

1

The Gaia2JADE Process for Multi-Agent Systems Development

Pavlos Moraitis

Dept. of Computer Science

University of Cyprus

75 Kallipoleos Str.,

1678 Nicosia, Cyprus

European Projects Dept.

Singular Software S.A.

26th October 43, 54626,

Thessaloniki, Greece

Nikolaos Spanoudakis

European Projects Dept.

Singular Software S.A.

26th October 43, 54626,

Thessaloniki, Greece

LAMSADE

University of Paris IX-Dauphine

Place du Marechal de Lattre de Tassigny

75775 Paris CEDEX 16, France

2

3

Abstract: In this paper we present the Gaia2JADE process concerning how one can implement

amulti-agent system with the JADE framework using the Gaia methodology for analysis and

design purposes. This process is particularly dedicated to the convertion of Gaia models to JADE

code. It is described using the Software Process Engineering Metamodel (SPEM) and extends the

one proposed by FIPA for describing the Gaia modelling process. Thus, it proposes to potential

MAS developers a process that covers the full software development lifecycle. This work is based

on the experience we have acquired by applying this process for implementing a real word multi-

agent system conceived for providing e-services to mobile users. With this paper, we share this

experience with future multi-agent systems (MAS) developers, who would like to follow this

process, taking into account several technical issues that emerged during the implementation

phase, helping them to easily model and implement their systems.

1. Introduction

During the last few years, there has been a growth of interest in the potential of agent technology in the context of

software engineering. Some promising agent-oriented software development methodologies, as for example Gaia

(Zambonelli et al. 2003) and MaSE (Wood and DeLoach, 2000) have been proposed but they cover only the

requirements (MaSE), analysis and design phases (MaSE, Gaia) of the software development cycle (Sommerville,

2000). An exception in these works is Tropos (Bresciani et al., 2003), which in its recent version proposes the

covering of the entire software development process. Recently, there have also been some attempts to provide

roadmaps (e.g. Moraitis et al, 2003a) and tools (e.g. Cossentino et al, 2003, Gomez-Sanz and Pavon, 2003) for

allowing analysis and design methodologies to be implemented using JADE (Bellifemine et al, 2003) or the FIPA-

OS (Emorphia Ltd, 2003) open source frameworks. Other frameworks appear as complete solutions (methodology

plus agents development environment) like Zeus (Collis and Ndumu, 1999) or AgentTool with MaSE (DeLoach and

Wood, 2001), but they couldn’t gain as large an audience as JADE at the implementation level.

In this paper we present the Gaia2JADE process (a preliminary version was presented in Moraitis et al., 2003a),

which we used (see Moraitis et al., 2003b) in order to develop a real-world multi-agent system (MAS) that was

analyzed and designed using the Gaia methodology and implemented with the JADE framework. The output of our

experience is this process which allows developers to implement Gaia models using the JADE framework. The weak

and strong points of Gaia when it comes to implementation using JADE were recognized and we can now propose a

detailed process so that MAS developers can easily model and implement their systems. The Gaia2JADE process

was described using the Software Process Engineering Metamodel (SPEM) proposed by the Object Management

Group (2002). The FIPA Methodology Technical Committee has used it in order to describe the Gaia modelling

process (Garro et al, 2004). We enhanced the latter, by adding the JADE development phase, thus proposing to

potential MAS developers a process that covers the full software development lifecycle.

4

This paper is organized in the following way. In sections 2 and 3 we provide a Gaia and JADE overview. In section

4 we present the Gaia2JADE development process in detail. In section 5 we present a case study, where we

instantiate the proposed process in a specific application. Finally, section 6 includes conclusions and future work.

2. Gaia Overview

The Gaia methodology (Zambonelli et al. 2003) is an attempt to define a complete and general methodology that it

is specifically tailored to the analysis and design of MASs. Gaia supports both the levels of the individual agent

structure and the agent society in the MAS development process. MASs, according to Gaia, are viewed as being

composed of a number of autonomous interactive agents that live in an organized society in which each agent plays

one or more specific roles. Gaia defines the structure of a MAS in terms of a role model. The model identifies the

roles that agents have to play within the MAS and the interaction protocols between the different roles. The Gaia

modelling methodology is a three phase process and at each phase the modelling of the MAS is further refined.

These phases are the analysis phase, the architectural design phase and, finally, the detailed design phase.

The objective of the Gaia analysis phase is the identification of the roles and the modelling of interactions between

the roles found. Roles consist of four attributes: responsibilities, permissions, activities and protocols.

Responsibilities are the key attribute related to a role since they determine the functionality. Responsibilities are of

two types: liveness properties – the role has to add something good to the system, and safety properties – the role

must prevent something bad from happening to the system. Liveness describes the tasks that an agent must fulfil

given certain environmental conditions and safety ensures that an acceptable state of affairs is maintained during the

execution cycle. In order to realize responsibilities, a role has a set of permissions. Permissions represent what the

role is allowed to do and, in particular, which information resources it is allowed to access. The activities are tasks

that an agent performs without interacting with other agents. Finally, protocols are the specific patterns of

interaction, e.g. a seller role can support different auction protocols. Gaia has formal operators and templates for

representing roles and their attributes and also it has schemas that can be used for the representation of interactions

between the various roles in a system. The operators that can be used for liveness expressions-formulas along with

their interpretations are presented in Table 1. Note that activities are written underlined in liveness formulas.

Operator Interpretation

x . y x followed by y

x | y x or y occurs

x* x occurs 0 or more times

x+ x occurs 1 or more times

x
 ω

x occurs infinitely often

[x] x is optional

x || y x and y interleaved

Table 1. Gaia Operators for Liveness Formulas

5

Furthermore, during the analysis phase, the possible interactions with a role’s external environment are identified

and documented in the environmental model. There, the possible actions that the role can perform to the

environment along with the perceptions that it can receive are identified. It is a computational representation of the

environment in which the MAS will be situated.

