Applied Artificial Intelligence, 17:901-925, 2003
Copyright © Taylor & Francis Inc. e
ISSN: 0883-9514 print / 1087-6545 online

DOI: 10.1080/08839510390242259

Taylor & Francis
Taylor & Francis Group

[0 AN AGENT-BASED SYSTEM
FOR PRODUCTS PENETRATION
STRATEGY SELECTION

N. MATSATSINIS, P. MORAITIS, V. PSOMATAKIS,
and N. SPANOUDAKIS

Technical University of Crete,

Decision Support Systems Laboratory,

University Campus—Chania, Greece

This paper describes an agent-based system implementing an original consumer-based
methodology for product penetration strategy selection in real-world situations. Agents are
simultaneously considered according to two different levels: a functional and a structural
level. In the functional level, we have three types of agents: task agents, information agents,
and interface agents assuming task fulfillment through cooperation, information gathering
tasks, and mediation between users and artificial agents, respectively. In the structural
level, we have elementary agents based on a generic reusable architecture and complex
agents considered as an agent organization created dynamically in an hierarchical way.

The need to combine data and experts’ knowledge in order to solve complex
and ill-structured decision problems is a major concern in modern marketing
and management science. Strategic decision-making procedure is a complex
distributed task, involving several actors belonging to different levels
of responsibility and having complementary functionalities within an
organization. In their article, Meyers et al. (1999) demonstrated the value of
implementation knowledge to marketing and innovation researchers and
practitioners.

One of the most interesting and difficult decision-making cases is the
design and development of a new product. Many experts in this field (see, for
example, Nylen 1990; Urban and Hauser 1993; Kotler 1994) have pointed
out the importance of successful development of a new product for the
viability of enterprises. Therefore, the new product development process
needs efficient tools to support their decisions. The aim of decision support
systems in marketing is to increase the effectiveness of managers with the

Address correspondence to Nikolaos Matsatsinis, Technical University of Crete, Decision Support
Systems Laboratory, University Campus, 73100—Chania, Crete, Greece. E-mail: nikos@ergasya.tuc.gr

901

902 N. Matsatsinis et al.

support of suitable scientific tools during the different phases of the decision-
making process (Simon 1960; Sprague and Carlson 1982).

This paper, which is an extended version of the work presented in
Matsatsinis et al. (1999), proposes a distributed, agent-based framework for
the implementation of a strategic marketing DSS that supports new product
development and market penetration strategy selection. The product devel-
opment process is collaborative, involving multi-disciplinary functions and
heterogeneous tools. From a strategic marketing point of view, the proposed
system is the first to introduce a multicriteria methodology application in the
product development process (Matsatsinis and Siskos 1999).

The necessity for a system facilitating interaction among many different
distributed actors (or organized group of actors), along with an extensive
review of all the characteristics considered in the literature (see, for example,
Jennings et al. 1996; Sycara and Zeng 1996) as necessary for agency
technology use, motivated us towards an agent-oriented approach. These
characteristics, which are present in the specific problem of new product
development process are: a) the inherent distribution of problem-solving
abilities (the agents perform different data analysis, brand choice, and
multicriteria analysis methods), data, and information; b) the necessity of
flexibility, modularity (agents can appear and disappear in the system with-
out disturbing its functionality), and reusability (customization of agents for
new decision makers); and c¢) problem solving complexity involving coordi-
nation between actors expressing different points of view.

The aim of this paper is therefore twofold. The first is to show the added
value that emerges from agent technology use in the domain of marketing.
The second is to propose a system with particular features (e.g., a multi-
criteria methodology application in the product development process) for
marketing specialists and end-users concerned with the new products devel-
opment process (e.g., decision makers from production departments,
management departments, and other non-marketing expert people) by
providing all the necessary details for the system’s development.

CONSUMER-BASED METHODOLOGY FOR PRODUCTS
PENETRATION STRATEGY SELECTION

To support the product development process, Matsatsinis and Siskos
(1999) proposed an original consumer-based methodology (Figure 1). It is
based on the use of different models for data analysis, multicriteria analysis,
and brand personal choice.

During the market survey, every consumer expresses his evaluations on a
set of reference products involved in the research on the basis of a group of
criteria. Finally, he is requested to rank the products according to the order of
preference. The collection of this kind of data requires a specific questionnaire.

Penetration Strategy Selection 903

@ Model Base (Data Analysis ‘[’

Methods, Forecasting Methods) Data Analysis
Components Segment 1
New | Analysis | Consumers' Sogment 2
Project Correspondence Characteristics
iz i
Market i Segmentation Segment M
survey :
Data Bases Utilities]
File jm—mm e e e e
‘] [q Model Base (Brand 1
J UTA : Choice Models)
|

Brand Choice Mc Fadden 1
—_——— e e Model H_

Re apply UTA* on new Financial Data
Multicriteria matix

Advertisement

I
| Penetration
@ | Distribution J Strategy @
Channels Data : Selection
L selection |

b e e e e e e e e e I

|

|

|

! Selcetion :

: New Utilities Criteria A |

File Analysis i |

: v MSG criterion |

I C ! Insert new |

Behavior . product . |

: *] 2nd criterion Multicriteria @ |

Criteria || | | Evaluations |

: Significance ! |

I | Simulation on LSG criterion Simulations |

I previously Scenario :

: sclected B Generation @ |

| Bm):: 0Slihlome Re apply UTA* on new and Selection |

| c Multicriteria matix Add product |

| price criterion |

| [Complex :

| Scenario 1

| Add: Gengration

| Corporate !

i |
|
|
|
I

FIGURE 1. Methodological flowchart (source: Matsatsinis and Siskos 1999).

The initial phase of this methodology aims to acquire an overall frame of
the particular survey. This is followed by the use of data analysis models in
order to determine consumer and market features. This task is called Market
Segmentation. Market trends are identified through this approach. Con-
currently, the multicriteria method UTASTAR (Siskos and Yannacopoulos
1985) is applied to the multicriteria consumer preferences in order to deter-
mine the criteria explaining each of the consumer’s choices. This method
assesses a utility function u(g), which is as consistent as possible with the
consumer ranking, where g=1(g;, g»,..., g,) is the vector of the criteria on
which the products are evaluated. The consumer’s utility function is assumed
to be additive: u(g) =piui(gy) + pous(gr) + -+ - + paun(g,), where u;(g;) is the
estimated marginal utility of the criterion g;, normalized between 0 and 1, and
pi is a weighting factor of the i-th criterion, the sum of weights being equal to

one: y o pi= 1.

