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1 Team Information

Team Noxious-Kouretes is a joint team formed by three universities (Newport,
Oxford, TUC) in two countries (UK, Greece). This collaboration emerged natu-
rally following a recent RoboCup event (RoboCup Exhibition and Engagement
Event, Eisteddfod of Wales 2010) where all three groups met and a recent move
of personnel between groups. The minimal overlap over the research areas of the
three groups further motivated the joining of forces towards a strong and com-
petitive joint team, building on each group’s history of RoboCup participation.

Team Noxious is a collaboration between the Cognitive Robotics Research
Center (CRRC), University of Wales, Newport and the Computing Labora-
tory (ComLab), University of Oxford. The team was formed only in May 2010,
but soon after, in August 2010, the team organized and hosted UK’s first offi-
cial RoboCup event RC4EW, featuring Standard Platform and 3D Simulation
leagues. Two members of Noxious team are part of the newly created NAOShare
community which consists of 30 European professors and students sharing aca-
demic resources engaging the Nao robot in educational programs. The team has
received several distinctions, mostly in the 2D/3D Sim League under the name
OxBlue: runner-up in UK FIRA competition 2007; 8th place in 2D Sim, 12th
place in 3D Sim at RoboCup 2008; 2nd place in 2D Sim at RoboCup 2009; 3rd
place in 3D Sim at RC4EW 2010; and 4th in SPL at Iran Open 2011 SPL.

Team Kouretes was founded in 2006 and participates in the main RoboCup
competition ever since in various leagues (Four-Legged, Standard Platform,
MSRS, Webots), as well as in various local RoboCup events (German Open,
Mediterranean Open, RC4EW, RomeCup) and RoboCup exhibitions (Athens
Digital Week, Micropolis, Schoolfest). In May 2010, the team hosted the 1st of-
ficial SPL tournament in Greece (with three invited teams) within the Hellenic
Conference on Artificial Intelligence (SETN). The team has been developing its
own (publicly-available) software for the Nao robots since 2008. Distinctions of
the team include: 2nd place in MSRS at RoboCup 2007; 3rd place in SPL-Nao,
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1st place in SPL-MSRS, among the top 8 teams in SPL-Webots at RoboCup
2008; 1st place in RomeCup 2009; 6th place in SPL-Webots at RoboCup 2009;
and 2nd place in SPL at RC4EW 2010.

Team Noxious-Kouretes is jointly led by Stephen Cameron (reader), Torbjørn
S. Dahl (reader), and Michail G. Lagoudakis (assistant professor). The 12 mem-
bers of the team for 2011 (in alphabetical order) and their research areas are:

Eleftherios Chatzilaris grad student (TUC) [Localization, Learning]
Iris Kyranou ugrad student (TUC) [Obstacle Avoidance]
Jie Ma postdoc (Oxford) [Walk Learning]
Emmanuel Orfanoudakis ugrad student (TUC) [Visual Object Recognition]
Andreas Panakos grad student (Newport) [Color Recognition]
Alexandros Paraschos lab staff (Newport) [Software Architecture]
Georgios Pierris grad student (Newport) [Motion Skill Learning]
Nikolaos Spanoudakis lab staff (TUC) [ASEME Methodology]
John Threlfall ugrad student (Newport) [Object Recognition]
Aggeliki Topalidou ugrad student (TUC) [Behavior, Coordination]
Dimitra Tzanetatou ugrad student (TUC) [Motion Skill Management]
Evangelos Vazaios grad student (TUC) [Robot Communication]

2 Team Research

2.1 Software Architecture and Communication (TUC/Newport)

The team’s code is based on Monas [4], a software architecture developed in-
house to address the needs of the team. Monas provides an abstraction layer
from the Nao robot and allows the synthesis of complex robotic teams in various
ways: (a) NaoQi modules, (b) XML-specified Monas agents, and (c) model-
based (ASEME) statechart agents. Apart from the trivial method (a), method
(b) allows the coding of different agents (e.g. perception, motion, behavior, etc.)
each executed independently at any desired frequency completing a series of ac-
tivities at each execution. Method (c) is based on the Agent Systems Engineering
Methodology (ASEME), whereby the target team behavior is specified through
a series of model-based transformations as a statechart, which is executed using
a generic multi-threaded statechart engine. Monas is shown in Figure 1 (left).

