks on an MPSoC executing Linux) is
beyond the scope of this paper. In fact, use of PARSEC bench-
marks in full-system simulation is currently limited in gem5,
since it is impossible to consider a realistic full-system sce-
nario with an ARM multiprocessor architecture, Ruby memory
system and Garnet interconnect [12]. Therefore, our focus is
not on processor, but network performance, e.g., examining
the time it takes to transfer a packet across the network when
incorporating security at the NI of each CPU. More specifi-
cally, by using realistic traffic on the STNOC, we can control
the amount of packets injected per time unit and examine
variations in network delay and power consumption prior to
network saturation.

V. EXPERIMENTAL FRAMEWORK

To evaluate the effect of security (NoC firewall) on network
latency and power consumption in shared memory MPSoCs,
we created a framework connecting together CPUs and shared
memory with a network-on-chip. Within this framework we
measure delivery times starting from the time a packet
reaches the NI queue, and power consumption at network-
layer. We have also enhanced this framework by integrating
the functionality of the NoC firewall described previously
at the NI. This allows us to evaluate the effect of firewall
activation/deactivation on the data delivery time and power
consumption at the network-layer and below (network-, link-,
and physical-layer of the MPSoC). A co-simulation approach
(cycle-approximate for ARM Cortex-A9) allows us to consider
realistic memory accesses. Although an extension to consider
bare-metal applications is imminent, this is beyond the scope
of this paper.

A. Building-Up the Framework

Our framework combines ARM v7 CPU technology and
STNoC point-to-point interconnect. STNoC is a ring-based
topology comprising three main building ingredients; NI that
functions as access point to the interconnect, simple nonpro-
grammable router, and physical link. STNoC also supports
programmable network services, such as interleaving, NI
reprogramming, and quality-of-service (QoS), and can be
customized according to given specifications to efficiently
interconnect MPSoC components, i.e., CPUs, memories, and
peripherals [13]. Fig. 3 shows an example topology for attach-
ing different components to the STNoC. From the network
point of view, each component is a node, while information
(instructions and data) is transmitted across nodes in the form



IE
EE

Pr
oo

f

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 3. Example of STNoC topology interconnecting the MPSoC com-
ponents. STNoC consists of three basic building ingredients: NI, router,
and link.

of packets. Prior to transmission, a packet is first broken down
in smaller units called flits (flow control units) that are released
into the network. A flit carries the maximum amount of data
that can traverse the link per transaction. As a result, for a
given packet size the amount of flits comprising each packet
depends on the link-width. During the NoC configuration pro-
cess, a designer uses tools (called INoC and MetaNoC) to
customize the topology and tune different parameters, such
as link width, packet size, number of flits in a packet, and
QoS. For example, for an STNoC with 16 Bytes link-width,
if the selected size of the packet is 64 Bytes, this is split up
in four flits.

To conduct experiments we modeled the above system
in the gem5 simulator [14], a platform widely used in
computer architecture research, encompassing processor and
system-level macro-architecture. It is highly-configurable and
includes support for multiple and diverse processor models
including ARM, with detailed memory systems and inter-
connect models. Within gem5 environment, we created an
instance of an STNoC network, which we time-annotated from
cycle-accurate design specifications of the STMicroelectronics
STNoC backbone, including the STNoC router, the NI and a
synchronous link. We also implemented a gem5 model of the
proposed NoC firewall and integrated it in the NIs of STNoC.
Then, we time-annotated the NoC firewall model based on
preliminary results from a cycle-accurate design implemented
in RTL (VHDL).

In both models, time annotation is based on gem5 scheduler
functions that can schedule, deschedule and reschedule events
on the simulation timeline. For example, by extending a class
called consumer, it is possible to use a function that schedules
an event to happen after a specific amount of simulation cycles
relative to the current simulation time; upon arrival at this
time point a wakeup method is called. Using these classes
and corresponding member functions, we are able to schedule
dependent and independent events [15].

B. Gem5 STNoC Model and Timing Analysis

Based on available specifications, we have modeled STNoC
backbone technology as accurately as possible by making

several adjustments to the 5-stages Garnet fixed pipeline
model [14], [16], [17]. Several STNoC configuration param-
eters have been modelled, including link width, packet flits
(header and body), virtual circuits (high and low priority),
buffer size and number of credits per virtual circuit (VC)
and router and NI port. We have also implemented STNoC
QoS policies, i.e., fair bandwidth allocation for rate control.
These policies apply to flits travelling on the same VC. In fact,
our gem5 STNoC router configuration supports three levels of
arbitration based on info available in the header flit of the
STNoC packet:

1) current faction bit used as a an epoch, i.e., separating
messages injected to a router;

2) packet priority, round robin or least recently used (LRU);
3) round robin or LRU as third level of arbitration (this is

only used when packet priority is the second level).
In relation to the STNoC router model, we have encapsu-

lated garnet switch allocation (doing port scheduling) within
the VC allocator, while also reducing the pipeline depth to
match STNoC specifications. In fact, for the STNoC router
instance we currently support, the router delay has been
reduced to only two cycles, i.e., one cycle for input buffering
and route computation stages (IB+RC), and one more cycle
for the remaining four stages: 1) virtual channel allocation;
2) switch allocation; 3) switch traversal; and 4) link traver-
sal (VA+SA+ST+LT). Notice that if a flit travels on a high
priority VC and the STNoC router behaves “without packet
lock,” flit interleaving between different VCs is possible and
the high priority flit may preempt a low priority one.

Although in our current setup we assume an STNoC topol-
ogy (normal spidergon) of degree 4, many different topologies
with a maximum degree 5 can be modeled by modifying
python configuration files. The current implementation of
gem5 STNoC router model uses the internal Garnet routing
tables. This allows not only to support the only commercially-
used STNoC routing strategy, i.e., source-based scheme, but
also other deterministic, randomized or adaptive policies for
design space exploration.

In our gem5 STNoC model, router-to-router, NI-to-router
and router-to-NI LT takes no cycles, similar to the actual
STNoC synchronous link implementation. NI latency takes
one cycle, which corresponds to STNoC flit registering. The
NoC clock frequency can also be configured appropriately
(default value is 109 ticks per second).

For a cycle-accurate STNoC model, it is necessary to
schedule predefined events at appropriate time instances.
The gem5 scheduler provides a mechanism to schedule,
deschedule and reschedule events on the simulation timeline.
Table I explains the major gem5 scheduling events in the
gem5 model of the STNoC backbone. Event interactions are
modified from the Garnet fixed pipeline model architecture
accordingly.

The gem5 STNoC router operates in two pipeline cycles as
follows.

1) In the input buffer and route computation pipeline stage
(called IB+RC), a head flit, upon arriving at an input
port, is decoded and buffered according to its input VC.
At the same cycle, a request is sent to the route



IE
EE

Pr
oo

f

GRAMMATIKAKIS et al.: SECURITY IN MPSoCs: A NoC FIREWALL AND AN EVALUATION FRAMEWORK 5

TABLE I
EVENT SCHEDULING IN gem5 STNOC NETWORK MODEL

computation unit, and the output port for this packet
is calculated.