Finally, the rules that the organization should respect and enforce in its global behavior are defined. These rules

express constraints on the execution activities of roles and protocols and are of primary importance in promoting

efficiency in design and in identifying how the developing MAS can support openness and self-interested behavior.

In a next phase, namely the architectural design phase, the roles and interactions models are refined and finalised by

the definition of the system’s organizational structure in terms of its topology and control regime. This activity

involves considering the organizational efficiency, the real-world organization in which the MAS is situated, and the

need to enforce the organizational rules.

Lastly, the Gaia detailed design phase, maps roles into agent types and specifies the right number of agent instances

for each type. Thus, an agent type is an aggregation of one or more agent roles. Moreover, during this phase, the

services model, the services that a role fulfils in one or several agents, is described. A service can be viewed as a

function of the agent and can be derived from the list of protocols, activities, responsibilities and the liveness

properties of a role.

The FIPA Methodology Technical Committee (Garro et al, 2004) defined the process of analyzing and designing a

MAS using Gaia by employing the Software Process Engineering Metamodel (SPEM), a standard developed by the

Object Management Group (2002).

3. JADE Overview

JADE (Bellifemine et al, 2003) is a software development framework fully implemented in Java language aiming at

the development of multi-agent systems and applications that comply with FIPA standards for intelligent agents.

JADE provides standard agent technologies and offers to the developer a number of features in order to simplify the

development process:

• Distributed agent platform. The agent platform can be distributed on several hosts, each of which executes

one Java Virtual Machine.

• FIPA-Compliant agent platform, which includes the Agent Management System the Directory Facilitator

and the Agent Communication Channel (FIPA TC Agent Management, 2002).

• Efficient transport of agent communication language (ACL) messages between agents (FIPA TC

Communication, 2002).

All inter-agent communication is performed through message passing and the FIPA ACL is the language that is used

to represent the messages. Each agent is equipped with an incoming message box and message polling can be

6

blocking or non-blocking with an optional timeout. Moreover, JADE provides methods for message filtering. The

developer can apply advanced filters on the various fields of the incoming messages such as sender, performative or

ontology.

FIPA specifies a set of standard interaction protocols such as FIPA-request, FIPA-query, etc. that can be used as

standard templates to build agent conversations. For every conversation among agents, JADE distinguishes the role

of the agent that starts the conversation (initiator) and the role of the agent that engages in a conversation started by

another agent (responder). According to the structure of these protocols, the initiator sends a message and the

responder can subsequently reply by sending a not-understood or a refuse message indicating the inability to achieve

the rational effect of the communicative act, or an agree message indicating the agreement to perform the

communicative act. When the responder performs the action he must send an inform message. A failure message

indicates that the action was not successful. JADE provides ready-made behaviour classes for both roles, following

most of the FIPA specified interaction protocols (FIPA TC Communication, 2002). JADE provides the

AchieveREInitiator and AchieveREResponder classes, a single homogeneous implementation of interaction

protocols such as these mentioned above. Both classes provide methods for handling all possible protocol states.

In JADE, agent tasks or agent intentions are implemented through the use of behaviours. Behaviours are logical

execution threads that can be composed in various ways to achieve complex execution patterns and can be

initialized, suspended and spawned at any given time. The agent core keeps a task list that contains the active

behaviours. JADE suggests the use of one thread per agent instead of one thread per behaviour to limit the number

of threads running in the agent platform. A scheduler, hidden to the developer, carries out a round robin policy

among all behaviours available in the queue. The behaviour can release the execution control with the use of

blocking mechanisms, or it can permanently remove itself from the queue in run time. Each behaviour performs its

designated operation by executing the core method action().

Behaviour is the root class of the behaviour hierarchy that defines several core methods and sets the basis for

behaviour scheduling as it allows state transitions (starting, blocking and restarting). The children of this base class

are SimpleBehaviour and CompositeBehaviour. The classes that descend from SimpleBehaviour represent atomic

simple tasks that can be executed a number of times specified by the developer. Classes descending from

CompositeBehaviour support the handling of multiple behaviours according to a policy. The actual agent tasks that

are executed through this behaviour are not defined in the behaviour itself, but inside its children behaviours. The

FSMBehaviour class, which executes its children behaviours according to a Finite State Machine (FSM) of

behaviours, belongs in this branch of hierarchy. Each child represents the activity to be performed within a state of

the FSM, with the transitions between the states defined by the developer. Because each state is itself a behaviour it

is possible to embed state machines. The FSMBehaviour class has the responsibility of maintaining the transitions

between states and selects the next state for execution. Some of the children of an FSMBehaviour can be registered

as final states. The FSMBehaviour terminates after the completion of one of these children.

7

The developer creates his agents by extending the JADE Agent class. He can add any number of behaviours along

with defining the agent’s initialization and termination handling functionality. A special descendant of the Agent

class, the GUIAgent, allows for the creation of agents with a graphical user interface (GUI), allowing for the agent’s

interaction with a human user. The latter is facilitated by a GUI event exchange mechanism that also allows the

definition of parameters that accompany the event. Whenever a specified GUI event occurs the agent can add a new

behaviour passing to its constructor the relevant parameters and a reference to the GUI so that the behaviour can

reply to the user.

4. The Gaia2JADE Process

In this section we present the Gaia2JADE process for implementing the Gaia models using the JADE framework. It

presupposes that a Gaia model is ready and that JADE framework is chosen for implementation purposes. In order to

better present the process we described it using the SPEM (OMG, 2002) specification, as a JADE development

phase. This process can be merged with the one provided by Garro et al (2004) as a next phase. In Figure 1 the

JADE implementation phase has been added to the Gaia process, thus providing the complete Gaia2JADE process.