To realize a fully-functional robot team, Monas relies on our intra-robot and
inter-robot messaging system, called Narukom [9]. Narukom is based on the
publish/subscribe paradigm and provides maximal decoupling not only between
nodes, but also between threads on the same node. The data shared between
nodes/threads are stored on local blackboards which are transparently accessi-
ble from all nodes/threads. Communication is achieved through messages tagged
with appropriate topics and relayed through a message queue which is imple-
mented using Google protocol buffers. Three types of messages are supported:
(i) state messages, which remain in the blackboard until they are replaced by
a newer message of the same type, (ii) signal messages, which are consumed at
the first read, and (iii) data messages, which are time-stamped to indicate the
precise time the values they carry were acquired. Data messages have expiration



Fig. 1. Monas Architecture (left) and Perception: raw image, color-segmented image,
recognized objects, localization GUI (right).

times, so that they are automatically removed when they are no longer needed.
Narukom’s distributed nature and platform independence make it an ideal base
for coordinating asynchronous modules, for developing complex team strategies,
and for relaying debugging information to external computers.

2.2 Vision and Localization (TUC/Newport)

The objects of interest in the SPL are characterized by unique colors. Our ap-
proach to color recognition is based on labeling by hand a representative set of
images from the robot camera, training a classifier which generalizes over the
entire color space, and generating a static color map for constant-time recogni-
tion during deployment. This process is supported by our KC2 graphical tool [3].
Since light sources affect significantly the correct recognition of colors, the white
and gray surfaces of the Nao body are utilized for providing a reference point
for the illumination of the environment and for calibrating the camera’s white
balance dynamically. This dynamic camera calibration enables the use a single
color map (trained at RoboCup 2010) in a wide range of lighting environments.

Object recognition is accomplished by KVision, a light-weight image pro-
cessing scheme which applies color recognition to a selected set of pixels directly
on the YUV images provided by the hardware to locate areas of interesting col-
ors. These areas are then processed locally and examined further for validity as
field objects. The exact camera position in the 3D space (extracted from the
robot’s kinematic chain) is utilized to determine the sampling grid, so that scan-
ning is uniformly projected over the field, not over the image matrix. Special
attention is paid in synchronizing precisely images with robot joint values using
time-stamped data messages. Kinematics and camera position are also used to
determine the view horizon, the expected projected size of the known-size SPL
objects on the image, and the head joint values for fixating on objects of inter-
est. Multiple matches for various objects (e.g. multiple balls) are evaluated and
filtered, so that the best match (if any) in terms of color, shape, and size for



each unique object is finally extracted and returned as perceived, along with an
estimate of its distance and bearing as well as head joint information for fixation
and tracking. Figure 1 (right) shows an example of visual object recognition.

Self-localization of the robots in the field is accomplished using KLoc [1]
which realizes Monte Carlo localization with particle filters. The belief of the
robot is a probability distribution over the 3D space of (x, y, θ), where x, y are
the robot coordinates on the field from a bird’s eye view and θ is the orientation
of the robot with respect to the line that crosses the center of the goals. The belief
is represented approximately using a population of particles. In order to perform
belief update, we use an odometry motion model that covers all possible omni-
directional locomotion choices and a landmark sensor model for the yellow/blue
goalposts over the (x, y, θ) space. The parameters of both models were estimated
through extensive experimentation. Belief update is performed using an auxiliary
(AUX) particle filter. For the resampling process, selection with replacement and
linear-time resampling have been implemented. Given any population of parti-
cles, the robot’s pose is estimated as the pose of the particle with the highest
weight. Figure 1 (right) shows our localization GUI which displays the perceived
landmarks (two yellow goalposts) and the estimated robot position.

2.3 Walk Learning (Oxford)

Our QWalking method [2] is a careful application of the popular Q-learning
algorithm to the problem of acquiring robot walking patterns. The advantage of
using a learning technique over analytical methods is twofold: we can deal with
imprecise models of the robot’s dynamics or kinematics; and we can adjust the
learned actions as the robot joints wear out. The major difficulty in applying
Q-learning to this task is the large size of the state space and thus the slow speed
of learning convergence. We deal with this problem by using a simplified gait
model with a small number of parameters and by first applying learning within a
physically accurate simulation of the robot (the SPARK simulator). The former
yields a state space of manageable size (a few thousand states), while the latter
greatly decreases the overall learning time, not least because the robot is usually
dynamically stable when learning switches to the real robot. Finally, through
incremental Q-learning, we can refine the walking patterns as the robot ages.
QWalking has already been used for producing walking patterns in the 3D
Sim league. Figure 2 shows a description of the leg swing phase (left) and an
example of a continuous gait pattern generated by QWalking (right). For SPL,
we transferred the refined fast walking patterns from the 3D Sim directly onto
the real Nao robots. The speed of QWalking is approximately 22 cm/sec, which
roughly doubles the original Aldebaran walking speed (11.3 cm/sec). Our plans
include omnidirectional walking, dynamic balancing, and energy-efficient gaits.