2) Then, for the head flit, the router arbitrates for a VC
(VA stage) and proceeds to switch allocation (SA stage)
where it arbitrates for the output ports. Upon winning
both, the flit moves to switch traversal (ST stage). In
ST stage, the flit traverses the crossbar if credits cur-
rently exist. ST is followed by LT, whereas the head
flit can travel to the next node. Body and tail flits fol-
low a similar pipeline without going through RC and
VA stages; instead they inherit the VC allocated by the
head flit. The tail flit upon leaving the router, “frees”
the VC reserved by the packet. Notice that in parallel to
flit processing, credit-based information must be updated
at the upstream router based on relevant info collected
from downstream routers.

We have considered the timing behavior of the gem5
STNoC model experimentally by designing and simulating
static traffic scenarios representing corner-cases. Adherence
to cycle-accuracy for all STNoC instances is extremely hard
due to the vast number of STNoC configuration parameters
and complexity of the gem5 STNoC model (tens of thousands
lines of code). The goal of these static scenarios is to calibrate
and improve cycle-accuracy of our gem5 models.

As an example, consider router behavior when three STNoC
packets of five flits each, enter from three different ports of
a single router and exit from two different ports (or a sin-
gle port). STNoC packets travel on two VCs (VC0 and VC1),
which are assigned a static priority, the higher being for VC0.
Fig. 4 shows three five-flit packets routed to two output ports
(port 0 and port 2), however, in this case two packets are
routed on high priority VC0, (flits shown in red color) and
one packet is routed on low priority VC1 (flits shown in
blue color). The priority of VC0 has a big impact on results,
since two packets (ten packet flits) simultaneously flow out
of ports 0 and 2 in packet lock fashion (without interleav-
ing). Thus, during time interval 111 to 115, both output
ports are fully utilized. Thereafter, only packet 3 remains,
so its flits (2_0 to 2_4) exit from port 0 at time interval
116 to 120.

If we make the hypothesis that one of high priority packets
is malware, and is thus dropped at the NI, we can observe
that the tail of the low priority packet (blue flits) will depart
much earlier at time 115, thus saving five cycles. This case,
with one malware packet and two normal packets (i.e., 33%
malicious requests) results in 100% reduction in total delay.

However, considering the five extra cycles required at the NoC
firewall (NI) to detect and drop a malware packet, this benefit
diminishes to zero.

From the above description we obtain that when malware
packets are detected and dropped, increased benefits in total
packet delay can result only when network congestion is high,
i.e., multiple packets head to the same port and the amount
of STNoC flits in a packet is high. We have examined gem5
STNoC model cycle-accuracy by considering its behavior with
static traffic patterns.

Next, we will consider dynamic traffic and examine the
effect of the NoC firewall to flit latency and delay assuming
that a number of malicious accesses occur.

C. Traffic Generation, Rules, and Setting Attributes

To study the system response under different conditions,
we developed a method that generates legitimate and mali-
cious requests within the gem5 simulator. We consider two
types of processes requesting memory access. The first type
corresponds to legitimate (also called safe) processes, Si,
which perform write requests to a certain memory range.
The second type corresponds to malicious processes, Mj,
which perform remote write requests to random addresses
located in the same memory range that is requested by
the legitimate processes. Therefore, all memory requests
target the range specified by the Si memory descriptors,
and consequently malicious requests interfere with legitimate
communications.

For a realistic testbench, we aligned the rule-checking mech-
anisms to actual segments in the pagemap of the Si Linux pro-
cess address space. We accomplished this by cross-compiling
and executing the Si Linux process on top of ARM Fast
Models (ARM-FM) simulator [18]. ARM-FM is a function-
ally accurate environment in which ARM v7 CPU models are
implemented as instruction set simulators. Thus, we can model
an ARM Cortex-A9 architecture by loading a Linux image and
running full system simulation (i.e., executing Linux). The
functional behavior of the model is equivalent to real hard-
ware, although timing accuracy is sacrificed for the sake of
efficient simulation (and HW/SW development/validation).

In our scenarios, we assume the Si Linux process allocates
an array of 4096 integers, and then continuously writes data
to array elements in an infinite loop. This enables examining
Linux page tables via ARM-FM and obtaining the memory
descriptors that correspond to specific (virtual) array accesses



IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 4. Scenario with three packets routed to two identical output ports with high or low VC priorities.

at the moment they occur. Thus, in relation to the Si pro-
cess, we modified a pagemap-analysis suite of programs and
then cross-compiled them for ARM v7 architecture using the
common gnu-eabi toolchain [19]. This tool-suite allows us to
collect and analyze the Linux pagemaps corresponding to the
Si Linux process (assembly instructions) while it executes on
top of ARM-FM. The memory descriptors of the Si process
from Linux pagemaps analysis correspond to the heap range
from 0x11000 to 0x36000; notice that five descriptors corre-
spond to 5 × 4K units of byte addressable memory which
is enough to store 4K 32-bit integers (the first descriptor
essentially contains malloc-specific data).

The use of a 4 KB segment configuration is due to lim-
ited support from the OS. Linux process memory allocation
often results in noncontiguous descriptors. By analyzing the
page map of common PARSEC benchmarks (swaptions and
splash), we have noticed that some of the allocated address
space corresponds to memory descriptors that are noncontigu-
ous. Hence, in general, it is necessary to configure rules on
small segments of granularity (4 KB) in order to avoid denial
of access to memory segments that may belong to other kernel
or user processes. Stated otherwise, we cannot have a larger
segment rule containing all these noncontinuous descriptors,
since that would cause denial of access to memory segments
that do not belong to the application.

Our framework relies on ARM CPUs and shared memory
distributed across a Spidergon STNoC. We have experimented
with different configurations by modifying these parameters as
follows:

1) number of nodes, i.e., on-chip CPUs and memories;
2) number of legitimate and malicious processes running

in each CPU requesting memory access;
3) enabling or disabling the security.

TABLE II
SIMULATION PARAMETERS

All other factors are kept constant throughout the experimen-
tation process; STNoC link width, packet size, and number
of flits per packet have constant values as shown in Table II.
This does not limit the generality of our approach, while it
allows for a straightforward comparison among different sce-
narios, e.g., when security is enabled or disabled; when none
or many malicious processes run in a CPU, etc.

The above framework enables examining the effect of secu-
rity on network load and power. This is the consequence
of performing access control on requests that are released
to the STNoC. For modeling MPSoC application primitives
we used ARM-FM and the gem5 simulator. For obtain-
ing cycle-accurate results, we have time-annotated the gem5



IE
EE

Pr
oo

f

GRAMMATIKAKIS et al.: SECURITY IN MPSoCs: A NoC FIREWALL AND AN EVALUATION FRAMEWORK 7

STNoC model and NoC firewall from executable specifica-
tions (RTL simulation and synthesis). In addition, we used
Orion 2.0 [20] for evaluating the STNoC power consumption
(65 nm process technology). Our framework can be used to
evaluate more intricate networks with more CPUs and memo-
ries. In this paper, we present experiments assuming a uniform
distribution of processes across CPUs, i.e., all CPUs execute
the exact same number of legitimate and malicious processes,
however, this number can be modified at will.

