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Abstract—The most popular representative devices of re-
configurable computing are the Field Programmable Gate
Arrays (FPGAs). A promising feature of an FPGA is the
ability to reuse the same hardware for different tasks at dif-
ferent phases of an application execution. Moreover, the
tasks can be swapped on the fly while part of the hardware
continues to operate. This is known as dynamic reconfigura-
tion and evaluation of its performance presents interesting
research challenges. This paper introduces a general frame-
work to measure the reconfiguration time from the system
perspective. In addition, a methodology to setup different
system parameters, gather and process automatically the
experimental results has been developed. It is proven that
these parameters affect applications designed in a dynam-
ically reconfigurable system, and rapid evaluation enables
the quick examination of their impact on performance. Re-
sults demonstrate the usefulness of the framework.

Index Terms—Dynamic reconfiguration, Partial reconfig-
uration, Field programmable gate arrays, Reconfigurable
architectures, System analysis and design, Measurement

I. Introduction

FPGAS are integrated circuits consisting of a large un-
committed array of programmable logic and intercon-

nect that can be configured to implement digital circuits.
Most FPGAs are SRAM-based, meaning that SRAM bits
are connected to the configuration points in the chip, and
programming the SRAM bits configures the chip. FPGAs
can be customized for the application at hand, and exhibit
performance increase over software solutions while retain-
ing flexibility. Different application domains have bene-
fited from their implementation on FPGAs ranging from
bioinformatics on high-end systems [1] to motion detection
on low-cost systems [2].

One of the most interesting features of some FPGAs
is run-time or dynamic reconfiguration [3], and recent re-
search demonstrates that there is a great deal of interest
in it [4], [5]. This capability allows to replace a module
located on a part of the device while the rest remains in-
tact continuing its operation. Multiple design modules can
time-share the physical resources, and the hardware can
adapt to the application at hand, or even to a segment
of an application. This way smaller devices can be used
enabling reduction in cost, size, power, and more efficient
use of the board space.

Numerous applications have benefited from their imple-
mentation in a dynamic manner. In the network domain,
Kachris et al. [6] proposed a dynamically reconfigurable
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processor to meet the requirements of the network work-
load. Modules like encryption, compression and intrusion
detection found in contemporary edge routers, are dynam-
ically loaded according to the traffic distribution to serve
the different network flows. In the field of Software Defined
Radio, a prototyping kit was released to the market, which
uses partial reconfiguration to support different communi-
cation waveforms and protocols within a single device [4];
this allows for flexible and efficient communication between
equipment that differs in vendor, RF frequency or inter-
face protocol. Also, dynamic reconfiguration has been used
to support high energy physics research at CERN’s Large
Hadron Collider [5]. These are some of the systems that
establish dynamic reconfiguration as a feasible way to de-
sign commercial applications. However, it can degrade the
execution time due to the time required to download the
configuration data before the system is ready to execute.
This is known as reconfiguration overhead and quantitative
analysis is needed to examine whether dynamic reconfig-
uration is justified for an application. Also, this analysis
can be used to evaluate mechanisms proposed to reduce re-
configuration overhead such as configuration caching, com-
pression, and prefetching [7], [8].

In [9] we published initial results on a methodology to
evaluate dynamic reconfiguration. The shortcomings of
that work showed that the process was tedious due to the
time needed to prepare each experiment and the amount
of data that had to be sampled and processed. The main
contributions of the present paper are:

• a methodology to evaluate dynamic reconfiguration of
FPGAs from a system perspective,

• a framework to quickly setup the system parameters,
sample and process the experimental data,

• definition of the time components that add up to the
reconfiguration overhead, and

• results showing the variation of reconfiguration time
over different values of system parameters.

The paper is structured as follows: Section II has the
background on FPGAs and reconfiguration, along with re-
lated work on performance evaluation. Section III dis-
cusses the system and the methodology. Section IV
presents the piece-wise delays that add up to the reconfig-
uration time and the way they were measured. Section V
has the manual and automatic methods to sample and pro-
cess the data, and their quantitative comparison. Section
VI has the experimental results, and Section VII concludes
the paper.
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Fig. 1. The Virtex II-Pro FPGA resources and configuration frames.

II. Background

This section discusses the Xilinx Virtex-II Pro FPGAs
[10] and the reconfiguration mechanism. Although we ex-
perimented with the specific device, our system is rather
general and can be used for other FPGA platforms.

