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Abstract
The purpose of this paper is to map the works in the Agent Oriented Software Engineering and Engineering Multi-agent 
Systems fields that use the statecharts paradigm to aid the software development process. We did not only focus on finding 
out the methods that employ statecharts, but also on identifying the application domains suitable for this kind of modeling. 
To achieve this goal we researched the available literature. We found out that statecharts are used by numerous methods that 
target diverse application domains such as robotics, internet agents, simulation, health and safety. Moreover, statecharts have 
been employed for modeling different things, such as the behaviour of agents, agent plans, agent interaction protocols. We 
also found reports of real-world systems and applications that were developed using these methods in the last 20 years and 
we identified trends and common characteristics that they have. Concluding, we have mapped the area where statecharts meet 
agent-oriented methodologies both in theory and practice. Moreover, we provide some exciting directions for future works.

Keywords  Statecharts · Finite state machines · Agent-Oriented Software Engineering · Engineering Multi-agent Systems · 
Applications

Introduction

The area is known as Agent-Oriented Software Engineer-
ing (AOSE), or, more recently, as Engineering Multi-agent 
Systems (EMAS), is located in the place where the Artifi-
cial Intelligence (AI) and the Software Engineering (SE) 
domains overlap. This area emerged when the agent para-
digm, a subdomain of AI, also referred to as Multi-agent 
Systems (MAS), or Distributed AI (DAI), was mature 
enough to start producing applications and it intersects the 
general area of statecharts research. Figure 1 attempts to 
depict this area. It may seem small in the figure, however, we 

will show that it is a live area that has produced significant 
results in the form of extensions to the state of the art but 
also in real-world applications.

The areas of Agent Technology and Statecharts have 
another characteristic in common, they both emerge in the 
eighties. Agent technology firstly appeared as Distributed 
Artificial Intelligence (DAI) [59], and later as Multi-agent 
Systems (MAS), while the statecharts as a method for engi-
neering complex and reactive systems [34]. Statecharts 
combine data flow and control and exploit ideas present in 
the Finite Automata, or Finite State Machines, and the Data 
Flow Diagrams. Modern statecharts combine the above ideas 
with the concept of orthogonality (concurrent execution 
modeling) and the hierarchical states, along with execution 
semantics and are also referred to as “Harel statecharts”, 
after the person that first conceived them [34].

Statecharts and Finite State Machines were quickly 
employed by AOSE methods and processes. They were 
initially used for modeling agent interactions [55, 70] and 
agent plans [16, 60, 65]. The agent interaction protocols 
have also been referred to as inter-agent control models [16, 
87]. Later, AOSE methods adopted a modular approach for 
defining agents, which employed modules as capabilities, 
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and needed a formalism for coordinating them. Statecharts 
were capable for modeling this kind of interaction (or agent 
behaviour) and such models were referred to as intra-agent 
control models [16, 91]. Moreover, newer platforms, such as 
the Repast Simphony agent-based modeling toolkit, catered 
for agent-based social simulation through statecharts [67].

Nowadays, as AI has moved from theory to practice and 
the emergence of 5G aims to connect AI-enabled com-
ponents [97], we expect that MAS applications will start 
appearing in the market. Until recently, MAS were usually 
prototypes, systems participating in scientific contests, such 
as Robocup, and results of R&D projects. Thus, they were 
limited in scale and many researchers opted to develop them 
without following a methodology. When they come to the 
market, though, and they need teamwork, documentation 
and maintenance, AOSE methods will become invaluable.

This paper extends a previous work [89] and aims to col-
lect all this experience of using statecharts for agent-related 
research and to show that the EMAS/AOSE area has not 
only used this formalism as is, but has proposed extensions 
and practices to further the state of the art. Moreover, and 
this is novel with respect to the previous work [89], this 
paper explores real-world systems developed using this for-
malism and tries to extract trends and to outline the applica-
tion domains. Finally, we will also take a look into the future 
by summing up the challenges identified by these works.

Therefore, this paper is intended as a first comprehensive 
attempt to gather all the works in the EMAS/AOSE field 
related to the language of statecharts, to outline the uses 
of this formalism and identify the application areas. It is 
addressed to researchers in both areas hoping to stimulate 
interaction. Towards this end, in the next section (back-
ground), both the statecharts and multiagent systems areas 
are introduced.

Thus, section two, first focuses on statecharts and finite 
state machines, also trying to disambiguate these terms, and, 
secondly on agent technology. Section three provides an 

overview of the use of the language of statecharts in AOSE 
and EMAS. Section four illustrates some key features that 
statecharts have enabled in EMAS/AOSE. Section five pro-
vides information regarding the application domains and 
characteristics of real-world agent-based systems modeled 
as statecharts. Section six discusses these findings, section 
seven takes a look at related work, and, section eight identi-
fies future research directions.

Background

Statecharts and Finite State Machines

Statecharts are often confused with automata [19], finite 
state automata, or finite state machines (FSMs) [7]. We will 
firstly define FSMs aiming to give the definition in such a 
way that it will later help the reader to identify the formal 
differences with statecharts (see Definition 1).

Definition 1  A Finite State Machine can be defined as a 
tuple (L, � ) where:

–	 L = (S,Name) is a set representing the states of the stat-
echart, and:

–	 S ⊆ ℕ
∗

–	 Name is a mapping from nodes to their names

–	 𝛿 ⊆ S × TE × S is the set of state transitions, where TE is 
a set of transition expressions

It is not unusual to see more information appear in such 
definitions, such as the FSM’s initial state, or the alphabet 
used for transition expressions, however, for the needs of this 
work Definition 1 will suffice.

Harel proposed the modern language of statecharts for 
modeling software systems [36] by adding control infor-
mation to a hierarchical data-flow diagram. Data Flow 
Diagrams (DFD) used to depict the flow of data within a 
system and the different processes that work with the data. 
In DFDs, processes can be further refined in a lower level 
of abstraction. This idea was used to allow for composite 
states, i.e., such that can contain other states. Lately, there 
are works that incorporate this feature into FSMs, in the so 
called hierarchical FSMs [10, 30, 106]. Another innovation 
with relation to FSMs is the orthogonal components, i.e., 
concurrently active states.

In this paper, when we refer to statecharts we mean Harel 
statecharts [34, 36]. To define them, we will expand Defini-
tion 1 with the following information. There are different 
state types:
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Fig. 1   The Statecharts and AOSE scientific domains
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–	 or-type states are composite states that contain other 
states (sub-states), only one of which can be active at 
any given time. The or-type state at the highest level, 
i.e., the one that contains all other states of a statechart 
is called the root

–	 and-type states are composite states that contain or-type 
states all of whom can be active at the same time and are 
also called “orthogonal components”

–	 basic-type states are simple states that may be active or 
not at any given time

–	 The start-type state is an auxiliary state, i.e. a state type 
that helps in defining the control flow of a statechart but 
it cannot be active at any given time (this is why aux-
iliary states are also referred to as pseudo-states). It is 
the default first state to enter when an or-type state is 
activated, thus each or-type state can have at most one 
start-type state

–	 When an end-type state (an auxiliary state) is entered this 
means that the or-type state that contains it has finished 
executing all its sub-states

–	 The condition-type state (an auxiliary state) forks a tran-
sition

–	 The shallow_history-type state (an auxiliary state) allows 
for “remembering” the last active state in an or-type state

–	 history-type state (an auxiliary state) allows for “remem-
bering” the last active state in a whole branch of L

Note that all the auxiliary state types along with the basic 
state type are leaves of L. Now we can give Definition 2.

Definition 2  A Statechart can be defined as a tuple (L, � ) 
where:

–	 L = (S, �,Name,Activity) is an ordered rooted tree struc-
ture representing the states of the statechart, and:

–	 S ⊆ ℕ
∗

–	 Name is a mapping from nodes to their names.
–	 � ∶ S → {and, or, basic, start, end, shallow_history, history, condition} , is 

a mapping from the set of nodes to labels giving the 
type of each node.