DesignAnalysis
Requirements

Capture

JADE

Implementation

Figure 1: The phases of the Gaia2JADE process

The Gia2JADE process aggregates four process packages, the last one being the one we propose herein. The JADE

implementation process package involves the developer role, that is the person(s) that will implement the Gaia

models using the JADE framework and produces two work products, the Java code and a repository of behaviours

(see Figure 2).

Here it must be noted that according to FIPA (FIPA TC Agent Management, 2002) there are some default roles

involved in the MAS operation. They are the Directory Facilitator (DF) and the Agent Management System (AMS)

roles that are supported by JADE. However, these roles concern the operational level of the MAS and not the

application itself. Therefore, a Gaia modeler should not prepare a Gaia representation for these roles. Interactions

between the application specific roles and the FIPA defined roles should not be modeled as protocols, but as

activities. Indeed, activities like registration to the DF or querying for agents of specific types are DF services that

8

are provided in the form of function calls by the JADE framework. The JADE framework automatically handles the

relevant messages exchange between the agent and the DF and returns the outcome to the agent. If, though, a Gaia

modeler does create such roles and the relevant protocols, the JADE developer should replace those by relevant

activities (e.g. registration to the DF) that will be directly mapped to JADE method calls.

Gaia2JADE

Design
JADE

Implementation

Requirements

Capture
Analysis

JADE

Implementation

+implementMAS()

Developer

Behaviours

repository
Agents Java

code

Figure 2: The Gaia2JADE process and the JADE implementation process package

We are now ready to present the JADE implementation phase that can be described as a four step process:

1. Define the communication protocol, meaning the definition of all the necessary ACL messages along with the

definition of the possible ordering of their exchange.

2. Define the activities refinement table, where application dependent data, their structure and algorithms that are

going to be used by the agents are defined.

3. Define the JADE behaviours

4. Construct the agent classes

Note that this phase produces more than the agents’ java code. The JADE behaviours are another product since they

are reusable pieces of code (components) that can be used for building agents or other complex behaviours.

The overall development process is, thus, top-down in the analysis and design phase (i.e. by using Gaia) and bottom-

up in the implementation phase, according to the most successful software engineering practices (Sommerville,

2000). The JADE implementation phase is presented graphically in Figure 3. All steps resemble a SPEM work

definition.

The “define communication protocols” work definition involves developing the problem domain ontology that will

be used in order to refine the protocols of the Gaia interaction model and produce the ACL messages with respect to

the FIPA ACL Message Structure Specification (FIPA TC Communication, 2002). AUML sequence diagrams

(Odell et al, 2001) can be very useful in the case of complex protocols.

9

Services ModelAgent ModelRoles Model

Define

communication

protocols

Define JADE

agents

Define JADE

behaviours

Define activities

refinement table

Environmental

Model

Interactions

Model

Gaia Models

Agents Java

code

Behaviours

repository

Activities refinement

table

Application Data

class diagram

ACL

messages

Domain

ontology

Figure 3: The JADE implementation phase

The next work definition, namely the “define activities refinement table” is about the definition of the application

specific data and their structure, algorithms for liveness formulas activities and possible interfaces to external

systems. It defines the needed classes for encapsulating the application data that will be used by the agents,

preferably in UML format since these will be implemented using the object oriented Java. In order to do that, the

domain ontology is taken into account. If the Protégé tool (Noy et al, 2001) is used for ontology development, then

all the ontology classes can be extracted as Java classes for use by the agents. The classes names are used in order to

represent such data to the activities refinement table. In this table, the necessary algorithms that are used by each

activity described in the liveness properties of each role in the Gaia roles model are documented. We present an

example of an activities refinement table record later in §5.4. The environmental Gaia model is used here so that the

relevant interfaces to external application are also defined. During this process the safety conditions of each role are

taken into account. Since safety conditions must be valid for normal role functionality, the implications of their

failure must be explicitly defined. Thus, for example, it is possible that a safety condition failure results in a relevant

message to an administrator user.

The “define JADE behaviours” work definition is where the coding procedure begins. A detailed work description is

presented in Figure 4, since it is the most complicated work and the real mapping of Gaia to JADE features takes

place here. All activities further extend the behaviours repository work product. For the reader’s convenience we

“zoom” in the work product after each activity in order to see the type of extension.

10

Gaia Models

Activities refinement

table

UML class

diagrams

FSMs
ACL

messages

Roles Model

Define behaviours

+BehaviourName()

-attribute1

-attribute2

-...

BehaviourName

Create constructors

Add behaviour

functionality

Define

behaviour action

inputs, outputs

+BehaviourName()

+action()

-attribute1

-attribute2

-...

BehaviourName

Behaviours

repository

BehaviourName

Interactions

Model

Create FSMs

Developer

FSMChildBehaviour class

Figure 4: The “define JADE behaviours” work definition

The first activity is to define the JADE behaviours that are to be implemented. In order to do this we need to map

some key Gaia concepts, identified mainly in the roles model, to JADE concepts. Let’s consider the liveness part of

each role (in the Gaia roles model) as its behaviour (usually having the same name with the role) in correspondence

with the JADE terminology. Thus, a simple or a complex behaviour will represent each role. This behaviour is

considered as the top-level behaviour of the role. Each behaviour may contain other behaviours, as in the JADE

behaviours model. Let the contained behaviours be called lower level behaviours. The contained behaviours (lower

level) are those on the right side of the Gaia roles model liveness formulas (see Figure 5 for an illustrative

presentation of this procedure). Generally, complex behaviours are implemented as descendants of the JADE

CompositeBehaviour and its subclasses (e.g. FSMBehaviour), while simple behaviours are implemented as

descendants of the JADE SimpleBehaviour class. Note that the Activity1 behaviour of our example is lower to Role1

behaviour, but upper to Activity3 behaviour. A behaviour that is an upper behaviour (on the left hand side) in any

liveness formula of a role is a complex behaviour.

