
Kouretes 2012 SPL Team Description Paper?

Maria Karamitrou, Nikolaos Kofinas, Nikolaos Pavlakis,
Angeliki Topalidou-Kyniazopoulou, Astero-Dimitra Tzanetatou,

Nikolaos I. Spanoudakis, Michail G. Lagoudakis

Intelligent Systems Laboratory, Technical University of Crete, Chania, Greece
www.kouretes.gr

1 Team Information

Team Kouretes was founded in 2006 and participates in the main RoboCup com-
petition ever since in various leagues (Four-Legged, Standard Platform, MSRS,
Webots), as well as in various local RoboCup events (German Open, Mediter-
ranean Open, Iran Open, RC4EW, RomeCup) and RoboCup exhibitions (Athens
Digital Week, Micropolis, Schoolfest). In May 2010, the team hosted the 1st of-
ficial SPL tournament in Greece (with three invited teams) within the Hellenic
Conference on Artificial Intelligence (SETN). The team has been developing its
own (publicly-available) software for the Nao robots since 2008. Distinctions of
the team include: 2nd place in MSRS at RoboCup 2007; 3rd place in SPL-Nao,
1st place in SPL-MSRS, among the top 8 teams in SPL-Webots at RoboCup
2008; 1st place in RomeCup 2009; 6th place in SPL-Webots at RoboCup 2009;
2nd place in SPL at RC4EW 2010; and 2nd place in SPL Open Challenge
Competition at RoboCup 2011 (joint team Noxious-Kouretes).

Team Kouretes is led by Michail G. Lagoudakis (assistant professor) and
Nikolaos I. Spanoudakis (laboratory staff). The members of the team are senior
undergraduate ECE students; their names and research areas are listed below:

Angeliki Topalidou-Kyniazopoulou [CASE Tool for Statechart Design]
Dimitra-Astero Tzanetatou [Motion Skill Management]
Maria Karamitrou [Monitoring and Debugging Tools]
Nikolaos Kofinas [Forward and Inverse Kinematics]
Nikolaos Pavlakis [Formations and Team Strategy]

2 Team Research

2.1 Software Architecture and Communication

The team’s code is based on Monas [5], a software architecture developed in-
house to address the needs of the team. Monas provides an abstraction layer
from the Nao robot and allows the synthesis of complex robotic teams as XML-
specified Monas modules and/or statechart modules. Monas modules focus on
specific functionalities (vision, motion, etc.); they are executed concurrently,
each one of them at any desired frequency completing a series of activities at

? Team Kouretes has been supported by the Technical University of Crete, the Euro-
pean Grant MCIRG-CT-2006-044980, and Chipita S.A.–Molto (exclusive sponsor).

www.kouretes.gr

each execution. Statechart modules are based on the Agent Systems Engineer-
ing Methodology (ASEME) [8], whereby the target team behavior is specified
through a series of model-based transformations as a statechart. Statecharts are
executed using a generic multi-threaded statechart engine that provides the re-
quired concurrency and meets the real-time requirements of the activities on
each robot. A high-level view of Monas is shown in Figure 1 (left).

Monas relies on our intra-robot and inter-robot messaging system, called
Narukom [12]. Narukom is based on the publish/subscribe paradigm and sup-
ports multiple ways of communication, including point-to-point and multicast
connections. The data shared between nodes/threads are stored on local black-
boards which are transparently accessible from all nodes/threads. Communica-
tion is achieved through messages tagged with appropriate topics and relayed
through a message queue implemented using Google protocol buffers to facili-
tate the serialization of data and the structural definition of the messages. Three
types of messages are supported: (i) state, which remain in the blackboard until
they are replaced by a newer message of the same type, (ii) signal, which are
consumed at the first read, and (iii) data, which are time-stamped to indicate the
precise time the values they carry were acquired. Data messages have expiration
times, so that they are automatically removed when they are no longer needed.

2.2 Vision and Localization

The objects of interest in the SPL are characterized by unique colors. Our
method for color recognition is based on labeling by hand a representative set
of images from the robot camera, training a classifier which generalizes over the
entire color space, and generating a static color map for constant-time recogni-
tion during deployment. This process is supported by our KC2 graphical tool [4].
Since light sources affect significantly the correct recognition of colors, the white
and gray surfaces of the Nao body are utilized for providing a reference point
for the illumination of the environment and for calibrating the camera’s white
balance dynamically. This dynamic camera calibration enables the use of a single
color map in a wide range of lighting environments.