D. Type of Measurements

The above framework allows us to study the time a packet
remains in the NI queue until it reaches its destination. After
a packet is broken down in flits, each flit passes through
routers which store the flit in their queue and relay it to the
proper path. The framework can be extended to measure delays
starting from an earlier phase, e.g., since when a message is
generated by a process at the application-layer.

VI. EXPERIMENTAL SCENARIOS

We experiment with different number of nodes connected
to a Spidergon STNoC. Fig. 5 illustrates two cases: 1) 4-node
and 2) 8-node Spidergon topology. In our initial work, we
conduct experiments with up to 8-nodes only [4]. This paper
comes with more experiments for configurations with up to
32-nodes. For each case, we consider input traffic scenar-
ios by varying the number of safe and malicious processes.
We even deploy scenarios in which almost all network traffic
is malicious. Although this constitutes an extreme situation
it is quite realistic, since a virus or malicious program can
replicate itself extremely fast, and there is no limit on the mali-
cious traffic that can be generated to memory. Recent DDoS
attacks at network gateways have reached bandwidths of over
300 Gb/s [21], while virus propagation models in the litera-
ture point to exponential growth, unless the virus enters long
periods of inactivity if trying to remain unnoticed [22], [23].

Table II has the parameters of the simulation framework.
We ran simulations with one CPU/two memories (actually
two CPUs but 1 is inactive), two CPUs/two Memories, four
CPUs/four Memories, eight CPUs/eight Memories, and 16
CPUs/16 Memories. We test different scenarios with regard
to the number of safe and malicious processes running in the
CPUs; in Table II, we represent this as xSyM, where x is the
number of safe processes and y the number of malicious pro-
cesses. The process requesting access to memory is selected
with a random policy, and it can be either a “write” or “write-
execute” request. A request is performed to a random memory
address, which belongs to one of the five allocated memory
segments. We perform the same experiments by enabling and
disabling the NoC firewall. When enabled, the NoC firewall
denies access to every request generated from a malicious pro-
cesses, since all requests are destined to memory segments
that are protected and can be used by safe processes only.
Therefore, malicious requests are rejected at the NI, which
results in reducing the rate at which traffic enters the NoC. On
the other hand, when the NoC firewall is disabled, malicious
requests are transmitted to the NoC.

Fig. 5. We use different configurations to study the effect of security.
We perform experiments for up to 32-nodes connected to STNoC. Case (a)
corresponds to two different configurations; either both CPUs or only one
CPU can be active. (a) 4-node STNoC. (b) 8-node STNoC.

In our traffic scenarios, we are interested in examining
NoC response for a different number of safe and malicious
requests, rather than comparing its behavior for different
percentages of malicious requests over total ones. More specif-
ically, 1S1M scenario corresponds to 50% malicious requests
within a time-window of sending two packets, while 1S8M
scenario corresponds to 88.8% malicious requests within a
time-window of sending nine packets. In both scenarios, when
NoC firewall is enabled only one packet will be released to
the NoC within their corresponding time-window. Also, con-
sider the 1S1M and 10S10M scenarios; these generate the same
percentage of malicious requests, i.e., 50%. Their difference
is the following: 1S1M corresponds to a time-window of two
packets in which safe and malicious requests are generated
in an one-by-one alternate sequence, i.e., one safe, one mali-
cious, then again one safe, and so on; 10S10M corresponds to
a time-window of 20 packets in which a chunk of safe requests
is first produced, followed by a chunk of malicious requests,
i.e., 1–10 are safe requests in a sequence, 11–20 are malicious
requests in a sequence, then again 1–10 safe requests, and so
on. When comparing these scenarios, the actual number of
packets that are eventually transmitted when the NoC firewall
is enabled, will be exactly the same for a given simulation time
period, i.e., in our case 40 000 clock cycles. However, their
major difference lies on the amount of safe packets arriving
at the NoC in succession. Having big chunks of safe con-
tent rather that smaller ones, imposes high demands from the
side of NoC, i.e., the NoC should be able to sustain a high
serving rate. For instance, the more demanding case from the
aforementioned ones is the 10S10M scenario. In particular,
in the 16CPU/16MEM setup, there will be time-windows in
which all 16 CPUs produce concurrently ten safe requests in a
sequence; this stands for each CPU, and all are expected to be
served by the NoC. After the safe traffic, the malicious traffic
follows, which is perceived again as a big chunk of malicious
content. However, this will be stopped by the NoC firewall.
On the other hand, when the NoC firewall is disabled, being
concerned about the percentage of malicious requests is mean-
ingless, since all packets are allowed to enter the NoC, e.g., in
the 10S10 scenario all 20 packets are transmitted to the NoC,
and this will be repeated until completing the simulation run-
time. In conclusion, in this paper, it is much more interesting



IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

to examine system behavior in relation to the amount of pack-
ets that are eventually released to the NoC. This will allows
us to reveal cases in which the NoC is flooded and becomes
saturated.

A setup-phase is needed to configure the rule table in each
NoC firewall. For our experiments we do this with five CPU
commands—one per segment—for every malicious process.
For example, for three malicious processes, during warm-up
phase, each CPU sends 3 × 5 = 15 commands, resulting in
a total of 15 deny rules. This way, during normal operation
the firewall will block a malicious process from accessing
protected segments. No setup rules are needed for the legit-
imate processes, since NoC firewall operation relies on deny
rules only. During setup-phase, the packet injection rate (in
the gem5 Network_test simulation script) is lowered to guar-
antee arrival of setup packets from the CPU to the NI prior
to the time (safe and malicious) processes start issuing actual
memory requests.

By selecting different parameter values we perform experi-
ments for several configurations. As explained in Table II, five
different node setups, nine different combinations of safe and
malicious requests, and two options for the security mecha-
nism (enabled/disabled), give a total of 5×9×2 = 90 different
configurations. Regarding NoC parameters, the packet size of a
write command is 72 bytes, while the link width is 16 Bytes,
i.e., 16 bytes at most can traverse the link per transaction.
Hence, each packet is split into five flits, since 72/16 = 4.5.

Another parameter that affects our experiments is the packet
injection rate, i.e., the rate at which packets are released from
the application layer in each CPU. Variations in the injection
rate—even small ones—affect the end-to-end delivery time of
the packets tremendously when the NoC starts experiencing
heavy network congestion which result in saturation condi-
tions. We repeated the experiments numerous times in order
to verify such occurrences. In fact, we did this for large simu-
lation times, starting from a few hundred up to 400 000 clock
cycles, and we made interesting observations related to the
effect of security on network saturation.

VII. EFFECT OF SECURITY AND NOC
FIREWALL PERFORMANCE

In this section, we discuss the way we employ the above
framework to evaluate the effect of security on end-to-end
delivery time and power consumption at network-layer. Then,
we compare performance of our proposed NoC firewall against
a SW solution of equivalent functionality.

