
Argumentation For All
Nikolaos Spanoudakis

nikos@amcl.tuc.gr

School of PEM,

Technical University of Crete

Chania, Greece

Konstantinos Kostis

kkostis@isc.tuc.gr

School of ECE,

Technical University of Crete

Chania, Greece

Katerina Mania

k.mania@ced.tuc.gr

School of ECE,

Technical University of Crete

Chania, Greece

ABSTRACT
This paper proposes the use of a web-based system for the devel-

opment of applications of argumentation. It focuses on bringing

the capability to develop decision policies based on argumentation

to people that have little or no knowledge of logic programming

or of an argumentation framework. To achieve this, it presents an

implementation of the table formalism that has recently been put

forward by previous work. Our system was evaluated using the

think aloud protocol from the early stages of development.

CCS CONCEPTS
•Human-centered computing→Web-based interaction;User
centered design; • Computing methodologies → Knowledge
representation and reasoning.

KEYWORDS
computational argumentation, web application, knowledge engi-

neering, hierarchical argumentation frameworks

ACM Reference Format:
Nikolaos Spanoudakis, Konstantinos Kostis, and Katerina Mania. 2020. Ar-

gumentation For All. In The 35th ACM/SIGAPP Symposium on Applied Com-
puting (SAC ’20), March 30-April 3, 2020, Brno, Czech Republic. ACM, New

York, NY, USA, 3 pages. https://doi.org/10.1145/3341105.3374122

1 INTRODUCTION
Argumentation is a relatively-new, fast-paced technology that, fol-

lowing the AI trend, has started producing real-world applications.

Argumentation has been addressed as a way to deal with con-

tentious information and draw conclusions about it. The main focus

of its applications are for making context-related decisions [6].

There is a number of software libraries [1] for developing appli-

cations of argumentation, e.g. Gorgias [5], CaSAPI [3], DeLP [4],

ASPIC+ (TOAST system) [11] and SPINdle [7], however, these re-

quire a substantial logic programming effort by experts.

Recently, the Gorgias-B [12] Java-based tool offered a higher

level development environment aiding the user to develop a deci-

sion policy. Gorgias-B is built on top of the Gorgias framework and

on, one hand, aids in the elicitation of the expert/user knowledge in

the form of scenario-based preferences among the available options,

and, on the other hand, automatically generates the corresponding

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6866-7/20/03.

https://doi.org/10.1145/3341105.3374122

executable Gorgias code. Moreover, the Gorgias-B tool supports

scenario execution that helps the user to put to test the generated

argumentation theory. However, Gorgias-B still needs the user to

follow an argumentation domain specific method and have knowl-

edge of Prolog style logic programming application development.

Moreover, its use requires a complex installation process including

the installation of Java and SWI-Prolog. A web-based system, Spin-

dle [7], allows for web-based development and testing of defeasible

logic applications. Its environment, however, just includes a text

editor for writing logic programming rules.

In this paper, we propose a web application, named WebGor-
giasB, using as a reference the Gorgias-B [12] tool, emphasizing

on the ease of use. Our aim is to eliminate the need for logic pro-

gramming knowledge for application developers, thus, allowing

even naive users to define decision policies. Moreover, we intro-

duce, for the first time, the use of the table formalism, that has been

recently proposed in the literature [6], for naive users to define

their scenarios and select the available options in each scenario.

During system development we used the think aloud protocol [9]
for evaluating the user interface. Based on that, features helping the

accomplishment of each application task were added and the size,

colors and layout of original controls were determined. All applica-

tions stored are available in the cloud, so that they can be ready to

be edited, demonstrated or executed at the user’s convenience.

2 MOTIVATION AND BACKGROUND
The Gorgias-B tool has been based on a systematic methodology for

developing hierarchical argumentation frameworks applications.

Hierarchical Argumentation Frameworks (HAF) allow developers

to not only define preference among arguments, but also to define

preference on preferences, thus, allowing to have default prefer-

ences but also context based preferences. The following example

will help the reader familiarize with the terms option, fact, belief,
preference and argument rule, concepts.

Working with Gorgias-B, a decision problem is defined as the

process of choosing the best option oi, i ∈ 1, .., n among the set O of

n available options. We will use an example throughout the paper

to help explain our work. In this example, a user, Ralf, defines a

policy for his personal assistant to accept or deny an incoming call.

His set of options is outlined in (1).

