
Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

Run-time management of systems with partially reconfigurable FPGAs

George Charitopoulosa,b, Iosif Koidisa,b, Kyprianos Papadimitrioua,b,
Dionisios Pnevmatikatosa,b,⁎

a Institute of Computer Science Foundation for Research and Technology (FORTH-ICS), Heraklion, Greece
b School of Electronic and Computer Engineering Technical University of Crete, Chania, Greece

A R T I C L E I N F O

Keywords:
Run time system
Scheduling
Partial reconfiguration
FPGA
OpenMP

A B S T R A C T

Partial reconfiguration (PR) of FPGAs can be used to dynamically extend and adapt the functionality of
computing systems by swapping in and out HW tasks. To coordinate the on-demand task execution, we propose
and implement a Run-Time System Manager (RTSM) for scheduling software (SW) tasks on available
processor(s) and hardware (HW) tasks on any number of reconfigurable regions (RRs) of a partially
reconfigurable FPGA. Fed with the initial partitioning of the application into tasks, the corresponding task
graph, and the available task mappings, the RTSM controls system operation considering the status of each task
and region (e.g. busy, idle, scheduled for reconfiguration/execution, etc). Our RTSM supports task reuse and
configuration prefetching to minimize reconfigurations, task movement among regions to efficiently manage the
FPGA area, and region reservation for future reconfiguration and execution. We validate the correctness and
portability of our RTSM executing an image processing application on two Xilinx-based platforms: ZedBoard
and XUPV5. We also perform a more extensive evaluation of its features using a simulation framework, and find
that – despite the technology limitations – our approach can give promising results in terms of scheduling
quality. Since our RTSM supports also the scheduling of parallel SW tasks, we use it to manage the execution of
the entire parallel Edge Detection application on a desktop; we compare the application execution time with that
using the OpenMP framework and find that with our RTSM execution is 2.4 times faster than the unoptimized
OpenMP version. When processor affinity optimization is enabled for OpenMP, our RTMS and the OpenMP are
on par, indicating that the scheduling efficiency of our RTSM is competitive to this state-of-the-art scheduler,
while supporting in addition the management of HW tasks.

1. Introduction

Reconfiguration offers the possibility to dynamically adapt the
functionality of hardware systems by swapping in and out HW tasks.
To coordinate resource management, loading and triggering HW task
reconfiguration, and execution in partially reconfigurable systems with
FPGAs, efficient and flexible runtime system support is needed [1]. To
this end, several scheduling algorithms of various complexities have
been proposed [2]. In this paper we propose and implement a Run-
Time System Manager (RTSM) incorporating efficient scheduling
mechanisms that efficiently manage the execution of HW and SW
tasks and the use of physical resources. We aim to execute a given
application as fast as possible without exhausting the physical re-
sources. Our motivation during the development of our RTSM was to
find ways to design a versatile system under the strict technology
restrictions imposed by the Xilinx PR flow and devices [3]:

• Static partitioning of the reconfigurable surface in reconfigurable
regions (RRs).

• Reconfigurable regions can only accommodate particular hardware
core(s), called reconfigurable modules (RM). The RM–RR binding
takes place at compile-time, after sizing and shaping properly the
RR.

• An RR can hold one RM only at any point of time, so a second RM
cannot be configured into the same RR even if there are enough free
logic resources for it.

The proposed RTSM can run on Linux Intel-x86 based systems with
a PCIe FPGA board, e.g. XUPV5, or on embedded processors
(Microblaze or ARM) within the FPGA, while it can be ported in other
systems with different processors and FPGAs. Furthermore, with the
appropriate changes it can also run solely on Linux based systems
without an FPGA in to manage the available CPU cores only.

http://dx.doi.org/10.1016/j.vlsi.2016.11.008
Received 30 April 2015; Received in revised form 27 October 2016; Accepted 24 November 2016

⁎ Corresponding author at: School of Electronic and Computer Engineering Technical University of Crete, Chania, Greece.
E-mail addresses: gcharitopoulos@mhl.tuc.gr (G. Charitopoulos), koidis@mhl.tuc.gr (I. Koidis), kpapadim@mhl.tuc.gr (K. Papadimitriou),

pnevmati@ics.forth.gr (D. Pnevmatikatos).

INTEGRATION the VLSI journal 57 (2017) 34–44

0167-9260/ © 2016 Published by Elsevier B.V.
Available online 28 November 2016

crossmark

http://www.sciencedirect.com/science/journal/01679260
http://www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2016.11.008
http://dx.doi.org/10.1016/j.vlsi.2016.11.008
http://dx.doi.org/10.1016/j.vlsi.2016.11.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2016.11.008&domain=pdf


We validated the behavior of RTSM in three different fully func-
tional systems: a ZedBoard Zynq SoC-based platform, an XUPV5
platform, and a desktop PC with a 12-core Intel Xeon E5 processor
at 2.2 GHz. This also allowed us to asses the RTSM in three different
CPU technologies: ARM, MicroBlaze, and Intel-x86. Also we evaluate
extensively the RTSM with complex cases within a simulation frame-
work that observes all the restrictions of partial reconfiguration
technology. The present work extends our previous publication [4]
and makes with the following contributions:

• A portable RTSM capable of scheduling both HW and SW tasks in
PR FPGA-based systems and SW-only tasks with comparable results
to the OpenMP API.

• Support for dynamic execution of complex task graphs, with forks,
joins, loops and branches so as to minimize the restrictions on the
application.

• Support multiple scheduling policies, such as relocation, reuse,
configuration prefetching, reservation and Best Fit.

• Extensive evaluation of the proposed RTSM on three different
systems and a comparison with industry standard OpenMP API in
controlling SW-only tasks.

The paper is structured as follows. In Section 2 we discuss previous
work in the field. In Section 3 we present the key concepts and provide
details on the RTSM input and operation. Then, in Section 4 we
evaluate the performance of RTSM in a simulation environment with
complex test cases and in Section 5 we extend our evaluation and
validating on real FPGA-based platforms. Finally, Section 6 sum-
marizes our work.

2. Related work

There is an increasing interest in exploiting the advantages of using
partial dynamic reconfiguration instead of full reconfiguration. The
work in [5] was one of the first to study the use of partial reconfigura-
tion in the high-performance computing domain. In one of the first
research works on hardware task scheduling for PR FPGAs, Steiger
et al. addressed the problem for the 1D and 2D area models by
proposing two heuristics; Horizon and Stuffing [6]. In [7], Marconi
et al. inspired by [6] presented a novel 3D total contiguous surface
heuristic in order to equip the scheduler with “blocking-awareness”
capability. Subsequently, Lu et al. created a scheduling algorithm that
considers the data dependencies and communication amongst hard-
ware tasks, and between tasks and external devices [8].

Efficient placement and free space management algorithms are
equally important. In [9], Bazargan et al. offer methods and heuristics
for fast and effective on-line and off-line placement of templates on
reconfigurable computing systems. Compton et al., in a fundamental
work in the field of task placement, inspired by the concept of task
relocation, proposed run-time partitioning and creation of new RRs in
the FPGA [10]. However, the proposed transformations are still well
beyond what is currently supported by FPGA technology. Since then,
much work has been done towards efficient bitstream relocation [11].

