
Modular JADE Agents Design and Implementation using ASEME

Nikolaos Spanoudakis

Technical University of Crete, Greece

nikos@science.tuc.gr

Pavlos Moraitis

LIPADE, Paris Descartes University, France

pavlos@mi.parisdescartes.fr

Abstract

ASEME is an emerging Agent Oriented Software

Engineering (AOSE) methodology. The Model-Driven

Engineering (MDE) paradigm encourages software

modelers to automate the transition of one type of

software model to another and eventually the code

generation process. This paper builds on previous

work that describes the model-driven development of

agent systems using ASEME and creating a Platform

Independent Model (PIM) that adheres to the language

of statecharts, the Intra-Agent Control Model. In this

contribution we use the generated statecharts and

show how to automatically transform them to Java

programs using the Java Agent Development

Framework (JADE). All agent and behaviour classes

are automatically generated including the agent

interaction protocols.

1. Introduction

A challenge in the Agent Oriented Software

Engineering (AOSE) field is the automation of agent

code generation from a design model. Most

methodologies either automatically generate portions of

the agent code or provide guidelines for the

programmers to transform their design models to

implementation models. The Java Agent Development

Framework (JADE) has been used as a target agent

implementation platform by many AOSE

methodologies such as Ingenias [5], PASSI [3], Gaia

[17], and, recently, by the Agent Systems Engineering

Methodology (ASEME1 [16], [13]). JADE has many

qualities as it is open source; it is compliant with the

FIPA (the Foundation for Intelligent Physical Agents

standardization body) standards and can be compiled

for devices with limited resources such as PDAs.

1 From the ASEME web site the interested reader can

download the tools and metamodels defined in this paper,

URL: http://www.amcl.tuc.gr/aseme

This paper extends our previous work [14], where

we showed how to use Model-Driven Engineering

(MDE) principles to define the Platform Independent

Model (PIM) of a system specification as an Intra-

Agent Control (IAC) model adhering to the language of

statecharts [6]. Here-in, we show how the IAC can be

transformed to a Java program using JADE and

employing the agent’s capabilities as reusable software

components.

We define an automatic transformation of an Intra-

Agent Control (IAC) model to JADE implementation

(IAC2JADE) including the unique capability to derive

the needed JADE behaviour types and also the

possibility to automatically define all interactions

needed by a complex agents’ interaction protocol. This

paper not only provides these theoretical results but

also an implementation using the Xtext and Xpand

languages [8] and the Eclipse Modeling2 popular

Integrated Development Environment (IDE).

2. Metamodels and Models Transformation

Model driven engineering relies heavily in model

transformation [12]. Model transformation is the

process of transforming a model to another model. The

requirements for achieving the transformation are the

existence of metamodels of the models in question and

a transformation language in which to write the rules

for transforming the elements of one metamodel to

those of another metamodel.

In the software engineering domain a model is an

abstraction of a software system (or part of it) and a

metamodel is another abstraction, defining the

properties of the model itself. However, even a

metamodel is itself a model. Thus, there is yet another

level of abstraction, the metametamodel, which is

defined as a model that conforms to itself [7].

2 The Eclipse Modeling Project provides a unified set of

modeling frameworks, tooling, and standards

implementations, URL: http://www.eclipse.org/modeling/

2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-4191-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WI-IAT.2010.136

221

A transformation that is used for transforming a

graphical model to a textual representation (i.e. a

computer program) is called a Model to Text (M2T)

transformation. The graphical model must have a

metamodel. Then, a transformation of the graphical

model to text can be defined.

In the heart of the model transformation procedure

is the Eclipse Modeling Framework (EMF, [2]). Ecore

[2] is EMF’s model of a model (metamodel). It

functions as a metametamodel and it is used for

constructing metamodels. It defines that a model is

composed of instances of the EClass type, which can

have attributes (instances of the EAttribute type) or

reference other EClass instances (through the

EReference type). Finally, EAttributes can be of

various EDataType instances (such are integers,

strings, real numbers, etc).