O = {o1 = allow(call), o2 = deny(call)} (1)

In the paper, we will use the same notation with the one used

in a relevant paper that set the theoretical foundation of the table-

based argumentation theory generation [6]. We will also use the

abbreviated symbols of predicates and ground atoms in order to save

space and not clutter the equations, e.g. we will use o1 instead of

980

https://doi.org/10.1145/3341105.3374122
https://doi.org/10.1145/3341105.3374122

allow(call). To choose among the options we define scenario-based

preferences, using the syntax SP levelscenar io = ⟨Slevelscenar io ;O
level
scenar io⟩:

SP1 = ⟨S1 = {true};O1 = {o1, o2}⟩ (2)

where SP1 is the scenario-based preference of level 1, where the

scenario 1 holds (S1) and both options are acceptable. Note that we

have omitted the scenario subscript as the scenario doesn’t have any
conditions (always true). In the Gorgias structured argumentation

framework, argument rules link a set of premises with their position.
An argument is a set of one or more such argument rules, denoted
by Label = Conditions ▷ Position. Such an argument rule links a set

of Conditions with a Position. The SP in (2) implies the following

two object level arguments:

argSP
1

o1 = {true} ▷ o1 (3)

argSP
1

o2 = {true} ▷ o2 (4)

where argSP
1

o2 denotes the object level argument for the scenario

preference of level 1, see equation (2) and option o1.
We can also use the “>” operator between two argument rules’

labels to denote that the one on the left hand side is preferred over

the one on the right hand side. This operator assigns preference

over other rules. When the labels are of object-level rules (at the

first level) then we have a preference at the second level. When

the labels are of nth level rules then we have a preference at level

(n + 1). The following example shows how to connect a Scenario

Preference (SP) to arguments generation:

SP2f , f = ⟨S2f , f = S1 ∪ C2
f , f = {true} ∪ {family_time,

family_call};O2
f , f = {o1}⟩ (5)

SP2f ,bu = ⟨S2f ,bu = S1 ∪ C2
f ,bu = {true} ∪ {family_time,

business_call};O2
f ,bu = {o2}⟩ (6)

arg
SP2f , f
o1_over_o2 ={family_time, family_call} ▷ argSP

1

o1 > argSP
1

o2 (7)

arg
SP2f ,bu
o2_over_o1 ={family_time, business_call} ▷ argSP

1

o2 > argSP
1

o1 (8)

Argument rule (7) is implied by the scenario preference (5), as

Ralf answers a call from family members when spending time with

his family. Rule (8) is implied by the scenario preference (6), as Ralf

doesn’t accept business calls in the family time context.
Object level rules can take along priority rules to build stronger

arguments. In Gorgias [5], which is based on Dung’s abstract ar-

gumentation framework [2], we have a set of arguments Arg and

the Att attack binary relation between them. An argument attacks

another if they draw complementary conclusions (options). An ar-

gument that attacks back all its attackers is an admissible argument.

Thus, when Ralf spends family time and there is an incoming

call from a business associate, a number of arguments can be con-

structed, however the {argSP
1

o2 , arg
SP2f ,bu
o2_over_o1 } is the only admissible

(i.e. no other company of argument rules can fight it back). For the

detailed semantics the interested reader can refer to Kakas et al. [6].

Gorgias-B [12] guides the user in defining object-level arguments

and then allows users to define priorities among them in the second

level. If there are contrary priorities then they are resolved in a

next level and this process iterates until there are no conflicts.

Recently, the method presented by Kakas et al. [6] defined a

table formalism for capturing requirements and a basic theoretical

algorithm for generating code for refined scenarios (i.e. scenarios

continuously advancing in levels by adding contextual information).

Our work expands Gorgias-B and implements a similar func-

tionality in a web application. For the first time, it proposes an

implementation for the table view presented by Kakas et al. [6].

The main key feature introduced is the Argue Table, where users

can review their scenario preferences in a more responsive and

clear way. This feature is expected to benefit users in creation of

arguments and definition of option properties. Also, from the table

view, users are able to expand and refine their already created sce-

nario preferences by adding new facts and beliefs that they would

like to include into their new scenarios.

Installing the Gorgias-B original application requires the instal-

lation of a number of tools (Java, SWI-Prolog) and the editing of a

configuration file, restricting its use to experienced users. Based on

this work, we aim to make the decision policy development capabil-

ity available to naive users, i.e. users without technical knowledge

on logic programming.

3 THEWEB APPLICATION
The overall application was designed to take advantage of the prin-

ciples and benefits of the Model-View-Controller [8] (MVC) design

pattern. This means that distinct modules are created to control

the presentation of the data, filtering it according to the user’s

criteria and managing it in a data model. We used modern tech-

nologies such as Angular (https://angular.io/) for the client side and

REST services [10] and the Spring-Boot programming framework

(https://spring.io/projects/spring-boot) on the server side.

A number of REST services were developed. The most im-

portant of them are outlined in what follows. The PrologService
contains all the functions needed to successfully compile and simu-

late the execution of each project. Code generation is conducted

using the method followed in Gorgias-B. To establish a connection

between Prolog and Spring Boot we use the JPL library provided

by SWI-Prolog (https://www.swi-prolog.org/).

The CoreNLPService was implemented to achieve the main

functional requirements of creating a user-friendly GUI easy to use

by non-expert users, difficult and complex Prolog elements, such

as Predicates should be visualised in another way. The main idea

was to guide the user to write a free form text, which after Natural

Language Processing (NLP), would be transformed into Prolog’s ar-

gument’s structure predicate form. A verb as a predicate identifies a

relation between entities denoted by the subjects and complements.