904 N. Matsatsinis et al.

The UTASTAR method estimates the utility function for each consumer
separately which is as consistent as possible with the rank order of the
products used; the relative importance of the criteria is then derived from this
utility model. This preference disaggregation analysis is called Criteria
Analysis. The use of models of consumer personal choice allows for the
market simulation and the calculation of the market shares of the competitive
products taking part in the research. This aims at the selection of the most
suitable model approach, as close as possible to the real market shares (Brand
Choice Task). The next step concerns the design of the new product by
simulating its introduction into the market using the multicriteria estima-
tions. It is followed by the application of alternative scenarios. With the help
of the selected brand choice model, the market simulation and the calculation
of the new market shares to be expected (after the introduction of the new
product) are performed. This process involves Scenario Generation and
Complex Scenario Generation. Based on the results of the scenarios appli-
cation, the choice of the most appropriate penetration strategy for the new
product is made. This is the main task and is called Penetration Strategy
Selection.

THE SYSTEM’S ARCHITECTURE

In Figure 2, we present an agent-based system used by decision makers,
who can be corporation board members, each simulating his own scenarios
and finally selecting a penetration strategy for a new or an existing product in
a board meeting.

Agents’ Types, Functionalities, Structure, and Knowledge

An agent’s knowledge is acquired during a knowledge acquisition stage,
using different domain experts’ knowledge, and through interactions with the
other agents of the system as well as the human users. In our approach,
agents are considered according to two different levels: a functional level and
a structural level. In the functional level, we consider three types of agents like
in Sycara and Zeng (1996): interface agents, information agents, and task
agents.

The functionalities of interface agents are those we can find in the lit-
erature (Laurel 1997; Sycara and Zeng 1996): initiation of a task, responsi-
bility of system interactions with the user, results presentation to user queries
in a way appropriate to the user’s profile (e.g., according to the level of
responsibility in an organization), and determination of what categories of
task agents should be involved, so that a user query is correctly taken into
account.

Penetration Strategy Selection 905

Legend

oz, omamasen () e [
Task Agent Information Agent Interface Agent User

FIGURE 2. Agent-based architecture.

The functionalities of information agents are also those we can find in the
literature (Knoblock and Ambite 1997; Sycara and Zeng 1996). Their goal is
to provide information and expertise on various topics by drawing on rele-
vant information from the system’s general database, remote heterogenecous
databases in the Internet, other information agents, or interface agents.

Finally, task agents specialize in performing specific tasks. They can
interact with all types of agents in order to carry out their jobs. These are the
most sophisticated agents of our system and they can have an elementary or
complex structure. For the application presented in this paper, we conceived
different types of task agents (elementary and complex), each corresponding
to different generic tasks (e.g., perform data analysis, generate a scenario)
involved in the methodology presented earlier. We can have several occur-
rences performing the same specific task (for example, several agents per-
forming data analysis).

We, therefore, have the following types of elementary task agents:

e Data Analysis (DA) Agent: Such an agent performs data analysis on an
input data set (see Figure 1, e.g., correspondence analysis, principal
components analysis, etc.). Such an agent has the knowledge that enables
him to choose appropriate data analysis methods, which are effective on
any particular input data set. Finally, he can combine and evaluate each
applied method’s outputs.

906 N. Matsatsinis et al.

e Brand Choice (BC) Agent: Such an agent uses inputted multicriteria tables
(see Figure 1) in order to choose the appropriate brand choice model(s)
and effectively model the behavior of the consumers that participated in a
particular market research (Figure 1, e.g., LUCE, Mc Fadden 1, etc.).

o UTASTAR Agent (UTS): Such an agent performs the UTASTAR
multicriteria method on an inputted market research. He can locate and
distinguish multicriteria questions while identifying alternative products
used in any market research. Its output is the utility table (referred to as
“utility file” in Figure 1).

e Market Expert Agent (ME): Such an agent selects a market strategy,
depending on scenarios and on knowledge that includes corporate infor-
mation, distribution channels information, etc.

By using these elementary agents, we build complex agents, taking into
account the methodology’s complex tasks achievement. We consider that by
using the complex agent concept to gather together agents involved in some
complex task (if the task’s nature allows it) achievement, the system’s scale
and coordination complexity can be decreased, making the application’s
modeling easier. Actually, coordination, even within a large-scale applica-
tion, is carried out, either between agents within relatively small-scale groups
or between a reduced number of complex agents that are entities of an upper
layer. The involved complex agents are:

e Scenario Generation (SG) Agent: Such an agent is composed by at least a
DA, a BC, and a UTS agent. He coordinates the scenario and complex
scenario generation task (see Figures 1 and 8).

e Strategy Selection (StS) Agent: Such an agent is composed by a BC, a ME,
and a UTS agent. He coordinates the penetration strategy selection task.

Agent Organization

Agents can be geographically distributed allowing the interaction with
users of different levels of responsibility and involvement in the main pro-
blem solving. Agents (elementary and/or complex) interact with each other
by means of inter-agent messages. A message is structured in such a way that
allows the transfer of the necessary information and semantics between
agents for cooperative work accomplishment. Our agent organization allows
the following interactions types (for an extended illustrative scenario see ““An
Example of the System’s Operation”):

e New agents are introduced while others ““died.” An agent will be informed
when a new member enters his community or when another leaves. A new
agent must present himself to the other agent’s community by broad-
casting a message with his identity (e.g., his address, his abilities, his

Penetration Strategy Selection 907

preferences, etc.). This is important from a software-engineering point of
view, because it allows modularity, reusability, and flexibility of the system.

e During the problem-solving process, appropriate agent activation dyna-
mically forms an organizational structure that fits with the current goal (a
specific task accomplishment, an information retrieval, etc.). In our system,
interface agents activate task agents. They can perform or assign a specific
task or tasks to a set of cooperating task agents by using appropriate
criteria (e.g., their abilities, their availability, and their performance for a
similar task in the past, etc.).

e Activities of information agents are initiated, either top down by a user or
a task agent through queries, or bottom up through monitoring infor-
mation sources for a particular information. Once the monitored condition
has been observed, the information agent notifies interested agents, by
means of messages, of the updated information.

e The interface agents can receive messages from users. After one such agent
infers a user’s needs from a user request, he starts a new task, giving it an
id. He then uses information gathered or previously held in order to decide
which task agent should be the first to work for this task. While the task
agents are carrying out a task, the interface agent that started it monitors
its progress.

AGENT ARCHITECTURES

In this section, we present the elementary and complex agent architectures.