A. Effect of Security on Network Transmission

Our framework enables measuring end-to-end delivery times
at network level, and power consumption of the network
routers and links. We measure two types of delay; the time a
packet is waiting in the NI queue before it is actually broken
down into flits and released to the network (called NI queue
delay), and then, after the flit leaves the NI queue, the time
spent to traverse the network until it reaches its destination.
The latter delay is called network traversal delay, and it is the
time required for the flit to pass through all the routers on its

TABLE III
EFFECT OF SECURITY ON QUEUE DELAY, NETWORK DELAY AND POWER

AT THE STNOC LEVEL. SCENARIO CONCERNS 4CPU/4MEM
SETUP WITH 1S2M REQUESTS

path and arrive at the target NI. Table III shows the results
for a specific configuration when NoC firewall is disabled or
enabled. The last column shows the impact from activating the
firewall. Negative values indicate relative improvement, thus in
all cases firewall activation affects positively network metrics.

The chosen case concerns the 4CPU/4MEM node setup,
with one safe and two malicious CPU processes requesting
memory access. It is obtained that when NoC firewall is
active, both the traversal delay and the delay in NI queues
decrease. This is due to the fact that malicious requests are
prevented from entering the network, thus fewer packets are
released, resulting in lower network traffic and smaller queues.
Moreover, the total power of routers decreases by 30.16%,
mainly due to the drastic decrease in dynamic power. Finally,
the use of firewall reduces the power consumed at network
links by almost 72%.

The above analysis indicates that a security mechanism
relieves the network from unnecessary load in the presence
of malicious processes. The values in Table III are average
ones and concern all CPUs. We perform experiments for two
type of messages, e.g., “write” and “write-execute.” For these
specific experiments the amount of flits transmitted is 2280
flits when firewall is on, and 7315 flits when firewall is off.
The above use case demonstrates the way the framework is
used to evaluate the effect of security both on delay and on
power consumption at the NoC layer. Next, we include further
results on the measured delays and power consumption for all
configurations of Table II.

Fig. 6 shows the total power consumed at the NoC routers
for different node setups and for different number of safe and
malicious processes running in each CPU, both when security
is enabled and disabled. Significant savings are obtained when
the number of nodes connected to the network becomes large,
i.e., 16-nodes and 32-nodes setups, and the number of mali-
cious requests increases, in Fig. 6. We also observe that when
security is disabled, power consumption remains essentially
unchanged for a given node setup regardless of the number
of safe and malicious processes. This is due to the fact that
requests are always served, thus packet are always transmitted
to the network; hence, for every given node setup of Table II,
the power consumption is not reduced.

Fig. 7 shows the total NoC delay, i.e., the sum of NI queue
delay and network traversal delay, for different node setups
and for different number of safe and malicious processes run-
ning in each CPU, both when security is enabled and disabled.



IE
EE

Pr
oo

f

GRAMMATIKAKIS et al.: SECURITY IN MPSoCs: A NoC FIREWALL AND AN EVALUATION FRAMEWORK 9

Fig. 6. Power consumption at the routers for all setups of Table II, when
firewall is on or off.

Fig. 7. NoC delay for all setups of Table II, when firewall is on or off (scale
is logarithmic).

The total NoC delay is computed as the average time required
for a flit to remain in the queue of the NI, and then traverse
the network by passing through the routers until it reaches
its destination. It appears that the greater benefit from incor-
porating a security mechanism comes when the number of
malicious requests is large. For example, we observe that
if malicious processes are invoked per CPU—in Fig. 7 this
is represented with 1S8M—the NoC delay when security is
active has the smallest value; this holds for all node setups,
from 2CPU/2MEM to 16CPU/16MEM. It is also observed
that when security is disabled, NoC delay remains unchanged
for all scenarios of the chosen setup. Again, this is due to
the fact that requests are always served, thus they are always
transmitted to the network.

In Fig. 7 an interesting result is derived from observing
network behavior in the two largest setups, i.e., 8CPU/8MEM
and 16CPU/16MEM. In both cases, the benefit from incor-
porating a security mechanism is higher when the number
of relative malicious processes increases. Especially in the

Fig. 8. NoC delay for all setups of Table II, when firewall is on (scale is
logarithmic).

16CPU/16MEM setup, the security mechanism clearly pre-
vents the network from being saturated, by prohibiting unnec-
essary packets from being released to the network. In fact, for
the specific setup when firewall is on, we notice that the NoC
delay is reduced dramatically when the number of malicious
processes is equal to, or, larger than safe processes. As shown,
for 2S1M the NoC delay is 3616 clock cycles (scale in Fig. 7 is
logarithmic), while for 1S1M the NoC delay is 46 clock cycles.
This phenomenon is related to the packet injection rate, since
the firewall mechanism relieves the network, and consequently
reduces network congestion by cutting off early all malicious
packets.

Fig. 8 has a different representation for assessing the effect
of security. It concerns only the case where security is acti-
vated, covering all setups of Table II. Again, we obtain that the
more nodes are connected to the NoC, the higher the benefit.
Also, as expected, the NoC delay increases for a large number
of safe processes per CPU. Moreover, this figure illustrates that
for 8S1M the gap of NoC delay between the 16CPU16MEM
setup and the other setups is much bigger.

B. Saturation Analysis

If all our experiments so far we have used a default injection
rate of 0.1 packets per CPU per cycle. Moreover, depending
on the Spidergon topology, i.e., number of CPUs/memories,
amount of legitimate al versus malicious processes, and NoC
firewall status (enabled or disabled), the network reaches a
saturation point in certain setups for the selected injection rate.

Additional simulations in all cases of 16CPU/16MEM setup
revealed the extent to which the NoC firewall can improve
network performance, and therefore allow for higher injection
rates. For example, to avoid NoC saturation in the case of
16CPUs/16MEM and when NoC firewall is disabled, injec-
tion rate should be reduced down to 0.04 packets per cycle
in each CPU. When enabling NoC firewall, the injection rate
can be gradually increased without the danger of causing sat-
uration. Table IV illustrates that the benefits increase with the
number of malicious requests. In fact, it appears that when
NoC firewall is enabled, the maximum packet injection rate
that can be served by the NoC (without causing saturation)



IE
EE

Pr
oo

f

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE IV
MAXIMUM PACKET INJECTION RATES—PER CPU CLOCK CYCLE—THAT

THE NOC SERVES WITHOUT BEING SATURATED. RESULTS CORRESPOND

TO 16CPUs/16MEMs SETUP, WHEN BOTH SECURITY IS DISABLED,
I.E., FW-OFF AND ENABLED, I.E., ALL OTHER CASES

Fig. 9. Network latency measured from NI-to-NI. Figure illustrates all com-
ponents found in the path of a packet transfer; NI source buffering, routers,
NI at the destination. We propose integrating the security mechanism at the
NI source.

increases with the number of malicious packets attempting to
enter the NoC. For example, in the extreme 1S8M scenario the
injection rate can be set up to 0.4; this is one order of mag-
nitude higher than in the case of disabled firewall. Although
Table IV corresponds to a certain setup described in Table II, it
is quite representative as it shows the importance of NoC secu-
rity for maintaining NoC services in the presence of malicious
requests.

