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Abstract

PLATO, a new, reconfigurable platform  for
experimentation with active networks is under
development. Due to the large number of factors
affecting the final validation of the prototype, we have
used the PCI Pamette as a rapid prototyping platform. A
4x4 active ATM switch has been prototyped, together
with all the circuits that disassemble, route, and
reassemble ATM cells. Several experiments have been
conducted with this prototype, substantially speeding up
the design process, leading to working subsystems before
the final platform is fully debugged, and providing
significant insight into the operation of the final system.
The design itself was moved from the Pamette to its final
operating platform (called PLATO) in two days.
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1. Introduction

Active networks[1][2], as opposed to conventional ones,
process the header as well as the payload of cells
transmitted through them, leading to improved network
flexibility, adaptability, security and functionality. The
typical flexibility offered by active networks is
automatic, rapid protocol deployment, making networks
programmable. This in turn, leads to the necessity of
processing power on active network nodes. Conventional
networks provide routing of packets based on
information found in the header of each packet. In

* also at the Institute of Computer Science -FORTH
Irakleio — Crete, Greece

addition to the above functions, active networks process
the payload of the packet, either for routing purposes
(e.g. for dynamic balancing of loads before server
systems, detection of Denial of Service attacks), or for
improved functionality (e.g. for data extraction).

With very few exceptions, almost all active network
projects are software based, due to the (correct)
assumption that networks of the future will contain
processing power comparable to high-end processors of
today. Whereas this approach is excellent for the
exploitation of new ideas, it leaves out interesting areas
such as real-time payload processing of packets, which
may be needed for important applications. Such
applications can be the detection of Denial-of-Service
(DoY) attacks, real-time load balancing for e-commerce
servers, real-time network based speech recognition
servers for v-commerce, protocol boosting, etc. To
experiment with such applications we have developed
PLATO, a reconfigurable platform for ATM networks.
PLATO has been implemented and is undergoing tests,
whereas the PCI Pamette[3] has been used as a rapid
prototyping tool, to test several subsystems and
applications.  Although network applications with
FPGA'’s have been implemented in the past [4][5], the
vast range of real time active network applications that
can be developed with last generation, large FPGA’s
makes this project promising.

The purpose of this paper is to present how a reusable
4x4 active ATM switch design was rapidly prototyped on
actual hardware, prior to its operation on PLATO. The
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Figure 1. Architecture and Block Diagram of PLATO

design was tested on the reconfigurable platform PCI
Pamette. These tests have provided us with a good
estimate about the performance of the switch, as well as
with well tested, reusable design cores. This paper
presents the testing methodology encompassing CAD
tool-based simulations, actual runs on the PCI Pamette,
and a software-based custom traffic and workload
generator, quantifying how each aspect either saved
design time or made the testing more complete. The
know-how from working with actual hardware in addition
to the simulators is also invaluable. Section 2 presents the
PLATO architecture. Section 3 presents the prototyping
of the 4x4 active ATM switch core with the PCI Pamette.
Section 4 presents experimental results, followed by a
section on the present status of the project and
conclusions.

2. PLATO Architecture and Applications

The architecture, as well as a block diagram of PLATO
are shown together, in Figure 1. This is deliberate,
because the platform is mainly aimed to be a tool for
experimentation and for design library development, and
hence was derived from a minimum set of functionality
requirements, as follows:

e  Ability to be connected to fiber or copper ATM
networks, as well as with Ethernet (10/100 or
Gigabit)

e Minimal delay in hardware processing of the
cells, and ability to implement protocols with no
need to communicate with the host processor

e  On-board buffer space for streams of cells, on
the payload of which processing will be
performed

e Ability to communicate with a general purpose
computer, for further processing, downloading
of statistics, or partial reconfiguration of the
FPGA

e  Extra connectors for expansion.

The PLATO platform has a large FPGA, which in
addition to the clock generation circuit and programming
ports, has four main ports:

e A UTOPIA level 2 port, to provide the physical
connection to daughterboards with copper or
optical fiber outputs — the daughterboard also
has the UTOPIA level 2 - ATM framing
circuitry

e A 256 MB 133MHz SDRAM port for buffer
space

e An auxiliary port for SRAM look up tables,
which will be used in a real-time speech
recognition project [6]

e A PCI bus port for communication with the
host.