Elementary Agent Architecture

The agents, which are used for the presented application modeling, are
based on a generic reusable architecture that we conceived, following the
general BDI-type philosophy (Georgeff and Ingrand 1989; Rao and Georgeff
1992) and inspired by the different agent architectures presented in the lit-
erature (see, for example, Brazier et al. 1997; Sycara et al. 2003; Witting
1992). Different functional agent types have the same basic architecture
principles, regardless of the category to which they belong. However, the
different modules are more or less sophisticated according to their specific
type (e.g., the planning model of an information agent is simpler than that of
a task agent). Our agent architecture (Figure 3) is composed of three modules
(Communication, Planning and Reasoning modules) that intercommunicate
through internal message exchanging (called intra-agent messages).

These modules run concurrently. An agent remains idle while no mes-
sages arrive to his communication module. As soon as a message arrives, the
communication module determines its importance and, after transforming it
to an intra-agent message, sends it to the planning module by means of a

908 N. Matsatsinis et al.

Elementary Agent
Planning
Module
Cooperative .
Plan Library Self Model Acquaintances
Communication
Module Finished Current
Tasks Tasks
External ? ?
i Receiver e | oo
v v vV
Incoming Meta - P1 <
Messages ‘
Message
Transmitter
Outgoing A Reasoning
Messages Module
1 |
H i E tabl
: Internal Receiver Librry Goals xecutable
Plans Actions
A A
1
Addresses !
Beliefs Intentions
i K
-----)
v
- Reasoner p— Executor

FIGURE 3. Elementary agent architecture view.

message queuing mechanism. All modules adopt this behavior and remain
idle while no messages are available for procession. The same intra-agent
queuing mechanism facilitates all modules. Thus, intra-agent control is
achieved via the intra-message mechanism. This mechanism is implemented
at the module class level and it facilitates all types of modules.

As can be seen in Figure 4 (featuring a UML class diagram) the Agent
class aggregates three Module objects and two FIFO_Priority_Queue objects
(the class names imply their functionality). The first queue facilitates intra-
agent control between the communication and planning modules while the
other facilitates the planning and reasoning modules. The queues are FIFO
priority queues which mean that messages are read in the same sequence that
they were sent and those with greater priority are read before those with
lesser priority. This intra-message queuing service is implemented by the
agent class public methods updateCommPlanQueue, readCommPlanQueue,
updatePlanReasQueue, and readPlanReasQueue (the first two methods pro-
vide intra-message insertion to and retrieval from the queue between the
communication and planning modules while the other two accommodate the
other queue in the same manner).

Penetration Strategy Selection 909

Thread
(from tang)
e T
,;\] \\/
Agent Module
Agent() module_tye :int
createModules() idle : boolean =false
updateCommPlanQueue() | : :
updatePlanReasQueue() [~ Mod ule(agent_pointer :Agent, type: int)
readCommPlanQueue() 1 3 readMessage(): ntraMessage
readPlanReasQueue() readMessage(from_module :inf) : IntraMessage
run() sendMessage(m : IntaMes sage) : void
ifidleThenSeflToMotion() : wid
¢
2

FFO_Priority_Queue

FIGURE 4. Elementary agent class diagram.

The Module class subclasses all types of modules. It automates intra-
message passing procedure and all types of modules can use the sendMessage
and readMessage methods in order to send or receive intra-agent messages.
Those methods are responsible for determining which module is sending to
which and for queuing and retrieving messages using the appropriate
methods of the Agent class. The overloaded method readMessage can be
invoked with a parameter, which specifies the module from which a message
will be received, so that in the case of the planning module, which can receive
messages by both the communication and planning modules, the read queue
can be specified.

Communication Module

The communication module is responsible for the agent’s interaction with
his environment. It sends and receives messages, while internally it interacts
with the planning module. Its functionality is quite straightforward: An
internal receiver process transforms each internally queued message to an
inter-agent message, adding the receiving agent’s address and then stores it to
the outgoing messages queue. An external receiver process realizes the
opposite by transforming each received external message to an internal for-
mat and writing it to the incoming messages queue. A message transmitter
process monitors the incoming and outgoing queues sending all queued
messages either to the planning module or to another agent accordingly.

910 N. Matsatsinis et al.

It has also the necessary ‘‘intelligence” to assume the interaction of an
elementary agent with his parent agent (case of complex agent).

The inter-agent and intra-agent messages are encapsulated data structures
which store the following attributes and support public update and read
methods for each one of them:

e message_id (an integer that is assigned to the message by the sender so that
he can recognize responses which will have the same id).

e message_type (the type of the message): available message types for both
inter and intra-agent messages (corresponding to the agent interaction
types):

e Birth (announcement of a new agent in the community).

Death (announcement of the destruction of an agent).

Task (message relevant to a specific task).

Info (information message).

Task_Init (messages relevant to the initiation of a task, agents propos-

ing, and agents accepting tasks).

e Team (complex agent team creation message, only intra-agent message
type).

importance_coefficient (an integer denoting the importance of the message).

message_body (the information that is to be communicated).

task_id (the id of the task in whose context this message is sent).

sender (the agent that sends the message).

receiver (the agent that is to receive the message).

The Communication_module class is featured in Figure 5. It aggregates two
queues (for storing incoming and outgoing inter-agent messages), a Server (it
is a TCP socket server to whom other communication modules can send
messages), and an AddressBook class (for storing other agents’ TCP/IP
addresses). Whenever it wants to send a message, it instantiates a Client class,
which sends the message to another communication module’s server.

Planning Module

In our system, agents receive task requests, which they might adopt as
goals, either from users or from other agents. In order to be able to accom-
plish effectively all necessary activities that lead to the final goal, agents need
to create and execute detailed plans. Since agents are supposed to be “born,”
act, and ‘““die” in real-world, distributed, open environments, the formulation
of a global plan for the whole system would essentially constrain fundamental
agency characteristics. Hence, our proposed architecture suggests that each
agent is internally structured with a distinct planning module (Figure 3).

The planning module is responsible for the appropriate goal translation
into an activity plan, which is a sorted list of all the tasks agents need to

Penetration Strategy Selection 911

Connection 0..* Server Address Book

(from communicationmodule) (from communicationmodule) (from communicationmodule)
Client
(from communicationmodule)
0 *
C) | Communication_module . InterMessageQueue
(from communicationmodule) 2| (from communicationmodule)
ServerOwner 7
/
(from org) /
/

Yupdatelncoming()

Two InterMessageQueue objects are aggregated

into the Communication_module class, the first is
Module a queue for incoming messages, while the

(from agent) second is a queue for outgoing messages.