11

Upper level behaviour

of 2nd formula

Lower level behaviours

of 2nd formula

Liveness formula

Simple behaviours

Role: Role1

Description: …

Protocols and Activities:

Permissions: ...

Responsibilities:

Liveness:

ROLE1= Activity1. (Activity2) ω

ACTIVITY1 = Activity3. [Protocol1]

ACTIVITY2 = Protocol2. Activity4

Safety: …

Top behaviour

Role description

Complex behaviours

Figure 5: The transformation of liveness formulas to JADE behaviours

The ω and || operators on Gaia liveness formulas now have the following meaning. The ω means that a lower level

behaviour is added by the behavior that contains it in the Gaia liveness formula and is only removed from the

agent’s scheduler when the behavior that added it, is removed itself. If such behaviours (that are added to the agent

scheduler) are more than one, they are connected with the || symbol which denotes that they execute “concurrently”.

Concurrency in JADE agent behaviours is simulated. As noted before, only one thread executes per agent and

behaviour actions are scheduled in a round robin policy.

 As a rule of thumb, we found out that the “.” operator in a liveness formula denotes that the behaviour at the left

hand side (of the formula) is a complex behaviour (one that aggregates one or more others), while the [], +, *, |

operators denote that the left hand side behaviour (of the formula) can be implemented as a finite state machine

(FSMBehaviour).

The developers should start implementing the behaviours of the lowest levels (activities in the Gaia roles model),

using the various Behaviour class descendants provided by JADE.

Finally, we propose the FSMChildBehaviour class (see Figure 6) that helps in automating a lot of repeating code in

simple behaviours within FSM behaviours (FSMBehaviour class instances). This class defines two useful attributes,

finished and onEndReturnValue and implements the methods done (returns true if a behaviour has finished, so that it

is not inserted again in the agent behaviour scheduler) and onEnd (returns the state of the behaviour when it stopped

executing). The FSMChildBehaviour class is extended by behaviours that are going to be used by FSM behaviours.

These behaviours would normally need to implement the done and onEnd methods along with the action methods,

12

the latter implementing their functionality. By extending the FSMChildBehaviour class, they now only need to

implement the action methods.

package image.agents;

import jade.core.behaviours.SimpleBehaviour;

import jade.core.Agent;

public class FSMChildBehaviour extends SimpleBehaviour {

 protected boolean finished = false;

 protected int onEndReturnValue;

 public FSMChildBehaviour(Agent a) {

 super(a);

 }

 public void action() {};

 public boolean done() {

 return finished;

 }

 public int onEnd(){

 return onEndReturnValue;

 }

}

Figure 6: The FSMChildBehaviour class

The next activity concerns the creation of state diagrams in order to model FSM-like behaviours and recognize the

common application data classes that are used by the lower level behaviours. After all FSM diagrams are ready, the

“create constructors” activity initializes the necessary data classes at the upper level behaviour and pass them as

parameters to lower level behaviours by creating the JADE behaviours’ constructors. Thus, the behaviour repository

classes have attributes and constructors after the completion of this activity.

The next activity is about behaviours that are activated on the receipt of a specific message that can be either a

graphical user interface (GUI) event or the arrival of a message by another agent. Those that expect an inter-agent

message must receive it (with the appropriate message filtering template) at the start of their action. For behaviours

that start by an event from the GUI, the relevant parameters must be configured and added to their constructor and

attributes list. A GUI event receiver method will be later implemented on the agent that starts the corresponding

behaviour. After this step each behaviour has its action method ready with its input and output functionality

implemented.

13

In the last activity of this work definition, each behaviour is enriched with the desired functionality. Actually, the

developer implements the algorithms defined in the activities refinement table within the action method of the

behaviour. Now the behaviours repository has all needed behaviours.

In the final step of the JADE implementation phase, the agent class is constructed by aggregating behaviours from

the relevant repository. Moreover, the developer initializes all agent data classes and adds all behaviours of the

lower level in the agent scheduler at the setup method of the JADE Agent class. The GUI events should all be caught

in this level and add the corresponding event receiver behaviour.

The Gaia Services model should now be satisfied by the implemented MAS. It can be used in order to test the

adequate functionality of the system. In case that there are errors the process should return to a previous step and be

repeated from then on (iteratively).

5. A Case Study

In order for the reader to better understand how the Gaia2Jade process works, we will present a limited version of

the multi-agent system (MAS) that was conceived and implemented in the framework of the IST IMAGE project. A

preliminary version of this work is presented in (Moraitis et al, 2003a). We will show how this system was analyzed,

designed and implemented. The aim of this system was to provide e-services for mobile users and it included the

software development of different modules, one of which was the MAS, namely the Intelligent Module (IM).

This MAS was analyzed and designed using the Gaia methodology and then was implemented using the JADE

framework. The full system capabilities, architecture and functionalities, along with the business model and

requirements can be found in (Moraitis et al, 2003b).

The reader should note that the purpose of the case study is not to provide guidelines as to how one can model a

system using Gaia. Its purpose is to demonstrate the Gaia2JADE process. However, we try to fully address the

software development process from the requirements capturing phase to implementation, mostly in order to discuss

engineering issues.

5.1. The System Requirements

The Image system requirements that are relevant to MAS development are:

 A user can request a map with his position on it and, possibly other points of interest (POIs) around him that can

belong to different types (e.g. banks, restaurants, etc). A user can request for a map with few or even no

parameters.