Although the general topology resembles several existing
products, the need for a new hardware design was largely
mandated by the numbers of pins needed for each port, as
well as the voltages in each case (e.g. PCI at 5V,
SDRAM at 3.3V, etc.).

Two versions of PLATO are under development, one
with Xilinx Virtex XCV 1000 and one with ALTERA
20K400E FPGA’s. This way we hope to get results and
gain insight on how the architecture of the FPGA’s and



the corresponding CAD tools affect the system level
performance, as well as have experimental results on the
reusability of our cores. As the Xilinx version of the
architecture is at a more advanced stage, the remainder of
this paper will refer only to this version.

There are several applications for PLATO, but the ones
for which design is in advanced stages are:

e Active 4x4 ATM Switch[9]

e Protocol  boosting for TCP/IP  over
ATM[7][8][9], and,

e Content-based routing and rejection of packets,
for detection of DoS attacks and server load
balancing[9].

In the core of all these applications lies an active 4x4
ATM switch, which (unlike typical ATM switches) does
not route ATM cells with header-only information, but
rather, it disassembles the cells, extracts the payload,
interfaces with the application (if any), performs the
switching, reassembles, and outputs the cells. The
application interface is in hardware, and comprises of
two 48-signal buses. This switch does not have the low
latency of commercial ATM switches, since it completely
disassembles and reassembles ATM packets, but does
allow for easy interfacing to the active network
applications. Therefore, a reusable and highly robust
design core of this switch is needed, and this core was
implemented and tested on the PCI Pamette.

3. Prototyping a 4x4 Active ATM Switch
Core with the PCI Pamette

3.1 The PCI Pamette

The Compaq Labs’ PCI Pamette is a PCI bus compatible
board with five interconnected Xilinx FPGA’s, DRAM,
and expansion ports. One FPGA, which at boot time is
loaded from ROM, handles the communication through
the PCI bus, and four more FPGA’s (in our system
XC4044XL), can be used for user designs (User Logic
Cell Arrays - ULCAs). The card is memory mapped and
allows PCI transactions through software libraries. The
general organization of the PCI Pamette is shown in
Figure 2.
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Figure 2 The PCI Pamette
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3.2 Architecture of the Switch

The main operation of the switch is to receive ATM cells
from a UTOPIA level 2 interface, disassemble them,
switch the cells based on their VPI and VCI values and
incoming link (PHY), and output the cells at the
UTOPIA level 2 interface. There are four incoming and
four outgoing links, all operating at 155Mbps. UTOPIA
is a standard protocol from the ATM forum that
implements the service access point (SAP) between
physical and ATM layer, either at UNI or NNI. In the
present version, the only buffering available is one cell
per incoming link and one cell per outgoing link, whereas
the internal datapath is 48 bits wide. The routing
algorithm is simply to give higher priority to a lower
numbered link. The reason is that the purpose of the
switch is mainly to perform processing on the payloads,
rather than develop an efficient 4x4 ATM switch, which
exists in optimized products for many years.

The switch is either passing the cells to the output or
drops them if the output link is occupied. The algorithm
of the switch is simple but can give us the percentage of
cells per link that are dropped. Based on this figure we
can optimize the design in terms of bandwidth and
latency. Because audio and video applications can have
real time requirements, we wanted to see how the switch
is running under bursty traffic. We developed software
(described in section 3.5) which supplies ATM cells to
the switch based on the Pareto distribution [11], which
successfully models bursty interarrival times, observed in
TCP Internet traffic. The Pareto distribution is based on
two parameters, on the values of which it can model
finite or infinite mean and finite or infinite variance. The
software also emulates a part of the functionality of the
physical interface.