A. The Virtex-II Pro FPGA and Reconfiguration

The generic structure of the Virtex-II Pro FPGA is
shown in Figure 1. It comprises the hardcore processor
PowerPC, and the high-bandwidth Processor Local Bus
(PLB) and the slower On-Chip Peripheral Bus (OPB) [11]
for the communication with the array. The modules im-
plemented in the array logic act as peripherals of the pro-
cessor. The array is 2-D fine-grain heterogeneous, mainly
composed of configurable logic blocks (CLBs), hardcore
memory blocks (BRAMs) and hardcore multipliers. Each
CLB contains look up tables (LUTs), flip-flops, multiplex-
ers and gates that are configured to implement the design
logic. The array can be configured by the processor with
dedicated instructions through the Internal Configuration
Access Port (ICAP), an 8-bit built-in interface that config-
ures the FPGA at a maximum rate of 66 MHz. A BRAM
attached to the ICAP caches configuration bits prior load-
ing to the FPGA configuration memory.

The configuration memory of the Virtex-II Pro is ar-
ranged in vertical frames that are one bit wide and stretch
from the top edge to the bottom of the device. Frames are
the smallest addressable segments of the device’s configu-
ration memory space, so, all operations must act on whole
configuration frames. They do not directly map to any
single piece of hardware; rather, they configure a narrow
vertical slice of many physical resources [10]. A pad frame
is required to be added at the end of the configuration
data which flushes out the reconfiguration pipeline in or-
der for the last valid frame to be loaded. Therefore, to
write even one frame to the device it is necessary to clock

in two frames, the data frame plus a pad frame.
The configuration data produced for programming the

FPGA is called bitstream. When only a portion of the
FPGA is to be configured, i.e. a number of frames, a par-
tial bitstream is produced. In order to create the par-
tially reconfigurable modules we followed the difference-
based flow [12], [13] by making small changes to a design
and then generating the bitstreams based on the differ-
ences between the designs. Transition to the module-based
flow [14] does not require any modification in the proposed
framework. The same design flow applies as well to the
latest Xilinx high-end FPGAs, i.e. Virtex-4 and Virtex-5,
except that the configuration granularity is smaller.

B. Evaluation of Reconfiguration

McGregor and Lysaght evaluated a self-controlling dy-
namically reconfigurable system using a logic analyzer, and
reported that the reconfiguration process was significantly
slower than the execution speed of the FPGA logic [15]. In
[16], McKay and Singh developed tools and techniques for
debugging a dynamically reconfigurable system. A logic
analyzer was used to evaluate the improvement of special-
ized circuits such as constant coefficient multipliers over
the corresponding general circuits. Tan et al. [17] com-
pared the performance between two interfaces used for
partial reconfiguration of FPGAs to evaluate the trade-
offs between design complexity, area overhead, reconfigu-
ration flexibility and reconfiguration latency. They used
the Xilinx Chipscope Pro tool that operates as an inter-
nal logic analyzer [18]. In [19], Hymel et al. studied the
performance impact on timing and resource utilization of
the Xilinx’s new partial reconfiguration design flow when
targeting Virtex-4 FPGAs through remote updating.

The above works demonstrate that performance eval-
uation of dynamic reconfiguration is an interesting area.
Also, as the existing tools do not support simulation of
dynamic reconfiguration due to the lack of behavioral and
hardware models, the above works employed a logic ana-
lyzer, either for measuring reconfiguration time for a few
bits, or, evaluating specialized circuits over the general
counterparts, or, evaluating partial reconfiguration inter-
faces. However, none of them had reported a method to
gather experimental results automatically, nor examined
the overhead incurred by the components that participate
in the reconfiguration process. Thus the development of
a general infrastructure for elaborating dynamic reconfig-
uration seems promising.