 A user can request a route from a specific place to another specific place, specifying the means of travel (e.g.

public transport, car, on foot) and, possibly, the desired optimization type (e.g. shortest, fastest, cheapest route).

He can select among a variety of routes that are produced by the Geographical Information System (GIS). A

user can request for a route with limited or even no parameters.

14

 The MAS maintains a user profile so that it can filter the POIs or routes produced by the GIS and send to the

user those that most suit his interests. The profiling is based on criteria regarding the preferred transport type

(private car, public transport, bicycle, on foot) and the preferred transport characteristics (shortest route, fastest

route, cheapest route, etc). Moreover, as far as the POI types are concerned, the system not only allows the user

to store in his profile the types that he/she is interested in, but it also exhibits self-learning ability in order to

learn the user’s preferences by monitoring his behaviour and adapting the service to his needs.

 The system keeps track on selected user routes aiming to receive traffic events (closed roads) and check

whether they affect the user’s route (if that is the case then inform the user).

5.2. The Analysis and Architectural Design Phases

The Gaia methodology proved to be robust, reliable and the produced models and schemata were used throughout

the project development phases as a reference. Moreover, it proved to be flexible enough, so that it was easy to

iterate through the design and implementation phases, as is demanded by modern information systems development.

The analysis phase led to the identification of four roles: EventsHandler that handles traffic events, TravelGuide that

wraps the GIS, PersonalAssistant that serves the user and, finally, SocialType that handles other agent contacts. A

Gaia roles model for our system is presented in Table 2. We must note that interactions with the Directory

Facilitator (DF) FIPA agent are presented as activities since JADE allows for using DF services by method

invocations (e.g. QueryDF). Note that any role can, through its permissions property, establish connection points

with its environment. In this case we have connections with external systems, namely the on-line traffic database

and the GIS (these connections were initially identified in the Gaia environmental model).

The Gaia interaction model denotes actions to be undertaken after possible messages exchange between the involved

agents. Figure 7 holds the necessary information for our model. However, we considered that the Gaia interaction

model wasn’t appropriate to represent complex interaction protocols. Gaia encourages the inclusion of such

protocols in the liveness properties of a role. We overcame this difficulty by creating scenarios using AUML

sequence diagrams (Odell et al, 2001, Zambonelli et al., 2003) in order to write down complex liveness formulas

(like the WhereAmI of the PersonalAssistant role – see Table 2).

5.3. The Detailed Design Phase

During this phase the Gaia Agent and Services models were achieved. The Agent model creates agent types by

aggregating roles. Each emerging agent type can be represented as a role that combines all the aggregated roles

attributes (activities, protocols, responsibilities and permissions). The agents’ model for our system will include

three agent types: the personal assistant agent type, who fulfills the PersonalAssistant and SocialType roles, the

events handler agent type, who fulfills the EventsHandler and SocialType roles and the travel guide agent type, who

fulfills the TravelGuide role. The SocialType role is realized by all agents that need to keep a contact list of other

agents. Thus, the personal assistant agent needs to know the travel guide agents so that he requests for their services

15

and the events handlers need to know the personal assistants in order to forward information to them. The travel

guide agent, on the other hand, doesn’t need to know other agents because he just fulfils all incoming requests.

Role: SocialType (ST)

Description: It requests agents that perform specific services from the DF. It also gets acquainted with specific agents.
Protocols and Activities: RegisterDF, QueryDF, SaveNewAcquaintance, IntroduceNewAgent.

Permissions: create, read, update acquaintances data class.

Responsibilities:
Liveness:

SOCIALTYPE = GetAcquainted. (MeetSomeone) ω

GETACQUAINTED = RegisterDF. QueryDF. [IntroduceNewAgent]
MEETSOMEONE = IntroduceNewAgent. SaveNewAcquaintance

Safety: true

Role: PersonalAssistant (PA)

Description: It acts on behalf of a profiled user. Provides the user with personalized routing and mapping services. These routes are presented to

the user. Moreover, it can adapt (i.e. using learning capabilities) to a user’s habits by learning from user selections. Finally, it receives

information on traffic events, it checks whether such events affect its user’s route and in such a case it informs the user.

Protocols and Activities: InitUserProfile, DecideOrigin, DecidePOITypes, DecidePOIs, DecideDestination, LearnByUserSelection,

CheckApplicability, PresentEvent, UserRequest, RespondToUser, InformForNewEvents, FindRoutes, ProximitySearch, CreateMap, GetPOIInfo
Permissions: create, read, update user profile data class, read acquaintances data class.

Responsibilities:

Liveness:
PERSONALASSISTANT = InitUserProfile. ((ServeUser) ω || (ReceiveNewEvents) ω)

RECEIVENEWEVENTS = InformForNewEvents. CheckApplicability. [PresentEvent]
SERVEUSER = UserRequest. (PlanATrip | WhereAmI). LearnByUserSelection

WHEREAMI = DecideOrigin. [GetPOIsInfo] [DecidePOITypes. [ProximitySearch. DecidePOIs. [GetPOIsInfo. GeocodeRequest]] CreateMap]

RespondToUser
PLANATRIP = DecideOrigin. [GetPOIsInfo] [DecideDestination. [ProximitySearch. [DecidePOIs. GetPOIsInfo. GeocodeRequest]]]

[FindRoutes. DecideRoutes. [CreateMap]] RespondToUser

Safety: true

Role: EventsHandler (EH)

Description: It acts like a monitor. Whenever a new traffic event is detected it forwards it to all personal assistants.
Protocols and Activities: CheckForNewEvents, InformForNewEvents.