2.1 Statechart Definition and Metamodel

Statecharts [6] are used for modeling systems. They

are based on an activity-chart that is a hierarchical

data-flow diagram, where the functional capabilities of

the system are captured by activities and the data

elements and signals that can flow between them.

Statecharts define the behavioral aspects of a set of

activities. The activities are represented as states that

can be a) OR-states, b) AND-states, and c) basic states.

OR-states have substates that are related to each other

by “exclusive-or”, and AND-states have orthogonal

components that are executed concurrently, thus are

“and” related. Basic states are those at the bottom of

the state hierarchy, i.e., those that have no substates. A

state with no parent state is called the root. Each

transition from one state (source) to another (target) is

labeled by an expression, whose general syntax is

e[c]/a, where e is the event that triggers the transition; c

is a condition that must be true in order for the

transition to be taken when e occurs; and a is an action

that takes place when the transition is taken. All

elements of the transition expression are optional. Here

we must note that if SO is the set of OR-states that are

proper common ancestors of the source and target

states of a transition, then the scope of the transition is

defined as the element of SO that has no substates that

are members of SO. CONDITION states are used when

more than one transition have the same source state and

other-different- states as targets, and the target state is

determined by one or more conditions. Multiple

concurrently active statecharts are considered to be

orthogonal components at the highest level of a single

statechart.

The fact that the statechart can capture together the

functional and behavioral aspects of a system is its

greatest advantage, as it completely defines a system.

We use statecharts in a specific level of abstraction,

that of an agent, in order to model the interactions

between its components (or capabilities). The

statechart, therefore, implements the intra-agent

control model (IAC) of an agent. The formal model

that is adopted here-in is part of the Agent Modeling

Language (AMOLA) [13].

Before giving a formal representation of a statechart

we need to present some useful definitions. Thus, an

ordered rooted tree is a rooted tree where the children

of each internal vertex are ordered [11]. To produce a

total order of the vertices of an ordered rooted tree all

the vertices must be labeled. This is achieved

recursively as follows:

1. Label the root with the integer 0. Then label its k

children (at level 1) from left to right with 0.1, 0.2,

0.3, …, 0.k.

2. For each vertex ν at level n with label A, label its kν

children, as they are drawn from left to right, with

A.1, A.2, …, A.kν.

Thus, A.1 means that A is the parent of A.1. A

statechart can therefore be formally defined as follows

(the definition is inspired by the one proposed by

David et al. [4]).

Definition 1. A statechart is a tuple (L, δ) where:

• L = (S, λ, Var, Name, Activity) is an ordered rooted

tree structure representing the states of the statechart

─ S⊆�* is the set of all nodes in the tree

─ λ: S�{AND, OR, BASIC, START, END,

CONDITION} is a mapping from the set of

nodes to labels giving the type of each node

─ Var is a mapping from nodes to sets of variables

─ Name is a mapping from nodes to their names

─ Activity is a mapping from nodes to their

algorithms/functionality in text format

• δ ⊆ S × TE × S is the set of state transitions

The Intra-Agent Control (IAC) is defined as a

statechart. IAC allows the modeling of interactions

between the different capabilities of an agent. Its

metamodel (see Figure 1) contains nodes and

transitions according to Definition 1. The metamodel

defines a Model concept that has nodes, transitions and

variables EReferences. Note that it also has a name

EAttribute. The latter is used to define the namespace

of the statechart. A namespace is an abstract container

conceived to hold a logical grouping of unique

identifiers or symbols. The namespace should follow

the Java or C# modern package namespace format.

222

The nodes contain the following attributes (followed

by the relevant concept name in the statechart

definition): a) name (Name), usually named after the

Gaia liveness formula expression (see section 3 for

more details), b) type (λ), c) label (label), and, d)

activity (Activity). Nodes also refer to variables. The

Variable EClass has the attributes name and type (e.g.

the variable with name “count” has type “integer”).

