Abstract
We consider the random multiple access of a slotted broadcast communication channel. Packet arrivals for such channels are ofien modeled as
Poisson processes because the latter have attractive theoretical properties and are well understood, even though a number of traffic studies have
shown that packet interarrival times are not always exponentially distributed. For example, recent studies argue convincingly that traffic from
a variety of working packet networks (LANs, WANS, etc.) is much better modeled using statistically self-similar processes to characterize the
packet interarrival times of the aggregate traffic, which have much different properties than Poisson processes. Because of the great influence
multiple access algorithms (used in the channel access subsystem) will have on the performance. of third-generation digital wireless mobile com-
munication systems, we study in this article the problem of random multiple access under packet traffic generated by interactive data applications
(e.g., reading/composing short e-mail messages, responding to paging type messages, transferring files between the mobile and a fixed computer,
and querying of a database). We examine and demonstrate the performance robustness of the above RAAs when they are driven by a strongly
bursty packet arrival process, commonly found in interactive data applications.
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. n this article we study the ran-
dom multiple access of a slotted broadcast communication
channel loaded with data packet traffic generated by interactive
applications. The. analytic traffic model used in our study is
taken from [1-4], and it fits measured Ethernet LAN network
traffic [3], wide-area TCP live network traces of interactive Tel-
net applications [1], and wide-area network traffic measure-
ments of applications such as Web and multimedia backbone
(MBone) [3]. Although the operation environments for wide
area and local area networks may be different from the con-
text of wireless mobile communication systems, the model
used is important since it describes the user behavior associat-
ed with interactive data applications [2]. Such applications will
gain in importance in the wireless communications arena as
small, portable, inexpensive computing devices proliferate.

The above-mentioned empirical studies of traffic measure-
ments from a variety of packet networks have convincingly
demonstrated that actual network traffic is self-similar in
nature (i.e., bursty over a wide range of timescales). Self-simi-
lar traffic exhibits correlations over a wide range of timescales
and therefore has long-range dependence, while traditional
traffic models (e.g., Poisson packet arrivals) are short-range
dependent in nature (i.e., they typically focus on a very limit-
ed range of timescales). In [4, 5] the authors show that the
superposition of many alternating independent and identically
distributed ON/OFF sources whose ON and OFF periods
have high variability or infinite variance results in self-similar
aggregate traffic. As the mathematical vehicle for modeling
such phenomena they used heavy-tailed distributions with infi-
nite variance (e.g., Pareto).

Therefore, in this article the packet interarrival times are
assumed independent, identically distributed according to a
Pareto distribution. The Pareto distribution is a distribution
with memory, heavy tail, and strong burstiness. Depending on

the value of one of its parameters it can have finite mean and
infinite variance. The strong burstiness of such a packet
arrival process leads to severe channel multiple access opera-
tional conditions capable of providing us with indications on
the performance robustness of the random multiple access
algorithms we study to the characteristics of the input packet
arrival process.

We chose to study the throughput-delay trade-off of the
following three random access algorithms (RAAs):

* Free access, stable, ideal, controlled ALOHA

* Free access, stable, implementable controlled ALOHA

* The limited feedback sensing free access m-ary stack algo-
rithm [ 9, 10} ’

All three algorithms allow a channel user with a newly
generated packet to transmit in the-very next time slot fol-
lowing the packet generation instant (free access). The ideal
and implementable ALOHA algorithms were chosen as rep-
resentatives of the ALOHA family of RAAs. This family of
algorithms constitute the most popular family of RAAs.
They are straightforward to implement, and have enjoyed
wide commercial employment [11]. The ALOHA algorithm,
in its original form, dictates that packet-transmitting users be
interested only in the channel outcome (i.e., channel feed-
back) of their own transmissions. Therefore, a network user
does not need to monitor channel activity except for the
time slots in which it is transmitting. Unfortunately, ALOHA
algorithms using the above channel feedback sensing (also
known as purely acknowledgment type) are notoriously unsta-
ble. It has been proven analytically and verified through
simulations that for a large user population purely acknowl-
edgment type ALOHA algorithms are unstable for any posi-
tive arrival rate of new packets [7, 8, 11]. Stable ALOHA
“look-alike” RAAs have been devised [7, 8], with maximum
throughput equal to e-1.
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These algorithms require channel users to continuously
monitor the channel feedback provided to them at the end of
each time slot (this feedback sensing mechanism is known as
continuous feedback sensing), and accordingly adjust the
retransmission probability for the collided packets (if any).
The channel feedback can be either binary (collision versus
noncollision, C/NC), or ternary (empty versus success versus
collision, E/S/C).