Our framework is the first to evaluate the overhead
added by the physical components that participate in the
reconfiguration process. In [9] we defined some piece-
wise delays during reconfiguration and introduced mea-
surements with a logic analyzer, but we included results
taken with software methods only. The present work dis-
cusses logic analyzer measurements along with the au-
tomatic method. According to a publication by Xilinx
researchers, once data are available in the configuration
cache, the time to reconfigure a single frame in a Virtex-II
Pro FPGA using the ICAP at 66 MHz is in the order of
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Fig. 2. Block diagram of the experimental setup.

decades of µs [20]. A more recent work reveals the recon-
figuration time of many frames for Virtex-II and Virtex-4
FPGAs, again after the configuration data are available in
the configuration cache [14]. We measured and verified this
time with software methods in [9]. In a later Section of the
present work we measure this time using a logic analyzer
also, and show that it conforms with the Xilinx published
value and our software measurement. However, this time
is not the only aspect in the reconfiguration process, and
other physical components of the system add significant
delays, causing reconfiguration time to increase more than
three orders of magnitude as compared to the above time.
Moreover, although the reconfiguration time over the num-
ber of frames is linear [14], we prove that this does not hold
always at platform-level.

III. Experimental Setup

The setup for the experiments shown in Figure 2, con-
sists of a XUPV2P platform with a Virtex-II Pro FPGA
[21], a board with LEDs, an Agilent 1680A logic analyzer,
and a PC. The platform is connected through the serial
port to the PC for evaluation, and through the on-board
expansion headers to the LED board and to the logic an-
alyzer for monitoring internal FPGA signals. This setup
allows for the measurement of the time components that
add up to the total reconfiguration latency. Just as the
total latency of a dynamic memory is substantially higher
than its access time, the total reconfiguration latency is
substantially higher than the execution time. Hence, we
need to define and then measure the constituent latencies,
which will allow to efficiently exploit reconfigurability in
the development of an application.

A. The XUPV2P Platform

Figure 2 shows the platform parts we use in our system.
A non-volatile compact flash memory holds the configura-
tion bitstreams, i.e. the initial and the partial bitstreams.

Fig. 3. The shadowed boxes represent the internal components of
the FPGA. The white boxes are parts of the platform connected
externally with the FPGA.

The System ACE Controller supervises the transfer of data
from the compact flash to the FPGA. In the FPGA, the
PowerPC and several peripherals have been configured. A
push button allows the user to trigger a reconfiguration
at any time during operation. Four DIP switches control
the functionality of an FPGA peripheral. The UART sends
status messages and debugging information to the PC. The
LED board is connected to the expansion headers for dis-
playing the peripherals’ operation and monitoring some
FPGA signals with the logic analyzer.

B. The FPGA System

The FPGA internal system is shown in Figure 3. The
PLB and OPB buses communicate through a bridge. The
PowerPC controls the reconfiguration process. A cyclic
shift register peripheral has been implemented as static
logic; a logic function controlling an up/down counter and
ten dummy logic peripherals have been designed as par-
tially reconfigurable modules. This way, dynamic reconfig-
uration is demonstrated as the cyclic shift register contin-
ues its operation while a part of the array is being recon-
figured.

The push button forces the PowerPC to request a par-
tial bitstream from the compact flash, then write it in the
PowerPC memory, and subsequently transmit it to the
HWICAP module1. The bitstream is not written to the
PowerPC memory with one transaction only. A specific
amount of bits, the so called data chunk, is first written
from the compact flash to the PowerPC memory. The size
of the data chunk depends on a system parameter called
buffer cache (bc), which affects the amount of bits trans-
ferred with one transaction. More specifically the bc size
defines the amount of memory for buffering reads and write
calls to the System ACE Controller. The size of the proces-
sor memory allocated for the data chunks, called processor

1 The HWICAP module is provided as a ready-to-use IP core,
and allows for the embedded processor to control the Internal Con-
figuration Access Port (ICAP) for reading and writing the FPGA
configuration memory at run time.
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array (pa), affects the amount of configuration data stored
before writing to the HWICAP takes place. Then, the con-
figuration data are written to the BRAM of the HWICAP
- called configuration cache - and when it is full the bits
are written into the FPGA configuration memory via the
ICAP; the writing through the ICAP is controlled with
software instructions. The above process is repeated un-
til the entire bitstream is loaded. Hence, iterations of the
operations: (i) Compact Flash to PowerPC memory, (ii)
PowerPC memory to HWICAP configuration cache, and
(iii) HWICAP configuration cache to FPGA configuration
memory occur until the entire bitstream is written to the
FPGA configuration memory.

Two more peripherals have been implemented for evalua-
tion purposes; the reconfig status peripheral which outputs
a signal indicating the duration of reconfiguration process,
and the UART peripheral which transmits status messages
to the PC.