Permissions: read on-line traffic database, read acquaintances data class.

Responsibilities:
Liveness:

EVENTSHANDLER = (CheckForNewEvents. InformForNewEvents)ω

Safety: A successful connection with the on-line traffic database is established.

Role: TravelGuide (TG)

Description: It wraps a Geographical Information System (GIS). It can query the GIS for routes, from one point to another.
Protocols and Activities: RegisterDF, QueryGIS, InvokeGetRouteGISFunction, InvokeGetNearbyPOIsGISFunction,

InvokeGetMapGISFunction, InvokeGetPOIsInfoGISFunction, RequestRoutes, RespondRoutes, RequestMap, RespondMap, RequestNearbyPOIs,

RespondNearbyPOIs, RequestPOIsInfo, RespondPOIsInfo
Permissions: read GIS.

Responsibilities:

Liveness:
TRAVELGUIDE = RegisterDF. ([FindRoutes] || [ProximitySearch] || [CreateMap] || [GetPOIInfo]) ω

FINDROUTES = RequestRoutes. InvokeGetRouteGISFunction. RespondRoutes

PROXIMITYSEARCH = RequestNearbyPOIs. InvokeGetNearbyPOIsGISFunction. RespondNearbyPOIs
CREATEMAP = RequestMap. InvokeGetMapGISFunction. RespondMap

GETPOISINFO = RequestPOIsInfo. InvokeGetPOIsInfoGISFunction. RespondPOIsInfo

Safety: A successful connection with the GIS is established.

Table 2: The Gaia roles model

There will be one travel guide agent, as many personal assistants as the users of the system and zero or more events

handlers. The Agent model is presented graphically in Figure 8. The services model for our system is presented in

Table 3.

16

ProximitySearch GetPOIsInfo

PA TG PA TG

Proximity search request POIs ids

TG PA TG PA

Limited POIs' info (id,

coordinates, POI types) Full POIs' info

FindRoutes CreateMap

PA TG PA TG

Routes request Map request

TG PA TG PA

Routes Map

ST ST EH PA

A new agent is

intantiated

White and yellow page

information of the initiator Event description

RequestNearbyPOIs

Ask for POIs of specific types

within a specific distance

RespondNearbyPOIs

Queries the GIS for POIs

RespondPOIsInfo

RespondRoutes

Queries the GIS for Routes

RequestRoutes

Ask for Routes

RequestPOIsInfo

IntroduceNewAgent

RequestMap

A new event was found

Queries the GIS for POIs

information

Queries the GIS for a map

Ask for a map

InformForNewEvents

RespondMap

Ask for information about specific

POIs

Figure 7: Gaia interactions model

EventsHandler

0..*

PersonalAssistant

0..*

TravelGuide

1

TravelGuidePersonalAssistantEventsHandler

SocialType

Legend

Role
Agent Type

number of instances

Figure 8: Gaia agent model

At this point the abstract design of the system was complete, since the limit of Gaia had been reached. More effort

needed to be done in order to obtain a good design though. At the end of the design process the system should be

ready for implementation.

5.4. JADE Implementation Phase

The JADE implementation phase starts with the definition of the domain ontology (transport and tourism domain),

followed by the definition of the communication protocol. As we said in section 4, this step concerns the definition

of the ACL messages through which the agents will realize the interactions presented in the Gaia interactions

17

diagram. The ACL messages were defined according to the FIPA specifications (see FIPA TC Communication,

2002).

Service Obtain a map Obtain route Get traffic event

Inputs Origin, [POI types],

[visibility radius]

Origin, [destination],

[travel

means/characteristics]

-

Outputs A map, [information

about POIs shown on

the map]

A set of routes The description of the event

Pre-condition A personalized

assistant agent is

instantiated and

associated with the

user

A personalized

assistant agent is

instantiated and

associated with the

user

A personalized assistant agent is

instantiated and associated with the user.

The user has selected a route to

somewhere. A traffic event that is

relevant to the user’s route has happened

Post-condition - User selects a route -

Table 3: Gaia services model (items in brackets are optional)

In the next step, each activity in the Gaia roles model was described with regard to its functionality that is what data

classes it accesses and what it does with them. The activities refinement table helped us document this step’s

outcome. As an example, the DecidePOITypes activity of the PersonalAssistant role refinement is presented in Table

4. The DecidePOITypes activity will be followed either by the ProximitySearch or by the CreateMap protocols

depending on whether the user has requested a specific POI type to view around him (e.g. hotels), or such

information can be found in his profile.

Role Activities Data

Classes

Description

Read Update

PA DecidePOITypes user profile

user request

- if UserRequest.POITypes.length>0

Then ProximitySearch(UserRequest.POITypes)

else if UserProfile.POITypes.length>0

 then ProximitySearch(UserProfile.POITypes)

 else CreateMap

 endif

endif

Table 4: The Gaia roles’ activities refinement table

As we explained in Section 4, we preferred the use of UML class diagrams in order to model the application data

classes that would be used by each role’s permissions field and defined interfaces for external services usage (GIS,

database, etc). The roles’ safety conditions were also taken into account so that the behaviours functioned in a

determined way whenever the former failed. For the TravelGuide role, for example, we decided that whenever a

18

connection with the GIS fails, the system administrator should be informed about it with a dialog. For the

EventsHandler role the same dialog was used in order to inform the administrator about connectivity problems with

the events database. The activities refinement table was updated accordingly, for example the action of sending a

relevant GUI event was added to the InvokeGetPOIsInfoGISFunction (activity of the TravelGuide role, see Table 2)

algorithm.