A work that did not consider Compton's paradigm and therefore
followed the strict FPGA technology restrictions regarding partial
reconfiguration is [12]. There the authors present a novel reduced
data movement scheduling (RDMS) algorithm takes data dependency
among tasks, hardware task resource utilization, and inter-task com-
munication into account during the scheduling process. However their
algorithm is not being tested on an actual FPGA and is evaluated by
means of emulation. The authors in [13] studied an approach for
hardware task placement and space management focusing on a
resource- and configuration-aware floorplacement framework, using
an objective function, based on external wirelength [13]. This work
targets scheduling at compile-time.

Burns et al., in one of the first efforts to create an operating system

(OS) for partially reconfigurable devices, extracted the common
requirements for three different applications, and designed a runtime
system for managing the dynamic reconfiguration of FPGAs [1].
Ghringer et al. addressed the efficient reconfiguration and execution
of tasks in a multiprocessing SoC, under the control of an OS [14,15].

More recently, Agne et al. targeted the issue of a run-time system
for reconfigurable systems [16]; in ReconOS the creators provide the
user with strict semantics and an OS support. ReconOS incorporates
the basic principle of message parsing by creating delegate threads that
handle the communication between hardware and software threads.
However, throughout the ReconOS description there is no mention of a
high-level decision making scheduler.

On the field of programming models that target multi-core hetero-
geneous architectures a great impact had the OmpSs model presented
in [17]. Apart from multi-core architectures, OmpSs can incorporate
the use of OpenCL and CUDA kernels. OmpSs differs from similar
programming models like OpenMP and MPI in the sense that they do
not adopt a fork–join model. Instead, OmpSs has a thread pool were all
the threads, to be used throughout the application, are present from the
beginning.

The run-time management of hardware tasks in partially reconfi-
gurable devices is interesting and very active [18]. The OpenPR
toolchain [19] and the GoAhead frameworks [20] provide a solid base
for further research into partial reconfiguration and reconfigurable
run-time systems. Also many previous efforts have evaluated schedul-
ing and placement algorithms on actual FPGA-based systems [21,14].

What seems to be missing are complete solutions that take into
consideration all current technology restrictions. In [14], the actual
overhead of the scheduler compared to the execution time of each task
is not calculated and also the reconfiguration time measured is the
theoretical one, while the application execution is presented in a
theoretical way. The run-time manager presented in [21] is able to
map multiple applications on the underlying PR hardware and execute
them concurrently and takes all restrictions in consideration; however
the mechanics of the scheduling algorithm are simple and the overhead
considerable.

3. The Run-time System Manager

Our proposed RTSM manages physical resources employing place-
ment and scheduling algorithms to select the appropriate hardware
processing element (HW-PE), i.e. a Reconfigurable Region (RR), to
load and execute a particular HW task, or activate a software proces-
sing element (SW-PE) for executing the SW version of a task. HW tasks
are implemented as Reconfigurable Modules, stored in a bitstream
repository.

3.1. Key concepts and functionality

During initialization, the RTSM is fed with input, which forms the
basic guidelines according to which the RTSM takes runtime decisions:

(1) Device pre-partitioning and Task mapping: The designer should
pre-partition the reconfigurable surface at compile-time, and
implement each HW task by mapping it to certain RR(s) [3].
This limitation was discussed in [1,21].

(2) Task graph: The RTSM should be aware of the execution order of
tasks and their dependencies; this is provided with a task graph.
Our RTSM supports complex graphs with properties like forks and
joins, branches and loops, for which the number of iterations is
unknown at compile-time.

(3) Task information: Execution time of SW and HW tasks, and
reconfiguration time of HW tasks should be known to the RTSM;
they can be measured at compile-time through profiling. A task's
execution time might deviate from the estimated or profiled
execution time so the RTSM should react adapting its scheduling

G. Charitopoulos et al. INTEGRATION the VLSI journal 57 (2017) 34–44

35



decisions.
(4) Schedulable resources: Our RTSM currently considers as schedul-

able resources the RRs and the SW-PE present on the design, and
the configuration controller since ICAP can service only one
reconfiguration request at a time. We do not consider commu-
nication in the scheduling, as the task requests are based on the
control flow of the application. We assume that the communication
cost for each task is included in the task execution time estimate,
which is considered by our scheduler in deciding whether the HW
or the SW version of the task will be used.

The RTSM supports the following features:

(1) Multiple bitstreams per task: A HW task can have multiple
mappings, each implemented as a different RM. All versions would
implement the same functionality, but each may target a different
RR, thus increasing placement choices, and/or be differently
optimized, e.g. in terms of performance, power, etc. A similar
approach is used in [1], and accounts for the increased scheduling
flexibility and quality [21].

(2) Reservation list: When a task cannot be served immediately due to
resource unavailability (either RR or SW-PE), it is reserved in a
queue for later configuration/execution. A HW task will wait in the
queue until an RR is available, or it is assigned to a SW-PE
(provided that a software implementation of the task is available).

(3) Reuse policy: Before loading a HW task into the FPGA, the RTSM
checks whether it already resides in an RR and can be reused. This
prevents redundant reconfigurations of the same task reducing the
overhead. If an already configured HW task cannot be used, e.g. it
is busy processing other data, the RTSM may find it beneficial to
load this task's bitstream to another RR, if such a binding exists.

(4) Configuration prefetching: Allows for the configuration of a HW
task into an RR ahead time [22]. It is activated only if the
configuration port is available.

(5) Relocation: A HW task residing in an RR can be “moved” by
loading a new bitstream implementing the same functionality to
another RR, as illustrated in Fig. 1. Two RMs are being scheduled
for configuration into two RRs; RM1 is already configured in RR2.
RM2 should also execute, so it is waiting to be configured, but its
RR is unavailable. The proposed relocation mechanism first moves
the HW task by configuring the RM1 to RR1, and then configures
the RM2 to the now empty RR2. This differs from the previously
proposed relocation mechanism [10]. To fully exploit the benefits
of this approach context save techniques are needed [23].

(6) Best Fit in Space (BFS): It prevents the RTSM from injecting small
HW tasks into large RRs, even if the corresponding RM–RR
binding exists, as this would leave many logic resources unused.
BFS minimizes the area overhead incurred by unused logic into a
used RR, pointing to similar directions with studies on sizing
efficiently the regions and the respective reconfigurable modules
[24].

(7) Best Fit in Time (BFT): Before an immediate placement of a task is

decided, the BFT checks if reserving it for later start time would
result in a better overall execution time. This can happen due to
reuse policy: when HW tasks are called more than once, e.g. in
loops. For example, consider a HW task that is to be scheduled and
already exists in an RR due to a previous request. Scheduling
decision evaluates which action amongst reservation, immediate
placement, or relocation, will result in the earliest completion time
of this task. For instance, BFT might invoke reconfiguration of a
HW task into a new RR, even though this HW task (equal
functionality, but different bitstream) already resides in another
RR (but it is busy executing or has been already scheduled for
execution).

(8) Joint Hardware Modules (JHM): It is possible to create a bit-
stream implementing at least two HW tasks, thus allowing more
than one tasks to be placed onto the same RR. JHM, illustrated in
Fig. 2, exploits this ability by giving priority to such bitstreams,
which can result in better space utilization and reduced number of
reconfigurations. A similar concept was presented in [25].

We incorporated the above features in the RTSM, and tested them
within a simulation framework presented in the following section. The
combination of BFT with the Reservation list and their reaction with
the Reuse policy constitute an interesting feature, leading the scheduler
to hybrid decisions that potentially benefit an application. To this end,
we believe that it is important to study if complex techniques and
features are actually required to efficiently serve different kinds of
applications.