2.4 Motion Skill Learning (Newport/TUC)

Motion skills, such as player kicking or goalkeeper diving, are crucial for a
RoboCup team. The majority of teams use manually-designed, pre-recorded
motions, which are fine-tuned on spot for optimized performance. Despite the
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Fig. 2. Description of leg swing phase during walk (left) and a learned continuous gait
pattern generated by QWalking (right).

drawback of these approaches, automatic skill acquisition/learning is not widely
used, due to long learning periods and robot durability/safety issues. Our team
currently makes a transition from manual motion design (e.g. our past work
on the KME tool [6]) to learned motions focusing on biologically-inspired ap-
proaches to learning gestures and motion skills on humanoid robots. Our algo-
rithms are based on hierarchical temporal structuring of states and actions using
fixed-length data sequences on each level of the hierarchy. Hierarchy is achieved
using hierarchical self-organizing maps (SOMs), and temporally is achieved us-
ing decaying activity levels for winning SOM nodes. This structure massively
compresses temporal data through the reuse of common sub-sequences in the
hierarchy and through a principled component-based representation of each
fixed sequence. We have successfully used this structure to learn and repro-
duce humanoid motions in our CoSCo-HSOM algorithm [5]. We have also made
progress towards applying reinforcement learning in such structures by success-
fully demonstrating mechanisms for future reward prediction and hidden state
identification in hierarchies of fixed size temporal sequences. The current version
of CoSCo-HSOM does not use any feedback from the environment, limiting its
capabilities to only creating open loop motions, which may not fit all SPL needs.

We are also actively working on fine-tuning closed-loop motion controllers.
Our robots need to maintain their balance while performing some complex ac-
tion, such as a kick, which requires balancing on one leg. We consider the problem
of learning the parameters of a closed-loop controller that controls only the ankle
joints of the leg (roll and pitch) based on dynamic (real-time) information from
the FSRs and the inertial unit with the goal of keeping the robot balanced. Such
a skill eliminates the need for costly kinematic computations and allows all other
joints to perform arbitrary moves without worrying about balancing. So far, we
have succeeded in maintaining balance on a single leg when the other joint chains
of the robot move to any arbitrary angle, however at a slow speed. Our current
efforts focus on Monte-Carlo EM-type reinforcement learning methods [10] for
optimizing our current PD controller, aiming eventually at real-time operation
at any motion speed and robustness over the entire range of balancing cases.



2.5 Motion Skill Management (TUC)

Walking speed and special action completion times are crucial in SPL games.
We have observed that significant time is lost in gradually approaching the ball,
stopping to take the right pose, and then executing an appropriate kick action. In
order to decrease the total response time, the interleaving of walking and special
actions, specifically kick actions, was studied. The idea is to kick the ball directly,
without slowing down while approaching the ball. The kick-forward special
action was analyzed and some of the leg poses that comprise the kick action
were bookmarked as potential entry points into the kick sequence, along with
the intended direction of change (given by the next pose in the action sequence).
As the robot walks, the 6 most significant out of its 11 leg joints, in particular Hip
Roll, Hip Pitch, and Knee Pitch of each leg, are constantly monitored in terms
of their current joint values and their current gradients (directions of change).
If the current leg joint pose (only the selected 6 poses) comes close to one of the
bookmarked poses in terms of both joint values and directions of change, then the
robot switches immediately from walking to the corresponding entry point of the
kick special action and executes the kick. This way, the kick is executed before
the robot stops walking. Obviously, this transition is enabled only when the
robot is close enough to the ball. This simple technique has significantly reduced
the total time of approaching and kicking. However, the entry poses must be
chosen carefully to ensure the stability of the robot during the sudden transition
from walking to kicking and the kick precision is sometimes compromised.