So, utilizing the Stanford’s coreNLP tool (https://nlp.stanford.edu/

software/) entities are transformed into word functions. The ab-

stract form of representation is verb(subject ,object ,nouns) with
minor changes per input. This transformation is presented to the

user, who can approve it or adjust it.

The ScenarioService includes the functions needed to group all
the scenarios created, by their name, in a Table View. Table 1 shows

the scenarios presented in section 2. The graphical user interface

(GUI) of the WebGorgiasB application includes the original Argue

Table custom view (see how Table 1 looks in the application in

Figure 1). There is a function to create a scenario preference based

981

https://angular.io/
https://spring.io/projects/spring-boot
https://www.swi-prolog.org/
https://nlp.stanford.edu/software/
https://nlp.stanford.edu/software/

Figure 1: Argue Table View. In the screenshot we see the Basic View of the requirements presented in Table 1.

on selected beliefs and facts, accompanied with the appropriate op-

tion(s) whenever the user adds a line to the table. For each selected

option o, the algorithm accesses all arguments in that scenario that

have as preferred option that selected option and also the argu-

ments that have the selected option as a non-preferred option and

then checks if the preferred options of these arguments are com-

plements. If they are, then the algorithm generates the preference

arguments at a higher level (see [6] for more details).

Thorough evaluation, both informal and structured, was con-

ducted so that the system’s usability was assessed during the sys-

tem’s development. The think aloud protocol was selected as the
main evaluation methodology because of the complexity of the

system and the need to allow for free-form conversation between

the user and the researcher guiding the evaluation [9]. Various user

comments were integrated in the user interface design throughout

its implementation. Help messages were added, size of buttons was

affected as well as colours, etc. The clarity of labels was enhanced.

4 CONCLUSION
This paper reports on a web-based application for decision policy

definition and a simulation application for the Gorgias argumenta-

tion framework. Its main goal was to create a web interface acces-

sible by the general public, i.e. people without knowledge of logic

programming. The functionality of the system was evaluated using

the think aloud protocol.

Scenarios Options
o1 o2

1 S1 = {true} x x

2 S2f ,f = { f amily_time, f amily_call} x

3 S2f ,bu = { f amily_time,business_call} x

Table 1: Argue table for Call Assistant example.

We present, for the first time, an argumentation-based imple-

mentation of the table-based requirements gathering formalism

that was proposed recently in the literature [6]. Additionally, we

proposed a new feature that uses NLP for forming the scenario

predicates from natural language expressions.

Future work is focused on allowing the user to define options

in a scenario that are not present in previously selected scenarios.

In order to allow for large-scale application development, we will

explore ways to have different tables for all diverging contexts so

that the user can focus only in the branch of the scenario currently

refined.

REFERENCES
[1] Cerutti, F., Gaggl, S. A., Thimm, M., and Wallner, J. P. Foundations of

implementations for formal argumentation. The IfCoLog Journal of Logics and
their Applications; Special Issue Formal Argumentation 4, 8 (September 2017).

[2] Dung, P. M. On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning, logic programming and n-person games. Artificial
intelligence 77, 2 (1995), 321–357.

[3] Gaertner, D., and Francesca. Computing arguments and attacks in assumption-

based argumentation. IEEE Intelligent Systems 22, 6 (2007), 24–33.
[4] García, A. J., and Simari, G. R. Defeasible logic programming: An argumentative

approach. TPLP 4, 1-2 (2004), 95–138.
[5] Kakas, A. C., and Moraitis, P. Argumentation based decision making for

autonomous agents. In AAMAS 2003 (Melbourne, Victoria, Australia, 14-18 July

2003), ACM, pp. 883–890.

[6] Kakas, A. C., Moraitis, P., and Spanoudakis, N. I. GORGIAS: Applying argu-
mentation. Argument & Computation 10, 1 (2019), 55–81.

[7] Lam, H.-P., and Governatori, G. The Making of SPINdle. In RuleML 2009 (Las
Vegas, Nevada, USA, 5-7 Nov. 2009), Springer-Verlag, pp. 315–322.

[8] Leff, A., and Rayfield, J. T. Web-Application Development Using the

Model/View/Controller Design Pattern. In EDOC 2001 (Seattle, WA, USA, 4-

7 Sept. 2001), IEEE, pp. 118–127.

[9] McDonald, S., and Petrie, H. The effect of global instructions on think-aloud

testing. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (2013), ACM, pp. 2941–2944.

[10] Pautasso, C., Zimmermann, O., and Leymann, F. RESTful Web Services vs. “Big”

Web Services: Making the Right Architectural Decision. In Proceedings of the
17th international conference on World Wide Web (2008), ACM, pp. 805–814.

[11] Snaith, M., and Reed, C. TOAST: online aspic
+
implementation. In COMMA

2012 (Vienna, Austria, 10-12 Sept. 2012), pp. 509–510.
[12] Spanoudakis, N. I., Kakas, A. C., and Moraitis, P. Gorgias-B: Argumentation

in Practice. In COMMA 2016 (Potsdam, Germany, 12-16 Sept. 2016), pp. 477–478.

982

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20200106120622
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 0
 1

 1

 HistoryList_V1
 qi2base