Finally the transitions have four attributes: a) name, b)

TE, the transition expression, c) source, the source

node label, and, d) target, the target node label.

Figure 1. The statechart metamodel.

2.2 The JADE Framework

In JADE, each agent is equipped with an incoming

message box. Moreover, JADE provides methods for

message filtering. The developer can apply advanced

filters on the various fields of the incoming messages

such as sender, performative or ontology.

Agent tasks or agent intentions are implemented

through the use of behaviours. Each behaviour

performs its designated operation by executing the core

method action(). Behaviour is the root class of the

behaviour hierarchy that defines several core methods.

The children of this base class are SimpleBehaviour

and CompositeBehaviour.

The classes that descend from SimpleBehaviour

represent atomic simple tasks that can be executed a

number of times specified by the developer. The class

CyclicBehaviour models atomic behaviours that must

be executed forever. So, its done() method (the method

called at the end of each behaviour’s action execution)

always returns false.

Classes descending from CompositeBehaviour

support the handling of multiple behaviours according

to a policy. The actual agent tasks that are executed

through this behaviour are not defined in the behaviour

itself, but inside its children behaviours. The class

SequentialBehaviour executes its sub-behaviours

sequentially and terminates when all sub-behaviours

are done. The class ParallelBehaviour executes its sub-

behaviours concurrently and terminates when a

particular condition on its sub-behaviours is met.

The developer creates his agents by extending the

JADE Agent class. He can add any number of

behaviours along with defining the agent’s initialization

and termination handling functionality.

3. The IAC2JADE Transformation

In [14] we showed how to automatically transform

the Gaia liveness property [17] to a statechart

compatible with the AMOLA Intra-agent Control

(IAC) model. The analysis phase System Roles Model

(SRM) of AMOLA has adopted the Gaia liveness

formulas for defining the dynamic behaviour of the

role. This section shows how this statechart is

automatically transformed to Java code using the JADE

API. The transformation process will be illustrated by

an example regarding a meetings management system.

For the better understanding of what happens in the

design phase we will use an example starting from the

analysis phase. An agent role participating in a

meetings management system is the personal assistant

of each user (see Figure 2). The last formula of this

role’s liveness property shows how this agent

implements his participation in an agent interaction

protocol, i.e. the negotiate meeting date protocol. We

suppose that the reader is familiar with the Gaia

methodology.

Role: Personal Assistant
Liveness:
personal assistant = (manage meetings. learn user habits)

ω
 ||

(negotiate meeting date)
ω

manage meetings = get user request. (read schedule | request
change meeting | request new meeting). show results

learn user habits = learn user preference. update user
preferences

request change meeting = send change request. receive
change results

request new meeting = send new request. receive new results
negotiate meeting date = receive proposed date. (decide

response. send results. receive outcome)+. update schedule

Figure 2. The Personal Assistant Role

Starting from the role model an automated process

applies transformation templates to the Gaia operators

and recursively creates the IAC model. For our

example the resulting IAC model for the Personal

Assistant role is shown in Figure 4. The details for this

transformation are presented in [14]. A rooted tree

resembles this statechart. For demonstrating the

recursive tree building process we show a branch of

this tree in Figure 3 and the templates used for this

branch in Table 1. Figure 3 presents a graphical

representation of the statechart according to Definition

223

1 for the negotiation protocol. This protocol is one of

the capabilities of the agent and it is intended to

become a software module. In the figure, the reader can

see for each node its label (top), type (middle) and

name (bottom). If there is no name listed then the name

is the same with the node’s label. Grey nodes and

arrows represent the statechart ordered routed tree,

while the black arrows represent the state transitions.

Table 1. Templates for Statechart generation

Operator Template Tree Branch

x.y

x+

Having transformed the liveness formula to a

statechart, the designer can insert conditions for

executing an activity (which may involve the use of

variables) and the receipt or the dispatch of inter-agent

messages as events. AMOLA makes no assumptions on

ontology, communication means, reasoning processes,

or the mental attitudes (e.g. belief-desire-intentions) of

the agents, giving this freedom to the designer.