–	 Activity is a mapping from nodes to their algorithms 
in text format implementing the processes of the 
respective states.

–	 𝛿 ⊆ S × TE × S is the set of state transitions, where TE is 
a set of transition expressions

Each transition from one state (source) to another (target) 
is labeled by a transition expression (TE), whose general 
syntax is e[c]/a, where e is the event that triggers the tran-
sition; c is a condition that must be true in order for the 
transition to be taken when e occurs; and a is an action that 

takes place when the transition is taken. All elements of the 
transition expression are optional. Moreover, there can also 
be compound transitions (CT), that can have more than one 
source or target states. We will not refer to that level of detail 
in this work. The scope of a transition is the lowest level or-
type state that is a common ancestor of both the source and 
target states in L. A transition without an event is enabled 
when the activity of its source state is completed.

The statechart formalism also defines execution seman-
tics. We will give a brief overview, for the details the reader 
is referred to Harel and Naamad [36]. The execution of a 
statechart is a sequence of steps. After each step, we view 
a snapshot of the statechart. Execution starts at start states. 
When a step is taken, the events that have happened are 
sensed, including retrospection events (such as the entering 
of a state at the previous step). When the step finishes, the 
statechart is in a valid configuration, i.e. specific basic-type 
states are active and the respective or-type and and-type 
states up to the root. Other types of states cannot be included 
in the configuration (e.g. the start-type state cannot be active 
in a snapshot).

When a transition occurs all states in its scope are exited 
and the target states are entered. Multiple concurrently active 
statecharts are considered to be orthogonal components at 
the highest level of a single statechart. If one of the stat-
echarts becomes non-active (e.g. when the activity it con-
trols is stopped) the other charts continue to be active and 
that statechart enters an idle state until it is restarted.

The language of statecharts has also been adopted by the 
Unified Modeling Language (UML), which has been stand-
ardized by the Object Management Group (OMG), (https://​
www.​uml.​org) for object-oriented design. UML employs 
statecharts for defining the dynamic behavior of an object. 
The main difference between Harel and UML statecharts is 
that the latter focus only on defining the dynamic behaviour 
of an object (class instance), while Harel statecharts focus 
on defining the behaviour of a system.

Multi‑agent Systems

EMAS/AOSE is concerned with the methodological 
approach to modeling agent-based systems. Agents are the 
descendants of objects and have several properties that are 
not mainstream for classical software engineering and this is 
why AOSE produces new metaphors, concepts and methods 
to aid the development process. Agents are [102]:

–	 proactive (have goals and act to achieve them),
–	 reactive (respond to events occurring in their environ-

ment)
–	 social (are acquainted with other similar software and can 

cooperate or compete with it),

https://www.uml.org
https://www.uml.org
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–	 autonomous (do not need human intervention to act), 
and,

–	 intelligent (may perform such tasks that, when performed 
by humans, we consider as evidence of a certain intel-
ligence).

The reader just needs to keep these properties in mind. The 
main differences of agents with objects is that they perceive 
their environment and can act on it and that they usually fol-
low the pattern sense (update the knowledge about the envi-
ronment based on the latest signals sensed), think (update 
the agent’s goals based on the updated knowledge about the 
environment), act (select and apply the best action based on 
the updated goals) [102, 105].

Now, acting is related to selecting and activating a valid 
plan for reaching a selected goal. Moreover, since their con-
ception, MAS were intended to solve more complex prob-
lems than those that a single agent can solve. Therefore, their 
functionality depends on communication and coordination, 
which are achieved through the definition of agent interac-
tion protocols. Finally, as agents are complex software they 
are built of diverse components that must work together to 
present a coherent behaviour (consider, e.g., a robot).

Engineering Multi‑agent Systems 
with Statecharts

Among the first to use Harel statecharts in AOSE was Moore 
[55], who adopted them for defining agent interaction pro-
tocols. He also defined the Formal Language for Business 
Communication (FLBC), an Agent Communication Lan-
guage (ACL) that incorporated speech acts to distinguish 
between message types. A speech act is an act that a speaker 
performs when making an utterance [4]. Moore introduced 
speech acts as Performatives that are meant to express the 
intent of an agent when it sends a message to another agent. 
Thus, a compact representation of an ACL message uses the 
formalism performative(sender,  receiver, content), where 
the performative is the speech act, the sender is the agent 
that sends the message, the receiver is the intended recipient 
of the message and the content is the data, i.e. the message 
itself.

According to the work of Moore, a conversation policy 
(CP) defines (a) how one or more conversation partners 
respond to messages they receive, (b) what messages a part-
ner expects in response to a message it sends, and, (c) the 
rules for choosing among competing courses of action.

Moore introduced the idea of modeling the activities of 
the participants in a conversation as orthogonal components 
of a statechart. The transition expressions contain the actions 
of sending and receiving a message. Moore’s conversa-
tion policies allow for exceptions when a conversation is 

interrupted by assuming that an agent has stored all allowed 
CPs in a kind of repository where it can browse for a new 
policy to handle the exception, in the form of a sub-dialog to 
the original one. When this sub-dialog terminates the origi-
nal one can resume.

The first AOSE methodology to adopt the language of 
statecharts was the Multiagent Systems Engineering meth-
odology (MaSE) [15, 16]. In the MaSE design phase, the 
first activity is about creating agent classes and then agent 
classes can connect to other classes indicating the possible 
interactions or conversations. The latter are defined in the 
Communication Class Diagram (CCD), which is in the form 
of a statechart. MaSE defines a system goal-oriented MAS 
development methodology. MaSE introduced the concepts 
of inter- and intra-agent interactions that must be integrated 
in the agent design.

A Communication Class Diagram (CCD) aggregates as 
many statecharts as are the participating roles. Each role 
behaviour within the communication protocol is defined in 
its own statechart.

To define MaSE statecharts the reader can use 
Definition  2, however, the � mapping changes to 
S → {basic, start, end} . As there are no composite states 
(and, or), the depth of the routed tree structure is always 
equal to one. Thus, the plans or CCDs are individual stat-
echarts. Basic-type nodes can have entry and/or do actions. 
The transition expressions are in the form e[c]̂a , where e 
and a are respectively incoming and outgoing messages.

A message is defined by its performative and optional 
arguments (variables) in parenthesis. E.g. acknowledge or 
reportingStatus(status). The recipients are optionally used 
if more than two roles participate in the interaction.

Dumas et al. [17] proposed the combination of statecharts 
and defeasible logic for defining the behaviour of an agent. 
They used statecharts for the control module of the agent 
and defeasible logic for the reasoning module. Moreover, in 
their formalism they define a communication module that 
sends and receives messages. When it receives a message, 
it generates an event for the control statechart to catch. Like-
wise, the statechart can trigger the sending of a message 
through appropriate action expressions. Although it was 
mostly theoretical work, the way that they motivated the 
use of statecharts is very interesting and is also valid until 
today. For selecting the appropriate modeling language they 
used criteria such as:

–	 formal, in the sense that its syntax and semantics are 
precisely defined. In that way the models behaviour is 
predictable, explainable, verifiable and executable

–	 conceptual, i.e. it should allow its users to focus at the 
task at hand, at the right level of abstraction, and not 
have to deal with other aspects, such as implementation 
language. This quality has also been related to model-
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driven engineering and the platform independence of 
design models [47]

–	 comprehensible by humans, e.g. offering an intuitive 
graphical representation

–	 expressive enough to allow for modeling all possible 
behaviours

The above criteria can also be considered as advantages of 
the statechart formalism, as it was selected because it cov-
ered all of them.

Statecharts were also employed for modeling robotic 
applications. Arai and Stolenberg [2] proposed an extension 
to state machines with a new symbol that is placed between 
two orthogonal components and connects states that need to 
execute concurrently, thus allowing for synchronization of 
activities within statecharts.