Object recognition is accomplished by KVision [3], a light-weight image
processing method for visual object recognition on articulated mobile robots
with a head-mounted camera, such as humanoid robots, focusing on reliability
and efficiency. The vision pipeline uses real-time sensory information from the
joints along with the robot’s kinematic chain to determine the exact camera
position in the 3-dimensional space and subsequently the view horizon and the
sampling grid, so that scanning is approximately uniformly projected over the
ground (field), not over the image matrix. Special attention is paid on the precise
synchronization of images with robot joint values using time-stamped data mes-
sages. The next phase employs our auto-calibrated color recognition scheme on
the pixels of the sampling grid to identify regions of interest. In the last phase,
detailed analysis of the identified regions of interests seeks potential matches for
the corresponding target object. These matches are evaluated and filtered by
several heuristics, so that the best match (if any) in terms of color, shape, and

Fig. 1. Monas software architecture (left), KVision object recognition (right).

size for a target object is finally extracted. Then, the corresponding object is
returned as perceived, along with an estimate of its current distance and bear-
ing as well as appropriate head joint angles for fixating and tracking it. Figure 1
(right) shows an example of ball and goal post recognition.

Self-localization is accomplished using KLoc [1] which realizes Monte Carlo
localization. The belief of the robot is a probability distribution over the 3-
dimensional space of (x, y, θ) (coordinates and orientation) represented appro-
ximately using a population of particles. Belief update is performed using an
auxiliary particle filter with an odometry motion model for omnidirectional loco-
motion and a landmark sensor model for the goalposts (landmarks). The robot’s
pose is estimated as the pose of the particle with the highest weight.

2.3 Monitoring and Debugging

To facilitate software development, we have developed a monitoring and debug-
ging tool, call KMonitor, which monitors messages sent by the robots over the
network using the UDP packet multicasting protocol and displays the transmit-
ted information in a user-friendly way. The user is able to visualize the world
state of each robot connected to the network, namely its estimated position in
the field, the estimated location of the ball with respect to itself, the current ball
and goal observations, the particles forming its current belief, a trace of the most
recent positions, the current field of view, etc. Figure 1 shows a simple example,
where KMonitor displays the position and ball estimates of two robots. Note
that perception and localization errors lead in perceiving the same ball as being
at slightly different locations on the field. We are currently working on a shared
world model, whereby the robots will be able to share and fuse world informa-
tion. KMonitor has been implemented using Qt and is parameterized through

Fig. 2. KMonitor graphical user interface for monitoring and debugging.

an XML file for different field configurations (field size, location and size of goals,
location of lines, etc.). Our current work focuses on extending KMonitor to a
fully integrated tool, which allows the developer to monitor all the important
information of each robot, including camera images, obstacle map, player state,
and behavior decisions visually in real-time.

2.4 Kinematics

We have completed our own analytical derivation and implementation of the
forward and inverse kinematics for the whole body of the Nao robot (head,
arms, legs). As an example, we list the equations we have derived for the inverse
kinematics of the left arm. Let (x, y, z) be the coordinates of the left arm base
point with respect to the point of reference (the center of the robot torso),
(px, py, pz) be the desired position (Cartesian coordinates) of the left hand, and
(ax, ay, az) the desired orientation (Eulerian angles) of the left hand. If l1 is the
length of the upper arm and l2 is the total length of the lower arm plus the offset
of the (passive) hand, then the target arm configuration (θ1, θ2, θ3, θ4) giving
the angles of the LShoulderPitch, LShoulderRoll, LElbowYaw, and LElbowRoll
joints can be computed as follows:

θ4 = π − arccos

 l21 + l22 −
(

(x− px)2 + (y − py)2 + (z − pz)2
)

2l1l2

θ2 = ± arccos

py − l3 − l1
(

sin ax sin ay sin az + cos ax cos ay
) sin θ4

cos θ4

l2 + l1 cos θ4 + l1
sin2 θ4

cos θ4

+
π

2

θ3 = arcsin

 sin az sin ay cos ax − cos az sin ax

sin

(
θ2 −

π

2

)

θ3 = π − arcsin

 sin az sin ay cos ax − cos az sin ax

sin

(
θ2 −

π

2

)

θ1 = ± arccos

 cos ay cos ax −
(

cos az sin ay cos ax + sin az sin ax
) sin θ3 cos θ2

cos θ3

cos θ3 +
cos2 θ2 sin2 θ3

cos θ3

 if θ3 6=
π

2

θ1 = ± arccos

(
cos az sin ay cos ax + sin az sin ax

cos θ2 sin θ3

)
if θ3 =

π

2

Due to symmetries, these inverse kinematics equations lead to a small num-
ber of distinct solutions, some of which may be infeasible or invalid because of
the constrained range of each joint. To determine a valid and correct solution,
we simply run each one of these solutions through the forward kinematics to
verify that indeed the end point of the hand reaches the desired position and
orientation. The equations for the right arm are similar.