C. Analysis of the STNoC Latency

At this point, it is worth examining the latency at the NoC
layer, which allows for explaining the way the packets are
transferred across the NoC. Fig. 9 shows an example of a
(5-flit) packet transmission; it is sent by a CPU, transmitted on
the NoC by passing through the routers, and consumed by the
destination NI. By breaking down the transfer time, one clock
cycle (cc) is spent at the STNoC NI and two clock cycles are
spent at each router. The aggregation of these values is the
latency of the path. In an uncongested network, successive
flits are ideally released cycle-by-cycle. Thus for the first flit
(packet header) the amount of time required to be delivered
at the destination NI is five clock cycles, while one additional
cycle is required for each successive flit, i.e., six clock cycles
are needed for the second flit, etc. Hence, once a packet has
entered the source NI, it requires a total of nine clock cycles
to be delivered at the destination NI. It should be noted that
all flits of a packet are routed through the same path.

D. HW Versus SW Implementation of the NoC Firewall

To assess the performance of our NoC firewall we compare
it with a software implementation. This is used as a reference
just to demonstrate the benefits from implementing a dedicated
security module in hardware. In particular, we compare the
overhead of our hardware implementation versus an equivalent
software implementation in ARM v7 Cortex-A9 processor. We
consider timing of different events that correspond to the NoC
firewall driver functions. Results in Table V indicate that the
merit from implementing protection in hardware is large.

To generate ARM v7 assembly code, we cross-compile
the firewall driver configuration and access request functions

TABLE V
TIME OVERHEAD OF NOC FIREWALL: HARDWARE

VERSUS SOFTWARE IMPLEMENTATION

using arm-linux-gnueabi-gcc and flags “-c -g -Wa, alh, -ad
-fverbose-asm” [24], [25]. Then, we evaluate the delays of the
cross-compiled source code functions using cycle-approximate
delay for each ARM assembly instruction (e.g., load, store,
add, subtract and multiply, compare and branch, move and
shift). Timing information is available from the technical
architecture reference manual for Cortex-A9 [26].

VIII. COARSE-GRAIN VERSUS FINE-GRAIN APPROACH

This section offers insights on the advantages over alterna-
tive firewall solutions by examining the overhead added by
the distinct sub-phases that occur during handling memory
requests. To study further the efficiency of our coarse-grain
approach, we proceed with an implementation of a fine-grain
approach that performs rule checking at page-level, and then
conduct a straightforward comparison among them. First, we
provide some details on the implementation of our fine-grain
approach, but since this is not the main scope of this paper, we
avoid delving into all the details. Our fine-grain solution sup-
ports a 4 KB page size and consists of three tables. A unique
first level table (FLT) at the NoC firewall is accessed using
process identifier (PID) information to provide a base address
(32 bits) to a second level table (SLT). For each PID, SLT
holds a physical base address to the pages of rules (PoR) table
that is located in memory. We assume that PoRs can be located
in noncontiguous physical memory.

We consider a PID field of 6 bits, which allows support
of up to 64 processes as in our coarse-grain solution, a page
size of 4 KB bytes, an address pointer size of 4 Bytes, an
address space of 4 GB, and rule size of 8 bits. Hence, the PoR
memory structure must support 1M pages (as a result of the
division 4 GB÷4 KB), i.e., its size is 1 MBytes (1M pages×
1 Byte rule). In addition, the FLT data structure located at the
NoC Firewall must provide a base address pointer of 4 Bytes
for each PID (set in noncontiguous address space) and has
a size of 256 Bytes. Finally, the SLT must serve a total of
256 entries (256 × 4K rules = 1M rules), thus the SLT has
a size of 64 KBytes (1 KByte for each PID). We have also
used a 64 × 8 CAM structure (from micrometer) to cache up
to 64 rules. The CAM allows for one search, one read and
one write operations to proceed in parallel; the access time
for search is one cycle, and ten cycles for read and write.
Taking this functionality into account, we can now compare
the coarse-grain with the fine-grain approach as follows.

1) If the segment does not exist (thus request will
be allowed), the coarse-grain approach adds two



IE
EE

Pr
oo

f

GRAMMATIKAKIS et al.: SECURITY IN MPSoCs: A NoC FIREWALL AND AN EVALUATION FRAMEWORK 11

TABLE VI
IMPACT OF THE FINE-GRAIN NOC FIREWALL ON NOC PERFORMANCE AND POWER CONSUMPTION FOR DIFFERENT SCENARIOS IN

THE 2CPU2MEM SETUP. INJECTION RATE IS 0.1 PACKETS PER CYCLE IN EACH CPU. NOC IS SATURATED IN ALL SCENARIOS

cycles delay. On the other hand, in the fine-grain
approach, if a page does not exist in the TLB
(implemented as CAM), the delay rises to two clock
cycles—one clock cycle for CAM search (valid bit) and
one for comparison—plus twice the network roundtrip
traversal time of a packet for rules page walk, i.e.,
for fetching the rules from external memory. Notice
that each network roundtrip traversal time includes the
time for delivering all packet flits for one memory read
operation.

2) If the segment exists (request will be either allowed
or denied after further processing), the coarse-grain
approach adds a fixed delay of five cycles. In the fine-
grain implementation, if the page is in the TLB, a total of
12 cycles are required; one for CAM search (valid bit),
ten for TLB read, and one for the comparison.

We have performed experiments of limited extent with the
fine-grain NoC firewall within the gem5 environment. So far,
we have studied only the best-case in which the page already
lies in the TLB, thus a page walk is not performed. We stud-
ied the 2 CPU/2 MEM node setup, for all scenarios, with an
injection rate of 0.1 packets per cycle in each CPU; we used
the same rate in the experiments with our coarse-grain solution
described in Section VII-B. Table VI indicates that when the
fine-grain NoC firewall is enabled, NoC becomes saturated in
all scenarios. This is mainly due to the fact that the injection
rate equals to one packet per ten cycles per CPU, while the
fine-grain NoC firewall itself requires 12 cycles to examine
the packet; thus the injection rate is higher than the serving
rate of NoC firewall. To avoid saturation phenomena the injec-
tion rate should be lower than the NoC firewall serving rate.
In the coarse-grain solution, we did not observe saturation in
this set of experiments, i.e., all packets are delivered within a
reasonable amount of time (see Fig. 7).

We expect that in the worst-case, i.e., when a page walk
is needed for fetching the rules from external memory, the
overhead of the fine-grain approach will be even bigger. The
rules table walk makes it at least twice as much as the one for
the best-case of fine-grain due to accessing remote memory,
thus traversing the NoC for fetching the rule. In conclusion, the
flexibility of a fine-grain approach, which allows for each page
having a different rule, is gained not at the expense of mem-
ory space, but at the expense of performance due to the—at
minimum—two-level rules table walk.