FIGURE 5. Communication module class diagram.

accomplish until the goal is met. The selection of a plan usually actuates a
planning module to ask for other agent’s cooperation, while tasks might be
composed by subtasks, whose timely completion presupposes parallelism. In
coherence, an agent’s plan accomplishment might partially rely on other
agents, those performing parts—subtasks—of the plan.

In this approach, the planning module consists of one distinct process

(implemented as a separate thread) and five data structures (Figure 3):

The Planner (process) implements the actual planning algorithms for the
agent. Any decision making is necessary to manipulate and revise its data
structures (listed below). It is also responsible for the intra-module com-
munication through the intra-message exchange mechanism.

The Cooperation Plan Library is the data structure holding the available
plans for those goals the agent is able to achieve. A plan is a direct
mapping of a goal (task) to its assorted list of sub-goals (subtasks).

The Finished Tasks is a structure maintaining a task history log for each
agent. It holds the list of all the tasks accomplished by the agent.

The Current Tasks is a structure monitoring the tasks under accomplish-
ment, their state (running, suspended), as well as information for the plan
to which each one of them belongs.

The Self Model is a structure holding information about the agent itself. In
other words, it’s an abilities structure for internal use by the planner.

912

N. Matsatsinis et al.

Agent
Plan - > (from agent)
(from plamingmodule))
. //1
| -
0.* e
CoopPlanLib Planner 0.* | Acquaintance

(from planningmodule)

(from plamingmodue) 1 i(from planningmodule)
- (N
P 1 1 ~
&//"/ N/ \\\:\\A
SelfModel CurrentTasks FinishedTasks

(from plamingmodue)

(from ptanningmoduie)

0.* \
N

\\&

(from plamningmoduie)

/o..*

&

Task
(from plamingmodule)

FIGURE 6. Planning module class diagram.

e The Acquaintances is the structure where the planner keeps information
about other possibly useful agents within the system. Whenever the planner
needs to ask for cooperation it first checks for the appropriate acquain-
tance through this structure.

The planning module intercommunicates with both the communication
and reasoning modules, something expressing its intrinsic administrative
role. Following the general internal communication policy, the planning
module gets active when an IntraMessage appears into one of the queues.
Messages are processed by the planner process, which is responsible for
module reaction on each request, information arrival, domain change, etc.

Figure 6 presents an implementation modeling in UML for the planning
module. Apart from the six components already described above, there are
another two supporting structures, one modeling a plan, and one modeling
task.

Reasoning Module

Apart from the planning ability, it is essential for agents to make rational
decisions. Our proposed agent architecture suggests a distinct module to
handle all the listed problems (Figure 3).

The reasoning module makes decisions on goal or intention adoption,
actions execution, and monitors the allocated tasks execution progress. For

Penetration Strategy Selection 913

the implementation of the above concepts, reasoning module is using one
process (the reasoner) and five data structures:

e The Reasoner implements the reasoning algorithms. It uses the module’s
structures for deciding which goals should be adopted, generating inten-
tions and determining which actions (derived from intentions) should be
executed or suspended.

e The Executor executes the actions in the executable actions list.

e The Plan Library is the structure containing pre-compiled plans of actions
necessary for complex tasks’ decomposition and achievement.

e The Beliefs of an agent are dynamically changing structures, representing
the agent’s knowledge about the environment in which the plan is executed.

e The Goals of an agent is a structure holding information on tasks that will
be accomplished. The goals structure implements a priority queue, where
higher priority tasks (or subtasks) are handled first by the reasoner. Our
goals structure substitutes desires from the generic BDI architecture (Rao
and Georgeff 1992).

e The Intentions of an agent is a structure containing those plans of actions
that have been chosen for (eventual) execution in order to achieve the
defined goals.

e The Executable Actions is a structured list containing the primitive plans
(sequences of primitive actions) to be executed by the executor. These plans
are a subset of those contained to the intentions’ structure and are chosen
according to several criteria, relative to a specific context. The imple-
mentation of the list is an FIFO queue, where the first action inserted is
executed first.

The reasoning module intercommunicates internally only with the planning
module. Following the general internal communication policy, the reasoning
module gets initially active when an IntraMessage appears into the queue it
shares with the planning module.

Figure 7 presents an implementation modeling in UML for the reasoning
module. There are also two implementation supporting structures: one mod-
eling a plan reduction formula (RedLayout class) and one for task modeling.

Complex Agent Architecture

Complex agents can belong to the three functional types defined earlier.
The architecture of a complex agent is similar to the one of an elementary
agent. Therefore, he is composed of the same three modules (Communication,
Planning and Reasoning module) which intercommunicate through internal
message exchanging. The intra-agent control (interaction between the three
components) is the one of the elementary level.

914 N. Matsatsinis et al.

Executor) - Thread
(from reasoningmodule) ¢ (from lang)
T / // Agent
ActionList Module
(from reasoningmodule) { | [T <>y (from ageny
N
\ 1
! R
Belief easgner . Intention
X (from reasoningl)
(from reasoningmodule) 0..* 0..* (from reasoningmodule)
0.
//
PlanLib Goal
(from reasoningmodule) (from reasoningmodule)
V0¥ 1
RedFormula Task

(from reasoningmodule) ronlplansipgmodiis) 0..*

FIGURE 7. Reasoning module class diagram.

The difference is situated in the structure of the reasoning module. The
group of agents (elementary and/or complex) which compose it assumes its
role. The task achievement of an agent (parent) developed in n-layer is,
therefore, the result of the set of agents’ (his descendants) cooperation
belonging to the previous (n—1) layer. The reasoning module could be
therefore considered as an agent organization.

The interaction between a complex agent’s reasoning and planning
modules (like in the elementary level) of an (i+ 1) layer agent is established
through the i layer agents that are components of the reasoning module of
the (i+ 1) layer agent (for example, the Brand Choice Agent sends the result of
his work to the planning module of the Scenario Generation Agent, Figure 8).
In this context, an inter-agent message sent by an i layer agent to an (i+1)
layer agent is transformed to an intra-agent message of the (i+ 1) layer agent.
The organization of reasoning module agents is dynamically generated as
presented earlier. Its role is to achieve any tasks(s) allocated by the planning
module. The agent’s organization generation process is initiated by selecting
appropriate agent(s) (according to the task’s nature) chosen by the planning
module. An illustrative scenario of the mechanism that supports this
operation will be provided later in this chapter. Agents can be of a different

Penetration Strategy Selection 915

SG agent

!NT _annt

Layer 2

SlM agent ‘

Lmy

Layer 1

FIGURE 8. Layers of an SG-complex agent structure.

nature (e.g., static, mobile) not necessarily implemented in the locality of the
parent agent, but they are, however, aware that they have the same parent.
In Figure 8, a UTA* agent, a BC agent, and an SIM agent compose the
reasoning module of a complex SG agent. The UTA* agent provides the
multicriteria analysis service (using his knowledge on analyzing a market
research and selecting multicriteria question), the BC agent selects a brand
choice model for the multicriteria analysis (using his knowledge base on
model selection), while the SIM agent simulates scenarios for the user (using
either its knowledge base or user input provided via an INT agent to the SG
agent).