3.2. RTSM input and execution flow

The input to the RTSM is the partitioning of the FPGA into partially
reconfigurable HW-PE resources, the availability of SW-PE resources,
the tasks to be scheduled, the task graph representation describing the
task dependencies, and the available task mappings, i.e. bitstreams for
the different implementations of each hardware task, and tasks
implemented in software that can be served by a SW-PE.
Additionally, the RTSM needs the reconfiguration and execution times
of each task, and optionally the task deadlines. This information is used
to update the RTSM structures and perform the initial scheduling.

The above are provided in an input file or can be dynamically linked
with the RTSM library, so as the RTSM retrieves them prior to
application execution. We use list structures to represent the reconfi-
gurable regions (RR list); the tasks to be executed (task list); the
bitstreams for each task (mappings list); and reservations for “newly
arrived” tasks waiting for free space (reservation list). Since we do not
consider random arrival times of tasks, we provide a definition by
which a task is characterized as “arrived task”: If a task has completed
its execution at time t=x, then the next in sequence dependent task as
retrieved from the task graph has an arrival time tarr=x+1.

Fig. 1. Relocation: RM2–RR1 does not exist, thus the hardware task laying in RR2 is
relocated by first configuring RM1–RR1, and then RM2–RR2.

Fig. 2. Implementations for all crypto modules are available for and can be loaded into
any RR, however a large amount of resources will be under-utilized. JHM utilizes more
efficiently the RR area, given that the corresponding bitstream (the combined AESDES
module) is available.

G. Charitopoulos et al. INTEGRATION the VLSI journal 57 (2017) 34–44

36



The RTSM gets as input the 2D placement of the RRs on the FPGA,
identified by (i) a pair of [x, y] coordinates and (ii) its size measured in
slices. For example, an RR with coordinates [2,3] corresponds to the
point within the reconfigurable area on which the bottom-left corner of
the rectangle is placed. Regarding the size, for example, an RR with size
4×5 specifies the number of slices covered by the RR in x and y
dimensions respectively. The hardware tasks should be available in a
bitstream repository, each of which corresponds to an RM–RR binding.

During application execution, the RTSM alters its scheduling
decisions dynamically. Specifically, it reacts according to dynamic
parameters such as the runtime status of each HW/SW task and
region, e.g. busy executing, idle, scheduled for reconfiguration, sched-
uled for execution, region that is free, reconfigured-but-idle, reconfi-
gured-and-active, etc. In this way, the RTSM reacts dynamically
according to the FPGA condition and task status.

The RTSM's main routine is depicted in Fig. 3. Each rectangle in the
figure refers to a more abstract action taking place at this moment, i.e.
the rectangle labeled “Execute Task” refers to the actions the RTSM has
to take in order to initiate the new execution of a task. A rhombus
indicates an if-like statement depending on the state of a task or the
specifics of a scheduling decision. Finally the ellipses on the graph
indicate input/output points from/to the user.

We have structured the RTSM into two parts. In the first part the
RTSM continuously checks for a newly arrived task, and calls the
schedule function. After the scheduling decision is made, the RTSM
checks if the task can be served immediately, and then whether the
reuse policy can be invoked, and accordingly it issues an execution or

reconfiguration instruction. Then, it checks if a task has completed
execution, and decides which task to schedule next according to the
task graph. Finally, the RTSM checks if there are reserved tasks that
should start executing.

At the end of Fig. 3, we observe a bidirectional connection between
the “Execution finished” and “Reconfiguration finished” states. This
concerns the case where reuse is not possible, and RTSM has initiated a
configuration process of a task, i.e. “Configure task” step. It reflects the
fact that RTSM handles the reconfiguration and execution of a task as
two completely different processes, i.e. first reconfiguration of a task
should finish, and then the RTSM will initiate its execution. Then, given
that the time required for the execution of a task is unknown, the
RTSM is waiting to be informed by the task itself that it completed its
execution, and successively the RTSM will resolve the task dependen-
cies.

In Fig. 4 we depict the control flow of the “Schedule Task” function.
If the scheduler cannot immediately find an available placement nor a
future reservation for the task, we label it as “rejected” and inform the
user. This is done in order to be in correspondence with other
significant works on the field such as, [6–8], which make the assump-
tion that a task can be rejected if no suitable placement is found on the
FPGA. However, it is possible to configure the scheduler with enough
resources so that a task can always be reserved for a future time and
never be rejected.

If there are more than one RR free on the device and mappings exist
for those RRs, a Best Fit policy decides which RR the task will be placed
on, considering the area occupied by the task. Our scheduler will pick
the bitstream of the task that best utilizes the area of the corresponding
RR, i.e. it places the newly arrived task on the RR producing the

Fig. 3. RTSM main routine.

Fig. 4. RTSM “Schedule Task” function.

G. Charitopoulos et al. INTEGRATION the VLSI journal 57 (2017) 34–44

37



smallest unused area, provided this RR is free.
If there is only one free RR on the device and no mapping of the

scheduled task exists mapping it to it, the scheduler performs reloca-
tion (box #RRs=1). With this step the scheduler tries to relocate a
previously placed task to another RR so as to accommodate the newly
arrived task. If this step also fails, the scheduler attempts to make a
reservation for the newly arrived task, thus execute it at a later time.

Even if the scheduler finds a suitable RR for immediate placement,
it will also perform a Best Fit in Time (BFT) in order to check if by
reserving the task for later execution and reusing a previously placed
core, the incoming task will finish its execution at an earlier time. It is
important to note that the RTSM besides the RR and SW-PEs treats
also the configuration controller as a scheduled resource.

3.3. Tasks with deadlines

Several works consider an abstract concept of tasks with deadlines.
The objective of this approach is to achieve a task scheduling before the
task's deadline. If no scheduling can happen the task is considered as
rejected. These kinds of tasks do not impose any consequences to the
application. Our RTSM can consider a task's deadline prior to taking
scheduling and placement decisions. If no alternative – either via
relocation, reservation, and execution – can meet the deadline, the task
is rejected. In our case task rejection means that the task is deferred for
SW execution, specifically on the host PC's CPU. However this case is
not encountered in our experiments.

3.4. Observations

Task reconfiguration and execution times: These inputs are
supplied by the designer, and can be derived through profiling or it
can be computed using theoretical reconfiguration times and the HW
bitstream size. The execution time can be estimated by the compilation
tools, or can be provided by the programmer during the application
design phase. This information is provided to the RTSM in its
initialization. In practice though, a task's execution time can be smaller
or larger than the predicted one, and the RTSM is notified on task
completion, so that it may update its scheduling decisions dynamically.

Best Fit in Size (BFS): The BFS feature aims at placing a newly
arrived task onto the RR producing the smallest unused area. Without
BFS, the size of an RM does not pose any restriction for loading it into
an RR, given that such a bitstream exists. The programmer can disable
this feature. In all our current experiments we enabled it.

Size of RRs and RMs: These parameters are defined at design-time
and have fixed values. BFS reacts based on these parameters.

4. Software simulation framework, testbed and results

To demonstrate the aforementioned features, we deployed the
RTSM in a simulation environment and used it to control synthetic
workloads.