The ideal ALOHA algorithm we chose to study in this
. article assumes that users, based on their continuous obser-
vation of the channel feedback, know at the beginning of
each time slot the exact total number of packets which have
experienced at least one collision so far (backlogged pack-
ets), and the packet arrival rate to the system. Clearly, this is
not easy to realize in practice (although elaborate estimation
algorithms have appeared in the literature [8]). For this rea-
son the algorithm is characterized as ideal. The throughput
(packet delays) of the algorithm will provide an upper
(lower) bound(s) on the throughputs (packet delays)
achieved by all implementable stable ALOHA “look-alike”
algorithms.

In practice, we cannot accurately estimate the backlog size.
The next algorithm we study is the implementable controlled
ALOHA which, in contrast to the ideal, can be realized in
practice. This algorithm assumes that users, based on their
continuous observation of the channel feedback (E/S/C), can
estimate the backlog size at the beginning of each slot without
knowing the exact number of backlogged users [7],.and the
packet arrival rate to the system, and accordingly adjust the
retransmission probability for the collided packets.

The third algorithm we study was chosen as. a representa-
tive of the large family of inherently stable random access
collision resolution algorithms [7, 8, 11]. These algorithms
achieve throughputs higher than e~! without the need for
elaborate estimation procedures. The chosen algorithm is
very appealing from a practical point of view since it operates
with limited channel feedback sensing (in which a user is
required to monitor the channel feedback only when it has a
packet to transmit).

The remainder of the article is organized as follows. In the

second section we introduce the system and arrival models,

and the performance metrics we will be using. The examined
algorithms are briefly described in the third section. Repre-
sentative results of an extensive simulation study used to
evaluate the throughput-delay trade-off for each algorithm
and to facilitate comparisons are presented and discussed in
the fourth section. Finally, the article is concluded in the fifth
section.

The System and Arrival Models

The System Model

. The idealized slotted multi-access model of [7, pp. 275-76],
with a large number of identical channel users (theoretically
infinite) and an aggregate packet arrival stream (with mean
packet arrival rate denoted by A) characterized by indepen-
dent, identically distributed Pareto interarrival times, is adopt-
ed. Each newly arriving packet arrives at a new user. The
channel is assumed time-slotted, all transmitted packets have

" the same length, and a packet transmission requires one time
slot. If two or more channel users transmit a packet in a given
time slot, there is a collision and the common receiver obtains
no information about the contents or source of the colliding
packets. If only one user transmits a packet in a given time
slot, the packet is assumed to be correctly received by the
receiver. Each packet involved in a collision must be retrans-
mitted in some later slot until it is successfully received. At

the end of each slot each channel user obtains feedback from
the receiver specifying whether there was a collision or not in
that slot (binary C/NC).

The important algorithmic performance metrics we consid-
er are channel throughput and packet delay. We define packet
delay as the time it takes from the generation of a packet
until the end of the slot that contains the successful transmis-
sion of the packet. We look into the moments of the packet
delay process because we know from earlier experience that
RAAs with Poisson packet arrivals incur packet delay distribu-
tions with heavy tails and medians much larger than mean val-
ues [12, 13]. ’

The Arrival Model

The packet interarrival times are assumed independent, iden-
tically distributed according to a Pareto distribution with
shape parameter o and location parameter k ([1, 2]):

k o
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The location parameter k is the minimum interarrival time
between packets. It can easily be shown that if o < 2 the dis-
tribution has infinite variance, while if o < 1 the mean is infi-
nite as well. Therefore, the Pareto distribution is heavy-tailed
with infinite mean and variance (a distribution is said to be
heavy-tailed if the ratio