König [48] used the state transition diagrams (STD) for-
malism for modeling protocols, but also for the agent’s deci-
sion activities. An STD is a special case of a Finite State 
Machine (FSM) that allows transitions between states either 
when an external or an internal event occurs to the system 
(according to his work, transitions in FSMs can only contain 
external events).

König defined a protocol as a structured exchange of mes-
sages. Then, he compared three approaches to modeling con-
versation policies, i.e. those based on STDs, FSMs and Petri 
nets. He observed that all approaches modeling conversa-
tions from the viewpoint of an observer are using either STD 
or petri nets, in contrast to those using FSM (or statecharts) 
that are representing the conversation from the viewpoint 
of a participating agent. For modeling a conversation from 
the point of view of a participating agent who receives and 
sends messages, König argued that a model supporting input 
and output operations is more suitable. When a conversation 
should be modeled from an observer’s view, it is sufficient to 
use a model which is able to express that a message has been 
transmitted from one agent to another, like a transition in a 
STD or in a petri net. He chose STD aiming to model both 
activities and protocols, allowing also for object-oriented 
development.

König made the assumption that only two agents are 
involved in a protocol, i.e. the primary (who initiates the 
interaction) and the secondary. Moreover, the exchange of 
messages is always synchronous, i.e., when one agent sends 
a message, the other agent is in a state of receiving a mes-
sage (they cannot both be sending at the same time). Then, 
he defines an FSM for the observer and from it he derives 
the FSMs of the participants. In the next level (higher level 
of abstraction) he defines communication acts that can 
make use of the protocols in the form of STDs. Finally, in 
a third level he defines the activities of the agents that can 
invoke one or more communication acts and assume a wait 
state until the acts finish. The acts themselves can choose to 

execute one or more protocols and enter a wait state until 
they are finished. All these can only happen sequentially.

The Gaia methodology [101] emphasized the need for 
new abstractions to model agent-based systems and sup-
ported both the levels of the individual agent structure and 
the agent society in the multi-agent (MAS) development 
process. Gaia added the notion of situatedness to the agent 
concept [105]. According to this notion, the agents perform 
their actions while situated in a particular environment. The 
latter can be a computational environment (e.g. a website) or 
a physical one (a room) and the agent can sense and act in it.

MAS, according to Gaia, are viewed as being composed 
of a number of autonomous interactive agents that live in an 
organized society, in which each agent plays one or more 
specific roles. Gaia defined the structure of a MAS in terms 
of a role model. The model identifies the roles that agents 
have to play within the MAS and the interaction protocols 
between the different roles.

The objective of the Gaia analysis phase is the identifica-
tion of the roles and the modelling of interactions between 
the roles found. Roles consist of four attributes: responsibili-
ties, permissions, activities and protocols. Responsibilities 
are the key attribute related to a role since they determine 
the functionality. Responsibilities are of two types: liveness 
properties - the role has to add something good to the sys-
tem, and safety properties - the role must prevent something 
bad from happening to the system. Liveness describes the 
tasks that an agent must fulfil given certain environmen-
tal conditions and safety ensures that an acceptable state of 
affairs is maintained during the execution cycle. To realize 
responsibilities, a role has a set of permissions. Permissions 
represent what the role is allowed to do and, in particular, 
which information resources it is allowed to access. The 
activities are tasks that an agent performs without interact-
ing with other agents. Finally, protocols are the specific pat-
terns of interaction, e.g. a seller role can support different 
auction protocols. Gaia defined operators and templates for 
representing roles and their attributes and schemas for the 
abstract representation of interactions between the various 
roles in a system.

The Gaia2JADE process appeared in 2003 [56, 58] and 
was concerned with the way to implement a multi-agent sys-
tem with the Java Agent Development Framework (JADE) 
[5] framework, one of the most popular agent platforms [6], 
using the Gaia methodology for analysis and design pur-
poses. This process used the Gaia models and provided a 
roadmap for transforming Gaia liveness formulas to Finite 
State Machine (FSM) diagrams. It provided a method for 
transforming the FSMs to JADE behaviours using the FSM-
Behaviour native JADE construct [5].

Paurobally et al. [70] combined statecharts with the Agent 
Negotiation Meta-Language (ANML), which is based on 
Propositional Dynamic Logic (PDL) for use in actions and 
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transition expressions. PDL blends the ideas behind proposi-
tional logic and dynamic logic by adding actions while omit-
ting data; hence the terms of PDL are actions and proposi-
tions. Then, the authors defined templates for transforming 
the ANML formulas to statecharts, extending the statecharts 
language in the process. The representation of all computa-
tion is in transitions, while states just describe a situation 
(where specific conditions hold). The representation can be 
general, or specialized for a specific agent participant. The 
expressions in the transitions are ANML formulas.

The proposal of Paurobally et al. [70] and later of Dunn-
Davies et al. [18] did not employ the orthogonality feature 
of the statecharts because they considered that the agents 
are not subsystems and, thus, execute on their own. If they 
were combined as orthogonal components for execution they 
would have to combine parts of interactions between tempo-
rally autonomous agents into a pseudo whole.

To define propositional statecharts the reader can 
use Definition  2, however, the � mapping changes to 
S → {or, basic, start, end} . BASIC nodes can have actions. 
The transition expressions are in the form e; c?a, where e 
and a are respectively incoming and outgoing messages.

In 2004 there was also a proposal for the use of Distilled 
StateCharts (DSCs) for modeling mobile agents [26]. The 
proposal came along an object-oriented implementation 
based on UML modeling. DSCs define some limitations to 
the language of Statecharts, e.g. only the OR-state decom-
position is used, states do not have properties such as activi-
ties, therefore activities are only carried out under the form 
of atomic actions attached to transitions. If their source is 
not start and history states, transitions always include an 
event. In a later work, Fortino et al. [24] proposed a JADE 
implementation for DSC.

Murray [60] worked in the direction of defining Robo-
cup soccer player agents. He used statecharts to define plans 
for the different roles that an agent can assume, e.g. goalie, 
defender, attacker. For example, when an attacker is in the 
state of having the ball he can exit that state if he passes 
it (state activity completion), or if the referee signals (an 
external event).

Murray also recognised the need for synchronizing co-
players’ actions. He coped with this requirement in two dif-
ferent ways. On one hand he employed wait states where 
one agent can reside while waiting for another to complete 
an action. On the other hand, he also proposed an extension 
to statecharts with synch states for synchronizing the actions 
of different agents.

His work, along with the previous one of Obst [66], 
supported semi-automatic code generation for Robolog, 
a robot programming language based on Prolog. A simi-
lar layered approach was used later [45] for modeling the 
behavior of non-player characters in computer games. 
Murray proposed a methodology and tool (StatEdit) for 

capturing a player’s behavior based on a three-layered 
approach:

–	 In the top level, the different roles (modes) that the player 
can assume when active are represented as states and the 
transitions indicate a change of role

–	 In a middle level an agent chooses among a set of plans 
adding detail at each mode of the previous level. The 
states here capture the agent general activity and show 
where the player synchronizes its actions with other roles 
(e.g. wait for the center player to pass the ball and then 
shoot to score).

–	 On a bottom level of the hierarchy each activity of the 
role is detailed to specific actions (e.g. acquire the ball 
and then kick towards the goal)

Later, ASEME [85, 91], emerged as an evolution of the 
Gaia2JADE process [58] influenced by the requirements 
analysis phase of Tropos [9] and the work of Moore [55] on 
conversation policies. It collected best practices from previ-
ous works and it uniquely, among AOSE methodologies, 
used the statecharts formalism both for inter- and intra-agent 
control modeling. Moreover, it extended the statechart for-
malism by adding state-dependent variables. Thus, each state 
is associated with variables that it can monitor and change/
update. To propose this extension, the authors were moti-
vated by the Gaia methodology and the role’s access to data 
structures with the read or write/update permissions [101]. 
Thus, ASEME proposed the addition of the Var property to 
the statechart nodes. The different states can be connected 
with variables that can be used for exchanging information.