4.1. Simulation framework

Fig. 5 shows the task graph we use as case study to demonstrate
RTSM's behavior. In this figure we express the HW/SW execution
times and reconfiguration time in arbitrary time units in order to make
the understanding easier. The task graph has one instance in which
three tasks have more than one dependency, i.e. T3, T7 and T8, which
results in join operations. Also, in T2 there are fork operations. The
available resources are two RRs and one SW-PE, as well as the FPGA
configuration port, which is also treated as a resource to be scheduled.
The RTSM accepts as input the width and height of each RR; these are
used by the Best Fit in Space function.

Table 1 shows the available task mappings that drive the options of
RTSM for making the best scheduling decision for a given task, e.g. T1

can be loaded either in RR1 or RR2. If a task has only one RR–RM
binding, e.g. T2, options are limited. We assume that every task has a
software implementation as well in order to study how the RTSM reacts
when exploiting both hardware and software resources, which aims to
reduce the overall application execution time. It is important to note
here that in all experiments we assumed that the software implementa-
tion of a task has a longer execution time than its hardware counter-
part; this is shown in the annotations of Fig. 5.

4.2. Simulation results

In Fig. 6 we illustrate the scheduling result of the previous
experiment. In this run, most of the RTSM features were activated.
Relocation is activated quite early in order to accommodate task T2.
Since the Best Fit in Space (BFS) function has placed initially task T1
onto RR2, in order to accommodate task T2 on the FPGA, task T1
should be relocated given that an alternative binding exists. In fact, the
RTSM “moves” T1 from RR2, by configuring a bitstream implementing
the T1's functionality into RR1; this way the RR2 becomes available
and the RTSM then loads the task T2 into RR. Furthermore, it appears
that the RTSM decides to execute the software version of task T5. This
is due to the Best Fit in Time (BFT) function, as reserving the hardware
version of the task for later configuration onto an RR would result in
longer execution time of the application.

We can also see that the reservation feature is activated in the

Fig. 5. Annotated application task-graph: the notation h/s/r indicates with HW, SW
execution time and reconfiguration time for each task. For example for T1 the respective
values are 6/9/1.

Table 1
RM–RR bindings and required space.

Tasks Mapping characteristics

#RR Width Height

Task 1 1,2 1 2
Task 2 2 1 3
Task 3 2 1 3
Task 4 1,2 1 2
Task 5 1 2 2
Task 6 2 1 2
Task 7 1,2 1 2
Task 8 1,2 1 2

G. Charitopoulos et al. INTEGRATION the VLSI journal 57 (2017) 34–44

38



decision taken for task T3. The arrival time point of task T3 is t=10, and
since the only available mapping concerns RR2, the only option is to
reserve task T3 for later configuration on RR2. It is worth noting that
the scheduler does not relocate task T4 to RR1, because T4 is near
completion of its execution (otherwise it would restart its execution).

Finally, Fig. 6 shows that there is a high level of inner task
parallelism between tasks of the same level but also from different
levels, i.e. between T1–T2, and T4–T5, and the prefetching of tasks T7
and T8, with the execution of tasks T3 and T6 respectively.

4.3. Discussion analysis

This experiment offered a first basis for our RTSM evaluation. It
focused on a quite simple PR design with 2 RRs and 1 SW-PE. Several
complex operations are demonstrated here despite not being imple-
mented in the actual system. The assumptions made for this experi-
ment were:

• We assume a simple reconfigurable device following the 2D area
model.

• Resource utilization and timing is assumed to be in arbitrary units.
So a task can have a HW implementation occupying 2 units of width
and 1 unit of height on the device and its execution time being 4
time units.

• We assume multiple bitstreams for each task, each with different
resource utilization. We do not consider Joint Hardware Modules in
this experiment.

• All tasks are unique and no loops are presented, thus reuse of
hardware implementations is not demonstrated.

• We assumed that the SW-PE execution takes more time than the
combined hardware execution and reconfiguration operation. In
general, this favors the selection of hardware accelerators.

• To model more accurately a task's execution we include the
communication time requirements of a task in the task's execution
time.

• Finally, to model faster reconfiguration times, we assumed that
execution time of a HW task is larger than its corresponding
reconfiguration time.

The experiment presented allows us to make the following observa-
tions:

• The task graph is complex enough to demonstrate fork and join
operations.

• We demonstrated most of the RTSM features: relocation, reserva-
tion, prefetching, BFT and BFS.

• Despite the fact that the RTSM favors hardware execution in the
above case we saw that the scheduler opted for the software version
of a task, which was due to the reduced overall execution time.

• From Fig. 6 we obtain that relocation takes place from the very
beginning of the scheduling. This evidences that our approach is
dynamic, i.e. at each point of time the RTSM reacts according to the
FPGA condition and task status.

5. Experimental framework, testbed and results

We validated the correctness of the RTSM in two FPGA platforms
by controlling the execution of an Edge Detection application. Its task
graph is rather simple and tasks have a linear dependency. Thus, tasks
execute is succession, with each task just passing the result of its
processing to the next one. The task graph consists of 9 tasks: 5 of them
are SW, i.e. 1 read image task and 4 write image tasks, while all other
tasks are implemented in HW, i.e. Grayscale (GS), Gaussian Blur (GB),
Edge Detection (ED) and Threshold (TH). The tasks have a linear
dependency, i.e. read image passes the intermediate results to GS; GS
to write image task; write image to GB; GB to the next write image task,
and so on.

We are aware that the write tasks greatly affect our applications
performance. However, in order to compare our results with [21] we
decided to keep the same application graph. Also inner-RR commu-
nication is not implemented and thus the intermediate images need to
be written in an external memory before being used again.

Fig. 7 depicts the task graph of the application, showing only task
dependencies but not how the application actually executes over time.
It also depicts the (implicit) SW tasks that trigger the reconfiguration
process.

We used two platforms: a XUPV5 platform carrying a Virtex-
5LX110T FPGA and a Zedboard platform carrying a Xilinx ZYNQTM-
7000 SOC. Both are equipped with a DDR memory and an SD port for
input/output. The XUPV5 architecture design and the Edge Detection
hardware modules were provided by the authors in [21]. In both

Fig. 6. The scheduling outcome of our example, showing features such as relocation, reservation and prefetching. The use of the SW version of task T5 contributes to completing faster
the execution.

Fig. 7. The implemented Edge Detection application task graph.

G. Charitopoulos et al. INTEGRATION the VLSI journal 57 (2017) 34–44

39



platforms we created two HW-PEs, i.e. two Reconfigurable Regions.
Finally, we have validated the RTSM with a software-only system,

i.e. a desktop PC with an x86 multi-core Intel CPU, in which the RTSM
schedules the task execution amongst the different cores. The main
idea was to compare the schedule overhead induced by our RTSM for
the achievement of parallel execution in software-only environments,
with OpenMP, which is an industry standard API for parallel execution.

In the remaining section we present the three implementations and
comment on the portability of our RTSM. Then, we compare our work
with the Open MP API.

5.1. The RTSM on the XUPV5 platform

To evaluate our RTSM we used a XUPV5 FPGA-based system
provided by the authors in [21]. This system implements two
MicroBlaze soft processors, and two RRs as the HW-PEs. The RTSM
runs in MicroBlaze#1 to manage the physical resources, such as
deciding whether a task should execute in hardware or software, in
which RR, and so on. Depending on the decision outcome,
MicroBlaze#1 would signal MicroBlaze#2; the latter is responsible
for invoking the reconfiguration process and executing the SW tasks.
Fig. 8 illustrates the system architecture initially built by the authors in
[21], along with our extensions.