P(T=1t)

t_a

tends to 1 ast — o, a2 0). A more general definition of
heavy-tailed distributions defines a distribution as heavy-tailed
if the mean conditional exceedance of the random variable 7,
E[T-¢|T 2 1], is an increasing function of ¢ [6]. For a Pareto
distributed random variable 7 with o 2 1 (i.e., with finite
mean), the mean conditional exceedance time is a linear func-
tion of ¢ [6, p. 70]. Using this second definition, consider a
Pareto distributed random variable that represents the waiting
time of a customer in a service facility. Then the longer the
customer has waited in the service system, the longer is its
expected future waiting time. Contrast this behavior with wait-
ing times distributed according to a light-tailed distribution
{such as the uniform for which the mean conditional
exceedance is a decreasing function of ¢) or a medium-tailed
distribution (such as the memoryless exponential for which
the mean conditional exceedance is independent of ¢, the
waiting time so far) [1]. The above-mentioned mathematical
properties account for the strong burstiness of the packet
arrival process characterized by Pareto distributed packet
interarrival times. :

The Random
Multiple Access Algorithms
The Stable Ideal Controlled ALOHA

For more on this, see [7, 8]. The backiogged packet retransmis-
sion probability at the beginning of a time slot is chosen to be

d=h ©

n
where d is a constant, A < d £ 1, to be optimally selected so
that the average packet delay is minimized, A is the current
aggregate packet arrival rate, and n is the current number of
backlogged packets. The new packets which have been gener-
ated during a slot are transmitted by the corresponding chan-
nel users during the next time lost (free access of newly
generated packets). If a collision occurs, the newly generated

p=
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B Figure 1. Optimum mean packet delay as a function of the
packet arrival rate }, for different values of the location parame-
ter k of the Pareto distribution.

packets involved join the backlog set and remain there until
they are successfully transmitted. Channel users with back-
logged packets retransmit during a time slot according to the
probability p. Note that the algorithm requires only C/NC
channel feedback information.

The Implementable Stable Controlled ALOHA [7]

The algorithm operates by requiring each user to maintain an
estimate 7 of the backlog n at the beginning of each slot. Each
backlogged packet is then transmitted (independently) with
probability:

» =@in{1,1;7‘} \ 3)

The minimum operation in Eq. 3 limits p to at most 1. Subject
to this limitation, the algorithm tries to maintain the average
number of the newly generated and backlogged packets trans-
mitted during a slot at one. The estimated backlog size at the
beginning of slot i + 1 is based on the backlog estimate at the
beginning of slot i, and the feedback of slot i according to the
following rule (due to Rivest, [7]):

@

R max{A,A; +A—1}, for empty or success
Apsr =

Ay + A+(e=2)"L, for collision.

The addition of A on the right side of Eq. 4 accounts for new
arrivals, and the max operation ensures that the backlog size
estimate is never less than the contribution from new arrivals.
On successful transmissions, 1 is subtracted from the backlog
to account for the successful departure. Finally, subtracting 1
from the backlog on idle slots and adding (e — 2)1 on collisions
has the effect of decreasing /i when too many idles occur and
increasing 71 when too many collision slots occur. For large
backlog size, if i = n; each of the n backlogged packets is
independently transmitted in the current slot with probability

_1-2
.

Thus, the total packet transmission rate, G(n), G(r) = np + A,
is 1, and by the Poisson approximation (7, p. 218], idles occur
with probability 1/e and collisions with probability

(e—2)

e

so that decreasing # by 1 on idies and increasing 4 by (e - 2)~!
on collisions maintains on the average the balance between n
and 7. We use this backlog size estimation, despite the fact
that the packet arrivals in our case are characterized by Pare-
to distributed interarrival times instead of exponentially dis-
tributed (Poisson arrivals).

The m-ary Stack Collision Resolution [7, 8, 11]