Communication and planning modules have exactly the same structures
and functionalities as in the elementary level. The difference is in the Com-
plexAgent class (see Figure 9). Instead of a third Module object (what would
become its reasoning module), the agent utilizes a Server, an Inter-
MessageQueue, and instantiates Client classes.

Whenever it recruits an agent of a lower level, it informs it that its
TCP/IP address has changed and it sends him the address of the server that it
utilizes (instead of the one that listens for its communication module and that
does not cease to exist). This TCP/IP address exists only for the agents of the
lower level. The other agents continue to contact him normally via its
communication module. The inter-agent messages that arrive to this server
are transformed to intra-agent messages in a transparent way and are sub-
sequently placed in the queue for the planning module. Correspondingly,
intra-agent messages that are queued by the planning module for the rea-
soning module are transformed into inter-agent messages and are sent via

916 N. Matsatsinis et al.

Thread
(from lang) |
AR NA
///// L.r \
>
Agent Module Sener
(from agent) (from agent) (from communicationmodule)
\ [2
/
/ X
’/ P
\ d’ __~"ServerOwner
(from org)
ComplexAgent
(from agent)
YComplexAgent() Client
Qupdatelncoming() R (from communicationmodule)
T}QlocateRecipienthdressInfo() O 0..

QupdateAddressBook() = —
Srun() N InterMessageQueue

S (from communicationmodule)

e

] FIFO_Priority_Queue

(from agent)

FIGURE 9. ComplexAgent class diagram.

a Client to the corresponding agent of the lower level. In order to facilitate
this procedure, the complex agent uses an AddressBook object, which is
updated by the communication module via a special intra-message that it
receives from the planning module and contains the TCP/IP addresses of the
agents in the lower level.

In Figure 10, a complete scenario of a complex agent’s team creation is
provided. The sequence starts after the planning module has decided what
other agents will be needed for task execution, has sent to them the appro-
priate proposals via Task_Init inter-agent messages, and they have all
answered positively. At that point it sends to the communication module the
intra-message of type Team making the communication module update the
complex agent’s internal structure with the addresses of the agents of the team
and send messages to them denoting the new address of the complex agent.

After technically presenting the complex task agent, we can say that two
processes facilitate a complex task achievement. A top-down process assumes
that the task’s decomposition in several subtasks is achieved across the dif-
ferent layers, while a bottom-up process performs the synthesis of different
solutions proposed at different layers. We can have complex information

Penetration Strategy Selection 917

e e

pdabCummPth'uam(lntraMessag%) I [I

| ifidleThenSet TaMotion() | I I
H
The [[I The inter-agent messages are of the L
intra-message is T type “Team" and notify the receiving
of type "Team" s agents that the complexagent's H
and requests the l readCommPanQueve(int) l address has changed thus making H
addresses of the | them send theirinter-agent messages |
agents that are in to the server thatthe ComplexAgent H
| class itself utilizes from now on
AN
l updateAddressBook(Vector) 7S l

/
Clien(InetAddress, int, InteﬂYlessage)
T

l

|

l

I N ClienInethddress, inf | hlerMegsage) |
] | '
| |

| | § |
| l l l
| | |
FIGURE 10. New team creation scenario.

agents when an information retrieval must be accomplished through the
achievement of several specific information-gathering goals. Different spe-
cialized information agents representing layers of a complex information
agent can take these goals into account. We can also have a complex interface
agent able to take into account (through his elementary interface agents) the
different points of view of board members during a distributed decision-
making process.

AN EXAMPLE OF THE SYSTEM’S OPERATION

The system is running on Windows 2000. The Windows execution
environment is necessary because many methods (UTA*, data analysis
methods, etc.) used by the different agent type reasoning modules have been
implemented using the Visual Basic programming language and are in the
form of dynamic link libraries (DLLs). The agent architecture framework,
though, has been implemented in pure Java and thus can be executed under
any Unix-like operating systems, such as Solaris, Linux, etc., as well.

We proceed with an example of the system’s operation, which shows how
the proposed methodology is implemented by our system. The questionnaire
that was used as an input is the same as in Matsatsinis and Siskos (1999),
which was a real-world case study.

The agent’s interactions are presented in sequence diagrams. For pre-
sentation purposes, the different agent types are symbolized as classes and the
inter-agent messages as class methods. Thus the UML notation for sequence
diagrams (Eriksson and Penker 1998) can be used adequately to present the
inter-agent interactions that occur during the systems execution. The reader

918 N. Matsatsinis et al.

should note that inter-agent interactions are invisible to the decision maker
that interacts only with the appointed INT agent via a Java applet.

In this example, a decision maker attempts to decide on a market
penetration strategy for a new product, a fruit juice in this example, which is
currently under development. Related field market surveys have been
accomplished and a general database has been built, containing all the col-
lected data (questionnaires, consumer answers, etc.).

As soon as the decision maker (user) contacts the system, an interface
(INT) agent initiates a project and she/he is asked to define the project’s goal
and constraints on data manipulation (‘“‘Request to simulate a new product
penetration strategy’ task, see Figure 11).

After having the initial information, the interface agent is able to delegate
the task to the competent agents of the system. In our example, interface
agent delegates the job to a Scenario Generation (SG) agent, who is
immediately sending collaboration requests to a Data Analysis (DA) agent,
an Utastar (UTS) agent, and a Brand Choice (BC) agent via appropriate
Task_Init inter-agent messages. The contacted agents reply with an affir-
mative or negative Task_Init message. In the case of an over-employed agent
that declines the SG agent request, the SG agent’s planning module selects
another agent to whom he sends the Task_Init message. As soon as the team

Task_Init("request to simulate a new product penetration strategy")
— o :

i
If an agent refused o accept a task, then another of the
same type would be sought. If all available agents of
the same type refused, then a Task("Failure”) message
would be sent back to the INT agent at this point.