We described previously that the RTSM considers only estimations
of the execution and reconfiguration times of the tasks, and based on
them it produces the initial scheduling decisions. However, the
estimated values differ considerably from the actual ones, so the
RTSM should wait for a completion message from MicroBlaze#2 in
order to proceed. This signal can be either a reconfiguration completion
or an execution completion. Once the signal is activated, the RTSM
resolves the dependencies and proceeds with the next task in the graph.

An image, either the first one or any of the intermediate ones,
resides in the DDR and the application accesses it via interrupts on the
Microblaze#1 processor by sending one interrupt per pixel. Then,
Microblaze#1 sends the processed pixel to the corresponding RR. This
mechanism is very slow, and the total execution of the application takes
roughly 2 min per image. We have verified that the main cause for the
long execution time is indeed the pixel fetching mechanism.

With the experiments above we demonstrated the capability of
RTSM to control the execution of applications on hybrid systems with
partially reconfigurable HW-PE and SW-PE. Due to the simple nature
of the current application, features like reservation or relocation were
not shown. We evaluated the RTSM performance by measuring the
time intervals with timestamps in the MicroBlaze code. The system was

clocked at 100 MHz. The average time of the schedule function was
measured equal to 4.7 ms, which compared to the total execution time
produces negligible overhead.

To the best of our knowledge, it is first time that a run-time
manager targeting SW/HW systems with PR FPGAs is designed and
implemented in a way that respects all current technology restrictions,
and at the same time aims at minimizing the total execution time.

5.2. The RTSM on the ZedBoard platform

After the first implementation we transferred the design to the
ZedBoard platform. One of our main concerns was to perform the
execution of the application faster, and evaluate again the overhead of
our scheduler. In order to do that we focused on the data fetching
mechanism and devised it, as it was the main source of the delay in the
execution at the XUPV5 platform. In the new platform we had as basis
the AXI stream bus and passed the processed data with DMA
operations. Fig. 9 illustrates the system architecture. It features two
ARM Cortex-A9 cores, two reconfigurable regions acting as the HW-
PEs each of which is connected to a DMA engine, and a DDR3 memory.
The RTSM resides in CPU0, while CPU1 acts as the SW-PE executing
SW tasks.

During start-up, the system is initialized by the on-board flash
memory; the boot loader initializes CPU0 with the RTSM code, sets-up
CPU1 as the Processing Element (PE), and loads the initial bitstream in
the programmable logic. Then, the RTSM loads the application
description, i.e. task graph, task information, task mappings, etc., from
the SD card. It also transfers the partial bitstreams from the SD to the
main system memory (DDR3). During normal operation the RTSM
takes scheduling decisions and issues tasks, on the SW-PE, i.e. CPU1,
and the two HW-PE, i.e. RR1 and RR2.

Our target application is again the edge detection that consists
mainly of four filter kernels executing in a sequence. For each task we
have implemented both a HW version (as partial bitstream) and a SW
version. It is upon the RTSM to decide which version to use based on
the run-time availability of HW- and SW-PEs. The input image is
loaded from the SD card, while intermediate images resulting after
processing each task and the final output image, are also written back
to SD card. The transfer from and to the SD card is carried out by SW
tasks executed in CPU1, which also controls partial reconfiguration of
HW tasks.

Fig. 8. The modified system we implemented in the FPGA of the XUPV5. MicroBlaze#1
holds the RTSM and handles the interrupts and memory read/writes. MicroBlaze#2 is
responsible for controlling the reconfiguration process and executing the SW tasks.

Fig. 9. System architecture of the Zynq platform.

G. Charitopoulos et al. INTEGRATION the VLSI journal 57 (2017) 34–44

40



The two CPUs communicate with each other through the on-chip
shared memory using two memory locations, one for each commu-
nication direction, using a simple 2-flag handshake protocol (set and
acknowledge/clear). One flag shows the PE status where a “−1″
indicates that the PE is idle and the RTSM can issue any SW task to
it; when the PE is busy, this flag indicates the task assigned, e.g. “2” for
SW_imageRead, “3” for SW_imageWrite, etc. Upon the completion of
task execution, the PE notifies the RTSM by using the other flag, which
indicates the type of the completed task.

In the system architecture of Fig. 9, the two RRs (RR1 and RR2) are
connected onto the processing ARM cores through an AXI_Lite bus
running at 75 MHz, and through a DMA engine, each one having read
and write channels on a dedicated AXI_Stream running at 150 MHz.
The AXI_Stream is connected to the processor High Performance ports
(HP0 and HP1) that provide access to DDR memory. In order to
execute a HW task, the RTSM issues a reconfiguration command to
CPU1, which in turn configures the FPGA with the corresponding
bitstream through the PCAP configuration port. Once partial reconfi-
guration completes, RTSM initiates HW task execution, programs the
appropriate values, and triggers the corresponding DMA engines and
kernel filters. All HW mappings of the kernels were implemented with
the Xilinx HLS tool that also creates automatically the SW drivers for
the SW/HW communication over the AXI_Lite bus. When a kernel
completes execution, it generates an interrupt to the RTSM, which then
updates its structures and proceeds to a new scheduling decision.

The RTSM operation can be broken down into different phases
shown in Table 2. The table lists the total time spent on an ARM A9
Cortex CPU for each distinct phase, both in clock cycles and μs. The
times presented in Table 2 refer to the cumulative time spent in each
phase and not the average time for each phase.

The RTSM initialization phase is performed only once and in-
cludes: (i) fetching of the initialization file from the SD card that
describes the tasks, the control flow graph, and the task mappings; (ii)
parsing of initialization file; and (iii) initialization of RTSM data
structures. The time for the RTSM initialization phase does not include
the overheads for loading the file from SD card and for transferring the
partial bitstreams to DDR3 memory. The Schedule phase refers to the
time needed to execute the Schedule function once, in order to take a
decision about the task to be executed next, i.e. when and where this
task is going to be executed. The Issue Execution phase refers to the
time required to issue either a reconfiguration or execution task
instruction, depending on what the scheduling decision was. Also,
depending on whether a HW core is reused, the RTSM checks if
configuration prefetching can be performed. The HW Task completion
phase and SW Task completion phase refers to the phases of updating
the RTSM data structures after the completion of a HW and SW task
respectively, and to resolve the dependencies in order to set the next
task in the graph as “arrived”. Finally, the Reconfiguration task
completion and HW task execution issue phase refers to the interval
in which the RTSM receives a reconfiguration completion notification
from the PE, issues a task execution command, and checks whether it
can perform configuration prefetching of a not yet “arrived” task.

In Table 3 we report the total RTSM overhead, the reconfiguration
overhead, and the execution time of the application itself. In all cases
we report the average time of multiple runs. It is obtained that the
RTSM overhead is small as compared to the application execution time.
Furthermore, the reconfiguration overhead is higher than anticipated
due to the fact that we use software routines to perform reconfigura-
tion, and thus we do not take advantage of the maximum PCAP
throughput. The theoretical reconfiguration overhead, given that PCAP
has a throughput of 400 MB/s, is 0.6 ms. Since we use a software to
perform reconfiguration, the throughput is considerably lower at
50 MB/s, which increases the reconfiguration cost to 5 ms. Still,
compared to the total execution time, this overhead is negligible. It is
important to note that the reconfiguration overhead is added only once;
in the rest cases of our case study, configuration prefetching takes
place, thus hiding the reconfiguration overhead with HW execution.