However, it does define a grammar (see [13]) for the

definition of the state transition expressions. The

ontology can be defined in object-oriented format or in

logic based format. The definition of the ontology

using one format does not forbid the use of another

during the development of the system. For example, in

[15], we defined a way to encode an ontology that was

developed using the Protégé ontology editor

(http://protege.stanford.edu), in object-oriented format,

to Prolog (logic programming) format. The ontology

concepts and their properties can be used in defining

conditions, events and actions in the IAC transition

expressions.

3.1 The IAC2JADE Transformation Algorithm

Four types of JADE behaviours are automatically

generated according to the transformation process. The

transformation algorithm reads the statechart model

(IAC) and creates Java source code files using

templates (defined in the Xpand language).

personal assistant

manage meetings

show

results

get user

request

request new

meeting

send new

request

receive new

results

request change

meeting

send

change

request

receive

change

results

read

schedule

c

negotiate meeting date

receive

proposed

date

propose(m, p, meeting)

inform(m, p, meeting)/

isArranged(meeting) = True

decide

response

accept(p,m,meeting)

∨ reject(p,m,meeting)

send

results

receive

outcome

p
ro
p
o
s
e
(m
,
p
,
m
e
e
ti
n
g
)

update

schedule

learn user habits

update user

preferences

learn user

preference

Figure 4. Personal Assistant Agent IAC Model

The transformation algorithm processes each node

of the statechart (IAC). If it is the root, then it is

transformed to a JADE Agent descendant class. All the

Figure 3. A graphical representation of a statechart branch starting at depth L.

224

nodes of the statechart that are of types OR, AND or

BASIC (called the eligible nodes from now on) are

transformed to some kind of JADE behaviour. Notice

that the nodes of type START, END and CONDITION

are not transformed to Behaviour classes.

For each of the other (than the root) eligible nodes

one of the following holds:

• If the node’s type is “BASIC” then it is transformed

to a JADE SimpleBehaviour (corresponding to a

Gaia activity).

o If the node’s name starts with “Send”, then add

a reference to the JADE ACLMessage class and

write code for sending a message depending on

the events of the transitions that have this node

as their source. For example the “send results”

activity in Figure 4 should send an ACL

message with either the accept or reject

performatives, the personal assistant as sender,

the meetings manager as receiver and a Meeting

instance as message body (from the transition

expression exiting the state).

o Else, if the node’s name starts with “Receive”,

then add a reference to the JADE ACLMessage

class and write code for receiving a message

depending on the events of the transitions that

have this node as their target. Also, add a

reference to the MessageTemplate JADE class

that is used for defining the type of message

expected and instantiate it according to the

events of the transitions that have this node as

their target.

o Else, add in the action method of the behaviour

the contents of the node’s Activity attribute.

• Else, if the node’s type is “AND”, then it is

transformed to a JADE ParallelBehaviour (the “||”

Gaia operator connects its sons). All the eligible

sons of the node are added as threaded behaviours

and the ParallelBehaviour ends when all its children

have ended.

• Else, if the node has two sons, the second of which

has a transition to itself then the latter is the case of

a behavior that will execute forever (corresponding

to the “ω” Gaia operator). Thus, this node must be

transformed to a behavior that will continuously

instantiate its second son (the first is a node of type

START, thus is ignored). This is achieved by

transforming it to a CyclicBehaviour that checks if

the eligible son has finished and if this is true it

restarts it.

• Else, if the node has three sons, the second of which

has a transition to itself then the latter is the case of

a behavior that will execute one or more times

(corresponding to the “+” Gaia operator). Thus, this

node must be transformed to a behavior that will

continuously instantiate its second son (the first is a

node of type START, thus is ignored), while a

specific condition holds. This is achieved by

transforming it to a SimpleBehaviour that checks if

the eligible son has finished and then, if the

condition of the transition that has it as target is true,

it restarts it. If not the behavior terminates.