Task Imt(“Perform Data Analy5|s‘)
B SR. S

Task_lnit("Perform Simulations”)
Task_Init("Perform UTA* Method") .

Task k_Init("Accept Task")
e
Task_nit("Accept Task")
Task_Init("Accept Task")

AN

Task(" Analyze Fruit Juice Market Survey Analy5|s aim: Consumer Grouplng)

Task("Perform UTA“ on Fruit Juice Market Survey")

info(" Request Fruit Market Survey Data")

Info("Fruit Julce Market Survey Data")

Infer on Analysrs Mode! Perform Dala Analysis
Task('Data Analysis Resulls") Info("Request Fruut Marke(Survey Mutticriteria Data"

Info("Fruit Market Survey Mumcmena Data")
—————,

' Pel rfo__r?p UTA*

Task{“UTA‘ Analysis Results"} O

Task("UTA Criteria Analysis Results")
2 Dadtehtbinilinbi A

the regults to thé user

FIGURE 11. Example, agents’ interactions (1).

Penetration Strategy Selection 919

is created, the SG agent sends to each agent the corresponding subtask via
Task messages.

Depending on the decision maker’s constraints, the DA agent requests
the necessary data for analysis from an information (INFO) agent. The result
he gets is the filtered data spreadsheet upon which a data analysis method is
selected and applied. Methods selection is made according to a user’s analysis
target. The first data analysis target in the fruit juice example is consumer
grouping, so principal components analysis is chosen. The method’s outcome,
a eigenvalues table, a correlation table, and a variables interpolation table are
sent to the INT agent (via the SG agent who intervenes on all agent inter-
actions thus coordinating the team’s work) in order to be presented to the
user as the consumers characteristics.

Concurrently (with the DA agent), the UTS agent requests from an
INFO agent the constrained data multicriteria table, on which he applies the
Utastar method in order to gain the utilities files and the criteria significance
tables, which are forwarded to the INT agent in order to be presented to the
user.

At this stage, the INT agent presents the consumer’s characteristics and
the criteria significance tables (that is, both the outcomes of data analysis and
Utastar methods) to the decision maker who is now able to select the market
shares he is interested in. When the market shares spreadsheets are prepared,
the INT agent forwards them to the SG agent (‘“‘Prepare market shares for
the chosen target market” task, see Figure 12) who, in turn, forwards them
to the BC agent who is responsible for the appropriate brand choice model
selection for each one of the market segments. The aim of all brand choice
models is to find out the preferences of the consumers as far as the products
of the market are concerned. The determination and selection of the most
appropriate model depends on two factors. The first one is the width of
utilities allocated by the consumers of the segment, and the second is the type
of distribution of these utilities. It is the BC agent’s duty to reason and select
the most applicable model for each market segment.

In continuance, the INT agent presents to the decision maker the mul-
ticriteria matrix with the mean values for each related product. The user is
able to make changes on that table and declare a range for those criteria
values she/he wants to experiment with. Finally, those user’s preferences
(modified multicriteria tables) are forwarded to the BC agent (‘“‘Request
simulation” task, see Figure 12).

The BC agent applies the previously selected brand choice models to the
market segments, implementing the market simulation that way. The BC
agent simulates market for all possible combinations among criteria values in
the user-defined range. Market simulation scenarios are presented graphically
to the decision maker. Depending on the market shares, she/he decides which
of the scenarios will be used for the complex simulations. Those (user

920 N. Matsatsinis et al.

INT:Agent SG:Compiex Agent BC:Agent INFO:Agent

|

Task("Prepare market shares for the chosen target market")

Task(“ModeI Chosen Target Market“)

Infer on best fitti

rand choibe model
Task("Target Market Model“) ,
Task("Target Market Model")

Task("Generate Scena@s")

’ Task("Request Simulatiori“)

Task("SlmuIated Scenarlos")

Task(“Slmulated Scenar|o$")

Task("Generate Complex Scenanos")

Task("Request Complex Simuiation")

Task(“S|mulated Complex Scenanos")

Task(“SlmuIated Complex Scenanos)

Task("lnser‘t New Cntena")

Info("lnsert New Criteria at Frunt Juice Market Survey")

=

FIGURE 12. Example, agents’ interactions (2).

selections) are transferred back to the BC agent (““Request complex simula-
tion” task, see Figure 12), who introduces price as an independent variable
and implements the complex market simulations procedure. The results are
presented to the decision maker (through the GS and INT agents again) and
she/he decides which are the most practical for the new product develop-
ment. For the selected scenarios, the user has the ability to try new criteria
introduction. If she/he introduces new criteria, they will be sent to the INFO
agent with the request for new multicriteria tables construction (one for each
consumer, see last message in Figure 12).

If the decision maker is not satisfied (for any reason) with the strategies
selected, she/he might reintroduce criteria and request another market ana-
lysis (repeat the procedure described here from any desired point forward).

After all decision makers (probably coming from different enterprise
departments like marketing, development, sales, etc.) have edited their sce-
narios and saved them on the general database, a board member can select
them in order to simulate them using the inference abilities of the ME agent.
So, in the sequence presented in Figure 13, a board member (alone or during

Penetration Strategy Selection 921

Task_Init(*request a new product penstration strategy proposal")
e :
Task K_Init("Accept Task) !

The DM's saved new
criteria are requested to be
included in the strategic
scehario generation.

Task("Setect Strategy usmg Fruut Juice Market Survey and DM's Analysls)
T ——————->

Task_| Inlt' UTA* | Method)
: Task lmt(“Perform Slmulallons)

Task_Init(" Consult on Dlstnbutlon Channels”’)

Task K_Init("Accept Tesk")
Task_Init("Accept Task")
Task_Init("Accept Task")

Info{"Request Fruit Market Survey Multicriteria Data with DM's ne Critefia")

Info("Fryit Market Survey Multicriteria Data")

Task("Add Distribution Channels Criterion on Survey®)

i t|o ChanneIsQuall’ty

Task("Survey Muiticriteria Data with Dlstnbutlon Channels Cmerlon")
Task("Perform UTA* on Survey")
— TS

Taskr'UTA" Analysis Res'ults“)

Task(Request Complex Slmulatlon)

Task("SlmuIated Complex Scenanos "

Task("Simulated Complex Strategic Scenarios")
=)

FIGURE 13. Example, agents’ interactions (3).

a board meeting) requests to simulate the scenario of one or more decision
makers, and introduce the enterprises’ distribution channels quality criterion.
An available strategy selection (STS) agent asks the EM agent to introduce
the new criterion to the multicriteria matrices in the general database. Then
he sends the consumer multicriteria matrices to a UTS agent, requesting
another Utastar method application and the composition of new utilities
files. As soon as those new utilities files are available, they are sent to the BC
agent who will perform the simulations and return the latter to STS in order
to (through the INT agent) be presented to the board member (sorted by the
market shares that they provide to the company).