C. Creating the Partial Bitstreams

In order to create the partial bitstreams we followed the
difference-based design flow [12], [13]. We implemented a
logic function that controls a simple up/down counter as a
partially reconfigurable module by affecting the LUTs on
the same column. Also, we implemented 10 dummy pe-
ripherals of different sizes as partially reconfigurable mod-
ules by changing the values in the LUTs of contiguous
columns, starting from the left and moving to the right
side of the chip. Thus 11 peripherals were initially created,
one having the logic function that controls the up/down
counter only, and the other ones having the logic func-
tion plus 1 dummy peripheral. This resulted in 11 mod-
ules each having a different size. Then, for each module a
second configuration was created, with equivalent size but
different functionality. This resulted in an overall of 22
partially reconfigurable modules that were stored as par-
tial bitstreams in the compact flash. The two smallest par-
tial bitstreams reconfigure the logic function only, the next
two larger partial bitstreams reconfigure the logic function
plus the smallest dummy peripheral, and so on. Table III
of Section VI has the sizes of the experimental partial bit-
streams as produced with the Xilinx tools. In the next
sections we measure the time needed by the system to re-
configure the FPGA with partial bitstreams ranging from
20,352 to 119,872 bits.

It is clear that advantages of dynamic reconfiguration
do not come without cost as the bitstreams must be stored
elsewhere in the system. The most obvious tradeoff is be-
tween external nonvolatile memory and FPGA size. In
terms of silicon area and hence cost, it is preferred to store
inactive designs in cheaper non-volatile memory [22]. Al-
ternatively, internal BRAMs can be used to store partial
bitstreams [20] but this poses limitations to the size of
the bitstreams that can be stored. Although we do not
abandon such a scenario, in present work we consider ap-
plications where the configuration data are stored in an
external low-cost memory.

D. Demonstration of Dynamic Reconfiguration

The cyclic shift register is static, and its output was
monitored with the LED board. The up/down counter
counts upwards or downwards and its output was moni-
tored with the LED board as well. Its operation depends
on the boolean logic function. The latter’s output was
monitored with 4 small LEDs located on the XUPV2P
platform. Two different boolean logic functions were cre-
ated such as to be partially reconfigured, the bitwise “OR”
and “AND” between four 1-bit operands. The operands’
values are given directly from the four DIP switches. The
output of the logic function determines the counter’s be-
havior.

During operation, when the reconfiguration button is
pressed a partial bitstream is loaded. Depending on the
experiment, the logic function that equals 20,352 bits up
to the logic function plus the largest dummy peripheral
that equal 119,872 bits are configured. The control of the
counter - the logic function - changes on the fly, while the
shift register continues its operation. This scenario is a
simplistic one but it meets our needs as we are mainly
concerned on reconfiguring the chip with bitstreams of dif-
ferent sizes. Real experiments for the different bitstreams
of Table III demonstrate the usefulness of our framework.

E. System Parameters

Some parameters were configured as fixed values and
others were varied during experimentation. The PowerPC
main memory was 48 Kbytes and the stack was 6,000 bytes.
The buffer cache (bc) of the processor was varied between
512 and 4,096 bytes. Its size defines the amount of mem-
ory for buffering reads and write calls to the System ACE
controller. We also varied the size of the processor array
(pa), i.e. the array allocated in the processor memory to
store the configuration data chunks2 that were read from
the compact flash. The HWICAP cache is implemented
with one BRAM and equals 2,048 bytes. Interrupts of the
processor were not enabled as our aim was to configure a
system with low resources.

F. System Operation Flow

Figure 4 has the operation flow of the system. In step
1, at power-up the FPGA is configured, execution of user
application starts and the PowerPC starts operation. In
steps 2-3, the PowerPC does polling on the push buttons
waiting for a reconfiguration to occur. In steps 4-5, the
PowerPC writes configuration data from the compact flash
to its memory. In step 6, the data are written word-by-
word to the configuration cache of the HWICAP. In step 7
the HWICAP BRAM is checked to determine if it has been
fully loaded. If the HWICAP BRAM is full, then reconfig-
uration is performed in step 10 and all data contained in
the HWICAP BRAM are written to the FPGA. Step 11
checks if reconfiguration of the FPGA has been completed.