IX. NOC FIREWALL IMPLEMENTATION PROTOTYPE

The goal of the coarse-grain NoC firewall is to control
accesses to regions of system memory, or to any memory-
mapped slave peripheral at the NoC initiator NI. The number
of memory partitions (segments) and their range and the

Fig. 10. NoC firewall implemented in a Xilinx Zynq-7020 FPGA.

corresponding rules that are enforced are system-defined.
To validate the functionality of our NoC firewall, we have
prototyped it using a hardware infrastructure on the basis of
an AXI4 interconnect in the Xilinx Zynq-7020 FPGA of a
ZedBoard platform. Fig. 10 outlines the system architecture.
The NoC firewall is attached to the AXI4-to-AXI4 bridge. The
core is connected to the processing system (PS) master gen-
eral purpose port, and to the PS slave high performance (HP)
port; the latter is used to connect the programmable logic (PL)
to the external memory (DDR3) through a switch. The AXI-
to-AXI bridge transfers CPU requests to the DDR3 memory
controller, abstracting the NoC fabric that interconnects all ini-
tiators to the system memory. The bus width is 32-bit and the
PL is clocked at 100 MHz.

The NoC firewall processes all incoming physical addresses,
searching whether they are subject to preconfigured rules. We
employ the following policy to secure access control on the
incoming transaction requests.

1) If there is no match in the NoC firewall data structures,
the transaction request is allowed to proceed.

2) If an incoming physical address is in between a precon-
figured address range, then this match implies that the
address belongs to a particular segment subject to restric-
tions, and hence the rules table is accessed to decide if
this access will be permitted.

The coarse-grain protection implementation currently sup-
ports 16 memory segments. The maximum number of seg-
ments that can be implemented without affecting timing is
technology-dependent. The 20-bit high order part of the phys-
ical address is utilized to concurrently search the predefined
ranges of each programmed segment. In this case, the corre-
sponding enable signal for this segment is asserted. The part of
the physical address that is used currently is fixed but can be
dynamically programmed. In a multiprocess environment the
OS can dynamically provide the six-bit PID in order to access
the base address of the rules defined for a particular PID. The
encoded result is used to index the discovered rule inside the
set of rules for this PID.

Each rule in the implementation consists of eight nonen-
coded bits, hence rule memory is of size 1024×8; this is in



IE
EE

Pr
oo

f

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE VII
LATENCY IN CLOCK CYCLES (3.3 ns) FOR READ/WRITE ACCESS

USING THE NOC FIREWALL ATTACHED TO AXI4-COMPLIANT

BRIDGE ON Zynq7020 FPGA

contrast to the three-bit encoded information used to specify a
rule in the gem5 model. Each eight-bit rule in the implementa-
tion is formed by specifying eight subfields (operating modes):
1) read; 2) write; 3) data; 4) execute; 5) privileged; 6) nonpriv-
ileged; 7) secure; and 8) nonsecure domain. However, notice
that not all subfields can be set independently.

A preliminary set of bare-metal experiments that measure
the latency of read/write operations using the embedded SCU
timer is drafted in Table VII. Operations with suffix “_br”
represent accesses that utilize the custom AXI bridge to con-
nect the initiating operation (read or write) from the processor
inside the PS through the PL to the HP port that connects to
the memory controller. The operations with the suffix “_mctrl”
refer to processor accesses through the internal PS intercon-
nect to the DDR3 memory. As shown in Table VII, write
operations through the custom bridge present a large vari-
ance, which is due to DDR3 memory refresh occurring at
the same time as the transfer of data. The CPU accesses the
DDR3 memory with an average latency of 52 clock cycles
(a clock cycle is 3.3 ns), while accesses through the NoC
firewall and the bridge exceed a latency of 175 clock cycles.
A malware access captured by the NoC firewall causes a CPU
interrupt. The service routine finishes by clearing the inter-
rupt signal that is generated by the firewall. There is a delay
of over 350 clock cycles between the interrupt being asserted
and the service routing clearing the control bit; in fact, dur-
ing iterative generation of interrupts this delay reaches up to
520 cycles.

On the basis of these system latencies, even though one
actual firewall operation completes every four clock cycles (or
4.74 ns as the Xilinx P&R tools report), the actual latency of
CPU for the transfer to PL and latency of the interrupt service
is much larger. Each malware access that is dropped causes at
least 175 clock cycles delay to serve by the Cortex-A9 CPU,
which is comparable to one successful read access when using
the AXI4 bridge that embeds the NoC firewall.

As a real-world use case, the NoC firewall is ported into
a Zedboard running GNU/Linux. The Linux driver initial-
izes memory segments and configures rules by performing
ioremap() to map physical addresses of the segment and cor-
responding rule registers and the irq reset register. Then, the
module calls request_irq[91, (irq_handler_t) my_irq_handler,
IRQ_TYPE_EDGE_RISING, “noc_firewall,” NULL] to reg-
ister my_irq_handler as the handler for irq 91. The module
also provides standard read/write functions for capturing (resp.
modifying) the status of the NoC Firewall. Within this con-
text, we have a threat scenario that focuses on protection
from a malicious (or corrupt) device driver accessing physical

TABLE VIII
AREA COST AND FREQUENCY OF ONE INSTANCE OF THE NOC FW AND

ONE INSTANCE OF THE BRIDGE IN THE Z7020 FPGA. REPORTED

STNOC RESOURCES ARE FOR COMPARISON PURPOSES AND

CORRESPOND TO 7×6 NETWORK, IMPLEMENTED IN A

LARGER FPGA, OF THE SAME TECHNOLOGY

memory (via I/O read/write) by setting appropriate deny rules.
Notice that if left alone, the malicious driver (implemented
as a kth read) may cause undesired behavior or even system
crash, e.g., if sensitive info is overwritten. This scenario is use-
ful in validating our firewall for read/write data access, i.e.,
by considering all possible rule setups and operating system
modes (more than 65K cases). Moreover, by profiling [caling
ktime_get()], we can get an insight into driver performance.
During module entry:

1) kmalloc, data initialization, virtual to physical address
translation, as well as writing a segment or rule register
take between 100 to 1K ns;

2) request_mem_region, ioremap (for range and rule regis-
ters) take on the order of 1K to 10K ns each;

3) ioremap for IRQ register takes 10K to 100K ns;
4) registering the interrupt handler takes 70K to 700K ns.
During normal operation, successful data reads/writes takes

100 to 1K ns (writes are by 100 ns), while reads that cause
interrupt (denied read) take 10K to 100K ns. Finally, during
module exit, freeing memory takes 100K ns.

Based on the above profiling, we notice that interrupt han-
dling under Linux is very slow compared to other operations
(expensive ones occur rarely), taking approximately 90% of
the total access time for both read and write accesses, thus rat-
ifying our previous data from bare metal applications. Based
on these results, it would be better to generate interrupts in a
controlled way, e.g., issue only one interrupt per segment, or,
as needed by the level of “suspicion” of the intrusion detection
system (IDS). Interrupt coalescing schemes can also hold back
interrupts either until reaching a certain threshold, or until a
timeout timer triggers. In this way, we anticipate to reduce
interrupt load associated to system call handling and related
protocol processing by at least one order of magnitude.

Table VIII summarizes the FPGA implementation results.
The NoC firewall occupies less resources than the AXI-to-AXI
bridge and the latency to process an incoming transaction
is 4 clock cycles. For comparison reasons, a similar size
(7×6) STNoC fabric with 32-bit AXI-3 interfaces occu-
pies significant area on the Virtex-6 FPGA of a Versatile
Express platform and operates with a maximum frequency of
129.3 MHz. In total, our firewall utilizes 53% of the Slice
Look-Up Tables (LUTs) and 21% of the Slice Registers of
the Zynq-7020 FPGA.