RELATED WORK AND CONCLUSIONS

This paper presented an agent-based system to support new products
penetration strategy selection process for the first time in a real world dis-
tributed context with use of multicriteria methodology.

Among existing systems in the literature, the one that comes closest to the
capabilities of the proposed system is the MARKEX system (Matsatsinis and
Siskos 1999). Besides, the proposed system is actually an improved version of
MARKEX. The proposed system has been redesigned and implemented

922 N. Matsatsinis et al.

based on the technology of intelligent agents. The most important differences
between them can be pinpointed in the artificial intelligence techniques used
(expert system versus intelligent agents), in the design (structural versus
object—oriented), the method of operation (the methodology is externally
implemented and follows a standard procedure, whereas in the new system
the operation concerns the implementation of all the processes by the intel-
ligent agents based in the objectives set by the decision maker), and, finally, in
the participation level of human decision makers in the process (the system
operates only with the presence and under supervision of the decision maker,
whereas in the new system the participation of the decision maker has been
limited to the initialization of the problem with the establishment of the
objectives, the solution of partial problems, and the selection of the proposed
solution).

In comparison to the CSAS system (Liberatore and Stylianou 1995), they
both handle the new product development process and are the only ones that
use multicriteria methodologies (AHP and UTASTAR, respectively) and
data analysis methods. However, they use different artificial intelligence
techniques (expert systems versus intelligent agents) and different meth-
odologies (customer satisfaction versus consumer behavior analysis). In
addition, the proposed system covers the consumer’s purchase decision
process, sales forecasting, and incorporates the ability to apply scenarios and
simulations regarding the reaction and behavior of the market.

The TeleDSS system (Huang et al. 2000) considers the development of an
agent-based framework for collaborative product development that pays
more attention to the use of workflow management as a mechanism to
facilitate the teamwork in a collaborative product development environment
rather than supporting the decision of new product development. The system
proposed by Haque et al. (2000) provides decision support for project
managers and engineers during the early phases of new product development
in a concurrent engineering (CE) environment. The authors suggest a process
that handles the application of concurrent tasks in the development of new
products but leave out the design and development of new products and the
process of strategic marketing decision making. Liang and Huang (2002)
propose an agent-based system of collaborative information and a solution
procedure for designing with modules to develop modular products. This
system also focuses in the support of processes for new product development
(modular developing). Chung et al. (2003) investigate the use of ontologies,
agents, and knowledge-based planning techniques to provide support for
adaptive workflow or flexible workflow management, especially in the area of
new product development within the chemical industries. A general conclu-
sion is that the above-mentioned systems approach the new product devel-
opment problem from the perspective of supporting the development
processes, whereas the proposed system attempts to approach the problem

Penetration Strategy Selection 923

from the perspective of new product design and development based on the
analysis of consumers’ behavior.

The hybrid system (Li 2000) has been developed to: provide a logical
process for strategic analysis; support group assessment of strategic market-
ing factors; help the coupling of strategic analysis with managerial intuition
and judgment; help managers deal with uncertainty and fuzziness; and pro-
duce intelligent advice on setting marketing strategy. The proposed system
supports the following three stages of marketing strategy development pro-
cess: strengths, weakness, opportunities, and threats analysis (SWOT);
portfolio summary of the current product/market status; and setting mar-
keting objectives and strategy. This system deals only with the issue of mar-
keting strategy and in this its subject is significantly superior to the proposed
system. However, the latter also handles the selection of the most appropriate
penetration strategy, indicated by the anticipated market shares produced by
the simulation of the market’s behavior under different circumstances. In the
same way, the following systems deal only with the solution of partial pro-
blems or simply support the decision-making process. ARISTOTE (Pinson
and Moraitis 1996) aims at helping corporate managers address the feasibility
and coherence of long-term plans of actions. The system supports a frame-
work for the cooperation of decision makers; cooperation that eventually will
facilitate decision-making. An architecture for intelligent agent-assisted
decision support system development has been proposed by Wang (1997).
The system supports the collaborative decision-making process and the
marketing planning decisions. CMA (concurrent marketing analysis) is a new
marketing DSS and information management approach (Schwartz 2000),
which allows managers to conduct concurrent, interrelated analysis on their
decision problems. It consists of a new approach to marketing decision
problems, which has the potential to move marketing decision support
systems to a new level of integration and effectiveness. Ha et al. (2002) pro-
pose a dynamic customer relationship management (CRM) model utilizing
data mining and a monitoring agent system to extract longitudinal knowledge
from the customer data and to analyze customer behavior patterns over time
for the retailer. In any case, one can find an extended survey of intelligent
decision support systems in marketing in Matsatsinis and Siskos (2003).

From the multi-agent systems point of view, the proposed system is built
by using a generic reusable agent architecture, where agents are considered
simultaneously in two levels: a functional and a structural level. In the
functional level, we have three types of agents: Tasks, INT, and INFO agents;
while in the structural level, we have elementary and complex agents. The
structural level distinction enables our system to support many different points
of view in different levels of abstraction in a decision-making procedure, which
is crucial for strategic marketing, while it facilitates interactivity between
individual decision makers and an organized group of decision makers.

924 N. Matsatsinis et al.

The difference with other works (see, for example, Brazier et al. 1995;
Jennings et al. 2000a; 2000b) is, like in Sycara’s and Zeng’s (1996) work, the
differentiation between three types of agents in the functional level, allowing
efficient operation for real complex tasks achievement involving coordina-
tion, information gathering, and user interaction. Compared to Sycara
and Zeng (1996), the difference is that we introduce the structural level
consideration for the three types of agents (even if we have only imple-
mented complex task agents in this application). We consider that by using
the complex agent concept, thus gathering together agents involved in some
complex task (if the task’s nature allows it) achievement, the system’s scale
and coordination complexity can be decreased, therefore, simplifying appli-
cation modeling. Actually, coordination, even within a large-scale applica-
tion, is carried out either between agents (elementary and/or complex) within
relatively small-scale groups, or between a reduced number of complex
agents, components of a distributed system, or components of an upper layer.
In the latter case, coordination is carried out by intra-agent control primitives
assuming interaction between different layers of agents of a complex agent.

