

UNIVERSITE PARIS DESCARTES

Laboratoire d’Informatique Paris Descartes (LIPADE)

Thèse de Doctorat

Informatique/Intelligence artificielle

Nikolaos SPANOUDAKIS

THE AGENT SYSTEMS ENGINEERING METHODOLOGY (ASEME)

Directeur de thèse : Professeur Pavlos MORAITIS

Soutenue le 9 Octobre 2009

Jury :

Massimo COSSENTINO, Chercheur, HDR, CNR-Italy (rapporteur)

Yves DEMAZEAU, DR, CNRS-Grenoble (examinateur)

Amal EL FALLAH-SEGHROUCHNI, Professeur, UPMC (examinateur)

Pavlos MORAITIS, Professeur, Université Paris Descartes (directeur)

John MYLOPOULOS, Professeur, University of Toronto (rapporteur)

2

ACKNOWLEDGEMENTS

Foremost, I would like to express my gratitude to my supervisor, Pavlos Moraitis for

encouraging me to choose this topic and begin my thesis in the city of Paris. I am

grateful for his guidance and patience. Pavlos stood not only as supervisor, but also

as a friend.

I want to thank Professor John Mylopoulos and Dr Massimo Cossentino for having

honored me by expressing their interest in my work and by accepting to be

reviewers of this thesis. Also, Professor Amal El Fallah-Seghrouchni and Dr Yves

Demazeau for having accepted to be members of my jury and for having honored me

with their presence.

Moreover, I would like to thank the staff of Paris Descartes University and the fellow

researchers in the lab. We had a great time in the lab working, having coffee breaks,

and, later, a beer or two in the city of light. I want to thank the university and the

laboratory (LIPADE) administration for funding my participation in numerous

conferences and workshops. I want to thank Bruno Bouzy (Maître de Conférences in

LIPADE) for giving me the chance to teach the pre-graduate students of the Paris

Descartes University on one of my favorite subjects, that of software engineering. I

would also like to thank Associate Professor Tom Kontogiannis (from the

Department of Production Engineering and Management of the Technical University

of Crete) for providing me with software licenses for several CASE tools.

I offer my gratitude to my family, especially my father and mother. They were the

ones that made it possible for me to come this far through long years of caring for

me with love and good advice.

I would like to dedicate my thesis to my wife, Archontia Aligizaki, who had endless

reserves of patience and showed her selfless love by supporting me when I was far

away for long periods of time.

Finally, I want to thank all those that I relied on to share my joy and misery, anxiety

and hopes, successes and hard times, throughout these four years in France and

Greece. These include members of my family, friends in Paris and at home and the

colleagues in LIPADE. Thank you guys!

3

To To To To ArchontiaArchontiaArchontiaArchontia

4

ABSTRACT

This thesis presents on one hand the Agent Modeling Language (AMOLA) for

modeling multi-agent systems and on the other hand the Agent Systems Engineering

Methodology (ASEME) for developing multi-agent systems. AMOLA provides the

syntax and semantics for creating models of multi-agent systems covering the

analysis and design phases of a software development process. It supports a

modular agent design approach and introduces the concepts of intra-and inter-agent

control. The first defines the agent’s behavior by coordinating the different modules

that implement his capabilities, while the latter defines the protocols that govern the

coordination of the society of the agents. The analysis phase builds on the concepts

of capability and functionality. AMOLA deals with both the individual and societal

aspect of the agents showing how protocols and capabilities can be integrated in

agents design. This is the first originality of this thesis, the fact that the inter-agent

control model is defined using the same formalism with the intra-agent control

model thus allowing the integration of inter-agent protocols in the agent’s model as

capabilities. ASEME applies a model driven engineering approach to multi-agent

systems development, thus the models of a previous development phase are

transformed to models of the next phase. This is the second originality of this thesis,

the fact that different models are created for each development phase and the

transition of one phase to another is assisted by automatic model transformation

including model to model (M2M), text to model (T2M) and model to text (M2T)

transformations leading from requirements to computer programs. The

development process is described using the Software Process Engineering

Metamodel (SPEM), the language that is proposed by FIPA for such processes

specification. The ASEME Platform Independent Model (PIM) that is the output of

the design phase is a statechart that can be instantiated in a number of platforms

using existing CASE tools and to an agent platform, the Java Agent Development

Framework (JADE). The ASEME and AMOLA presentation is accompanied by two

real-world systems presentations (as case studies) that were engineered using this

methodology with successful evaluation results and also incorporates a meetings

management system development example that demonstrates the whole

development lifecycle (from requirements to computer code).