2 Transactions were conducted in multiples of one sector per pro-
cessor request using a software-routine. A sector is the smallest unit
the compact flash is organized in and equals 512 bytes. Thus the
processor array size was varied in multiples of a sector size.
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Fig. 5. Timing mode trace of the logic analyzer for one reconfigu-
ration of bitstream 11 of Table III. The parameters used are buffer
cache=4,096 bytes and processor array=4,096 bytes.

Execution of the new configuration starts in step 12 and
the pipeline is flushed in step 13 if the reconfiguration was
verified as complete in step 11; if it is not complete, then
new configuration data will be loaded in step 9. In step 14,
the PowerPC detects reconfiguration completion. Back to
step 7, if the HWICAP BRAM is not full, in step 8 it is
checked if all configuration data have been sent. If this is
false, new configuration data are loaded from the compact
flash or the PowerPc memory in step 9. If it is true, FPGA
reconfiguration is performed in step 10.

IV. Reconfiguration Time Breakdown and
Measurement Methodology

In order to gain complete understanding of the reconfig-
uration time, we define the delays that add up to it:
• CF-PPC is the time to copy configuration data from

the compact flash (CF) to the processor memory with
one transaction.

• PPC-HWICAP is the time to write configuration data

from the PPC memory to the HWICAP BRAM3.
• HWICAP BRAM-CM is the time to load the configu-

ration data from one HWICAP BRAM to the FPGA
configuration memory (CM).

• Rec-HWICAP is the time elapsed between PPC de-
tection that a reconfiguration has been fired and first
launch of the configuration data from the HWICAP
BRAM to the FPGA configuration memory.

• HWICAP-CM is the time for loading all configuration
data from the HWICAP BRAM to the FPGA config-
uration memory including the pad frame4.

• RT is the time elapsed between PPC detection that
a reconfiguration has been fired and switching to the
new execution; this is the total reconfiguration time.

The first three delays were measured with software
timers to evaluate the corresponding processor instructions
in [9]. It was shown that, i) when the partial bitstream is
smaller than the processor array (pa), it is written with one
processor request only and stored in the processor memory
in its entirety prior transmission to the HWICAP, ii) from
the HWICAP side, configuration cache is 2,048 bytes and
can not be changed, thus inhibiting writing and accommo-
dation of the entire bitstream at once (even the bitstream
1 of Table III requires 20,352 bits = 2,544 bytes to be
configured which can not be accommodated at once by
the HWICAP BRAM), and iii) HWICAP is not the bot-
tleneck. Moreover, in that work we measured the time to
write the data in the configuration memory after they filled
the configuration cache. This was made by measuring the
HWICAP BRAM-CM delay which reflects the time to con-
figure one frame, and it was found equal to 25.26µs which
matches the Xilinx published values [20], [14].

The remaining three delays of the above list are mea-
sured in present work with the following signals captured
with the logic analyzer:
• ICAP signals (symbol ’ denotes active-low signal).
– CE’ (input): The ICAP chip enable.
– WRITE’ (input): Indicates writing to the FPGA

configuration memory. It is deactivated during
read.

– BUSY’ (output): Indicates that ICAP is busy, either
during write or read.

• REC active: It indicates reconfiguration is in progress.
It is set high when the PowerPC is notified that recon-
figuration has been fired, and low when it is notified
that reconfiguration has finished. This signal is ex-
ported from the reconfig status peripheral.

• LF indicator: It marks the moment the FPGA starts
execution of a new configuration. This signal is ex-
ported from the up/down counter peripheral to indi-
cate that the logic function has been changed.

3 Due to the HWICAP BRAM size, the maximum data size per
transmission equals the size of one BRAM, i.e. 2,048 bytes.

4 Note that this delay differs from the HWICAP BRAM-CM delay.
The latter corresponds to the time needed to release the data that
have filled one HWICAP BRAM. Contrarily, the HWICAP-CM is
the time elapsed between the first configuration data start being
written to the configuration memory and the last configuration data
have been written to the configuration memory. Figure 5 helps to
clarify this.
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The delays were measured by the intervals between the
edges of these signals, as shown in the example of Fig-
ure 5. This Figure shows a logic analyzer trace during
reconfiguration of the largest bitstream of Table III. The
numbers in the circles correspond to the numbers of steps
of Figure 4. First, the REC active signal is asserted in-
dicating that a reconfiguration has been requested. Acti-
vation of the CE’ signal indicates loading of configuration
data from the HWICAP to the FPGA. Transition of the
LF indicator signal, either from “0” to “1” or from “1” to
“0”, marks the moment the FPGA switches to the new exe-
cution. Completion of the HWICAP’s BRAM write to the
configuration memory is shown with the last rising edge
of the CE’ signal. Finally, deactivation of the REC active
signal indicates that the PowerPC has detected reconfigu-
ration completion.