• Else, if the node has a son whose type is

CONDITION then

o If the node has four sons, then its third son is the

case of a behavior that will execute zero or more

times (corresponding to the “*” Gaia operator).

Thus this node must be transformed to a

behavior that will conditionally instantiate its

third son (the first is a node of type START, the

second the one of type CONDITION). This is

achieved by transforming it to a

SimpleBehaviour that conditionally adds the

sub-behaviour in its constructor and that checks

(in its action method) if the eligible son has

finished and then if the condition of the

transition that has it as target is true it restarts it.

If not the behavior terminates.

o Else this node has a number of eligible sons one

of which must be instantiated (the “|” Gaia

operator connects its sons). It is transformed to

a SequentialBehaviour and at its constructor it

conditionally instantiates one of its sons.

• Else this node has a number of eligible sons that

must be executed sequentially (the “.” Gaia operator

connects its sons). This is achieved by transforming

it to a SequentialBehaviour and adding all its

eligible sons sub-behaviours.

Using the above algorithm we can deduce that the

nodes L, L.3.2 (in Figure 3) are transformed to

SequentialBehaviour descendants and L.2, L.3, L.4,

L3.2.2, L3.2.3 and L3.2.4 to SimpleBehaviour

descendants.

3.2 The Algorithm’s Implementation

The transformation process is comprised of multiple

steps and Eclipse allows to define this process (another

advantage of using Xpand) using a workflow file. The

latter can be used to define execution parameters,

usually through property files, and file generating

components. It initially loads some parameters through

a property file, the most important of which are the

name of the IAC model file and the directory for

producing the source code.

225

An Xpand file defines the templates for creating the

Java classes. The definition of the agent Xpand

template is presented in Figure 5. It starts with the

DEFINE statement. The FILE statement defines the

name of the file that is outputted and its body is the file

template. The used properties of the metamodel are

inserted in the «» tags. If the text in the «» tags ends

with parenthesis optionally including more text (e.g.

the case classFileName()) then it implies the execution

of an Xtend function. The getAgentBehaviour Xtend

function for example searches the tree for the eligible

sons of the root so that it finds the behaviours that need

to be added to the setup method of the agent. The agent

Xpand template file continues by defining relevant

templates for the different behaviours. The template

that will be used each time is selected according to the

IAC2JADE algorithm that we showed earlier.

«DEFINE agentClass(String packageName, Model model)

FOR IAC::Node»

 «FILE classFileName()»

 package «packageName»;

 import jade.core.Agent;
 public class «className()» extends Agent{
 public void setup(){

 addBehaviour(«getAgentBehaviour(this,model)»);

 }
 protected void takeDown() {

 doDelete();
 }
 }

 «ENDFILE»

«ENDDEFINE»

Figure 5. The Agent class Xpand template

For each variable in the IAC model a java class will

be created. If the variable type is that of an

ACLMessage then the relevant class is imported from

the jade framework. For all other variable types it is

assumed that the ontology created for this project will

contain them. In the case of the meetings management

project, there are two variable types, the Meeting

variable type refers to a class defined in the ontology of

the project and the ACLMessage variable type. The

class generated by the Xpand template is named after

the type of the variable including the string “Holder”.

Thus, the class generated for the Meeting variable type

is the MeetingHolder class. The latter has two

attributes, the owner, which is a reference to a JADE

Behaviour class (where the behavior that instantiates

this variable is inserted through the class constructor)

and the meeting attribute that references the Meeting

class. This approach, which is transparent to the

developer, allows a behaviour to change a variable

value and this change to be visible to all behaviours

that share this variable. The variables have the scope of

the transition in the expression of which they are used;

however, the developer may opt to widen the scope.

Variables are used to coordinate the execution of the

different agent capabilities (by being used in transition

expressions) and to allow capabilities to exchange

information (the scope of a variable defines which

capabilities can access it).