2.6 Obstacle Avoidance (TUC)

The SPL rules postulate severe penalties for player pushing, therefore we have
dedicated considerable effort in avoiding collisions. Because of the limited cov-
erage and the noisy readings of the Nao ultrasonic sensors, each robot builds
and maintains a local obstacle map of its surrounding. This map is stored in a
n× k polar grid (currently, 7× 36, giving 10cm and 10◦ resolution respectively)
covering the 360◦ area of radius 70cm around the robot. The robot is always
located at the center of the grid and the grid moves with the robot. This polar
map is updated using distance readings from the ultrasonic sensors. The polar
topology facilitates the mapping of the sensor data and also captures the reso-
lution of the sensors which is dense close to the robot and sparse away from the
robot due to the conical shape of the beams. Visually perceived obstacles can
also be mapped on the same grid. Locomotion of the robot implies appropri-
ate transformations on the polar grid. Rotational and translational motions, as
captured by the locally-accurate odometry, are reflected on the map in constant
time through precomputed and stored transformations, albeit with some loss of
accuracy due to discretization. Each cell in the map stores the probability that
there is an obstacle at the corresponding position in the field. These values are
updated according to a simple sensor model (for cells within the sensor cone) or
according to an aging model (for cells outside the sensor cone). The polar ob-
stacle map is used to plan obstacle-free paths in any desired direction of motion
or to any desired destination. A simple example is demonstrated in Figure 3.



Fig. 3. Obstacle avoidance with the polar obstacle map (robot front is towards the top
of the map and gray levels indicate the occupancy probability, low-white, high-black).

Role: player

Protocols: Attack: center, Attack: center for

Liveness:

player = Sensorsω || RobotControllerω || LedHandlerω || MotionControllerω || (initialize . activate)

initialize = Stand . CalibrateCamera

activate = Visionω || Localizationω || ObstacleAvoidanceω || HeadHandlerω || decisionω

decision = CheckForBallObservation . (ScanForBall | action)
action = TrackBall || (WalkTowardsBall | KickBall | center | center for)

center = WalkTowardsBall . [PassBall]

center for = WalkTowardsGoal . [WalkTowardsBall . [KickBall]]

Fig. 4. The SRM model for the player (roles center and center for).

2.7 Behavior (TUC)

The highest level of decision making in our team is modeled as a statechart using
a model-based process for agent engineering (ASEME) [8]. ASEME enables the
designer to specify complex behaviors through a series of semi-automated design
phases that produce the final statechart model which is then transformed auto-
matically to source code, compiled, and executed using our multi-threaded stat-
echart engine. The final statechart model specifies the intra- and the inter-agent
control for achieving the desired behavior by accessing directly the functionality
provided by our base activities: RobotController, Vision, Localization, Obsta-
cleAvoidance, MotionController, HeadHandler, Sensors, LedHandler. Using this
principled methodology, we redeveloped our simple Goalie and Player behaviors
from RoboCup 2010, previously implemented as Monas agents (conventional
procedure code), in dramatically less time without debugging headaches. The
added value of ASEME was revealed in the development of a team Attack

protocol involving two players (center and center for interchangeable roles),
which was supported by the ability of ASEME to specify inter-agent control and
the ability of Monas/Narukom to realize it on the robots.

To briefly demonstrate our approach, consider an Attack protocol with two
players assuming the roles of center and center for (one role each). The player
closer to the ball becomes the center and the other becomes the center for.
The center is expected to approach the ball and pass it to the center for

who, in turn, is expected to be near the opponent’s goal to receive the pass
and shoot to the goal. The protocol may terminate early, if an opponent takes
control of the ball or the ball goes out of bounds. We use the Gaia operators
for writing a System Roles Model (SRM) liveness formula that defines these two



Fig. 5. The graphical editor (left) and the statechart (right) for the player.

roles, as shown in Figure 4. Briefly, A.B means that activity B is executed after
activity A, Aω means that A is executed continuously, A|B means that either
A or B is executed, A||B means that A and B are executed in parallel, and [A]
means that A is optional. Using the SRM2IAC tool [7] the SRM liveness formula
(given in plain text) is automatically transformed to a statechart which can be
edited using our graphical tool (Figure 5). Using the tool, we add the transition
expressions and the variables related to each transition and node respectively.
Finally, we use the IAC2Monas tool [4] for auto-generating the C++ code.
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