Finally, we compare the performance of our system with the one
presented in [21]. That work used the same application running on a
Xilinx Virtex-5 FPGA and reported a throughput of 18 fps for a
640×480 image. In our case, we used a 1920×1080 image, and we
measured a throughput of 7 fps. By converting the two results into
pixels per second throughput, our system is faster by a factor of 2.6.
Since the two platforms are quite different, a direct comparison is not
easy; for example in the Zynq we use the ARM hard processors while
the Virtex-5 FPGA supports only soft-core MicroBlaze processors.

Regarding portability, our initial RTSM was developed on an Intel
x86 ISA desktop; porting it to the ARM architecture required only: (i)
cross-compiling the code and (ii) re-implementation of architecture
specific drivers and communication protocols between the RTSM and
the Processing Elements.

5.3. Combining complex task graphs with real time measurements

Having ported our RTSM in two different platforms we validated its
ability to successfully manage and schedule tasks efficiently, despite
several technology restrictions. However our benchmark application
(Edge Detection) is quite simple in structure, and it is very I/O
intensive reading and writing its intermediate results on the SD card.

In order to obtain a better picture of the overheads incurred in
these types of embedded systems we conducted experiments with a
benchmark with a more complex task graph, similar to the one
described in Section 4. The task graph shown in Fig. 10 was created
by a random task graph generator. As we do not have a fully working
executable of this benchmark we combine the actual times measured
during the execution of the Edge Detection application's tasks on the
ZedBoard platform for steps such as configuration, task execution and
data transfer, and combine with the measure times for the RTSM
scheduling.

The choice to use the execution times measured during the
ZedBoard experiments was motivated by the fact that in this platform
the tasks are executed by streaming input data to the accelerator. This
is in contrast to the slow task execution times recorded in the Virtex-5
experiments.

This resulted in faster execution times that could lead to a better
showcase of the reconfiguration and RTSM overheads.

Each task represented in the graph has been assigned the execution
and reconfiguration time of an actual task from the Edge Detection

Table 2
RTSM phases and time overhead per phase throughout the execution of edge detection
on ZedBoard.

RTSM phases # Clock
cycles

Elapsed time
(μs)

RTSM initialization 7707 23.121
Schedule (total of 9 times) 17,346 52.038
Issue execution 5995 17.985
HW Task completion 2493 7.479
Reconfiguration task completion &

Hardware task execution issue
1224 3.672

SW Task completion 2748 8.244

Table 3
Execution time of the application and overhead of the RTSM and the reconfiguration
process.

Application phases Elapsed time (ms)

Edge Detection application 129.62
RTSM overhead 0.112
Reconfiguration overhead 5

G. Charitopoulos et al. INTEGRATION the VLSI journal 57 (2017) 34–44

41



application. Tasks 2, 3 and 5 are considered as Grayscale tasks, 1 and 4
as Gaussian Blur, 6 and 9 as Edge Detection and finally 7 and 8 as
Threshold.

The hardware/software execution times for each Edge Detection
task are shown in Table 4. For the RTSM's overheads we used the ones
in Table 2. The reconfiguration time per task is measured at an average
of 2.1 ms per task.

The resulting scheduling outcome is visualized in Fig. 11. The figure
annotates all the prefetches and reservations made. It is important to
note that all reconfigurations (except the first one) impose no overhead,
as they are performed in parallel with task execution. Also, even though
several prefetches might not be considered useful e.g. prefetch on Task
3, they are not considered as overehead, since the position in the RTSM
code that they are being decided does not create an overhead in the
overall execution.

Specifically if the decision of the aforementioned prefetches per-
formed is being decided prior to the finishing of the task currently
executed on the PRR and thus the RTSM overhead for those lines of
code is masked. Also we can observe that due to the Best Fit in Time
mechanism the RTSM uses for its advantage the fact that several tasks
are inherently the same, e.g. Tasks 6 and 9.

The total overhead induced by the scheduling function can be

broken down to a number of phases that cannot be executed in parallel
with a hardware task. These phases are the initialization phase, the
scheduling decisions for tasks 2, 3, 6 and 9, the initiation of the
execution for reservations and the prefetching of task 7. Finally to these
phases that induce overhead the list updates must also be considered
due to their inability to be masked by task execution.

Using the average measured times for these phases from Table 2,
we can calculate the total overhead of the RTSM, which sums up to
68.3352 μs. Compared to a total runtime of 200 ms for our synthetic
application, we see that the reconfiguration overhead and the RTSM
overhead are considered negligible, even with larger and faster
applications than the ones used in the previous sections.

5.4. Software scheduling efficiency of our RTSM

Our RTSM, in addition to the HW task scheduling capabilities, also
schedules the application's possibly parallel SW tasks. This is a
mandatory feature, as current processors are multi-core and software
is increasingly parallel/multithreaded. Many optimized runtime sys-
tems exist for executing parallel software, and we set to compare the
efficiency of our runtime system with that of such a state-of-the-art
runtime system.

To do this comparison, we ported out runtime system to an Intel
x86 based system, and we considered every available core of our
computer as a SW-PE. Also every task can be mapped to all SW-PEs,
since there are no limitations to which software core a function can be
executed on. It is important to note that in this implementation the
RTSM cannot take advantage of all the available cores, due to the fact
that the RTSM is running on a dedicated core which is therefore not
available as a SW-PE.

We compared our scheduler with OpenMP, a well-known industry
framework that supports parallelism in multi-core systems and pro-
vides an easy way to write a parallel application. Our intention was to
measure the scheduling quality and overhead of our RTSM, and
compared it with that of OpenMP, as a typical parallel execution
runtime.

With minor changes (annotations) on the task execution initiation
code the user can easily modify the RTSM in order to execute tasks in a
multi-core system, by binding the execution of task on certain cores.
Furthermore, without loss of generality, we assumed that a segment of
an application parallelized with an OpenMP pragma is identical to an
independent task of the same application during the partitioning phase
for our runtime.

For benchmark, we used was the same Edge Detection application
with some minor changes: first we eliminated the intermediate Write
Image tasks and then we split the processed image into 4 and 8 parts,
increasing the parallelism and the workload of the application. With
these modifications, each Edge Detection phase runs 4 or 8 times
respectively before the RTSM considers the task completed.

The experiments were run on a desktop with an Intel Xeon
Processor E5 at 2.2 GHz, with 12 cores in total. We used 2 images of
different input sizes, 512×512 and 1024×512, in order to see how the
execution time changes according to the data. There were 4 available
cores/SW-PE for both our RTSM and the OpenMP. We applied all the
available compiler optimizations (O1, O2 and O3) on both implemen-
tations, in order to see which one achieves the best execution time.

In these experiments we collected measurements: (i) to compare
our RTSM with the OpenMP API by measuring and comparing the
execution time of the entire application, and (ii) to quantify the
scheduling overhead and analyze the different phases of our RTSM.

Comparing our RTSM to OpenMP, we found that a simple approach
of writing and running an OpenMP parallel program with no optimiza-
tions is actually less effective than using our RTSM. The reason is that
in OpenMP the OS scheduler may cause many involuntary context
switches increasing the application execution time. On the other hand
our scheduler created tasks and bound them to SW-PEs until the end of

Fig. 10. Application task-graph annotated with the actual Edge Detection tasks assigned
to each synthetic task.

Table 4
Hardware and software execution times for each Edge Detection task.