Definition 3  The tuple (L, � ) defined in Definition 2 is 
extended by adding Var to L:

–	 L = (S, �,Name,Activity,Var) is an ordered rooted tree 
structure representing the states of the statechart, where:

–	 Var is a mapping from nodes to sets of variables. 
var(l) stands for the subset of local variables of a 
particular node l.

According to ASEME, a state name that starts with the 
string “send” implies an inter-agent message sending behav-
ior for the state’s activity. A send state has only one exit-
ing transition and its event describes the message(s) sent. 
Similarly, a state name that starts with the string “receive” 
implies that the activity of the state should wait for the 
receipt of one or more inter-agent messages. The type and 
quantity of the expected messages can be implied by the 
events monitored by the transition expressions that have this 
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state as source. The events that can be used in the transition 
expressions can be:

–	 a sent or received (or perceived, in general) inter-agent 
message,

–	 a change in one of the executing state’s variables (also 
referred to as an intra-agent message),

–	 a timeout, and,
–	 the ending of the executing state activity (empty event).

This formalism allows also for environment-based commu-
nication by defining state activities that monitor for a spe-
cific effect in the environment. This effect can be expected 
to be caused by any other agent or a particular agent. Such 
activities can be, for example, “wait for someone to appear” 
or “wait until my counterpart lifts the object” respectively.

At about the same time, researchers proposed a method 
for mapping goal-oriented requirements, such as those cap-
tured in the Tropos requirements analysis phase [9], to Harel 
statecharts [104]. These allowed for high-variability design 
as Tropos allows for defining alternative ways to achieve a 
system goal.

Later, researchers explored the translation of agent mod-
els defined using the Distilled StateCharts (DSC) [23, 26] 
into a Belief-Desires-Intentions (BDI) framework [25], 
including a BDI-like code generation feature. BDI is an 
example of an agent architecture including an execution 
paradigm besides ontological features [71]. BDI advocates 
the fact that an agent first senses its environment and updates 
its beliefs, then it searches possible desires, i.e. goals that 
are valid in this environment state, and, finally, selects some 

of these desires to actively pursue. The latter are now its 
intentions. Spanoudakis [89] provided a statechart model for 
modelling the dynamic behaviour of a BDI agent following 
the 3APL [13] agent development language.

In another work, researchers provided the Kouretes 
Statechart Editor (KSE) CASE tool for authoring robotic 
behaviours [94]. Given existing bottom level functionalities 
[60], e.g. kick the ball, the modeler could define a robotic 
behaviour visually and immediately generate the code and 
upload it to a humanoid (Nao) robot.

Another work aims to aid the development of physical 
agents (robots) using statecharts to model Teleo-Reactive 
behaviours [76]. A Teleo-Reactive program can be seen as 
a set of prioritized condition/action rules that trigger actions 
whose continuous execution leads the system to satisfy a 
goal [64].

An interesting type of applications for multi-agent sys-
tems is that of simulations. Statecharts have been used 
for modeling the behaviour of agents in simulations. The 
TSTATES Domain-specific Language (DSL) for the Net-
Logo simulation platform [81] employs state machines for 
defining the behaviour of agents (also called turtles) [75]. 
Moreover, in his work, Sakellariou proposes the concept of 
callable state machines that can be invoked by a transition 
from any state, a concept similar to that of nested functions. 
In their work, Ozik et al. [67] also use statecharts in the 
Repast Simphony tool for social simulations.

In Table 1, the reader can find the summary of our find-
ings. There, we outline the AOSE works related to stat-
echarts in chronological order, including the formalism that 
they follow and the possible extensions or limitations they 

Table 1   A summary of the 
AOSE methods using the 
statecharts formalism

The following abbreviations have been employed in the second column (Use): C for (intra-agent) control, P 
for plans and I for interactions (inter-agent control). Additionally, the abbreviation TE has been used in the 
fifth column (Extension) for transition expressions

Work Use Formalism Year Extension

CPs [55] I-P Def. 2 2000 Transition expressions (TE)
MaSE [15, 16] P Def. 2 2001 TE, no composite states
Dumas et al. [17] C Def. 2 2002 TE with communication module
Arai & Stolenberg [2] C Def. 2 2002 Synchronization states
STD [48] I–C–P Def. 1 2003 TE with internal events
Gaia2JADE [56, 58] C–P Def. 1 2003 –
ANML [18, 70] I–P Def. 2 2004 TE, no orthogonality
DSCs [24, 26] C–P Def. 2 2004 TE, no state actions, no orthogonality
StatEdit [45, 60, 66] I–C–P Def. 2 2004 Synchronization states
ASEME [85, 91] I–C–P Def. 3 2008 TE
Tropos [104] C–P Def. 2 2008 TE
TSTATES [75] C–P Def. 1 2012 Callable FSMs
KSE [94] C–P Def. 3 2013 TE
Repast simphony [67] C–P Def. 2 2015 TE, no orthogonality
Teleo-Reactive [76] C–P Def. 2 2017 TE
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impose. Moreover, there is an indication of whether the stat-
echarts formalism has been used for modeling intra-agent 
control, agent plans, interactions (inter-agent control), or 
their combinations.

AOSE Features Supported with Statecharts

In this section, we provide some examples that demonstrate 
how to use statecharts for representing plans and agent inter-
action protocols; how their use can facilitate the integration 
of inter-agent control models to the intra-agent control mod-
els; how to support sub-dialogs and how to embed dialogs 
in dialogs.

We will consider the meetings scheduling example, where 
end users are assisted in managing their meetings by a per-
sonal assistant. The latter manages the user’s schedule. The 
meetings organization process is managed by a meetings 
manager. The meetings manager contacts the users’ assis-
tants whenever she needs to negotiate a meeting date. This 

example (the meetings management system) has been widely 
used in the past for demonstrating the use of AOSE method-
ologies, e.g. for the Prometheus, MAS-CommonKADS [38] 
and ASEME [91]. To demonstrate the different approaches 
we will model a simple schedule request protocol, where an 
agent, the requester role, wants to get the meetings schedule 
of another agent, the provider role. The provider checks if 
the requester is trusted. Then it checks if it has a schedule to 
share. If yes, then it replies informing the requester about its 
schedule. If not, then it replies with failure. If the requester 
is not trusted, then the provider refuses to send it informa-
tion. Finally, both participants agree that the answer must 
take place within 10 seconds or else the protocol terminates 
without the requester receiving a response.

Modeling Plans

MaSE used statecharts as plans for roles. For our meet-
ings scheduling example, the schedule requester’s plan 
is depicted in Fig. 2a. The plan starts when the request 

Fig. 2   The plans for the 
requester and provider roles
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intra-agent message is instantiated (the guard checks that 
it is not null) and the role sends the Request message. The 
intra-message means that the request has been instantiated 
by another plan of this agent. The role senses this instantia-
tion and initiates this new plan.

The plan goes to the Wait state and on entry it sets a 
timer for 10,000 milliseconds (10 seconds). The plan fin-
ishes when the role receives one of three messages or the 
timer time-outs. The three possible responses are :

–	 Performative: Inform, Content: results. The results will 
typically be an instance of a Schedule class (it is assumed 
that it has been defined in an ontology).

–	 Performative: Refuse, Content: null. The null entry 
shows that this item is empty, i.e. the role does not have 
to provide more information other than the utterance 
indicated by the performative.

–	 Performative: Failure, Content: null.

The provider’s plan is depicted in Fig. 2b. The plan starts 
when the Request inter-agent message is received. It goes 
to the ProcessRequest state. The plan finishes when the role 
sends its reply or the timer time-outs.