In conclusion, we have presented an agent-based system for new product
penetration strategy selection. This issue is faced in its real-world distributed
nature and this is due to the advantages provided by agent technology use.
This system can be used by different enterprises producing different types of
products in order to simulate and evaluate the expected impact in the market
of the products they plan to launch. The use of the system can be done before
these products have been really produced in order to make the best choice on
a commercial level and thus avoid a probable failure, which can often be fatal
for an enterprise.

REFERENCES

Brazier, F. M. T., B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur. 1995. Formal specification of multi-
agent systems. In Proceedings of First International Conference on Multi-Agent Systems (ICMAS95),
pages 25-32, San Francisco, CA.

Brazier, F. M. T., B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur. 1997. DESIRE: Modeling multi-
agent systems in a compositional formal framework. International Journal of Cooperative Information
Systems. Special issue on Formal Methods in Cooperative Information Systems: Multi-agent Systems
6(1): 67-94.

Chung, P. W. H., L. Cheung, J. Stader, P. Jarvis, J. Moore, and A. Macintosh. 2003. Knowledge-based
process management: An approach to handling adaptive workflow. Knowledge-Based Systems
16:149-160.

Eriksson, H., and M. Penker. 1998. UML Toolkit. New York: John Wiley & Sons.

Georgeff, M. P, and F. F. Ingrand. 1989. Decision-making in an embedded reasoning system. In Pro-
ceedings of the Eleventh International Joint Conference on Artificial Intelligence (UCAI-89), pages
972-978, Detroit, MI.

Ha, S. H., S. M. Bae, and S. C. Park. 2002. Customer’s time-variant purchase behavior and corresponding
marketing strategies: An online retailer’s case. Computers & Industrial Engineering 43:801-820.

Penetration Strategy Selection 925

Haque, B. U., R. A. Belecheanu, R. J. Barson, and K. S. Pawar. 2000. Towards the application of case
based reasoning to decision-making in concurrent product development (concurrent engineering),
Knowledge-Based Systems 13:101-112.

Huang, G. Q., J. Huang, and K. J. Mak. 2000. Agent-based workflow management in collaborative
product development on the Internet. Computer-Aided Design 32:133-144.

Jennings, N. R., P. Faratin, T. J. Norman, P. O’Brien, and B. Odgers. 2000a. Autonomous agents for
business process management. Int. Journal of Applied Artificial Intelligence 14(2):145-189.

Jennings, N. R., P. Faratin, T. J. Norman, P. O’Brien, B. Odgers, and J. L. Alty. 2000b. Implementing a
business process management system using ADEPT: A real-world case study. Int. Journal of Applied
Artificial Intelligence 14(5):421-465.

Jennings, N. R., P. Faratin, M. J. Johnson, P. O’Brien, and M. E. Wiegand. 1996. Using intelligent agents
to manage business processes. In Proceedings of the Ist Conference on Practical Applications of
Intelligent Agents and Multi-Agents (PAAM’96), London, UK, pages 345-360.

Knoblock, G. A., and J. L. Ambite. 1997. Agents for information gathering. In Software Agents,
J. M. Bradshaw, ed., pages 347-373. AAAI Press/MIT Press.

Kotler, P. 1994. Marketing Management: Analysis Planning Implementation and Control, 8th ed. London:
Prentice Hall.

Laurel, B. 1997. Interface agents: Metaphors with character. In Software Agents, J. M. Bradshaw, ed.,
pages 67-77. AAAI Press/MIT Press.

Liang, W-Y., and C. C. Huang. 2002. The agent-based collaboration information system of product
development. International Journal of Information Management 22:211-224.

Li, S. 2000. The development of a hybrid intelligent system for developing marketing strategy. Decision
Support Systems 27:395-409.

Liberatore, M. J., and A. C. Stylianou. 1995. Expert support systems for new product development
decision making: A modeling framework and applications. Management Science 41(8):1296-1316.

Matsatsinis, N. F., and Y. Siskos. 1999. MARKEX: An intelligent decision support system for product
development decisions. European Journal of Operational Research 113(2):336-354.

Matsatsinis, N. F., P. Moraitis, V. Psomatakis, and N. Spanoudakis. 1999. Intelligent software agents for
products penetration strategy selection. In Proceedings of Modeling Autonomous Agents in a Multi-
Agent World (MAAMAW’ 96), June 30-July 2, Valencia, Spain.

Matsatsinis, N. F., and Y. Siskos. 2003. Intelligent Support Systems for Marketing Decisions. Boston:
Kluwer Academic Publishers.

Meyers, P. W., K. Sivakumar, and C. Nakata. 1999. Implementation of industrial process innovations:
Factors, effects, and marketing implementations. Journal of Product Innovation Management 16:295-311.

Nylen, D. W. 1990. Marketing Decision-Making Handbook. Engelwood Cliffs, NJ: Prentice Hall.

Pinson, S., and P. Moraitis. 1996. An intelligent distributed system of strategic decision making. Journal
Group Decision and Negotiation 6:77-108.

Rao, A. S., and M. P. Georgeff. 1992. An abstract architecture for rational agents. In Proceedings of
Knowledge Representation and Reasoning (KR'92), pages 439-449, Cambridge, Massachusetts.
Schwartz, D. G. 2000. Concurrent marketing analysis: A multi-agent model for product, price, place and

promotion. Marketing Intelligence & Planning 18(1):24-29.

Simon, H. 1960. The New Science of Management Decision. New York: Harper and Row.

Siskos, J., and D. Yannacopoulos. 1985. UTASTAR: An ordinal regression method for building additive
value functions. Investicao Operational 5(1):39-53.

Sprague, R. H., and E. D. Carlson. 1982. Building Effective Decision Support Systems. Englewood Cliffs,
NIJ: Prentice Hall.

Sycara, K., M. Paolucci, M. ven Velsen, and J. Giampapa. 2003. The RETSINA MAS Infrastructure.
Autonomous Agents and Multi-Agent Systems 7(1/2):29-48.

Sycara, K., and D. Zeng. 1996. Coordination of multiple intelligent software agents. International Journal
of Cooperative Information Systems 5(2&3):181-211.

Urban, G. L., and J. R. Hauser. 1993. Design and Marketing of New Products, 2nd ed. Englewood Cliffs
NIJ: Prentice Hall.

Wang, H. 1997. Intelligent agent-assisted DSS: Integration of knowledge discovery, knowledge analysis
and group decision support. Expert Systems with Applications 12(3):323-335.

Witting, T. (ed.). 1992. ARCHON: An architecture for multi-agent systems. Chichester: Ellis Horwood Series.