Kinematics are currently employed to enhance the ability of vision. In par-
ticular, forward kinematics are used to determine the exact camera position in
the physical space given the readings from the joint encoders. This allows the
precise synchronization of a camera image with the exact camera position given
the joint angles at the very moment the image was obtained; this functionality is
not available through the ALMotion module of NaoQi, which provides forward
kinematics only for the current joint configuration. The synchronization leads to
significant improvements in estimating the distance and bearing of recognized
objects. In addition, inverse kinematics of the head are used to point the camera
to any desired field position; this feature is particularly useful in turning the
head towards an estimated ball position after a wide scan for landmarks, while
walking towards the ball.

2.5 Motion Skill Management

Walking speed and special action completion times are critical factors in SPL
games. It has been observed that significant time is lost in approaching the ball,
stopping to assume the right pose, and then executing an appropriate kick ac-
tion. In order to decrease the total response time, we have developed a method
for interleaving walk and kicks [11], aiming at kicking the ball directly without
slowing down while approaching it. Our (forward, side, and back) kick actions
are designed using Kouretes Motion Editor (KME) [7] and consist of timed se-
quences of poses executed at the DCM level. Therefore, the leg poses of our

Fig. 3. Interleaving of walk and forward kick (order: left to right, top to bottom).

kick actions were analyzed against the recorded walk leg poses (captured dy-
namically from a walking robot) to identify close matchings and some of them
were bookmarked as potential entry points into the kick sequences. This analysis
involved the 8 most significant out of the 11 leg joints, namely Hip Roll, Hip
Pitch, Knee Pitch of each leg, and Ankle Pitch and Ankle Roll for the balancing
leg, as well as their gradients (rate of change), and the Euclidean (L2) norm over
these 16-dimensional vectors as a similarity metric. As the robot walks up to the
ball and gets to kicking distance, these features are monitored in real-time. As
soon as the current walk pose comes close to one of the bookmarked poses of
the desired kick (norm below a threshold), the robot switches immediately from
walking to the corresponding entry point and executes the kick sequence from
that point. This way, the kick is executed before the robot stops walking. Obvi-
ously, this transition is enabled only when the robot is close enough to the ball.
Our implementation is fully parameterizable through XML files to accommodate
any special actions, walk gaits, and similarity metrics. Our motion interleaving
technique has significantly reduced the total time of approaching and kicking
the ball, yielding significant advantage to our robots. However, the entry poses
must be chosen carefully to ensure the stability of the robot during the sudden
transition and the precision of the kick. Figure 3 shows an example of performing
a forward kick interleaved with walk.

2.6 Obstacle Avoidance

Path planning decisions of a robot are important in avoiding collisions in the
dynamic environment of a populated SPL field, since such collisions cause hard-
ware damages, loss of valuable time, and penalties according to the league rules.
We have developed a path planning method for autonomous robots in dynamic
environments [2], which relies on the construction of a local egocentric occupancy
polar map for representing obstacles and the A∗ heuristic search algorithm for
deriving collision-free paths to desired goals. Our approach creates and main-
tains a probabilistic occupancy grid map which discretizes the physical area
close and around the robot using variable resolution and holds the robot’s belief
about the existence or not of obstacles. This map is stored in a n× k polar grid
(currently, 10 × 18, giving 10cm and 20◦ resolution respectively) covering the
360◦ area of radius 100cm around the robot. The polar topology facilitates the

mapping of the sensor data and also captures the resolution of the sensors which
is dense close to the robot and sparse away from the robot due to the conical
shape of the beams. Each cell in the map stores the probability that there is
an obstacle at the corresponding position in the field. The occupancy values in
the map are updated according to a simple sensor model (for cells within the
sensor cone) using real-time sensory information from ultrasonic or any other
range sensors or according to an aging model (for cells outside the sensor cone).
The robot is always located at the center of the grid and the grid moves with the
robot. Translation and rotation transformations of the map are implemented, in
order to maintain the correct placement of obstacles relative to the robot con-
sistently with its movements. Given a desired target position and orientation,
an A∗ heuristic search algorithm in the three-dimensional space (coordinates on
the field and orientation) derives an optimal (with respect to the grid) path tak-
ing into account the omni-directional locomotion abilities of the robot (forward,
side, rotating steps and combinations). The derived path provides the motion
controller with the waypoints needed to set appropriately the velocities of the
robot to move along the path. This method enables our robots to move safely
around the field without collisions towards any desired position and orientation.