The operation of this algorithm can be described (and visu-
alized) with the help of a virtual stack with an infinite num-
ber of cells. We emphasize that the stack is a creation of
human imagination, is used for illustration purposes, and is
not part of the algorithm or realized by any channel user.
Newly generated packets during a slot enter the bottom cell
of the stack (known as the transmission cell) at the begin-
ning of the next slot. Packets occupying the transmission
cell at the beginning of a slot are transmitted during the
slot. If the channel feedback is NC (noncollision), the trans-
mission cell contained either zero or one packets (in the lat-
ter case, the single packet was successfully transmitted). The
content of the stack moves one cell downward and the pro-
cess repeats in the next slot. If the channel feedback is C
(collision), the transmission cell of the stack contains at
least two packets. The collided group of users probabilisti-
cally splits into m subgroups (the splitting mechanism is
controlled by m — 1 probabilities which can be determined
so that the average packet delay is minimized). The packets
which have not transmitted in the current slot (occupying
higher cells in the stack), move m cells upward in the stack
to create m empty cells at the bottom of the stack for the m
subgroups discussed above. At the beginning of the next
slot, the newly generated packets (if any) enter the trans-
mission cell of the stack and the process repeats. Like the
stable ideal controlled ALOHA this algorithm also requires
only binary C/NC channel feedback information. Each chan-
nel user is required to follow the channel feedback only
during the time period it has a packet to transmit. This is in
contrast to the case of the Stable Controlled ALOHA
RAAs, where a user needs to follow the channel feedback
continuously. In this work, we consider the case where m =
3. The selection of m = 3 is motivated by existing analytical
results for the Poisson packet arrival process, which show
that the throughput and delay performance of the algorithm
is optimized when m = 3 [9].

Simulation Results

Simulation was chosen as the method for evaluating the per-
formance of the algorithms. The fact that the Pareto distribut-
ed packet interarrival time is a random variable with memory,
greatly complicates the throughput and delay analyses of the
algorithms compared to the corresponding analyses when the
packet arrival process is Poisson. Simulations were executed
on a desktop UNIX workstation (SUN Sparcstation 5). Each
run simulates the successful transmission of N = 1 million

W Figure 2. The ratio of the standard deviation to the mean of the
packet delay as a function of the packet arrival rate ), for differ-
ent values of the location parameter k of the Pareto distribution.
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packets. In many cases, we simulat-
ed lower and higher N values (e.g.,
500,000 and 2,000,000 packets,
respectively). In all of these cases,
we observed that by simulating
1,000,000 successfully transmitted
packets, we were able to satisfacto-
rily estimate the steady-state algo-
rithmic performance metrics.

Notice that despite the fact that
the assumed total number of chan-
nel users is infinite, in the simula-
tion we do not need to simulate the
behavior of the infinite number of
users. We only need to generate
the consecutive packet interarrival
times, since according to the adopt-
ed system model, packets arrive
one at a time and its newly arriving packet is assumed to
arrive at a new user.

Our simulation study determines the stability region of
each algorithm (i.e., the values of the parameters k and o, of
the Pareto packet interarrival time distribution for which
the corresponding random multiple access algorithm is sta-
ble). In addition, we study through the simulation the pack-
et delay behavior of each algorithm. The mean and the ratio
of standard deviation to the mean of the packet delays are
plotted versus the packet arrival rate A, for different values
of the location parameter k of the Pareto distribution.
Notice that the shape parameter a of the Pareto distribution
is also involved in the obtained results, although not men-
tioned in the graphs, since its value depends on the values
of A and k(A = 1/E(T) = (o0 - 1)/ok). Therefore, when the
value of the location parameter k remains constant and the
value of the arrival rate A changes, the value of the shape
parameter o changes as well according to the above men-
tioned formula.

Finally, the reader is made aware that the vertical and hor-
izontal axes ranges in Figs. 1-9 are different.

Simulation Results for the
Stable Ideal Controlled ALOHA

The system was simulated extensively (mainly because the
behavior of the Stable Ideal Controlled ALOHA RAA for
Pareto distributed packet interarrival times was unknown,
since to the best of our knowledge the problem was never
studied before). The algorithm was found stable when the
location parameter of the Pareto distribution is k 2 0.7 slots,
and provided that the shape parameter belongs to the interval
[1, 1.83]. The highest algorithmic throughput is equal to
0.4774 (approximately 30 percent higher than the throughput
of the same algorithm with Poisson packet arrivals), achieved
when the location parameter & is equal to 0.95. The algorith-
mic throughputs for lower & values are lower than the through-
put for k = 0.95. For example, when k = (.85 the algorithmic
throughput is between 0.4 and 0.45, while for £ = 0.75 it is
between 0.35 and 0.4.