3.3 System Decomposition

The hardware design has three main components. The
first is the emulator of the UTOPIA bus (physical layer
part). This emulator gets cells from the software via the
PCI bus and delivers them to the interface of the switch
(ATM layer part of the UTOPIA), which is the second
main component. The emulator and the switch interface
follow standard rules of the UTOPIA level 2 protocol.
The third main component is the switch itself. It
disassembles the cells from a specific incoming link,
reads their VPI and VCI values, checks a lookup table
and calculates the new VPI, VCI and outgoing link
values, then reassembles the cells and delivers them to
the switch interface. Because we must test the hardware
on the PCI Pamette, there is a subsystem that implements
the interface of the PCI with our design. The system
design is shown in Figure 3.
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Figure 3 System design

We will now present the operation of the switch. The PC
sends through the PCI to the PCI Pamette one ATM cell
(53 bytes). The UTOPIA emulator FPGA receives a
minimum of one entire cell before setting the proper
control signals according to the UTOPIA protocol. The
switch interface reads the cell from the emulator FIFO’s.
When the interface reads a complete cell, it sends the cell
to the switch, which starts to process its header
immediately. Processing entails the extraction of the VPI
and VCI fields, a table look up to determine the new VPI
and VCI, and composition of the new header. In the full-
scale version of the system, this step will entail
processing of the payload as well, which is extracted at
the same time as the VPI and VCI fields. After the header
processing is done, the switch starts to send the newly

composed cell via the interface to the FIFO’s of the
emulator (these are different FIFO’s from the ones at the
receiving end). Then the software reads the new cells
from the FIFO’s and compares the cell data (header and
payload) against the C model of the switch, to verify
correct operation.

3.4 System partitioning

One design problem we encountered was that the PCI
interface should use the PCI clock and the 4x4 switch
should have another, slower clock. The need for the
slower clock comes from the fact that the design cannot
fit in only one of the four FPGAs of the PCI Pamette, and
we had to partition it. Because the FPGA’s have a limited
number of pins to interface to each other (see Figure 2),
we use two FPGA’s (Ica2 and Ica3) as connecting lines,
and these lines add a lot of delay. Although the design
could run in one FPGA with 30 nsec clock period, the
delay from Ica2 and Ica3 is about 20 nanoseconds, so the
clock should be no faster than 50 nsec. The PCI Pamette
does offer a programmable clock, but this is not
synchronized with the PCI clock, so we developed our
own clock signal from division of the PCI clock.
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Figure 4 ATM Switch Mapping on the PCI Pamette
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Figure 4 shows the final partitioning. We put the
emulator in the FPGA called lca0 in the schematic,
because it should have an explicit connection with the
PCI Ica. The UTOPIA level 2 interface and the switch
were mapped to the FPGA Ical because it has the most
signals to connect with lca0. This connection has the
shortest possible delay. Also, the switch and the UTOPIA
interface need more signals than are available between
FPGA'’s. Therefore, they are in the same FPGA, so that
they can interface with internal wires. One part of the
design that is in lca0 runs at the PCI clock and the rest
runs at half the frequency.



3.5 Software and I/0 Considerations

In the initial stages of the project we developed a
simulator for the switch in C. A traffic generator was also
developed in C++, in order to supply ATM cells with
varying VPI/VCI and predefined distributions to the
simulator. This last software framework was easily
integrated with our code to handle PCI Pamette
transactions, providing us with a very powerful testing
tool for the 4x4 ATM switch, as well as for active
applications running alongside. The traffic generator
allows us to model incoming data flows with selected
distributions. If the distributions are parameterized on the
maximum or average bandwidth, we can partition the
total bandwidth of each physical link at will or randomly.

In particular, each flow (data coming in a specific
incoming link with specific VPI/VCI values) is checked
for cell arrivals in the current software cycle. The cell
arrivals are based on a selected distribution and the
software accumulates per link cells that have arrived in
the last cycle. One cycle corresponds to the time of a
subsequent cell’s appearance on a link, which depends on
link's bandwidth. Those cells are sent to the PCI Pamette,
one per link, in round robin fashion. After one cell has
been sent to all links, the cells transmitted by the switch
must be gathered, because the transmit FIFOs of the
UTOPIA emulator are only 32 16-bit words deep. After
the transmitted cells are gathered, they are written to a
(per link) file. When all cells accumulated on the four
links are sent, received or deleted, the software
increments the program's notion of time (the current
cycle) and starts all over again.

We chose to simplify the hardware by doing all the
control in software. The hardware only supplies a set of
addresses for reading/writing cells in/from the UTOPIA
emulator FIFOs and reading the FIFO associated
counters. Thus we operate the PCI Pamette as the target
of transactions initiated by software. This mode of
operation, needs on average 6 cycles for a write and 12
cycles for a read operation (on PCI clock), because of the
way the PCI interface handles transactions. Assuming
50% reads and 50% writes, the total attainable PCI
bandwidth in this mode is ~118.5 Mbps (~59 Mbps in
each direction), which can saturate a single incoming
link'.