We do not include power consumption of our design on the
Zedboard, since estimates based on spreadsheets from Xilinx
are currently inaccurate [27]. In this direction, we plan to con-
sider ongoing efforts attempting to improve power estimation
across the board [28].



IE
EE

Pr
oo

f

GRAMMATIKAKIS et al.: SECURITY IN MPSoCs: A NoC FIREWALL AND AN EVALUATION FRAMEWORK 13

X. CONCLUSION

Due to the wide adoption of NoC-based MPSoC technology,
security aspects and memory protection services are of major
concern. In this context, we have implemented a hardware
NoC firewall with deny rules statically configured at the NI
of all initiator nodes. This allows preventing the injection of
malicious requests at an early phase, prior to releasing them
into the NoC.

Using an instance of the industrial STNoC interconnect as
the baseline architecture, we have created a cycle-accurate
framework based on the gem5 environment that combines
ARM v7 architecture with our STNoC model and security
features. Within this framework, we have studied the effec-
tiveness of security and revealed a significant reduction of
end-to-end delivery time and dynamic power consumption at
the network layer, especially when the number of malicious
requests increases. An advantage of incorporating security at
the initiator NIs is that it can prevent the NoC from becoming
saturated. Furthermore, using an FPGA-based implementation
of the NoC firewall on ZedBoard running GNU/Linux, we
have showed that the required resources are relatively limited,
while the high cost of interrupt can be relieved by implement-
ing an IDS. The IDS can implement monitoring functionality
(interrupt counters) that depends on the application domain
and takes into account the precise ARM v7 operating mode,
i.e., secure/nonsecure world, privileged/nonprivileged mode
(root/user) and access type (read/write, data/instruction). This
would enable the design of hierarchical security policies,
e.g., combining a quarantine mode denying read/write/execute
for secure IP with a deny write/execute rule for non-
critical IPs, which allows viewing system files or taking
backups.

In this paper, we have extended the gem5 framework with
time-annotated NoC firewall and gem5 STNoC models; the
STNoC model will be released to gem5 community in June
2016. With some extra effort, we can study the effect of NoC
firewall on application performance, thus estimating the NoC
firewall contribution to the total system overhead.

Another future step is to study how to effectively synchro-
nize all NoC firewalls across the MPSoC when an update of
rules is performed. Rules can be changed dynamically, how-
ever, during that time it is necessary to guarantee that pending
transactions across all NoC firewalls are consistent with the
current set of rules. One possible way to do this is via a central
barrier operation on the processor; in addition, it is necessary
to enable the rule update process to control the AXI protocol
handshake, thereby blocking outgoing traffic while rules are
being updated at each NoC firewall.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their critical comments and suggestions.

REFERENCES

[1] M. Coppola, M. Grammatikakis, G. Kornaros, and A. Spyridakis,
“Trusted computing on heterogeneous embedded systems-on-chip with
virtualization and memory protection,” in Proc. 4th Int. Conf. Cloud
Comput. GRIDs Virtual., Valencia, Spain, 2013, pp. 225–229.

[2] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra,
“Spidergon: A novel on-chip communication network,” in Proc. 4th Int.
Symp. Syst. Chip, Tampere, Finland, Nov. 2004, pp. 15–26.

[3] M. Mitić and M. Stojčev, “A survey of three system-on-chip buses:
AMBA, coreconnect and wishbone,” in Proc. 41st Int. Conf. Inform.
Commun. Energy Syst. Technol. (ICEST), Sofia, Bulgaria, 2006,
pp. 282–285.

[4] M. D. Grammatikakis et al., “Security effectiveness and a hardware
firewall for MPSoCs,” in Proc. IEEE Int. Conf. High Perform. Comput.
Commun. (HPCC), Paris, France, Aug. 2014, pp. 1032–1039.

[5] L. Fiorin, G. Palermo, and C. Silvano, “A security monitoring ser-
vice for NoCs,” in Proc. 6th IEEE/ACM/IFIP Int. Conf. Hardw./Softw.
Codesign Syst. Syn. (CODES+ISSS), Amsterdam, The Netherlands,
2008, pp. 197–202.

[6] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano, “Secure
memory accesses on networks-on-chip,” IEEE Trans. Comput., vol. 57,
no. 9, pp. 1216–1229, Sep. 2008.

[7] J. Porquet, A. Greiner, and C. Schwarz, “NoC-MPU: A secure architec-
ture for flexible co-hosting on shared memory MPSoCs,” in Proc. Design
Autom. Test Europe (DATE), Grenoble, France, Jul. 2011, pp. 591–594.

[8] A. Wiggins, S. Winwood, H. Tuch, and G. Heiser, “Legba: Fast hard-
ware support for fine-grained protection,” in Proc. 8th Asia-Pac. Conf.
Adv. Comput. Syst. Archit. (ACSAC), Aizuwakamatsu, Japan, Jul. 2003,
pp. 320–336.

[9] Verizon. (2015). Security Management Program (SMP).
[Online]. Available: http://www22.verizon.com/wholesale/solutions/
solution/SecurityManagementProgram.html

[10] R. Panigrahy and S. Sharma, “Sorting and searching using ternary
CAMs,” IEEE Micro, vol. 23, no. 1, pp. 44–53, Jan./Feb. 2003.

[11] M. LeMay and C. A. Gunter, “Network-on-chip firewall: Countering
defective and malicious system-on-chip hardware,” ACM Comput. Res.
Reposit., arxiv:1404:3485, Apr. 2014.

[12] A. Gutierrez et al., “Sources of error in full-system simulation,” in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Monterey, CA,
USA, Mar. 2014, pp. 13–22.

[13] G. Palermo, C. Silvano, G. Mariani, R. Locatelli, and M. Coppola,
“Application-specific topology design customization for STNoC,” in
Proc. 10th Euromicro Conf. Digit. Syst. Design Archit. Methods
Tools (DSD), Lübeck, Germany, Aug. 2007, pp. 547–550.

[14] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, May 2011.

[15] The Gem5 Simulator System. (2015). Events. [Online]. Available:
http://www.m5sim.org/Events

[16] The Gem5 Simulator System. (2015). Interconnection Network.
[Online]. Available: http://www.m5sim.org/Interconnection_Network

[17] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Boston, MA, USA,
Apr. 2009, pp. 33–42.

[18] N. Rodman, “ARM fast models-virtual platforms for embedded software
development,” Inf. Quart. Mag., vol. 7, no. 4, pp. 33–36, 2008.

[19] Linux Community. Pagemap Collection, Analysis and Statistics-
Linux Page Tables. [Online]. Available: http://www.eqware.net/
Articles/CapturingProcessMemoryUsageUnderLinux

[20] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A fast and
accurate NoC power and area model for early-stage design space explo-
ration,” in Proc. Int. Conf. Design Autom. Test Europe (DATE), Nice,
France, Apr. 2009, pp. 423–428.