If the user has inserted the activity related to each

node in java code format he has to denote this by

starting the activity description with the string “/*Java

code*/”. In this case the code is inserted as-is in the

action method of the SimpleBehaviour. However, in

normal projects it is expected that diverse technologies

will be involved, in which case the programmers (each

an expert in his own domain, e.g. logic programming,

web service invocation, etc) will have to edit the action

methods of the simple behaviours.

Thus, the ASEME developer can generate all the

needed classes for his project just by executing the

“workflow.oaw” transformation workflow file in the

Eclipse IDE. The resulting files are the JADE Agent

and Behaviour descendant classes along with the

variable holder classes, 31 files total for the personal

assistant agent. For this transformation the workflow

execution time was 982 milliseconds in a normal

workstation with the Intel Core2Duo processor running

at 2.66GHz and 2GB of RAM.

The ReceiveOutcomeBehaviour, which corresponds

to the BASIC state “receive outcome” of the IAC

model, is depicted in Figure 6. The properties of the

class are two holders for ACL messages and one holder

for the Meeting class. These are initialized through its

constructor. The action and done methods have been

automatically produced including the definition of the

MessageTemplate class that defines the characteristics

of the expected message.

Finally, it is worth showing how a capability has

been defined as a software module. The automatically

generated NegotiateMeetingDateBehaviour.java file is

presented in Figure 7. It is the implemented personal

assistant’s part of the “Negotiate Meeting Date”

protocol. The reader can see that it defines the ACL

message holders for the types of messages that it

handles and which it then uses for adding its children

behaviours to the agent scheduler. This behaviour

along with its children behaviours and the used

variables can be used by any future JADE agent that

wants to participate as a personal assistant to the

“Negotiate Meeting Date” protocol. He just has to add

the NegotiateMeetingDateBehaviour to his agent’s

behaviour scheduler. The MeetingHolder variable is

used to integrate this module to other agent modules (it

is the variable passed to the behaviour constructor).

The reader should also note that the behaviour types

that are not SimpleBehaviours are not meant to be

edited by the programmers, they are complete. Thus,

226

among the 31 automatically generated classes for the

personal assistant agent of our example, the developer

will need just to define the action methods of 14 of

them, seven of which are message send and receive

methods, which will just require a final touch.

Therefore, the programmers will just have to write

code for seven methods.

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SimpleBehaviour;

import jade.lang.acl.ACLMessage;

import jade.lang.acl.MessageTemplate;

public class ReceiveOutcomeBehaviour extends

SimpleBehaviour {

 MeetingHolder e = null;

 ACLMessageHolder inform = null;

 ACLMessageHolder propose = null;

 protected MessageTemplate mt = null;

 boolean finished = false;

 public ReceiveOutcomeBehaviour(Agent a,

MeetingHolder e, ACLMessageHolder inform,
ACLMessageHolder propose) {

 super(a);

 this.e = e;

 this.inform = inform;

 this.propose = propose;

 }

 public void action() {

 mt = MessageTemplate.MatchPerformative(ACLMessage.

PROPOSE);

 mt = MessageTemplate.or(mt, MessageTemplate.

MatchPerformative(ACLMessage.INFORM));
 ACLMessage msg = myAgent.receive(mt);

 if (msg != null) {

 //insert message handling code

 finished = true;

 } else { block(); }

 }

 public boolean done() { return finished; }

}

Figure 6. A JADE receiver behaviour

4. Related Work and Conclusion

This paper showed how engineers, who adopt the

ASEME methodology, can design autonomous agents

(and multi-agent systems) and implement them using

the JADE framework. ASEME supports automatic

code generation from the design phase model (the

AMOLA Intra-Agent Control model), which is itself

automatically derived from the analysis phase model

and, specifically, the Gaia liveness formulas. The

information added in the design phase is the IAC

(which is a statechart) transition expressions and the

variables accessed by the different nodes.