Also, we measured the time the CE’ signal is active dur-
ing one write transaction from the HWICAP configuration
cache to the configuration memory, and we found it equal
to 24.5µs, which matches the time to write one frame as
published by Xilinx [14], [20], and our software measure-
ments [9].

V. Experimentation Phase

The experimentation phase consists of the stages from
the setting of parameters to the data plotting. In the first
subsection we specify the parameters we changed and the
stages of experimentation. Then we discuss the manual ex-
perimentation method, which was used in a previous pub-
lication [9] but neither the method nor the results were
discussed there. The third subsection has the automatic
method.

A. Parameters and Stages

We examined the effect of the parameters introduced in
Section III:
• Partial bitstream size. We experimented with 11 dif-

ferent sizes varying from 20,352 to 119,872 bits.
• Buffer cache (bc) size. It is varied from 512 to 4,096

bytes with a step size of 512, resulting in 8 different
experiments.

• Processor array (pa) size. It is varied from 1 to 8
sectors with a step size of 1, i.e. 512 to 4,096 bytes,
resulting in 8 different experiments.

The total number of experiments is given by all parame-
ter combinations, found by multiplying the number (#) of
different values of the parameters:

#experiments = (#bitstreams)× (#pa sizes)× (#bc sizes)

= 11× 8× 8 = 704 (1)

Initially the values of the parameters are set, the code
is compiled and downloaded, and a self-test routine runs.
Next, the logic analyzer is prepared to be triggered, the
user pushes the button to fire reconfiguration and the logic
analyzer captures the data. Then the delays are measured
and sorted in a proper format in order to be plotted. The

TABLE I

Time duration per user, or system, or combined user/system

action, for one experiment with the manual method.

action bitstream pa size bc size

parameter change 15 s 15 s 25 s

compilation,downloading 12 s 12 s 45 s

self-test 16 s 16 s 16 s

sampling 30 s 30 s 30 s

measurement,sorting 60 s 60 s 60 s

total time (for 1 exp.) 133 s 133 s 176 s

definition of these stages is rather general and in the re-
maining section we discuss the manual method and the
transition to the automatic method.

B. The Manual Method

It consists of the following stages:
1. Change of the parameters: The partial bitstream file-

name, the processor array (pa) size and the buffer
cache (bc) size are changed separately for each ex-
periment.

2. Compilation & downloading: In order for the changes
to be applied on the partial bitstream filename and
the processor array size, only the user code (C pro-
gram) should be re-compiled as these two parameters
are set in the user code. The buffer cache is part of
the PowerPC settings and in order to be altered the
entire project should be rebuilt, which incurs a long
compilation. After downloading, a self-test routine is
executed.

3. Sampling: The user prepares the logic analyzer for
triggering, (s)he fires reconfiguration, and stops logic
analyzer data capturing.

4. Measurement: The logic analyzer markers measure
the intervals between the signal transitions. Each
marker is programmed to be automatically positioned
on the edge of the signal that is used to measure a
delay.

5. Sorting: The user inserts the values into spreadsheet
cells and sorts them according to the analysis (s)he
wants to conduct.

6. Plotting of the spreadsheet values.
The user has to carry out 704 iterations of stages 1 to 5

before the data plotting. Table I has the lower bounds of
the time duration of each action5. The overall experimen-
tation time equals the total number of experiments multi-
plied with their respective duration, as shown in equation
2. In this equation we reduced the times we modify the
buffer cache (bc) size, which according to Table I is the
most time-consuming process, in order to provide the op-
timal sequence of experiments with respect to time:

5 Actions are distinguished in those carried out only by the user,
e.g. parameter change, only by the system, e.g. self-test, or those
that employ both, e.g. sampling. Actions are the same for other
FPGA platforms and only the time duration of the system actions
would be different.
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overall time = [(#experiments−#bc sizes)× (fast total time)]

+(#bc sizes× slow total time)

= [(704− 8)× (133s)]+ (8× 176s)

= 93,976s = 26.1h (2)