The following step was the definition of the JADE behaviours. Complex Gaia roles model activities (like the

PlanATrip and WhereAmI activities of the PersonalAssistant role) were implemented as composite JADE

behaviours (i.e. FSMBehaviour). Our first activity within this step was to define the behaviours that we would have

to implement. In Figure 9 we present the behaviour mapping activity graphically for one of the lower level liveness

formulas of the PersonalAssistant role.

Having identified some complex behaviours we proceeded to the definition of the state diagrams that would help us

on one hand to identify exchanged data between behaviours and on the other hand to easily model the corresponding

JADE FSMBehaviour. The state diagram for the WhereAmI behaviour of the PersonalAssistant role is presented in

Figure 10. The necessary application data classes for the WhereAmI behaviour were the user request, the user

response, the user profile and history meta-data (from where missing information is derived), the agent’s

acquaintances (from which the different sub-behaviours will find the relevant contacts for achieving the

GetPOIsInfo, ProximitySearch and CreateMap protocols) and, finally, the different states identification numbers

that are returned by each finishing sub-behaviour and allow the FSMBehaviour to decide which behaviour is next to

be added to the agent’s scheduler. These data classes, according to the Gaia2JADE process, were initialised at the

constructor of the FSM behaviour. All sub-behaviours were defined as descendants of the FSMChildBehaviour class

(see Figure 6).

Lower level behavioursUpper level behaviour

FSMBehaviour SimpleBehaviour

SERVEUSER = UserRequest. (PlanATrip | WhereAmI). LearnByUserSelection

Figure 9: Mapping Gaia role model liveness formulas to JADE behaviours

Starting by implementing the lower behaviours first, we reused some of them while implementing the higher level

behaviours. Such behaviours were the RequestMap and RespondMap behaviours that were used in order to

implement the CreateMap protocol that is used by both the PlanATrip and WhereAmI behaviours. The three

19

remaining activities in the “define JADE behaviours” work definitions were easily carried out as pure programming

tasks.

REQUEST_POIS_STATE

RESPOND_POIS_AND_SELECT_POIS_STATE

REQUEST_LOCATION_MAP_STATE

RESPOND_LOCATION_MAP_STATE

RESPOND_WHERE_AM_I_STATE

[No POI types included in request]

[Origin is in coordinates format]

[POI types included in request]

[A map is requested]

[POIs selected]
REQUEST_POIS_INFO_STATE

RESPOND_POIS_INFO_STATE

CHECK_ORIGIN_STATE

[Requested for selected POIs info]

[Selected POIs info returned]

[No origin specified]
[No POIs found]

[No map was requested]
GEOCODE_POIS_INFO_STATE

[Origin is POI ID]

[Selected POIs info returned for Geocoding]

[Origin is in coordinates format]

[Unsuccessful Geocoding]
[Unsuccessful Geocoding]

[Unsuccessful Geocoding]

If specific POI types have not been

requested then use Profile POI types

Filter according to requested

POI types history (knowledge)

Figure 10: The WhereAmI behaviour detailed design

For illustration purposes, in Figure 11, we present the PersonalAssistant agent class, where the 5
th

 step of the JADE

implementation phase is demonstrated. The reader can see that the SocialTypeBehaviour takes as parameters the

type of the agent, the type(s) to who he wants to introduce himself and the type(s) that he wants to add to his

acquaintances list. This behaviour is used as is by all social agents just by changing the agent types parameters.

The PersonalAssistantBehaviour is presented in Figure 12. The reader can see that it is simply one behaviour that

adds the ServeUser and ReceiveNewEvents roles/behaviours and this is a consequence of the bottom-up

development process that is proposed by the Gaia2JADE process (i.e. the ServeUserBehaviour and

ReceiveNewEventsBehaviour are already implemented when the overall PersonalAssistantBehaviour’s time for

implementation has come) and allows for modularity in the system’s development process.

20

public class PersonalAssistantAgent extends Agent {

 //declare agent level data classes

 protected Acquaintances contacts = null;

 protected void setup(){

 //get arguments – user profile

 Object [] args = this.getArguments();

 UserProfile userProfile = (UserProfile)args[0];

 //initialize agent data classes

 contacts = new Acquaintances();

 //activate SocialType and PersonalAssistant behaviours

 addBehaviour(new SocialTypeBehaviour(this,contacts,

 //find agent types: TravelGuide and add them to contacts

 new String[]{Acquaintances.TRAVEL_GUIDE},

 //Introduce agent as of type PersonalAssistant to agent types: EventsHandler

 new String[]{Acquaintances.EVENTS_HANDLER}, Acquaintances.PERSONAL_ASSISTANT));

 addBehaviour(new PersonalAssistantBehaviour(this, contacts, userProfile));

 }

}

Figure 11: The PersonalAssistant agent type class

public class PersonalAssistantBehaviour extends SimpleBehaviour {

 public PersonalAssistantBehaviour(Agent ag, Acquaintances contacts, UserProfile

userProfile){

 //activate ServeUser and ReceiveNewEvents sub-behaviours

 addBehaviour(new ServeUserBehaviour (this.myAgent(), contacts, userProfile));

 addBehaviour(new ReceiveNewEventsBehaviour(this.myAgent(), contacts, userProfile));

 }

}

Figure 12: The PersonalAssistant role/behaviour

The adequate system functionality was tested by requiring the agents to perform the services described in the Gaia

services model.

21

6. Discussion and Future Work

This paper presented the Gaia2JADE process for implementing Gaia models using the JADE framework. A

preliminary version of this work was presented in (Moraitis et al. 2003). This process was used in order to

implement a real world application, the Image system (see Moraitis et al., 2003b). The Gaia2JADE process is based

on the technical issues that were pointed out during the development phase of our system.