In the past, researchers have proposed some

methods for generating JADE code from Gaia models.

The Gaia2JADE process [9], did not automate the

model transformation procedure from the Gaia roles

model to JADE code, it just provided some rules of

thumb for the selection of specific JADE behaviours

based on the Gaia liveness formula. Another work [1]

automated this selection using semantic web

technologies but stopped at defining each Gaia activity

as a JADE Behaviour (did not go in the detail of what

type of behaviour and did not use JADE composite

behaviours).

Other AOSE methodologies such as PASSI [3] and

Ingenias [5] also provide some kind of automation for

producing JADE code. PASSI employs the

AgentFactory tool to help the developer edit a JADE-

based implementation. This tool allows quick access to

all FIPA specified communication protocols and the

defined ontology. Ingenias is itself a development

framework that the developer must study and learn in

the same way that he learns the JADE framework.

Moreover, it uses a specific mental model, while in

ASEME the developers may use any mental model that

suits their problem.

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SequentialBehaviour;

public class NegotiateMeetingDateBehaviour extends

SequentialBehaviour {

 MeetingHolder e = null;

 ACLMessageHolder accept=new ACLMessageHolder(this);

 ACLMessageHolder inform=new ACLMessageHolder(this);

 ACLMessageHolder propose=new ACLMessageHolder(this);

 ACLMessageHolder reject=new ACLMessageHolder(this);

 public NegotiateMeetingDateBehaviour(Agent a,

MeetingHolder e) {

 super(a);

 this.e = e;

 addSubBehaviour(new ReceiveProposedDateBehaviour(

this.myAgent, e, propose));

 addSubBehaviour(new _open_group_DecideResponse_

sequence_SendResults_sequence_ReceiveOutcome_close_

group__one_or_more_times_Behaviour(this.myAgent, e,

accept, inform, propose, reject));

 addSubBehaviour(new UpdateScheduleBehaviour(

this.myAgent, e, inform));

 }
}

Figure 7. A JADE composite behaviour.

This work has some significant advantages

compared to [1] and [9]. Using the IAC model it allows

the designer to enrich his roles model by introducing

variables, agent message types and adding conditions

and events in the statechart transition expressions used

in the Agent level to coordinate the execution of the

agent capabilities. This allows for richer code

generation using the JADE CompositeBehaviour

descendant classes to orchestrate the implementation of

the statechart logic, an advantage over [3] and [5] as

well. The fact that the statechart logic is expressed

through the use of 100% automatically generated

behaviours addresses the "post-editing problem". The

latter prevents the re-generation of code from models

after doing some manual editing in the generated

source files. In ASEME, the developer can manually

edit the simple behaviors and re-generate the complex

behaviors when the statechart logic is changed.

227

For evaluating our work we used two case studies

on the development of two real-world systems. The

first is a module of the ASK-IT project [10], where we

built an agent-mediated service brokering system

including a broker agent and several added value

service provider agents. It included programming for

semantic service matching and interfaces to other

modules that were based on OSGi, a service oriented

architecture. The ontology was developed using the

Protégé ontology editor and its beangenerator add-on,

which generates java files representing an ontology that

can be used with the JADE environment.

The second is the Market-Miner project [15] where

we developed an autonomous product pricing agent

situated in a firm monitoring for changes of the prices

of competitors along with changes in firm policies and

deciding on the prices of the products on the self. In

Market-Miner we used Prolog for implementing the

decision making capability of the agent. Again, we

used the Protégé editor for creating the ontology.

These projects used different implementation

platforms, the first the JADE platform, while the

second a Java CASE tool, IBM Rational Rhapsody

(URL: http://www.ibm.com). For the latter it was

needed to transform the SRM model to an IAC model

manually (as Rhapsody does not offer an import tool

for statechart models) using the process defined in [14].

Table 1 shows the percentages of the total code (code

is measured in bytes) that was generated automatically

for each project (26% and 54% respectively) as a

benchmark.