In Figs. 1 and 2, we present results of the packet delay
behavior of the algorithm. We define the optimum average
packet delay as the average packet delay optimized with
respect to the parameter d of the backlog retransmission
probability for given A and k values. Given the values of the
parameters A and k, the optimal average packet delay was
determined through an exhaustive simulation search over all
the possible values of the variable d, (A < d < 1), in the
numerator of Eq. 2 giving the backlogged packet retrans-

B Table 1. The optimum backlogged packet retransmission probability (used in Figs. 1 and 2).

mission probability. In Fig. 1, the optimum average packet
delay parameterized on the location parameter k is plotted
versus the aggregate packet arrival rate A. Each point in this
plot was produced from a simulation run of 1 million suc-
cessfully transmitted packets. From Fig. 1 we observe that
the increase of the optimum average packet delay as A
increases becomes steeper with increasing k. When k =
0.95, the optimum average packet delay is maintained well
below 20 slots for arrival rate values less than 0.45, and is
almost negligible when A < 0.4, while for the lowest £ value
we examined (k = 0.75, recall that k£ > 0.7 for stable algo-
rithmic operation) the value of the optimum average packet
delay exceeds 20 slots for A values above 0.3. Furthermore,
we observe that for a given A value, the optimum average
packet delay is a decreasing function of k. This is intuitively
pleasing, since k is the minimum packet interarrival time.
Therefore, as k approaches one from below the likelihood
of packet collisions decreases. Notice that the mean delay
curves for k = 0.75 and k = 0.85 are missing their final data
point. This is because the algorithm is approaching its cor-
responding maximum throughput, and the mean delay val-
ues at this point are increasing dramatically and are outside
the range of the vertical axis in the figure. The same logic
explains missing final data points in the remaining figures
throughout the article.

For the reasons we explained in the last sentence of the
second section, we estimate via simulation the ratio of the
standard deviation to the average of the packet delay parame-
terized on the location parameter of the Pareto distribution %,
as a function of the packet arrival rate A. The estimator used
to estimate the standard deviation of the packet delay is the
standard unbiased one [14, p. 288]. Figure 2 shows the frac-
tion of the standard deviation to the average of the packet
delay process as a function of A. We observe that for relatively
large A values (A > 0.35 ), as k increases the ratio increases as
well. For example, when k = 0.75 the ratio is maintained
around 3, while when k& =0.95 the ratio varies between 1 and
8. The latter result basically means that the delay of a ran-
domly selected packet may be as high as 8 x the average pack-
et delay value. This observation reaffirms what we already
know about the characteristics of the packet delay process
incurred by RAAs [12, 13]. Knowledge of the average packet
delay value alone does not suffice to predict the delay of a
randomly selected packet.

The optimal backlog retransmission probabilities for given
A and k values are shown in Table 1. They were produced
through an exhaustive simulation search over all the possible
values of the variable d, (1 < d £ 1), in the numerator of Eq.
2 giving the backlogged packet retransmission probability. The
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B Figure 3. Mean packet delay versus packet arrival rate ) for
the nonoptimized and optimized schemes for k = 0.8.

search was done very carefully, because we discovered that the
optimum average packet delay is extremely sensitive even to
small changes in the value of the variable d [15]. The dashed
boxes correspond to unstable cases (i.e., there is no d value, A
< d <1, which yields a stable algorithmic operation). From
Table 1 we observe that the optimal d values depend on both
A and k, and that it does not seem to exist as a unique pattern
exhibited by the optimal d values. Finally, it is interesting to
find how far the average packet delay can be from its opti-
mum value when using d = 1 in Eq. 2 for all A values. The
above packet retransmission policy does not optimize the
average packet delay with respect to the parameter d; howev-
er, it is simpler to implement.

From Fig. 3, we observe that when the location parameter
of the Pareto distribution is equal to k = 0.8, the average
packet delay in the non-optimized case is higher than the cor-
responding delay in the optimized case for all A values as it
was expected (the difference becomes significant for A values
larger than 0.3). Furthermore, from Fig. 3 we observe that the
optimized scheme achieves higher throughput. Similar conclu-
sions are drawn for different values of k. The corresponding
results are not shown here due to lack of space, the interested
reader is referred to [15].