Modeling Agent Interactions

In this section, we try to see this interaction protocol from 
the point of view of the propositional statecharts method 
[18]. In propositional statecharts, there are three (or more) 
views, a global view where the protocol is defined abstractly, 
and then individual views, one per participating role.

In the case of the schedule request protocol a possible 
global view is depicted in Fig. 3. The protocol is represented 
by an or-type state that contains two or-type substates, one 
for encapsulating all the different states that represent the 
execution of the protocol (in our example the schedule 
request pending state) and one for encapsulating the possible 
concluding states (the schedule request concluded state). In 
the former, we have just one basic-state for processing the 
request, where the provider is expected to deliver a result 
- res. The possible concluding states are that the protocol 
finished with a timeout (time out) and that the protocol fin-
ished by the requester sending a message to the provider 
(received result).

The different roles’ implementation of the abstract pro-
tocol are subsequently defined. The states remain as they 
are, however, the transition expressions and state actions 
change to reflect each role’s actions and monitored events. 
The reader can check the possible implementations of the 
abstract protocol in Fig. 4a for the requester role and in 
Fig. 4b for the provider, Note how the different inbound and 
outbound messages are modeled and the logical language 
in the expressions.

Modeling Inter‑ and Intra‑agent Control

ASEME defines protocols as statecharts where the partici-
pating roles are defined as orthogonal components. See for 
example the schedule request protocol model in Fig. 5, with 
the schedule requester (sr) and the schedule provider (sp) 
as orthogonal components in the ScheduleRequest protocol 
state. Moreover, these roles are abstract roles, any user’s 
personal assistant (PA) can use this protocol either as a 

Fig. 3   A propositional stat-
echart representation of a proto-
col for requesting a schedule
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Fig. 4   The individual stat-
echarts for the requester and 
provider roles

Fig. 5   Statechart representation 
of a protocol for requesting a 
schedule. The diamond shape 
represents a condition state
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requester or as a provider (we use the abbreviation sr for 
schedule requester and sp for schedule provider).

The sr sends a message using the Request performative 
whose variables are the sending and receiving agents and the 
request, which can be an object for object-oriented imple-
mentations or a query for logic-based implementations. On 
the other hand, the schedule provider waits to receive this 
message, then processes the request and either replies with a 
Refuse (the service is refused for this agent), Failure (failed 
to reply), or Inform (with the user’s schedule data) performa-
tive. Note that the protocol terminates for both roles after a 
timeout of 10,000 milliseconds.

A similar model also appears in the work of Seo et al. [78] 
for buying products. Note the use of the message receiving 
states as synchronization points where an agent waits for 
another to finish its task, similarly to the work of Murray 
[60].

In Fig. 6 the reader can see yet another protocol defi-
nition, the one for negotiating the meeting date. This 
protocol is between the meetings manager (mm) and per-
sonal assistant (pa) roles. Now these are concrete roles, 
not abstract such as the sr and sp. In the figure, the reader 
can check out the composite states representing nego-
tiation rounds. The transitions that have these states (i.e. 

MeetingsManagerNegotiationRound and PersonalAssistant-
NegotiationRound) both as source and target facilitate this. 
Note that transition expressions have been omitted so as not 
to clutter the diagram. This statechart is valid for one or 
more pa role participants as the ReceiveResponse state can 
be set to receive any number of requests. The number of 
requests can even be a variable so that the number of pa role 
participants is dynamic.

Then, when the designer defines the intra-agent control, 
again as a statechart, she can get the desired role (orthogonal 
component from a protocol definition) and use it. Moreo-
ver, although protocols define the control aspect of the role 
(events, conditions, actions in TE), the activity part is left 
open for the agent developer to realise, similarly to the 
approach of Moore [55]. Thus, orthogonality is very help-
ful for providing a complete view of the protocol including 
all possible actors. Then, when it comes to implementation, 
each agent type can realize only the orthogonal component 
that corresponds to its role. Also, using orthogonality, one 
can develop (and simulate) agents that can concurrently par-
ticipate into more than one protocols.

The work of Moore [55] supported the possibility of an 
agent getting involved in a sub-dialog when in a dialog. 
Moore supposed that the agent has access to a repository of 

Fig. 6   Statechart representation 
of a protocol for negotiating a 
meeting date



	 SN Computer Science (2021) 2:317317  Page 12 of 21

SN Computer Science

dialogs and dynamically selects a sub-dialog model when-
ever an incoming message is not permitted by the existing 
dialog but is permitted by another in the repository. In the 
intra-agent control model, ASEME allows for this possibility 
as all roles the agent can participate in can be instantiated 
as orthogonal components. Information between orthogonal 
components can be exchanged through the use of common 
variables and their usage in transition expressions, thus, a 
given protocol can remain in a given state until some infor-
mation becomes available (an implicit intra-agent message).

Another feature of ASEME is the catering for embedded 
dialogs in an agent’s design, i.e. in its intra-agent control 
model. Dialogs occur when an agent participates in an agent 
interaction protocol. Instances of dialogs contained entirely 

within other dialogs are said to be embedded [53]. ASEME 
defines that when a role in a protocol model is integrated 
into an intra-agent control model, the protocol role or-type 
state is inserted as-is in the intra-agent control. Then, the 
designer is free to define the activities of the basic states. 
The designer can even select to expand a basic state and 
turn it to an or-type state. A very interesting recent paper 
of Syriani et al. [92] researches exactly this issue, i.e. what 
refinements are possible to a part of a statechart that preserve 
its structure and behavior.

To illustrate these features, we provide the intra-agent 
control model of a personal assistant agent that has the capa-
bility to participate in both the above protocols in Fig. 7. The 
pa realizes the like-named role in the NegotiateMeetingDate 

Fig. 7   Statechart representation 
of a personal assistant agent 
featuring a an embedded dialog 
(ScheduleRequest_ScheduleRe-
quester embedded in Person-
alAssistantNegotiate) and b a 
sub-dialog (ScheduleRequest_
ScheduleProvider)
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protocol (in the NegotiateMeetingDate_PersonalAssistant 
composite state). While negotiating, it is always possible for 
another agent or the meetings manager to ask it for its user’s 
schedule (a sub-dialog), as it realises the ScheduleProvider 
role of the ScheduleRequest protocol (in the ScheduleRe-
quest_ScheduleProvider composite state).

Another interesting feature that exploits the composite 
states of a statechart is the ability to expand a basic state and 
further elaborate it. For example, in Fig. 7 the intra-agent 
control modeler has chosen to expand the DecideResponse 
state in the PersonalAssistantNegotiationRound state to give 
to the agent the possibility to explore another agent’s sched-
ule before taking its decision. This is how a dialog is embed-
ded within another. This time the PA uses the ScheduleRe-
quest protocol as a ScheduleRequester. A similar approach 
has been followed by Dumas [17].

Real World Applications of Agents Modeled 
with Statecharts

In this section, we try to provide a view of the agent-based 
real-world systems that have been developed using meth-
ods that employ the language of statecharts. We searched 
the literature for papers reporting on the development of 
such systems and we found out that several such exist. 
With the term real-world systems, we mean systems that 
have been implemented and evaluated, usually in the 

context of a research and development project. And, of 
course, they must have been reported in the literature.

Table 2 shows the systems/applications that we col-
lected sorted by the year of publication to show the time 
on which these applications started drawing attention. A 
first use of this table is to identify the application domains. 
Another use is the application domains trend. For exam-
ple, the robotic applications domain seems to be spread 
throughout the covered years. Smart grid and internet of 
things-related systems are currently trending.