[21] rt.com. (2015). ‘Biggest Ever’? Massive DDoS-Attack Hits EU, U.S.
[Online]. Available: http://rt.com/news/biggest-ddos-us-cloudflare-557/

[22] X. Wei et al., “Smartphone viruses propagation on heterogeneous com-
posite networks,” in Proc. 2nd IEEE Netw. Sci. Workshop (NSW),
West Point, NY, USA, Apr. 2013, pp. 106–109.

[23] J. Jackson and S. Creese, “Virus propagation in heterogeneous Bluetooth
networks with human behaviors,” IEEE Trans. Depend. Secure Comput.,
vol. 9, no. 6, pp. 930–943, Nov./Dec. 2012.

[24] IBM. (2015). Install the GNU ARM Toolchain
Under Linux. [Online]. Available: http://www.ibm.com/
developerworks/linux/library/l-arm-toolchain/

[25] Mentor Graphics. (2015). Mentor Embedded Portal. [Online]. Available:
https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription

[26] ARM, “ARM Cortex-A9 technical reference manual (appendix B: Cycle
timings),” ARM, Cambridge, U.K., Tech. Rep. DDI 0407, 2012.

[27] Xilinx Inc. (2014). Xilinx Power Estimator. [Online]. Available:
http://www.xilinx.com/ise/power_tools/license_7series.htm

[28] OFFIS. (2015). Total Power Estimation on Zynq Board.
[Online]. Available: https://contrex.offis.de/home/index.php/news/
88-european-mixed-criticality-cluster-workshop

http://www22.verizon.com/wholesale/solutions/solution/SecurityManagementProgram.html
http://www22.verizon.com/wholesale/solutions/solution/SecurityManagementProgram.html
http://www.m5sim.org/Events
http://www.m5sim.org/Interconnection_Network
http://www.eqware.net/Articles/CapturingProcessMemoryUsageUnderLinux
http://www.eqware.net/Articles/CapturingProcessMemoryUsageUnderLinux
http://rt.com/news/biggest-ddos-us-cloudflare-557/
http://www.ibm.com/developerworks/linux/library/l-arm-toolchain/
http://www.ibm.com/developerworks/linux/library/l-arm-toolchain/
https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription
http://www.xilinx.com/ise/power_tools/license_7series.htm
https://contrex.offis.de/home/index.php/news/88-european-mixed-criticality-cluster-workshop
https://contrex.offis.de/home/index.php/news/88-european-mixed-criticality-cluster-workshop


IE
EE

Pr
oo

f

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Miltos D. Grammatikakis received the M.Sc. and
Ph.D. degrees from the University of Oklahoma,
Norman, OK, USA, in 1985 and 1991, respectively,
both in computer science.

He was with Academia, research and industry
in France, Germany, and Greece. He is currently
a Professor with the Technological Educational
Institute of Crete, Heraklion, Greece. He has partici-
pated in numerous European and National Research
and Development projects. He has collaborated with
STMicroelectronics for over 15 years and has pub-

lished over 70 technical articles and holds one patent. He is a co-author of two
scientific books entitled Parallel Systems: Communications and Interconnects
in 2001 and Design of Cost-Efficient Interconnect Processing Units: Spidergon
STNoC [CRC Press (Taylor & Francis)] in 2008.

Kyprianos Papadimitriou received the Diploma,
M.Sc., and Ph.D. degrees in electrical communica-
tion engineering from the Technical University of
Crete, Chania, Greece, in 1998, 2003, and 2012,
respectively.

He is currently a Scientific Staff Member with
the Technical University of Crete, and a Research
Associate with the Technological Educational
Institute of Crete, Heraklion, Greece. He was with
FO.R.TH and ATMEL, San Jose, CA, USA. His cur-
rent research interests include system architecture

and design, reconfigurable computing, run-time systems, interconnection net-
works, and real-time systems. He holds 38 scientific publications and one U.S.
patent, and has participated in several EU-funded and nation-wide projects.

Polydoros Petrakis received the B.Sc. degree in
computer science from the University of Crete,
Heraklion, Greece, in 2009.

Since 2011, he has been with the Technological
Educational Institute of Crete, Heraklion, Greece,
researching on research and development projects.
His current research interests include embedded
computing, multicore systems, and interconnection
networks and simulation tools, such as SystemC
and gem5.

Antonis Papagrigoriou received the Diploma and
M.Sc. degrees in electrical communication engi-
neering from the Democritus University of Thrace,
Xanthi, Greece, in 2000 and 2002, respectively.

Since 2004, he has been a Software Engineer
with the Department of Information Technology,
Forthnet, Athens, Greece. He is involved in research
projects with the Technological Educational Institute
of Crete, Heraklion, Greece, with particular empha-
sis on SystemC models, high-level synthesis, and
GNU/Linux driver development, for five years.

George Kornaros received the Diploma degree
in computer engineering from the University of
Patras, Panepistimioupoli Patron, Greece, in 1992,
the M.Sc. degree in computer engineering from the
University of Crete, Heraklion, Greece, in 1997, and
the Ph.D. degree from the Technical University of
Crete, Chania, Greece, in 2013.

He is currently an Assistant Professor with
the Technological Educational Institute of Crete,
Heraklion. He was a System Architect of a few
single-chip network processor designs for industry.

His current research interests include multicore architectures, high-speed com-
munication architectures, networking systems, embedded and reconfigurable
systems, and both full- and semi-custom IC design. He has published 40 tech-
nical articles and has edited the book entitled MultiCore Embedded Systems
(CRC Press, Taylor & Francis) in 2010.

Prof. Kornaros is a member of the Technical Chamber of Greece.

Ioannis Christoforakis received the B.Sc. and
M.Sc. degrees from the Technological Educational
Institute of Crete, Heraklion, Greece, in 2012 and
2014, respectively.

He is currently a Researcher with the
Technological Educational Institute, research-
ing on multicore architecture, network-on-chip, and
embedded and reconfigurable design/verification
using EDA tools. He has co-authored ten technical
publications.

Othon Tomoutzoglou received the B.Sc. degree
from the Technological Educational Institute of
Crete, Heraklion, Greece, in 2014, where he is cur-
rently pursuing the M.Sc. degree.

He is currenly a Design Engineer in research
projects with the Technological Educational Institute
of Crete. His current research interests include mul-
ticore and heterogeneous architectures, embedded
and reconfigurable systems, RTL Design, high-level
synthesis, and operating systems. He has published
recently on runtime adaptation of embedded tasks.

George Tsamis received the B.Sc. and M.Sc.
degrees from the University of Crete, Heraklion,
Greece, in 2009 and 2012, respectively.

Since 2010, he has been a Researcher with
the Technological Educational Institute of Crete,
Heraklion. His current research interests include 3-
D data visualization, mobile applications, software
engineering, information retrieval, and real-time
embedded systems, especially bandwidth regulation
for mixed criticality systems.

Marcello Coppola received the M.Sc. degree from
the University of Pisa, Pisa, Italy, in 1992.

He is currently an Advanced Architecture and
Innovation Director with Digital Sector Group,
STMicroelectronics, Grenoble, France, in charge of
several projects related to STNoC technology and
MPSoC, with particular emphasis to architecture,
modeling, verification, network-on-chip, and pro-
gramming models. He has published different books,
over 70 technical articles, and holds a number of
patents.