Simulation Results for the
Stable Implementable Controlled ALOHA

The algorithm was found stable when the location parameter
of the Pareto distribution is k > 0.7 slots, and provided that
the shape parameter o belongs to the interval [1,1.68]. The

W Figure 4. Mean packet delay as a function of the packet arrival
rate A, for different values of the location parameter k of the
Pareto distribution, with estimated backlog and retransmission
probability of the backlogged packets p = 1 — A/fL

maximum algorithmic throughput is equal to 0.426, achieved
when k = 0.95. In Figs. 4 and 5, we present results of the
packet delay behavior of the algorithm.

In Fig. 4, the average packet delay, parameterized on the.

location parameter k, is plotted versus the aggregate packet
arrival rate A. Each point in this plot was produced from a
simulation run of 1 million successfully transmitted packets.
When k£ = 0.95, the average packet delay is maintained well
below 35 slots for arrival rate values less than 0.4, and is
almost negligible when A < 0.35, while for the lowest k value
we examined (k = 0.75, recall that k 2 0.7 for stable algo-
rithmic operation) the value of the average packet delay
exceeds 30 slots for A values above 0.25. The case k = 0.75 is
unstable for A = 0.4, while the mean packet delays for k =
0.8, 0.85 are outside the range of the vertical axis in the fig-
ure. Furthermore, we observe that for a given A value, the
average packet delay is a decreasing function of k. This is
intuitively pleasing, for the reason we explained previously.
Figure 5 shows the fraction of the standard deviation to the
average of the packet delay process as a function of A. We
observe that for relatively large A values (A > 0.3 ), as k
increases, the ratio increases as well. For example, when k£ =
0.75 the ratio is maintained near 3, while when k = 0.95 the
ratio varies between 1 and 6.5. The latter result basically
means that the delay of a randomly selected packet may be
as high as 6.5 x the average packet delay value. This behav-
ior of the packet delay process is similar to what we already
know about the characteristics of the packet delay process
incurred by RAAs [12, 13], as we also noticed for the case of
the ideal ALOHA algorithm.

To fairly compare this implementable algorithm with the
ideal ALOHA, we have simulated the ideal algorithm with
retransmission probability

1-A
- 5)

(i.e., we setd = 1 in Eq. 2), and we present the results in Figs.
6 and 7. (In Fig. 6, the case k = 0.75 is unstable for A = 0.4,
while the mean packet delays for k = 0.8, 0.85 and A = 0.4
are outside the range of the vertical axis in the figure.) Com-
paring the results in Figs. 4 and 6, we observe that the average
packet delays for the ideal controlled ALOHA algorithm are
close to those of the implementable controlled ALOHA algo-
rithm. For arrival rates A < 0.3 the average packet delays for
the two algorithms are almost the same. Only for A = 0.35
and k = 0.75, the average packet delay for the ideal algorithm

p=

B Figure 5. The ratio of the standard deviation to the mean of
the packet delay as a function of the packet arrival rate A, for
different values of the location parameter k of the Pareto distri-
bution, with estimated backlog and retransmission probability
of the backlogged packets p = 1 - M1,
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M Figure 6. Mean packer delay as a function of the packet arrival
rate ) for different values of the location parameter k of the
Pareto distribution and retransmission probability of the back-
logged packets p = (1 - \)/n.

is higher than the corresponding delay for the implementable
algorithm (by almost 30 slots).

From these results we conjecture that the backlog estima-
tor in Eq. 4 must be very accurate. To confirm this, we have
estimated via simulation the average value of the difference
between the estimated and actual backlog. From the obtained
results, we noticed that for a given A value the mean of the
absolute value of the above difference is an increasing func-
tion of k. Also, the same mean is an increasing function of the
arrival rate A. This explains the small difference between the
average packet delay values for A < 0.35 in Figs. 4 and 6.

Simulation Results for the m-ary Stack Algorithm

Here we present and discuss results for the m = 3 case only.
The reason is that the m = 2 case yields higher average pack-
et delays and lower throughputs than the m = 3 case. Repre-
sentative results for the m = 2 case can be found in [15]. The
algorithm was found stable when the location parameter of
the Pareto distribution is £ > 0.7 slots, and provided that the
shape parameter a belongs to the interval [1, 1.646]. The max-
imum algorithmic throughput is equal to 0.41315 (slightly
higher than the corresponding for Poisson packet traffic which
is equal to 0.4), achieved when k& = 0.95.