5

RESUME

Cette thèse présente d'une part, le langage de modélisation d’agents (AMOLA) pour

la modélisation de systèmes multi-agents et, d'autre part, la méthodologie pour

l'ingénierie des systèmes d’agents (ASEME) pour le développement de systèmes

multi-agents. AMOLA fournit la syntaxe et la sémantique pour la création de

modèles de systèmes multi-agents couvrant les phases d'analyse et de conception

d'un processus de développement logiciel. Il défend une approche de conception

modulaire de l'agent et introduit les notions de contrôle intra-et inter-agent. Le

premier définit le comportement de l’agent via la coordination des différents

modules qui implémentent ses capacités, tandis que le deuxième définit les

protocoles qui régissent la coordination de la société des agents. La phase d'analyse

s'appuie sur les notions de capacité et de fonctionnalité. AMOLA traite à la fois

l’aspect individuel et social des agents en montrant comment les protocoles et les

capacités peuvent être intégrés dans la conception d'agents. Une première

originalité de cette thèse, est le fait que le modèle du contrôle inter-agents est défini

en utilisant le même formalisme que pour le modèle de contrôle intra-agent

permettant ainsi l'intégration des protocoles inter-agents dans les capacités de

l'agent. ASEME applique un modèle d'ingénierie dirigée par les modèles pour le

développement de systèmes multi-agents. Ainsi les modèles d'une phase précédente

de développement sont transformées en modèles de la phase suivante. La deuxième

originalité de cette thèse est alors le fait que des modèles différents sont créés pour

chaque phase de développement et que la transition d'une phase à l'autre est

assistée par un dispositif de transformation automatique de modèles, incluant des

transformations modèle à modèle (M2M), texte à modèle (T2M) et modèle à texte

(M2T) et qui conduisent de la phase des besoins à celle de la programmation. Le

processus de développement est décrit à l'aide du Software Process Engineering

Metamodel (SPEM), le langage qui est proposé par FIPA pour de tels processus de

spécification. Le modèle indépendant de la plate-forme (PIM) d’ASEME, qui est la

sortie de la phase de conception est un diagramme états-transitions qui peut être

instancié dans un certain nombre de plates-formes en utilisant des outils CASE et

aussi dans une plate-forme orientée agent, JADE. La présentation d’ASEME et

d’AMOLA est accompagnée de deux présentations de systèmes du monde réel (en

tant qu’études de cas) qui ont été conçus en utilisant cette méthode avec succès au

niveau d'évaluation de résultats, et également d’un exemple de développement d’un

système de gestion de réunions qui démontre toute l'évolution du cycle de vie

(depuis les besoins jusqu’au codage informatique).