Specifically, among them we find single-agent or MAS 
applications for the smart grid, e.g. secure, automated 
home energy management [20], and a power distribu-
tion network management system [39], internet agents, 
e.g. information for people on the move using their smart 
phones [57], automated negotiations [28], a conference 
management system [14], a product pricing agent for retail 
market chains [86], a personalized learning platform [27], 
structural health monitoring systems [82, 83], robotic 
applications, e.g. a soccer playing robot for the robocup 
competition [94], a personal assistant robot [3], produc-
tion and management in industry 4.0, e.g. safety criti-
cal mechatronic systems [29], project management and 
quality assurance [79], a system integrating IoT (Internet 
of Things) devices to a MAS-based manufacturing envi-
ronment [62], simulation, e.g. robotic soccer [61], social 
simulation [75], playing the wumpus game [68], remote 
monitoring and health care [1, 88].

Table 2   Real world agent-based systems modeled using statecharts and their application domains

Work Year Keywords

[61] 2001 Robocup; simulation
[29] 2003 Safety critical; dynamic adaptation; mechatronic systems
[57] 2004 Infomobility services; personal travel assistance
[28] 2005 E-commerce; automated negotiations
[14] 2008 Conference management system
[79] 2008 Project management; productivity and quality improvements
[27] 2009 Educational system
[86] 2009 Product pricing; retail business
[80, 100] 2010 Clinical decision support systems
[82, 83] 2012 Wind turbine; structural health monitoring; smart structures
[75] 2012 Crowd behaviour simulation; termites simulation
[94] 2013 Robocup; soccer; physical robot;
[68] 2014 Wumpus world; blackboard
[88] 2015 Health care; ambient intelligence; ambient assisted living
[1] 2016 Automation; supervisory control; data acquisition; real-time monitoring; large-scale 

SCADA; adaptive industrial networks; PLC
[39] 2016 Smart grid; demand response; flexible energy market
[62] 2018 Manufacturing systems; internet of things
[20] 2018 Demand response; home energy management; flexibility; access control; device abstraction
[3] 2019 Robotic application; personal assistant
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Table 3 tries to provide a view of the examined applica-
tions with respect to the models used for design. Thus, on the 
second column the reader will find the modeling language 
used. It can range from a simple diagram of the statechart, 
i.e. FSM, UML and Harel, to a Domain Specific Language 
(DSL), i.e. agentTool [49], AMOLA [85] and TSTATES 
[75]. The reader can connect the applications to the para-
digms that we have seen in the previous sections. Thus, FSM 
and TSTATES correspond to finite state machines (Def. 1), 
agentTool (supporting the MaSE methodology), UML, 
UML clone and Harel clone correspond to Harel statecharts 
(Def. 2), and, AMOLA to ASEME statecharts (Def. 3).

On the third column of Table 3, the statechart execution 
engine is mentioned, i.e. , AnyLogic (https://​www.​anylo​gic.​
com), JADE [5], Monas [69], NetLogo [81], Rhapsody [35], 
Robolog [61]. The term “proprietary” refers to engines that 
were not found online or in the literature. This column can 
give the reader an idea on the different platforms that are 
compatible with the models of the previous columns.

The fourth column refers to the development method 
used. There, we find Fujaba [63] (a UML-based method 
with an open source CASE tool providing developers sup-
port for model-based software engineering and re-engineer-
ing), the Gaia2JADE process [58] (an AOSE method for 
developing agents using Gaia for analysis and JADE for 
implementation), AOSE methodologies, i.e. MaSE [16], 
Agent UML [40] (AUML), ASEME [91] and AGEME [82] 
(an ASEME clone), and Armarx [98] (a statecharts-based 
method for robotic applications development).

The fifth column reports on the software or physical agent 
type (there are two robots). The sixth column reports on the 
communication method used. Most of the systems used the 
standardized FIPA1 ACL. Message-based communication 
that is not compliant with the FIPA standard is indicated 
as Event. One system employs a Blackboard. The black-
board architecture [37] allows coordination through access 
to shared information. Agents read and write information on 
the blackboard in topics. they can also subscribe to topics 
and be informed when a new message is written in that topic. 
The blackboard architecture is quite common in robotic sys-
tems [94, 106]. In a few single agent systems or systems 
where agents can fully access the environment (check out 
Table 4) there is no communication between the agents.

The last column of Table 3 indicates if the FIPA standard 
has been used for developing the system. This standard is 
followed by the JADE framework. Other platforms usually 
employ a specific standardized aspect, e.g. the ACL mes-
sage structure [29] or the AUML method for modeling agent 
interactions [62].

Table 4 shows the environment type of these applications 
using the categories proposed by Russel and Norvig [73]. 
The environment may be Fully or Partially observable (col-
umn two). In column three we identify the agents in the 
developed systems as cooperative (Coop) or competitive 

Table 3   Real world agent-
based systems modeled using 
statecharts. This table aims to 
provide information about how 
they were developed

Work Language Engine Method Agent type Comm. Std

[61] UML Robolog Ad-hoc Software None None
[29] UML clone Proprietary Fujaba Software ACL FIPA
[57] FSM JADE Gaia2JADE Software ACL FIPA
[28] UML JADE Ad-hoc Software ACL FIPA
[14] agentTool Proprietary MaSE Software Events None
[79] FSM JADE Gaia2JADE Software ACL FIPA
[27] agentTool Proprietary MaSE Software Events None
[86] AMOLA Rhapsody ASEME Software None None
[80, 100] AgentTool JADE MaSE Software ACL FIPA
[82, 83] AMOLA JADE AGEME Software ACL FIPA
[75] TSTATES Netlogo Ad-hoc Software None None
[94] AMOLA Monas KSE physical Blackboard None
[68] AMOLA Proprietary ASEME software None None
[88] AMOLA JADE ASEME Software ACL FIPA
[1] FSM JADE Ad-hoc Software ACL FIPA
[39] FSM JADE Gaia2JADE Software ACL FIPA
[62] UML AnyLogic AUML Software Events FIPA
[20] FSM JADE Gaia2JADE Software ACL FIPA
[3] Harel clone Armarx Armarx Physical Events None

1  FIPA (Foundation for Intelligent Physical Agents) is an IEEE Com-
puter Society standards organization for agent-based technology, 
http://​www.​fipa.​org.

https://www.anylogic.com
https://www.anylogic.com
http://www.fipa.org
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(Comp). We even have some Single agent systems. If the 
next state of the environment is completely determined by 
the current state and the action executed by the agent, then 
it is Deterministic, if not, then it is Stochastic (see column 
four). If the action of an agent depends solely in the state 
of the environment and not in the agent’s memory then we 
call the environment Episodic, otherwise Sequential (col-
umn five). Static environments do not evolve over time while 
Dynamic environments do (column six). Finally, time can be 
Continuous, as in the real world, or it may “tick” periodi-
cally (usually in simulations) and be Discrete. From the table 
it seems that in their vast majority statecharts-based agent 
applications concern cooperative agents that have a partial 
view on the stochastic, sequential, dynamic environment 
where they operate in a continuous time model.

Discussion

The statecharts main added value is the capability of the 
language to capture both the static (activities and variables) 
and dynamic aspects of a system [34, 36]. Thus, one can 
have a unique design model and use it to generate code for 
diverse platforms.

Statecharts and FSMs are pivotal to the development of 
MAS. For example, Hahn et al. developed a meta-model for 
defining a platform independent model for agents (PIM4A-
gents) [33]. According to that work, agent decision and pro-
tocol concepts are transformed to JADE FSMBehaviours. 

Thus, the core concepts of agency (communication and 
decision-making/autonomy) are related to FSMs.

One of our findings by working with statecharts is that 
agent behavior specification is not a trivial task. The devel-
opment of the simplest possible player in Robocup took a 
statechart with 99 states in a hierarchy with a depth of 17 
[69, 94]. In this direction, the modern model driven engi-
neering (MDE) approaches (see for example a special issue 
in this matter [44]) can aid the development process, as 
model-transformation can help initialize the statechart(s). 
This demonstrated the added value of the ASEME method-
ology as it allows for the automatic transformation of Gaia 
liveness formulas to a statechart [87], which is at least a 
“good start”, as opposed to starting the design directly with 
a statechart CASE tool, as was the case of StatEdit [60], or 
using a flat statechart model with no hierarchy, such as the 
plan diagrams of MaSE [16].