2.7 Behavior Specification

The behavior of our team is specified using the Agent Systems Engineering
Methodology (ASEME) [8] as it was recently adapted to address the challenges
of robotic behavior specification [6]. ASEME suggests a strict hierarchical de-
composition of the desired robot behavior into smaller activities until a level
of provided base activities is met. Each design step is supported by a formal
model. Following a model-driven engineering approach, the transition from one
design phase to another is assisted by automatic model transformations leading
from requirements to computer programs. Briefly, the process begins with the
specification of a set of liveness formulas (analysis phase) which are converted
to an initial statechart model; the statechart is subsequently enriched (design
phase) and is converted to source code.

Our own Computer-Aided System Engineering (CASE) tool, Kouretes State-
chart Editor (KSE) [9,10], enables the developer to design the statechart model
either graphically, from scratch, or by first writing the liveness formulas and
transforming them automatically to an abstract statechart. KSE also supports
the graphical editing of the statechart model, the addition of transition expres-
sions, the validation of the final statechart model indicating which elements are
incorrect (if any), and the automatic source code generation for compilation
and execution on the robot. The final statechart model specifies the intra- and
the inter-agent control for achieving the desired team behavior by accessing di-
rectly the functionality provided by our base activities: RobotController, Vision,
Localization, ObstacleAvoidance, MotionController, HeadHandler, Sensors, Led-
Handler, Communication. Figure 4 shows a screenshot of KSE with the complete
statechart for a simple single-robot behavior: sit down when you see the ball and
track it, stand up and scan for the ball when you lose it.

Fig. 4. Kouretes Statechart Editor and the complete statechart for a simple behavior.

References

1. Chatzilaris, E.: Visual-Feature-based Self-Localization for Robotic Soccer. Diploma
thesis, Technical University of Crete, Greece (2009)

2. Kyranou, I.: Path Planning for Nao Robots using an Egocentric Polar Occupancy
Map. Diploma thesis, Technical University of Crete, Greece (2012)

3. Orfanoudakis, E.: Reliable Object Recognition for the RoboCup Domain. Diploma
thesis, Technical University of Crete, Greece (2011)

4. Panakos, A.: Efficient Color Recognition Under Varying Illumination Conditions
for Robotic Soccer. Diploma thesis, Technical University of Crete, Greece (2009)

5. Paraschos, A.: Monas: A Flexible Software Architecture for Robotic Agents.
Diploma thesis, Technical University of Crete, Greece (2010)

6. Paraschos, A., Spanoudakis, N.I., Lagoudakis, M.G.: Model-driven behavior speci-
fication for robotic teams. In: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS) (2012)

7. Pierris, G.F., Lagoudakis, M.G.: An interactive tool for designing complex robot
motion patterns. In: IEEE Intl Conf on Robotics and Automation (ICRA) (2009)

8. Spanoudakis, N.I., Moraitis, P.: Using ASEME methodology for model-driven agent
systems development. In: Agent-Oriented Software Engineering XI, Revised Se-
lected Papers of the 11th International Workshop AOSE 2010, Lecture Notes in
Computer Science, vol. 6788, pp. 106–127. Springer (2011)

9. Topalidou-Kyniazopoulou, A.: A CASE Tool for Robot-Team Behavior-Control
Development. Diploma thesis, Technical University of Crete, Greece (2012)

10. Topalidou-Kyniazopoulou, A., Spanoudakis, N.I., Lagoudakis, M.G.: A CASE tool
for robot behavior development. In: Proceedings of the 16th RoboCup International
Symposium (2012)

11. Tzanetatou, A.D.: Interleaving of Motion Skills for Humanoid Robots. Diploma
thesis, Technical University of Crete, Greece (2012)

12. Vazaios, E.: Narukom: A Distributed, Cross-Platform, Transparent Communica-
tion Framework. Diploma thesis, Technical University of Crete, Greece (2010)

	Kouretes 2012 SPL Team Description Paper*-0.5cm