In Fig. 8, we show the optimum average packet delay (cor-
responding to the appropriate splitting probabilities, the
selection of which will be explained shortly), parameterized
on the location parameter k, versus the aggregate packet
arrival rate A. Each point in this plot was produced from a

B Figure 8. Optimum mean packet delay as a function of the
packet arrival rate ), for different values of the location
parameter k of the Pareto distribution (m = 3).

WM Figure 7. The ratio of the standard deviation to the mean of
the packet delay as a function of the packet arrival rate \ for
different values of the location parameter k of the Pareto
distribution and retransmission probability of the backlogged
packets p = (1 -2)/n.

simulation run of 1 million successfully transmitted packets.
We observe a similar behavior with the one observed in the
case of the stable ideal controlled ALOHA RAA (shown in
Fig. 1). When k = 0.95, the optimum average packet delay is
maintained below 4 slots for arrival rate values A < 0.35,
while for the lowest k value we examined (k = 0.75) the opti-
mum average packet delay value varies between 7 slots (for A
= 0.1) and 155 slots (for . = 0.35), and it exceeds 20 slots
for A = 0.25. Unlike what was found for the other two algo-
rithms examined in the article, the case k = 0.75 is stable
here for A = 0.4. This is because when k is small we have
more packet collisions, in which case stack-type RAAs per-
form better than ALOHA-type RAAs. Furthermore, we
observe from Fig. 8 that for a given A value the optimum
average packet delay decreases significantly with increasing k.
Figure 9 shows the ratio of the standard deviation to the
average of the packet delay parameterized on the location
parameter of the Pareto distribution &k as a function of the
packet arrival rate A. Once again we observe that for relative-
ly large A values (A > 0.35), as k increases so does the vari-
ability of the packet delay around its mean. For example,
when k£ = 0.75 we observe that the ratio in Fig. 9 varies
between 4 and 7, while for k = 0.95 the ratio is maintained
between 1.5 and 6 for A < 0.3, and it takes the value 15 (!)
when A = 0.4. The latter observation reaffirms that knowl-
edge of the average packet delay value alone does not suffice
to predict the delay of a randomly selected packet.

Finally, the optimal splitting probabilistic mechanism

| Flfe 9. The ratio of the standard deviation to the mean delay
as a function of the packet arrival rate 3, for different values of
the location parameter k of the Pareto distribution (m = 2)
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031/0.62 |03/063 1033006 |0.31/066 form better than ALOHA-type RAAs. As k
increases (e.g., k = 0.85), the implementable con-
trolled ALOHA algorithm slightly outperforms
the m-ary stack algorithm for A = 0.3, while for
lower A values the mean delays of the two algo-
rithms are very similar.

Conclusions

In this work we have considered the problem of
the random multiple access of a packet broadcast
‘ ‘ slotted channel with Pareto distributed, indepen-
8 Table 2. The optimum splitting threshold parameters (used in Figs. 4and 5.)  dent, packet interarrival times. The Pareto distri-
bution is a distribution with memory, strong
burstiness and heavy tail. The problem consid-
which controls the splitting of a collided group of packets ered is interesting because the traffic model used was found
into m = 3 subgroups is shown in Table 2. The results have to fit well interactive data applications in working wide-area
been produced through exhaustive search over all possible and local-area packet networks. Such data applications are
values of the threshold parameters P; and P, (0 < P; < P, expected to be a critical component of future wireless commu-
< 1) via series of simulation runs. The meaning of the nications networks.
parameters Py and P; is made clear next. According to the The multiple random access algorithms we examine pro-
algorithm, a colliding packet decides to stay in the transmis- vide free and immediate access to channel users with newly
sion cell (bottom cell of the virtual stack, or cell 0) with arriving packets. Their performance can be optimized provid-
probability Py, decides to move to cell 1 of the virtual stack ed that the parameters of the corresponding packet retrans-
with probability P, — P; , and decides to move to cell 2 of the  mission mechanisms for the colliding packets are appropriately
virtual stack with probability 1 — P, . From the results shown  selected.