Task HW execution time (ms) SW execution time (ms)
Grayscale 32.40 435
Gaussian Blur 32.42 452
Edge Detection 32.42 385
Threshold 32.35 225

G. Charitopoulos et al. INTEGRATION the VLSI journal 57 (2017) 34–44

42



their execution using the set_affinity() function, so no context switches
were introduced.

The different approach of the two implementations regarding
thread affinity resulted in at most 33x speed-up of our RTSM over
the OpenMP version. Upon closer inspection of the OpenMP API, we
found a flag option that binds the threads created by OpenMP to
certain processors, thus eliminating involuntary context switches. We
applied the affinity optimization before the execution of the OpenMP
program with the flag export KMP_AFFINITY=compact and then
we measured again the overall execution time.

The results produced for both images, the 4 and 8 image splits and
the 3 versions of our application (OpenMP, (opt.) RTSM. OpenMP) are
shown in Figs. 12a, b and 13a, b. The measurements made for the

comparison of the three versions are mean times after 1000 executions.
As we can observe both the optimized OpenMP and the RTSM version
outperform the simple OpenMP, with speed-ups ranging from 5x to
33x. Also the difference between the optimized OpenMP and our RTSM
is negligible. Specifically the optimized OpenMP API over our RTSM
achieves a 1.1–2.4x speed-up. After this analysis several conclusions
can be drawn:

• The OpenMP API by default does not produce optimized versions,
even of simple programs.

• The OpenMP KMP affinity optimization, which is used to prevent
the involuntary context switches, can offer a speed-up up to 40x on
the same application.

• Our RTSM is competitive to the optimized version of the OpenMP.

Fig. 11. The scheduling outcome for the task graph of Fig. 10 with the times measured in our ZedBoard experiments.

Fig. 12. Execution times of the Edge Detection application for the small image.

Fig. 13. Execution times of the Edge Detection application for the medium image.

G. Charitopoulos et al. INTEGRATION the VLSI journal 57 (2017) 34–44

43



• If the affinity optimization is not applied, the compiler optimizations
do not offer any speed-up to the OpenMP version.

Our RTSM is able to schedule task based applications, while
OpenMP performs inner-function parallelism. Considering that the
RTSM had an early disadvantage against OpenMP. However the
optimized OpenMP version was not considerably slower than our
approach and the optimized version offered at most a 3x speed-up.

Our RTSM was created with portability in mind, and hence it is not
fully optimized, nor was created to be run on SW-only environments;
instead its main goal was to offer advanced scheduling functionality for
hardware functions. Despite this, our experiments show that, even for
SW-only environments, it is comparable to the state-of-the-art
OpenMP API.

6. Conclusion

We presented a run-time system to efficiently schedule HW and SW
tasks in systems with partially reconfigurable FPGAs. Furthermore we
showed that our RTSM and scheduling policies can be applied to a
desktop environment and compare against the OpenMP API and
produce promising and competitive results. Also the version of the
RTSM compared was not particularly tailored for software task
scheduling, thus leaving space for further development and improve-
ment.

In addition we showed two more experimental frameworks we have
created using PR FPGA devices, a XUP-V5 and a Zynq ZedBoard,
demonstrating the inherent general use of our RTSM and its ability to
be ported in different devices. The PR platforms used throughout this
work follow a similar partial reconfiguration model, with an ICAP
controlling the reconfigurable regions and an ARM/MicroBlaze micro-
processor initiating task execution and reconfiguration. This model has
not yet been improved and we believe that our RTSM can be easily
ported even in recent platforms like the Ultrascale+. Also the number
of RRs is user defined and not bound by the capabilities of our RTSM
thus increasing the complexity of the PR design.

Finally we plan to develop complex use-cases, e.g. task graphs with
branches and loops that will allow for demonstrating and evaluating all
the features of RTSM on actual FPGA platforms. One obstacle to this
effort (by us and other researchers) is the lack of standard interface
across different applications, and designers have to manually intervene
to adjust the RTSM and the task application interfaces, according to the
specifics of each platform. Our RTSM relieves the designer from the
task invocation complexities; he/she only has to address the task data
interface with the core part of the RTSM. Also we plan to have our
RTSM consider as a schedulable resource the communication aspect of
the tasks.

Acknowledgments

This work was supported by the European Commission in the
context of FP7 FASTER project (#287804) and H2020 EXTRA project
(#671653).

References

[1] J. Burns, A. Donlin, J. Hogg, S. Singh, M. D. Wit, A dynamic reconfiguration run-
time system, in: The 5th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, 1997. Proceedings, 1997, pp. 66–75 http://dx.doi.org/10.
1109/FPGA.1997.624606.

[2] A. Jara-Berrocal, A. Gordon-Ross, Hardware module reuse and runtime assembly
for dynamic management of reconfigurable resources, in: 2011 International
Conference on Field-Programmable Technology (FPT), 2011, pp. 1–6 http://dx.
doi.org/10.1109/FPT.2011.6132721.

[3] P. Lysaght, B. Blodget, J. Mason, J. Young, B. Bridgford, Invited paper: Enhanced
architectures, design methodologies and cad tools for dynamic reconfiguration of
xilinx fpgas, in: 2006 International Conference on Field Programmable Logic and
Applications, 2006, pp. 1–6 http://dx.doi.org/10.1109/FPL.2006.311188.

[4] G. Charitopoulos, I. Koidis, K. Papadimitriou, D. Pnevmatikatos, Hardware Task
Scheduling for Partially Reconfigurable FPGAs, Springer International Publishing,
Cham, 2015, pp. 487–498 http://dx.doi.org/10.1007/978-3-319-16214-0_45.

[5] E. El-Araby, I. Gonzalez, T. El-Ghazawi, Exploiting partial runtime reconfiguration
for high-performance reconfigurable computing, ACM Trans. Reconfigurable
Technol. Syst. 1 (4) (2009) 21:1–21:23 URL http://doi.acm.org/10.1145/1462586.
1462590.

[6] C. Steiger, H. Walder, M. Platzner, Operating systems for reconfigurable embedded
platforms: online scheduling of real-time tasks, IEEE Trans. Comput. 53 (2004)
1393–1407. http://dx.doi.org/10.1109/TC.2004.99.

[7] T. Marconi, Y. Lu, K. Bertels, G. Gaydadjiev, 3D Compaction: A Novel Blocking-
Aware Algorithm for Online Hardware Task Scheduling and Placement on 2D
Partially Reconfigurable Devices, Springer, Berlin, Heidelberg, 2010, pp. 194–206.
http://dx.doi.org/10.1007/978-3-642-12133-3_19.

[8] Y. Lu, T. Marconi, K. Bertels, G. Gaydadjiev, A communication aware online task
scheduling algorithm for fpga-based partially reconfigurable systems, in: 2010 18th
IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2010, pp. 65–68 http://dx.doi.org/10.1109/FCCM.
2010.18.

[9] K. Bazargan, R. Kastner, M. Sarrafzadeh, Fast template placement for reconfigur-
able computing systems, IEEE Des. Test. Comput. 17 (1) (2000) 68–83. http://
dx.doi.org/10.1109/54.825678.

[10] K. Compton, Z. Li, J. Cooley, S. Knol, S. Hauck, Configuration relocation and
defragmentation for run-time reconfigurable computing, IEEE Trans. Very Large
Scale Integr. Syst. 10 (3) (2002) 209–220. http://dx.doi.org/10.1109/
TVLSI.2002.1043324.