Even though the transmit direction FIFOs have only 32
16-bit positions (one ATM cell needs 27), we can test
conflict handling on the switch. If the second cell is not

' The reason is that the switch and its UTOPIA interface is run with
half the PCI clock frequency on Pamette, while in the actual platform
we can run it with a clock up to 50 MHz - which is three times more.
Thus, if the switch can handle 59 Mbps from a single incoming link on
Pamette, it will be able to handle up to 3¥*59=177 Mbps in PLATO.

dropped, its 5 first 16-bit words will be collected by
software and the cell can be thus identified.

4. Experimental Results

4.1 Design Cycle Speedup with Rapid
Prototyping

One of the main reasons to develop a prototype is the
better, and in many cases exhaustive, testing of the design
vs. simulation alone. Although the experimental 4x4
ATM switch only performs basic operations on a number
of VCI and VPI’s, which is much smaller than that of a
commercial switch, the total number of states to be tested
is quite large. Running a simulation on a 550MHz
Pentium III processor with 256Mbytes of RAM takes 7
minutes of CPU time per ATM cell simulation. The
above time does not include the setup of the simulation,
which is comparable if not larger in this case (preparation
of vector inputs, correct outputs, etc.). The simulation
setup time could be reduced with specialized CAD tools
such as ModelSim, which, however, we do not have
available. In actual simulations, the total time to setup
and run simulations for the processing of 5 ATM cells
took roughly 5 hours. This time is an upper bound and
could be reduced, however, it is indicative of the CAD
tools-only approach. The complete elimination of CAD
tool-based simulation is not possible or even desirable, of
course, because the design which is prototyped should be
in fairly stable form and because internal signals are not
easily accessible with prototyping.

The experiments which needed to be performed, even on
our small prototype, to exhaustively test it are:

1. Transmission of an ATM cell for every possible
VPLVCI and PHY (1024 cases)

2. Transmission of an ATM cell for every input and
output combination (16 cases)

3. Multiple cell transmission (chosen to be 10 cells)
from every input to every output (16 cases).

4. Collisions of packets in all possible combinations
every 2, 3 and 4 inputs (44 cases)

5. Experiments for different distributions (e.g.
Gaussian, Pareto ) for experiment 3.



With the traffic generator and the other tools that we
developed, the PCI Pamette can run the ATM packet
switching experiment in 5 sec (yielding a design process
speedup of 84). Even more impressive is the case for
experiments 3 and 5 (above), where the speedup of the
design process is superlinear. This speedup is readily
explainable as follows: each experiment on the PCI
Pamette takes a (fixed) amount of time to configure the
system and a variable but small amount of time to run
the experiment. Whereas in the case of simulation a train
of 10 ATM cells will take ten times more CPU time to
run, in the case of the PCI Pamette it will take ten times
more execution cycles, which in this case is a few
hundred cycles (still, considerably less than the number
of cycles to set up the experiment). The above
experiments involve a total of 2044 ATM cells, which at
7 minutes per cell would require 14,308 minutes of the
CPU, not counting experiment setup and result
evaluation time, resulting in over one man-month level of
effort (these are not long simulations that can run
overnight). By comparison, the 1024 cases of experiment
#1 (which would require 15 man-days) were run in one
day.

The combination of the traffic generator and the
experiment execution on the PCI Pamette greatly reduces
the setup time for each experiment, and allows for the
testing of many more cases than simulation alone would
allow for. The time to develop the traffic generator as
well as all the experiments on the PCI Pamette is roughly
2 man-months, and in addition to running all the
experiments faster than simulation would, resulted in a
highly flexible, reusable environment for future
experimentation.