In this equation the fast total time corresponds to the
time to complete one experiment when any parameter ex-
cept the buffer cache size is modified; the slow total time
corresponds to the time to complete one experiment when
the buffer cache size is modified. In addition, to reduce
the overall time we exploit overlapping of the actions, i.e.
distinct actions that do not require the same resources of
the setup, so they can be conducted simultaneously. Two
of the authors participated in the experimentation phase
and observed which actions were overlapped. For example,
preparation of the parameters for the next experiment (15
sec or 25 sec) can be simultaneously carried out with the
sampling of the current experiment (30 sec). Specifically,
while the one user prepares the logic analyzer, fires recon-
figuration, and stops the capturing, the other user changes
the parameter(s) for the next experiment. Also, compila-
tion, downloading (12 sec) and self-test (16 sec) of the next
experiment can be carried out while the user measures and
sorts the current captured data (60 sec). Hence, in the pre-
vious equation we can eliminate the time duration of the
actions that overlap with the longer ones of Table I:

overall time w/ overlap = (#experiments)× [sampling time

+(measurement,sorting time)]

= (704)× (30s +60s)

= 63,360s = 17.6h (3)

Although the above time durations are optimistic, repe-
titions of the user actions were boring and we automated
the process.

C. The Framework

Firstly, in order to reduce the compilations and down-
loads per experiment, we automated the change of the pa-
rameters which correspond to the 1st and 2nd stages of the
manual method. Specifically, all combinations of bitstream
sizes, and processor array sizes are now included in the
processor code, and their values are changed at run-time
within loop structures resulting in 11*8=88 experiments
per one compilation and download. Regarding the buffer
cache size change, recompilation is inevitable as its value is
entered during the setup of the PowerPC - and not within
the C code -, so, 8 compilations and downloads are re-
quired. After a buffer cache change, the 88 experiments
can be conducted with a single run.

Then we automated the data sampling, which corre-
sponds to the 3rd stage of the manual method. This allows
to exploit the full logic analyzer memory and relieves the
user from triggering and stopping the logic analyzer. How-
ever, due to the latter’s memory limitations, the automatic
run of 88 parameter combinations does not fit (8 combi-
nations do not fit), and hence another sampling should be
triggered.

Fig. 6. Logic analyzer trace for successive reconfigurations of bit-
streams 1 to 11 of Table III and processor array sizes ranging from
512 to 4,096 bytes.

The measurement and sorting that correspond to the 4th
and 5th stages of the manual method were also automated.
The captured data of each run are written to a .csv file
and then transferred to the PC. A C program operates
on windows of continuous data for identifying the edges of
the signals where the measurements are to be taken, by
searching for “01” and “10” patterns. Within a window,
subtractions between the time values of the appropriate
signal transitions are made, and the results are written in
a new .csv file.

Recapitulating, the framework consists of the following
stages:

1. Change of the buffer cache size only.
2. Compilation & downloading: Combinations of all bit-

streams and processor array sizes are compiled and
downloaded at once, and then a self-test routine is
executed.

3. Sampling: The logic analyzer is prepared for trigger-
ing and the reconfiguration button is pushed. Succes-
sive reconfigurations for all combinations of bitstreams
and processor array sizes are performed. Once the
logic analyzer memory is filled, capturing stops.

4. Export to .csv: Captured data are written to a .csv
file.

5. Measurement & sorting: The .csv file is loaded to the
C program for measurements and calculations. The
results are sorted and written in a new .csv file, which
is then imported into a spreadsheet.

6. Plotting.
Stages 1 to 5 are repeated for all the buffer cache sizes
resulting in 8 recompilations/downloads. In addition, 8 it-
erations should be executed due to the inadequacy of the
specific logic analyzer memory. Table II has the time du-
ration of each action. The overall time for the experiments
is the number of the user interventions multiplied with the
time to complete one run, and it is shown in equation 4.
A user intervention is either a recompilation due to the
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TABLE II

Time duration per user, or system, or combined user/system

action for one run using the framework. 88 different

experiments, each one corresponding to a different

parameter combination, are executed with a single run.

action buffer cache inadequate mem.

parameter change 25 s 15 s

compilation,downloading 45 s 12 s

self-test 16 s 16 s

sampling 60 s 15 s

export to .csv 35 s 25 s

measurement,sorting 40 s 40 s

total time (for 88 exp.) 221 s 123 s

change of the buffer cache size, or, a new sampling due to
the inadequate logic analyzer memory.

overall time = (#experiments× buffer cache)

+(#experiments× inadequate mem)

= (8× 221s)+ (8× 123s) = 2,752s = 0.77h (4)

The framework offers an improved productivity of
17.6h÷ 0.77h = 22.8 times as compared to the manual
method. Figure 6 shows a logic analyzer trace, captured
with one triggering within the framework. Successive re-
configurations of all bitstreams for different processor array
sizes result in 80 combinations that are then processed in
an automatic way. With the manual method shown in Fig-
ure 5 only one reconfiguration for a parameter combination
can be sampled.

