Gorgias Cloud: On-line Explainable
Argumentation

Nikolaos I. SPANOUDAKIS !, Georgios GLIGORIS # Antonis C. KAKAS " and
Adamos KOUMI

& Technical University of Crete, Greece
b University of Cyprus, Cyprus

The Gorgias Cloud service offers argumentation-based decision making as a service.
The service includes an integrated development environment for the theories, testing and
execution based on user scenarios, and, finally, an API for user applications.

Gorgias is a structured argumentation framework where arguments are constructed
using a basic (content independent) scheme of argument rules. Two types of arguments
are constructed within a Gorgias argumentation theory: object-level arguments and prior-
ity arguments expressing a preference, or relative strength, between other arguments. The
dialectic argumentation process of Gorgias to determine the acceptability/admissibility of
an argument supporting a desirable claim typically occurs between composite arguments
where priority arguments are included into the composite argument in order to strengthen
the arguments currently committed to. The Gorgias framework was introduced in [1],
extended in [2] and applied to a variety of real-life application problems [3].

The Gorgias system allows us to code argumentation theories of the form described
above and subsequently query the system to find out if there is an admissible (compos-
ite) argument that supports a desired Claim. The system of Gorgias has been publicly
available since 2003 and has been used by several research groups to develop prototype
real-life applications of argumentation in a variety of application domains. Today it is
available as a service over the internet with Gorgias Cloud, which provides an integrated
environment for developing applications of argumentation with three novel features:

1. Assistance for editing argumentation theories in the internal code language of
Gorgias using templates for object level or priority arguments and abducibles

2. Ability to store multiple scenarios to test the behaviour of developed theories

3. REST-compliant web API so that Gorgias queries can be executed from any other
programming environments (e.g. Java, Python) used for developing applications.

The code shown on the left hand side of the Gorgias Cloud Execution Panel in Fig-
ure 1, shows a simple example of an argumentation theory. Gorgias rules are in the form
rule(label ,conclusion,supporting information). Those with labels r1(X) and r2(X) are
for and against buying an object. The priority argument rules pr1(X), pr2(X) support the
one or the other of the object-level rules, depending on whether we are low on funds.

Let us assume that we have an object, obj, for which need(obj) and neg(urgent
need(obj)) hold. The query for asking if there is an admissible composite argument sup-

ICorresponding Author: Nikolaos I. Spanoudakis, Applied Mathematics and Computers Laboratory,
Technical University of Crete, University Campus, 73100 Chania, Greece; E-mail: nikos @amcl.tuc.gr.


http://www.cs.ucy.ac.cy/~nkd/gorgias/
http://gorgiasb.tuc.gr/GorgiasCloud.html
https://en.wikipedia.org/wiki/Representational_state_transfer

Gorgias cloud @b

Gorgias/Background Files o « prove([neg(buy(obj))], Explanation).
Solution 1

assistance/buying pl [# L4 Explanation—{ass(lowOnFunds),f2,pr1(obj).r2(obj)],

-Application Level Explanatiorr

The statement "neg(buy(obj))" i rted by:
rule(r1(X), buyi(X), [need(X)]). e statement "neg(buy(obj))" is supported by:

rule(r2(X), neg(buy(X)),
[neg(urgentNeed(X))]).

rule(pr1(X), prefen(r2(X), r1(X)),
[lowOnFunds]).

rule(pr2(X), prefer(r1(X), r2(X)), []).
abducible(lowOnFunds, []).

- neg(urgentNeed(obj))
This reason is strengthened:
- against "buy(obj)" by: lowOnFunds

The supporting condition: lowOnFunds is an assumption and needs to be confirmed.

Gorgias Prompt Maximum number of answers: 1 Clear panel 4°

Gorgias?: neg(buy(obj)) SRun

Figure 1. Execution Panel of Cloud Gorgias, the theory on the left and the results of the query in the center.

porting the conclusion to not buy the obj, i.e. neg(buy(obj)), is posed at the prompt
at the bottom of the Execution Panel (see Figure 1). In the center of the Execution
Panel we can see both an Internal Explanation of the composite argument E, i.e.
Explanation = [ass(lowOnFunds), f1,prl1(obj),r2(obj)|, as well as an Application
Level Explanation in a human-friendly format. This is an important feature of the Gor-
gias Cloud system as the internal, machine friendly, explanation of a composite argu-
ment is naturally translated into an application level explanation exhibiting the desired
characteristics of being attributive, contrastive and actionable:

* Attributive: Extracted from the object-level argument rules in E.
* Contrastive: Extracted from the priority argument rules in E.
* Actionable: Extracted from the hypothetical or abducible arguments in E.

Developers and users can use the application level explanations to evaluate the be-
haviour of their system with respect to the specification requirements under which the
system is developed. This is made easy as these explanations are at the same high cogni-
tive and language level as that of the application domain of the system.

References

[1] Antonis C. Kakas, Paolo Mancarella, and Phan Minh Dung. The acceptability semantics for logic pro-
grams. In Proc. of 11th Int. Conf. on Logic Programming, pages 504-519, 1994.

[2] Antonis C. Kakas and Pavlos Moraitis. Argumentation based decision making for autonomous agents. In
The Second International Joint Conference on Autonomous Agents & Multiagent Systems, AAMAS 2003,
July 14-18, 2003, Melbourne, Victoria, Australia, Proceedings, pages 883—-890. ACM, 2003.

[3] Antonis C. Kakas, Pavlos Moraitis, and Nikolaos I. Spanoudakis. GORGIAS: Applying argumentation.
Argument Comput., 10(1):55-81, 2019.