4.2 Experience Gained from the Pamette

In addition to the design process benefits, described in
Section 4.1, major implementation experience was also
gathered. Prototyping reintroduced functional errors that
were previously found and corrected during the VHDL
Modeling - Synthesis — Simulation iterative process. In
particular, during simulation it was observed that, ATM
cells directed towards outgoing link 0 where switched
correctly, while cells directed to other links where
erroneously rejected. The problem was reintroduced due
to incorrect timing of internal control signals in the
implemented design. Additional experience was gained
from the Pamette mapping of the design, which forced
the prototype to use two clocks. In interfacing the two
parts using different clocks, we used FIFOs clocked with
the PCI clock, and synchronized slow control signals
with intermediate flip-flops. We should also underline the
fact that without the use of implementation constraints,
the design would not meet the timing requirements for

correct operation at all times. This was the most time
consuming part of the prototyping process because
several full implementations of the design were required.
In addition, placement constrains were used to achieve
the target clock frequency of the PCI part of the design.
All these particular problems underline the differences
among functional and timing simulations, vs. hardware
implemented on an actual platform. On the other hand,
the design was verified on actual hardware and
considerable debugging experience was gained, which
aided its port to the PLATO system.

The design of the emulator, the 4x4 ATM switch and the
UTOPIA level 2 interface took three personmonths, and
the port to the PCI Pamette took twenty persondays.

4.3 Transfer of the Design to the PLATO
System

Following the prototype of the switch with the PCI
Pamette, we proceeded to transfer the design to the
PLATO system, which in the mean time was fabricated.
The Virtex-based PLATO platform has been operating at
the Technical University of Crete (TUC). The 560 pin
BGA package necessitated an 8-layer PCB design, which
was performed at TUC. The board was fabricated by
INTRACOM SA, and assembly of the board took place
at the Institute of Computer Science (ICS)-FORTH. A
PCI interface has been designed at the Technological
Educational Institute (TEIL).

The Virtex-based PLATO board underwent tests for two
weeks to confirm proper download capability and
operation of the FPGA, operation at several speeds (up to
70 MHz in tests), and proper 1/O (e.g., no short circuits).
Following the testing of the board, the 4x4 ATM switch
design was transferred to PLATO. The trasfer of the 4x4
ATM switch design, together with the UTOPIA interfaces
and the UCF file to determine the pinout of the PLATO
Virtex was successfully done in two days, by two
engineers (four person-days).  This rapid transfer
demonstrates how well the Pamette allowed for
prototyping of the 4x4 ATM switch while the PLATO
was still designed. Within the same two days, the Pamette
was used for another purpose too: as the PCI interface of
PLATO was not operational, the Pamette was used for
[/O with the PLATO. In other words, the 4x4 switch
moved from the Pamette to PLATO, whereas the Pamette
itself became the front end system to test successfully the
PLATO board. It is noteworthy that in these tests, the
UTOPIA level 2 interface of the PLATO system was
running on the Virtex, whereas the Pamette took data
from the PCI bus, and reformatted it to the UTOPIA
level 2 standard for transfer to the Virtex. The design was
conservatively run at 16.5 MHz (half of the PCI clock) to



verify correct operation, whereas tests at full speed have
not been performed yet. The resource allocation in this
test are 1692 Virtex slices for the 4x4 switch, including
the UTOPIA level 2 interface (13% utilization), and, 909
CLB’s of a single Xilinx XC4044XL on the Pamette for
the modeling of the UTOPIA level 2 interface. The 13%
resource utilization of the Virtex is very encouraging,
because substantial circuitry can be added for payload
processing.

In terms of design modifications for the 4x4 switch to fit
on the Virtex part, the only two modifications that proved
necessary were the pin assignment changes (UCF files)
and the remapping of the FIFO’s from XC4000XL series
technology to Virtex technology. The effort for these
modifications is included in the two days (four
persondays) to port the design on the Virtex part.

5. Present Status and Conclusions

An additional design, based on the ALTERA 20K400 is
in the advanced design stages at TUC and ICS. The
extensive testing of the reusable ATM switch core with
the PCI Pamette has allowed for separate debugging of
the PLATO board itself vs. the applications running on it.
The software interface and traffic generator we have
developed are useful in the PLATO system as well, and
as such will be fully utilized.

The next step is to have the PLATO system fully working
and at full speed, and begin experimentation on actual
ATM packets for applications such as Wormhole IP over
ATM protocol boosting, detection of Denial of Service
attacks, and content-based routing.

In conclusion, despite the overhead to partition the
design onto the PCI Pamette, the approach proved very
successful and in the long run it saved considerable
development time.
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