Table 2. ASEME case studies
Project – Case study ASK-IT Market-Miner

Implementation Platform JADE Rhapsody

Total project code (bytes) 160,241 179,750
Automatically generated code 41,759 97,631

Written Java code 118,482 60,365

Other written code (Prolog) - 21,754

Automatically generated 26.06% 54.31%

References

[1] I.I. Bittencourt, P. Bispo, E. de Barros Costa, J. Pedro, D.

Véras, D. Dermeval, H.P.L. Luna, “Modeling JADE Agents

from GAIA Methodology under the Perspective of Semantic

Web”, Lecture Notes in Business Information Processing 24,

Springer-Verlag, 2009, pp. 780-789.

[2] F. Budinsky, D. Steinberg, R. Ellersick, E. Merks, S.A.

Brodsky, T.J. Grose, Eclipse Modeling Framework, Addison

Wesley, 2003.

[3] A. Chella, M. Cossentino, L. Sabatucci, “Tools and

patterns in designing multi-agent systems with PASSI”,

WSEAS Transactions on Communications 3(1), 2004.

[4] A. David, J. Deneux, J. d'Orso, “A Formal Semantics for

UML Statecharts”, Technical Report 2003-010, Uppsala

University, 2003.

[5] J.J. Gomez-Sanz, J. Pavon, “Implementing Multi-agent

Systems Organizations with INGENIAS”, Lecture Notes in

Computer Science 3862, Springer, 2006, pp. 236-251.

[6] D. Harel, H. Kugler, “The RHAPSODY Semantics of

Statecharts (Or on the Executable Core of the UML)”,

Lecture Notes in Computer Science 3147, 2004, pp. 325-354.

[7] F. Jouault, J. Bézivin, “KM3: A DSL for Metamodel

Specification”, Lecture Notes in Computer Science 4037,

Springer, Heidelberg, 2006, pp. 171-185.

[8] B. Klatt, “Xpand : A Closer Look at the Model2Text

Transformation Language”, 2007, URL: http://bar54.de/

benjamin.klatt-Xpand.pdf

[9] P. Moraitis and N. Spanoudakis, “The Gaia2JADE

Process for Multi-Agent Systems Development”, Applied

Artificial Intelligence Journal 20(4-5), 2006, pp. 251-273.

[10] P. Moraitis and N. Spanoudakis, “Argumentation-based

Agent Interaction in an Ambient Intelligence Context”, IEEE

Intelligent Systems 22(6), 2007, pp. 84-93.

[11] H.K. Rosen, Discreet Mathematics and its Applications,

Forth edition, McGraw Hill, 1999.

[12] S. Sendall, W. Kozaczynski, “Model Transformation:

The Heart and Soul of Model-Driven Software

Development”, IEEE Software 20(5), 2003, pp. 42-45.

[13] N. Spanoudakis, The Agent Systems Engineering

Methodology (ASEME), Philosophy Dissertation, Paris

Descartes University, Paris, France, 2009, URL:

http://users.isc.tuc.gr/~nispanoudakis/SpanoudakisThesis.pdf

[14] N. Spanoudakis, P. Moraitis, “Gaia Agents

Implementation through Models Transformation”. Lecture

Notes in Artificial Intelligence 5925, 2009, pp. 127-142.

[15] N. Spanoudakis, P. Moraitis, “Automated Product

Pricing Using Argumentation”, IFIP Advances in

Information and Communication Technology Book series,

Vol. 296, Springer, 2009, pp. 321-330.

[16] N. Spanoudakis, P. Moraitis, “Model-Driven Agents

Development with ASEME”, 11th International Workshop on

Agent Oriented Software Engineering (AOSE 2010),

Toronto, Canada, May 10-11, 2010, pp. 49-60.

[17] F. Zambonelli, N.R. Jennings, M. Wooldridge,

“Developing multiagent systems: the Gaia Methodology”,

ACM Transactions on Software Engineering 12(3), 2003, pp.

317-370.

228