For example, 28 students taking the Autonomous Agents 
class at the Electrical and Computer Engineering School of 
the Technical University of Crete were asked to develop a 
Robocup soccer humanoid player in one of the 2-hour labo-
ratory sessions of the class. The students worked in small 
teams of two or three people per team. The students first 
went through a quick tutorial on using the KSE CASE tool, 
which demonstrated the development of a Goalie behavior 
for the Nao robot. This included the Gaia formulas for the 
goalie role, and its IAC (Intra-Agent Control) model. Then, 
they were asked to use the existing functionalities of the 
Goalie (scan for the ball, kick the ball, approach the ball, 

Table 4   Real world agent-
based systems modeled using 
statecharts. Environment types 
for the examined applications

Comp is an abbreviation for Competitive, Coop for Cooperative and Seq for Sequential

Work Observable Agents Determinism Episodic Dynamic Time model

[61] Fully Comp Stochastic Seq Dynamic Continuous
[29] Partially Coop Stochastic Seq Dynamic Continuous
[57] Partially Coop Stochastic Seq Dynamic Continuous
[28] Partially Comp Stochastic Seq Dynamic Continuous
[14] Partially Coop Stochastic Seq Dynamic Discrete
[79] Partially Coop Stochastic Seq Dynamic Continuous
[27] Partially Coop Stochastic Seq Dynamic Continuous
[86] Partially Single Stochastic Episodic Dynamic Discrete
[80, 100] Partially Coop Deterministic Episodic Static Continuous
[82, 83] Partially Coop Stochastic Seq Dynamic Continuous
[75] Partially Coop Stochastic Episodic Dynamic Discrete
[94] Partially Coop Stochastic Seq Dynamic Continuous
[68] Fully Single Deterministic Seq Static Discrete
[88] Partially Coop Stochastic Seq Dynamic Continuous
[1] Partially Coop Stochastic Seq Dynamic Continuous
[39] Partially Coop Stochastic Seq Dynamic Continuous
[62] Partially Coop Stochastic Seq Dynamic Continuous
[20] Partially Coop Stochastic Seq Dynamic Continuous
[3] Partially Single Stochastic Seq Dynamic Continuous
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etc) to develop an Attacker behavior using KSE. Thus, the 
students did not have to develop the robot functionalities. 
They defined the attacker role’s liveness and then edited the 
generated statechart, i.e. they defined variables and transi-
tion expressions. All student teams were able to deliver an 
Attacker behavior and enjoyed watching their players in a 
game (for more information the reader can consult [91, 94]).

Proposing radical extensions to the language of stat-
echarts may seem to facilitate or enable new features, e.g. 
as in the case of propositional statecharts that we examined 
earlier, however, it renders them incompatible with existing 
CASE tools and they may become difficult for mainstream 
software engineers to learn and use [72].

Some times, and especially in works that do not adopt the 
orthogonal components of statecharts (i.e. and-type states), 
it is not obvious how one develops an agent realising more 
than one protocols simultaneously, and/or how to combine 
them with other agent capabilities.

The ASEME inter and intra-agent control models, being 
derived by Gaia formulas, do not use the possibility of the 
state transitions to traverse levels or the history connec-
tors. If the developers choose to introduce these features to 
the statechart they lose the connection of the design phase 
models (the statecharts) to the analysis phase models (i.e. 
the role model and the Gaia formulas). This situation can 
impact the tracing of software features to their requirements 
and has been reported as the “round-trip” problem [77]. The 
acquired experience after modeling a number of systems 
for software and robotic agents shows that, on one hand, 
the choice to not use state transitions traversing levels or 
the history connectors does not hinder the possibility to 
model complex systems, and, on the other hand, important 
engineering concepts, such as comprehension, modularity 
and reusability, are enhanced. This has been reported by the 
more recent work on Armax statecharts for modeling robotic 
behaviour [98].

AOSE/EMAS and statecharts related research is an area 
that has been active during the last 20 years. We have found 
a number of works in theory and applications. Table 5 shows 
these works in its first two rows. We employed these two 
rows to create the histogram depicted in Fig. 8. We used the 
centers of the bins (shown in the x axis labels) to draw the 
trend line shown in the figure (using linear regression). The 

latter indicates that we must expect to see more works in this 
area in the coming years.

Related Work

Regarding related work, this survey is the first of its kind, i.e. 
to outline the use of statecharts in AOSE/EMAS. However, 
it is related to works covering the areas for which statecharts 
are used, i.e. for representing plans, agent interaction proto-
cols and intra-agent control.

A recent survey on cooperative Multi-Agent Planning 
(MAP) considers multiple agents that work cooperatively to 
develop an action plan to satisfy their collective goals. This 
area is mostly concerned not on modeling but on studying the 
reasoning side of planning [95]. Thus, related to this work are 
mostly works that use Finite State Machines for representing 
plans [96]. Interestingly, Harel statecharts have not yet been 
employed as such by that community. This might be an inter-
esting introduction, but one that needs to support reasoning 
through well-defined logical semantics. This isn’t so easy, as 
different statechart engines can have differences in execution 
semantics [11].

Table 5   Four categories of this 
paper’s references

Type of research Related references

AOSE/EMAS-statecharts research [2, 5, 15–18, 23–26, 32, 33, 40, 45, 48, 49, 54–56, 58, 60, 65–67, 
69, 70, 75, 76, 78, 85, 87, 89, 91, 94, 96, 98, 99, 104]

AOSE/EMAS-statecharts applications [1, 3, 14, 20, 27–29, 39, 57, 61, 62, 68, 79, 80, 82–84, 86, 88, 100]
General research [4, 6, 8, 9, 12, 13, 21, 22, 37, 38, 41–44, 46, 47, 52, 53, 59, 63, 64, 

71–74, 77, 81, 90, 93, 95, 97, 101–103, 105]
Statecharts specific research [7, 10, 11, 19, 30, 31, 34–36, 50, 51, 92, 106]

Fig. 8   A histogram of the AOSE/EMAS-statecharts related research 
items from 1998 to 2021. A trend line is also shown
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If we try to locate recent agent interaction protocol defini-
tion techniques or methods surveys, we will find that AOSE/
EMAS researchers propose their models for such interactions 
but surveys are rare. However, researchers such as Paurobally 
et al. [70] have argued on other pros and cons of statecharts. 
Based mostly on that work, we present some of the statecharts 
advantages (+) and disadvantages (−) over other techniques:

+ States and processes can be treated equally allowing an 
agent to refer and reason about the state of an interaction
+ Statechart notation is more amendable for extension 
thanks to their simple semantics
+ Visual models are easier to conceive and display [26]
+ Engineers familiar with UML can start working with 
them immediately [72]
− Participating roles are not shown explicitly
− Compound transitions are not shown in detail
− There is a question of completeness

It is beyond the scope of this work to present all other tech-
niques, however we can name a few that employ a visual lan-
guage, such as Agent UML (or AUML) [41], Petri Nets [52], 
or the Business Process Modeling Notation (BPMN) [21, 
46]. In BPMN, the interaction of two or more participant 
roles is called a choreography. It was very recently reported 
that the BPMN language has specific limitations that prevent 
some communication scenarios from being modeled [22]. 
An example is the case of an agent changing its orders. How-
ever, BPMN also has specific advantages, on one hand it can 
be used to define interactions between humans and agents 
(or Human-Agent Collectives [43]), on the other hand, its 
models are executable. BPMN has also been used for early 
validation of a MAS analysis models before even the design 
phase is concluded [90].