VI. Results

We conducted experiments for all parameter combina-
tions. In each graph of Figure 7 the bitstream size varies
while the buffer cache size and the processor array size are
kept constant. The three delays defined in Section IV were
measured with the logic analyzer within the framework.

For most parameter combinations the behavior of the
delays resembles Figure 7 (a). It reflects the frequent case
according to which the delay increases linearly with respect
to the bitstream size. Figure 7 (b) shows the less frequent
case wherein reconfiguration time for the bitstreams 3 and
4 decreases as opposed to the bitstream size. Thus the
buffer cache of 4,096 bytes affects the time to write the
configuration data. The Rec-HWICAP time is reduced
which causes reduction to the RT time. This is due to the
specific buffer cache size only, and does not depend on the
processor array size. It is clear that increase in memory
means is utilized more efficiently when reconfiguring the
bitstreams 3 and 4. Table III has the total reconfiguration
times for both cases of Figure 7.

An interesting result derives from the comparison be-
tween the Rec-HWICAP delays of the two graphs for the
same bitstream size. When buffer cache=4,096, for the
bitstreams 1,3 and 4, the delay is significantly lower as
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Fig. 7. Reconfiguration time and piece-wise delays for different bit-
streams and buffer caches (bc), and fixed processor array (pa).

TABLE III

Size of the experimental partial bitstreams and

reconfiguration times for the parameters of Figure 7.

bitstream #words #bits RT(a)(ms) RT(b)(ms)

1 636 20,352 29.7 20.2

2 842 26,944 37.2 37.2

3 1,258 40,256 43.7 32.8

4 1,464 46,848 48.3 37.4

5 1,880 60,160 56.1 56.2

6 2,086 66,752 66.7 66.8

7 2,502 80,064 73.1 73.2

8 2,708 86,656 79.2 79.3

9 3,124 99,968 88.6 88.8

10 3,330 106,560 94.5 94.7

11 3,746 119,872 101.1 101.3

compared to the case buffer cache=3,072. As a conse-
quence, the total reconfiguration time RT decreases; this
is illustrated in Table III as well. However, this is not true
for larger bitstreams. Therefore, depending on the size of
the partial bitstreams, the selection of system parameters
might improve or degrade the application performance.

VII. Conclusions

A methodology for the rapid evaluation of dynamic re-
configuration of FPGA platforms has been presented. In
Section V we reported a speedup of 22.8 times with the
framework over the manual method for gathering the re-
sults. We showed that for some system parameters the re-
configuration time over the configuration size is not always
linear at platform-level. To gather such results a thorough
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experimentation is required but doing this manually is a
tedious process.

The framework can be ported to any reconfigurable plat-
form with an embedded processor and an external memory
for storing the partial bitstreams, such as platforms with
the Xilinx Virtex-4 and Virtex-5 FPGAs that incorporate
the hardcore PowerPC and/or the softcore Microblaze and
the ICAP port, and contain a Compact Flash and the Sys-
tem ACE Controller [23], [24], [25], [21]. The only steps
needed to adjust the framework in these platforms are i)
the recompilation of the project for the corresponding plat-
form, and ii) modifications in the user constraint file (.ucf)
in order for the appropriate FPGA pins to be connected
to the DIP switch, the push buttons and the expansion
headers.

To the best of our knowledge it is the first time the total
reconfiguration time and the piece-wise delays are mea-
sured at the platform-level. Although previous works em-
ployed a logic analyzer to measure delays during reconfigu-
ration, they concern obsolete FPGAs [15], [16] and they do
not target measurements from a system perspective [17].
Moreover, we provided detailed data for a particular plat-
form concerning reconfiguration of bitstreams of different
sizes loaded from an compact flash memory.
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