Similar works like PASSI (Cossentino et al, 2003) and INGENIAS (Gomez-Sanz and Pavon, 2003) offer tools that

allow for MAS design and implementation. The added value of our work is that it builds on the combination of a

widely accepted and well-known modeling methodology like Gaia and on JADE, a widely recognized MAS

implementation platform, in the MAS community.

Here we must note that the aim of this paper is not to promote the use of Gaia methodology against to other existing

methodologies although we consider that it captures all the necessary elements for a MAS development and it is

easy to understand and apply. Our aim is to show how one who decided for his own reasons, to use Gaia for the

analysis and design phases, can use JADE for the implementation phase by following the Gaia2JADE process.

The use of SPEM for the modeling of this process allowed us to present it as the next phase of the one provided by

Garro et al (2004) for the description of Gaia modeling process, thus providing a complete process for MAS

analysis, design and development that is easy to apply for a development team that is familiar with Gaia and JADE.

Moreover, the Gai2JADE process can also be used for developing a MAS that is part of a larger system. In our case

study the MAS was developed in parallel with other software modules (e.g. GIS), whose development teams used

classical object oriented development processes like the rational unified process (Kruchten, 2003). These processes

are iterative and our ability to return even to the requirements phase from the JADE implementation phase (see

Figure 1) allowed for a smooth cooperation between the development teams.

As future work, we plan to create a modeling tool that would allow the automatic generation of JADE classes after

analysis and design using Gaia.

Acknowledgements

We gratefully acknowledge the Information Society Technologies (IST) Programme and specifically the specific

targeted research project (STRP) “Intelligent Mobility AGents, Advanced Positioning and Mapping Technologies,

INtEgrated Interoperable MulTimodal location based services” (IM@GINE IT, IST-2003-508008) project for

contributing in the funding of our work.

References

Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: Jade Programmer’s Guide. JADE 3.1 http://sharon.cselt.it/projects/jade/, 2003

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A.: TROPOS: An Agent-Oriented Software Development

Methodology. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS), Vol. 8, No. 3, May 2004

22

Collis, J. and Ndumu, D.: Zeus Methodology Documentation Part I: The Role Modelling Guide. Intelligent Systems Research

Group. BT labs, British Telecommunications, 1999

Cossentino, M., Burrafato, P., Lombardo, S., Sabatucci, L.: Introducing Pattern Reuse in the Design of Multi-Agent Systems. In

R. Kowalszyk, et al. (eds), “Agent Technologies, Infrastructures, Tools, and Applications for e-Services”, LNAI. 2592,

Springer-Verlag, 2003

DeLoach S. and Wood, M.: Developing Multiagent Systems with agentTool. In: Castelfranchi, C., Lesperance Y. (Eds.):

Intelligent Agents VII. Agent Theories Architectures and Languages, 7th International Workshop (ATAL 2000,

Boston, MA, USA, July 7-9, 2000),. Lecture Notes in Computer Science 1986, Springer Verlag, 2001

Emorphia Ltd. FIPA-OS: A component-based toolkit enabling rapid development of FIPA compliant agents. http://fipa-

os.sourceforge.net/, 2003

FIPA TC Agent Management: FIPA Agent Management Specification. Foundation for intelligent Physical Agents (FIPA -

SC00023J), http://www.fipa.org, 2002

FIPA TC Communication: FIPA ACL Message Structure Specification. Foundation for intelligent Physical Agents (FIPA -

SC00061G), http://www.fipa.org, 2002

Garro, A., Turci, P., Huget, M.P.: Meta-Model Sources: Gaia. FIPA Methodology Technical Committee, Foundation for

Intelligent Physical Agents, http://www.fipa.org/ , 2004

Gomez-Sanz, J. and Pavon, J.: Agent Oriented Software Engineering with INGENIAS. In V. Maik, J. Müller, M. Pchouek (Eds.),

Multi-Agent Systems and Applications III (p3rd International Central and Eastern European Conference on Multi-

Agent Systems, CEEMAS 2003), LNCS 2691, Springer Verlag, pp. 394–403, 2003

Kruchten, P.. The Rational Unified Process: An Introduction, Third Edition. Addison-Wesley Pub Co, 3rd edition, 2003

Moraitis, P., Petraki, E., Spanoudakis, N.: Engineering JADE Agents with the Gaia Methodology. In R. Kowalszyk, et al. (eds),

“Agent Technologies, Infrastructures, Tools, and Applications for e-Services”, LNAI 2592, Springer-Verlag, pp. 77-91,

2003a

Moraitis, P., Petraki, E. and Spanoudakis, N.: Providing Advanced, Personal-ised Infomobility Services Using Agent Technol-

ogy. In: Twenty-third SGAI International Conference on Innovative Techniques and Applications of Artificial

Intelligence (AI2003), Peterhouse College, Cambridge, UK, December, 2003b

Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W. & Musen, M. A.: Creating Semantic Web Contents with

Protégé-2000. IEEE Intelligent Systems 16(2):60-71, http://protege.stanford.edu/, 2001

Object Management Group: Software Process Engineering Metamodel Specification. OMG, 2002, http://www.omg.org

Odell, J., Parunak, H. and Bauer, B. Extending UML for Agents. In Proc. of the Agent-Oriented Information Systems Workshop

at the AAAI00, pp 3-17, 2000

Sommerville, I.. Software Engineering. Addison-Wesley Pub Co, 6th edition, 2000

Wood, M.F. and DeLoach, S.A.: An Overview of the Multiagent Systems Engineering Methodology. In the 1st Int. Workshop on

Agent Oriented Software Engineering (AOSE-2000). Limerick, Ireland, 2000

Zambonelli, F., Jennings, N. R. and Wooldridge, M.: Developing multiagent systems: the Gaia Methodology. ACM Transactions

on Software Engineering and Methodology 12 (3), pp. 317-370, 2003