in Table 2 we observe that the optimal splitting threshold Through an extensive simulation study we have shown that
parameters P; and P, depend on both A and %, but otherwise the examined RAAs are stable, and depending on the location
do not exhibit any specific pattern (other than that their val- parameter k of the Pareto packet interarrival time distribu- |
ues are close to 1/3 and 2/3, respectively). Based on the lat- tion, they achieve higher throughputs than those under Pois-

ter observation one can conjecture that the average packet  son packet arrivals. One of the reasons is that for a Pareto
delays when Py = 1/3 , and P, = 2/3 , will not be much high- distributed packet interarrival time 7, T > k where k is the

er than the corresponding optimal average packet delay val- location parameter of the Pareto distribution, while for Pois-

ues. This conjecture has been confirmed through computer son packet arrivals (exponentially distributed packet interar-
simulations [15]. rival times) 72 0. |
The behavior of the packet delay distribution of the above |

Mean Packet Delay Comparigon of the RAAs resembles the corresponding behavior under Poisson

J . . acket arrivals. The packet delay distributions are character-

Alg orithms with the Same Location Parameter ?zed by low mean Valﬁes and by sytandard deviations which are
In Figs. 10 and 11, we plot the mean packet delay versus the multiples of the corresponding mean values (the same behav-

arrival rate A when the location parameter k takes the values ior applies under Poisson packet traffic). Only when the

0.75, and 0.85, respectively. From the results presented in cumulative packet arrival rate A approaches the maximum

these figures, we observe that the ideal controlled ALOHA throughput of the algorithm do the mean and the ratio of the

algorithm achieves the best performance. For low values of  standard deviation to the mean of the packet delay increase

the location parameter k (e.g., k = 0.75 in Fig. 10), the m-ary - dramatically.

stack algorithm comes second. This is because when & is small Of the three RAAs we examined, the first is ideal (nonim-

we have more collisions, in which case stack-type RAAs per- plementable), while the other two are implementable. The

ldeal ALOHA ~~ Ideal ALOHA
Implementable ALOHA <o Implementable ALOHA
m-ary stack <= ‘ m-ary stack

B Figure 10. Mean packet delay as a function of packet arrival & Figure 11. Mean packet delay as a function of packet arrival
rate \ for the ideal controlled ALOHA, implementable con- rate ) for the ideal controlled ALOHA, implementable con-
trolled ALOHA, and m-ary stack algorithms, for the same value trolled ALOHA, and m-ary stack algorithms, for the same value
of location parameter k = 0.75. of location parameter k = 0.85.
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nonimplementable RAA is the stable ideal controlled
ALOHA, and it was examined because it provides an upper
(lower) bound on the throughput (packet delays) achieved by
all implementable stable ALOHA RAAs.

The second is a representative of the implementable stable
controlled ALOHA family of RAAs. From the results found
previously, we conclude that the implementable stable
ALOHA RAA achieves throughput and delay performance
similar to its ideal counterpart, despite the fact that the back-
logged packet retransmission mechanism of the former algo-
rithm has been designed with Poisson packet traffic in mind.
The latter observation leads us to the conclusion that the
backlog estimator (due to Rivest) presented earlier in Eq. 4, is
robust with respect to the nature of the packet interarrival
time distribution. Therefore, Rivest’s backlog estimation algo-
rithm appears to be a particularly simple and effective way to
stabilize the ALOHA RAA irrespective of the burstiness of the
packet arrival process.

The third is an inherently stable stack-type collision resolu-
tion RAA. It is very appealing from a practical point of view,
since in contrast to the previous two algorithms it operates
with limited channel feedback sensing and is simpler to imple-
ment because it does not use elaborate backlog estimation
mechanisms. The stack RAA achieves lower maximum
throughputs than the ideal and implementable ALOHA
RAAs because it uses limited channel feedback sensing. How-
ever, for small values-of location parameter k and large values
of packet arrival rate A, the algorithm outperforms the
ALOHA RAA:s in terms of mean delay (see Figs. 4, 6, and 8
for k = 0.75). This is because when k is small we have more
collisions, in which case the stack-type RAAs perform better
than the ALOHA RAAs.

In conclusion, our work has shown that RAAs designed
and evaluated under the Poisson packet arrival process
assumption can also efficiently operate and be optimized
under the extremely bursty packet arrival process character-
ized by Pareto distributed packet interarrival times.
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