Finally, the intra-agent control model exists in all agent 
architectures. An architecture defines how the different com-
ponents are connected and interact. Among the available 
candidates are service oriented architectures and microser-
vices [93] that define a completely stateless and loose con-
nection between the agent’s components. BPMN has also 
been used, along with logic-based proposals, such as Multi-
Context Systems based on a modular architecture where 
components interact using bridge rules for filtering infor-
mation exchange [74].

Future Directions

The future holds many challenges. Ozik et al. [67] consider 
that the use of statecharts for agent-based modeling is still 
at its “nascent stages”. This is also reflected by the fact that 
real-world systems are not so numerous as the undertaken 
research. They propose the development of design and 

process patterns for capturing idiomatic state-based agent 
behaviours.

Regarding the use of statecharts, agents and autonomous 
systems continuously face the possibility of an unexpected 
(at design time) event to happen while they are in operation. 
Unexpected means that either a known event happens that 
the system is unable to handle at its current state (unex-
pected at that time), although it is related to its operation, or 
an unknown event happens (totally unexpected), see Mar-
ron et al. [51] for a detailed definition. Although there are 
some “hacks” for ad-hoc catering for this issue, such as hav-
ing a default handler for incoming messages not handled 
by a defined behaviour that replies with information about 
the services offered by the agent, this is a valid research 
direction.

In the area of design for autonomy (empowerment, self-
management and self-regulation) it is very interesting to 
research how an inter- or intra-agent control can self-evolve 
over time. Evolution may be triggered through introspection 
or through the desire to maximize or fine-tune an agent’s 
performance. This is a very important research direction for 
the area of robotics. For example, a robot may have a failing 
limb, it may need to fine tune its grasp to manage its best 
with the available functionality. Or to fine-tune the robot’s 
situational awareness [3]. Another kind of evolution is to 
evolve the statechart itself. Researchers are already delving 
into this area with results only for flat statecharts until now 
[31].

Recently, researchers proposed the concept of the prop-
erty statecharts [54] for expressing and enforcing safety 
criteria in statecharts. Safety properties have been defined 
in AOSE, and the Gaia methodology’s role model [101], 
however, statechart-based design models have not yet fully 
realised this feature, especially those leading to object-ori-
ented implementations. Property statecharts are monitoring 
the events generated by the execution of normal statecharts 
and safeguard conditions. An important emerging area, fur-
ther enabled by the emergence of blockchain and 5G [97], 
is that of the smart contracts, Mens et al. [54] have given 
an example, where an agent A signs a Service Level Agree-
ment (SLA) with agent B. The SLA dictates that whenever 
A receives a request from B, then A must reply within 1 
hour. The property statechart gets in the monitoring state 
whenever A receives a request from B. If the A’s state for 
sending a reply to B is not exited within 1 hour the contract 
is considered violated. It would be very interesting to adapt 
this idea to safety properties of agents.

In the same work [54], the authors proposed a method 
for transforming user stories to statecharts in the context of 
Behavior-Driven Development (BDD) [103]. BDD allows 
users to specify representative scenarios and their expected 
outcomes. This is an emerging area in EMAS as research-
ers are already proposing the inclusion of BDD ideas in 
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agent-oriented methodologies [99]. According to Wautelet 
et al. [99], if an agent task is complex, it is transformed 
into a JADE CompositeBehaviour (a behaviour type that is 
composed of other behaviors). Here, there is room for the 
use of statecharts for defining this composite behaviour. This 
is also an existing trend in modern statechart CASE tools, 
e.g. for the Yakindu tool [50]. The reported challenges are 
related to the enhancement of statecharts with additional 
scenario-based modeling-related features, like strict event 
ordering, and specification of liveness properties for execu-
tion control and verification [50]. In this context, the live-
ness formulas transformation to statecharts [87] might be an 
excellent contribution from the EMAS/AOSE community to 
the statecharts one.

To realize implementations of agents in the modern open 
systems [42], agents need to use predefined protocols to 
interact. However, when diverse stakeholders come in, they 
need to work the protocols with their own algorithms and/
or goals. Currently, protocols focus on defining sequences 
of exchanged messages. Adopting the point of view of the 
ASEME methodology [85, 91], where protocols are regarded 
not as simple communication protocols that determine how 
data is transmitted (as in telecommunications and computer 
networking), but as their higher-level abstractions used by 
humans, where protocols define codes of behaviour (or pro-
cedural methods), we can use statecharts for defining them. 
Thus, a protocol does not only answer the question of what 
messages are allowed but also what activities the partici-
pants need to engage with within the protocol. In this con-
text, an important direction is towards defining new design 
patterns, that on the one hand will allow the developers to 
re-use existing protocol parts and logic defined in the open 
system; and on the other hand to customize key functionality 
or capabilities according to their needs and/or goals.

Thus, when defining open systems, or even proprietary 
systems, the use of statechart repositories would lead to the 
simplification of the statechart-based agent development. 
Consider for example, the Robocup Player agent that we 
referred to in the discussion above. It would be much easier 
to develop this agent if some parts of its statechart or intra-
agent control model were reused from local or public reposi-
tories. A step forward would be to have the developers not 
reuse just activities of states (as they did in the above experi-
ment) but whole statechart components (including transition 
expressions) as modules. Modules have also been referred 
to as capabilities in the AOSE community [8, 91]. Modu-
lar programming has been identified as the ultimate aim of 
agent programming languages and developing frameworks, 
be they declarative or imperative [12]. In the future, these 
modules may be assembled on the fly (at runtime) in a stat-
echart realising the optimal behaviour of a system. Towards 
this direction, is the recent Gamma Statechart Composition 
Framework [32], an integrated modeling tool that aims to 

support the composition of heterogeneous statechart com-
ponents. Its Gamma Composition Language supports the 
interconnection of components and reuses existing code 
generators.

If one checks the latest applications, a certain trend is 
towards application for Industry 4.0 (intelligent manufactur-
ing) [62] and robots [3]. The internet of things applications 
will need to capture states of the environment and agents 
will want to manage IoT services. According to Nagadi 
et al. [62] the agent-based development process integration 
with the Internet of Things (IoT) reference model, and espe-
cially with its communication model, will enable to merge 
the right information with the relevant functionalities, thus 
affecting the performance of a Smart Manufacturing System 
(SMS).

Moreover, the smart grid is an active area and one that 
will certainly require MAS, as energy prices fluctuate and 
consumers need to continuously monitor the network for 
booking their consumptions [20, 39, 84].

Conclusion

Statecharts and AOSE are quite close, the former have influ-
enced and empowered AOSE methods and techniques and 
the latter have proposed and tested a number of statecharts 
language extensions. The future holds more prospects for 
both areas but also for their cooperation. Numerous applica-
tions in the last 20 years show that this relationship is not 
only theoretic but also practical.

We provided a background on statecharts and finite state 
machines, and gave appropriate definitions to help to dis-
ambiguate these terms. Then, we explored the use of stat-
echarts in AOSE and EMAS methodologies and methods. 
We identified the challenges that the researchers faced and 
how they coped with them, some times by defining the tran-
sition expressions language, and others by imposing restric-
tions or introducing new elements (such as the synch states). 
Then, we illustrated several features that statecharts have 
enabled in AOSE.

Subsequently, we explored the various agent-based real 
world applications we found in the literature and attempted 
to give a distilled view on several of their characteristics in 
tables.

We presented several future directions, mainly for the 
intra-agent’s control, on one hand monitoring events that are 
essential for the agent’s successful operation and for detect-
ing failing capabilities, and, on the other hand, for safeguard-
ing restrictions and contracts. Statecharts are a still evolving 
paradigm [3, 10, 50, 51, 54] and modern AOSE works use 
it [25, 67, 91].
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In the future, this work can be expanded with more theo-
retical work from the statechart research community, also 
incorporating formal models and verification techniques.
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