[11] T. Becker, W. Luk, P. Y. K. Cheung, Enhancing relocatability of partial bitstreams
for run-time reconfiguration, in: 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2007), 2007, pp. 35–44
http://dx.doi.org/10.1109/FCCM.2007.51.

[12] M. Huang, H. Simmler, O. Serres, T. El-Ghazawi, Rdms: A hardware task
scheduling algorithm for reconfigurable computing, in: IEEE International
Symposium on Parallel Distributed Processing, 2009. IPDPS 2009, 2009, pp. 1–8
http://dx.doi.org/10.1109/IPDPS.2009.5161223.

[13] A. Montone, M.D. Santambrogio, D. Sciuto, S.O. Memik, Placement and floor-
planning in dynamically reconfigurable fpgas, ACM Trans. Reconfigurable Technol.
Syst. 3 (4) (2010) 24:1–24:34. http://dx.doi.org/10.1145/1862648.1862654.

[14] D. Gohringer, M. Hubner, E.N. Zeutebouo, J. Becker, Operating system for runtime
reconfigurable multiprocessor systems, Int. J. Reconfigurable Comput. 2011 (2011)
3:1–3:16. http://dx.doi.org/10.1155/2011/121353 http://dx.doi.org/10.1155/
2011/121353.

[15] D. Gohringer, S. Werner, M. Hubner, J. Becker, Rampsocvm: Runtime support and
hardware virtualization for a runtime adaptive mpsoc, in: 2011 21st International
Conference on Field Programmable Logic and Applications, 2011, pp. 181–184
http://dx.doi.org/10.1109/FPL.2011.41.

[16] A. Agne, M. Happe, A. Keller, E. Lübbers, B. Plattner, M. Platzner, C. Plessl,
Reconos: an operating system approach for reconfigurable computing, IEEE Micro
34 (1) (2014) 60–71. http://dx.doi.org/10.1109/MM.2013.110.

[17] A. Duran, E. Ayguade, R.M. Badia, J. Labarta, L. Martinell, X. Martorell, J. Planas,
Ompss: a proposal for programming heterogeneous multi-core architectures,
Parallel Process. Lett. 21 (02) (2011) 173–193. http://dx.doi.org/10.1142/
S0129626411000151 (http://arXiv:10.1142/S0129626411000151arXiv:10.1142/
S0129626411000151 URL 〈http://www.worldscientific.com/doi/abs/10.1142/
S0129626411000151〉).

[18] L. Bauer, A. Grudnitsky, M. Shafique, J. Henkel, Pats: A performance aware task
scheduler for runtime reconfigurable processors, in: 2012 IEEE 20th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2012, pp. 208–215 http://dx.doi.org/10.1109/FCCM.2012.43.

[19] A. A. Sohanghpurwala, P. Athanas, T. Frangieh, A. Wood, Openpr: an open-source
partial-reconfiguration toolkit for xilinx fpgas, in: 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011, pp. 228–235 http://dx.doi.org/10.1109/IPDPS.2011.146.

[20] C. Beckhoff, D. Koch, J. Torresen, Go ahead: a partial reconfiguration framework,
in: 2012 IEEE 20th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2012, pp. 37–44 http://dx.doi.org/10.
1109/FCCM.2012.17.

[21] G. Durelli, C. Pilato, A. Cazzaniga, D. Sciuto, M. D. Santambrogio, Automatic run-
time manager generation for reconfigurable mpsoc architectures, in: 2012 7th
International Workshop on Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC), 2012, pp. 1–8. http://dx.doi.org/10.1109/ReCoSoC.2012.
6322883.

[22] Z. Li, S. Hauck, Configuration prefetching techniques for partial reconfigurable
coprocessor with relocation and defragmentation, in: Proceedings of the 2002
ACM/SIGDA Tenth International Symposium on Field-programmable Gate Arrays,
FPGA '02, ACM, New York, NY, USA, 2002, pp. 187–195. http://dx.doi.org/10.
1145/503048.503076 URL 〈http://doi.acm.org/10.1145/503048.503076〉

[23] A. Morales-Villanueva, A. Gordon-Ross, On-chip context save and restore of
hardware tasks on partially reconfigurable fpgas, in: 2013 IEEE 21st Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2013, pp. 61–64 http://dx.doi.org/10.1109/FCCM.2013.13.

[24] C. Conger, A. Gordon-Ross, A.D. George, Design framework for partial run-time
fpga reconfiguration, in: ERSA, 2008, pp. 122–128.

[25] K. Vipin, S.A. Fahmy, Architecture-Aware Reconfiguration-Centric Floorplanning
for Partial Reconfiguration, Springer, Berlin, Heidelberg, 2012, pp. 13–25. http://
dx.doi.org/10.1007/978-3-642-28365-9_2.

G. Charitopoulos et al. INTEGRATION the VLSI journal 57 (2017) 34–44

44

doi:10.1109/FPGA.1997.624606
doi:10.1109/FPGA.1997.624606
doi:10.1109/FPT.2011.6132721
doi:10.1109/FPT.2011.6132721
doi:10.1109/FPL.2006.311188
http://dx.doi.org/10.1007/978-319-0_45
http://doi.acm.org/10.1145/1462586.1462590
http://doi.acm.org/10.1145/1462586.1462590
http://dx.doi.org/10.1109/TC.2004.99
http://dx.doi.org/10.1007/978-642-3_19
doi:10.1109/FCCM.2010.18
doi:10.1109/FCCM.2010.18
http://dx.doi.org/10.1109/54.825678
http://dx.doi.org/10.1109/54.825678
http://dx.doi.org/10.1109/TVLSI.2002.1043324
http://dx.doi.org/10.1109/TVLSI.2002.1043324
doi:10.1109/FCCM.2007.51
doi:10.1109/IPDPS.2009.5161223
http://dx.doi.org/10.1145/1862648.1862654
http://dx.doi.org/10.1155/2011/121353
http://dx.doi.org/10.1155/2011/121353
doi:10.1109/FPL.2011.41
http://dx.doi.org/10.1109/MM.2013.110
http://dx.doi.org/10.1142/S0129626411000151
http://dx.doi.org/10.1142/S0129626411000151
http://arXiv:10.1142
http://www.worldscientific.com/doi/abs/10.1142/S0129626411000151
http://www.worldscientific.com/doi/abs/10.1142/S0129626411000151
doi:10.1109/FCCM.2012.43
doi:10.1109/IPDPS.2011.146
doi:10.1109/FCCM.2012.17
doi:10.1109/FCCM.2012.17
doi:10.1109/ReCoSoC.2012.6322883
doi:10.1109/ReCoSoC.2012.6322883
doi:10.1145/503048.503076
doi:10.1145/503048.503076
http://doi.acm.org/10.1145/503048.503076
doi:10.1109/FCCM.2013.13
http://dx.doi.org/10.1007/978-642-9_2
http://dx.doi.org/10.1007/978-642-9_2

	Run-time management of systems with partially reconfigurable FPGAs
	Introduction
	Related work
	The Run-time System Manager
	Key concepts and functionality
	RTSM input and execution flow
	Tasks with deadlines
	Observations

	Software simulation framework, testbed and results
	Simulation framework
	Simulation results
	Discussion analysis

	Experimental framework, testbed and results
	The RTSM on the XUPV5 platform
	The RTSM on the ZedBoard platform
	Combining complex task graphs with real time measurements
	Software scheduling efficiency of our RTSM

	Conclusion
	Acknowledgments
	References