6

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 21

1.1 THESIS GOALS ... 22

1.2 THE THESIS PROGRESSION ... 23

1.3 DOCUMENT OUTLINE ... 24

CHAPTER 2 STATE OF THE ART AND RELATED WORK 27

2.1 SOFTWARE ENGINEERING .. 27

2.1.1 Structured Programming ... 28

2.1.1.1 Modeling Methods ... 28

Data Flow Diagrams ... 28
The Z language... 29

2.1.1.2 Software Processes .. 30

The waterfall model .. 30

2.1.2 Object Oriented Development ... 31

2.1.2.1 Modeling Methods ... 32

UML ... 32

2.1.2.2 Software Processes .. 33

The Spiral model .. 33
The Rational Unified Process ... 34

2.1.3 Statecharts ... 35

2.1.4 Modern Approaches to Software Engineering ... 38

2.1.4.1 Agile processes ... 38

2.1.4.2 Modular Programming ... 39

2.1.4.3 Service-oriented Architecture (SoA) .. 40

2.1.4.4 Model-driven Engineering ... 40

2.2 AGENT ORIENTED SOFTWARE ENGINEERING .. 43

2.2.1 Multi-agent Systems Engineering (MaSE) ... 44

2.2.2 The Gaia Methodology... 45

The Gaia2JADE process ... 48

2.2.3 Agent UML ... 49

7

2.2.4 Vowels .. 52

2.2.5 PASSI... 53

2.2.6 Prometheus .. 58

2.2.7 Ingenias .. 61

2.2.8 Tropos .. 63

2.2.9 Modeling inter-agent protocols ... 67

2.2.9.1 Agent Communication Language ... 67

2.2.9.2 Conversation Policies And The Need For Exceptions 67

2.2.9.3 Other Works ... 69

2.2.10 Model Driven Agents Development ... 75

2.2.11 Other works .. 76

2.2.11.1 The concepts of Capability and Functionality 77

2.2.11.2 Agile Agent Development .. 77

CHAPTER 3 THE AGENT MODELING LANGUAGE (AMOLA) 79

3.1 THE BASIC CHARACTERISTICS OF AMOLA ... 79

3.2 THE REQUIREMENTS ANALYSIS PHASE MODEL 81

3.2.1 System Actors and Goals Model (SAG) .. 81

3.2.2 The Requirements Per Goal Model .. 83

3.3 THE ANALYSIS PHASE MODELS ... 84

3.3.1 The System Use Cases Model (SUC) ... 84

3.3.2 The Agent Interaction Protocols Model (AIP) .. 85

3.3.3 The Systems Roles Model (SRM) .. 86

3.3.4 The Functionality Table (FT) ... 89

3.4 THE DESIGN PHASE MODELS .. 90

3.4.1 The Inter-Agent Control Model (EAC) .. 91

3.4.2 The Intra-Agent Control Model (IAC) ... 99

CHAPTER 4 THE AGENT SYSTEMS ENGINEERING METHODOLOGY

(ASEME) PROCESS ...103

4.1 WHY A NEW METHODOLOGY IN AOSE .. 104

4.2 ASEME PROCESS OVERVIEW ... 105

8

4.3 REQUIREMENTS ANALYSIS PHASE .. 109

4.4 ANALYSIS PHASE .. 112

4.5 DESIGN PHASE .. 116

4.6 IMPLEMENTATION PHASE .. 127

4.7 VERIFICATION AND OPTIMIZATION PHASES .. 128

4.8 SUPPORT FOR SUB-DIALOGS ... 129

4.9 A CASE STUDY: THE MARKET-MINER PROJECT 130

4.9.1 The MARKET-MINER Project. An Introduction 131

4.9.2 The Argumentation Framework ... 131

4.9.3 Domain Knowledge Modeling .. 132

4.9.4 The Product Pricing Agent .. 134

4.9.5 Evaluation .. 137

CHAPTER 5 METAMODELS AND MODEL TRANSFORMATIONS ...141

5.1 THE METAMODELS .. 144

5.1.1 System Actor Goal model (SAG) ... 144

5.1.2 Use case model (SUC) ... 145

5.1.3 Role model (SRM) ... 147

5.1.4 Intra-agent control model (IAC) ... 148

5.2 THE TRANSFORMATIONS ... 150

5.2.1 M2M Transformations ... 150

5.2.1.1 SAG2SUC transformation ... 150

5.2.1.2 SUC2SRM transformation .. 153

5.2.2 T2M – The SRM2IAC transformation ... 154

5.2.3 M2T Transformation .. 157

5.2.3.1 The Java Agent Development Framework (JADE) 157

5.2.3.2 The IAC2JADE Transformation ... 159

5.3 THE ASEME MDE PROCESS ... 170

CHAPTER 6 PROCESS MODELING ...171

6.1 TRANSFORMING IAC AND EAC MODELS TO PROCESS MODELS 172

9

6.2 A CASE STUDY: THE ASK-IT PROJECT ... 173

CHAPTER 7 FUTURE PERSPECTIVES ..181

7.1 FURTHER EVALUATE AND EXPAND ASEME .. 181

7.2 RESEARCH DIRECTIONS ... 183

7.2.1 Automate Software Development ... 183

7.2.2 Self-Assessment and Self-Healing Agent Capability 183

7.2.3 Automate the Process Model Generation .. 183

7.2.4 Incorporate Organizational Rules .. 184

CHAPTER 8 CONCLUSION ...185

ANNEX 1. REFERENCES ..189

ANNEX 2. ABBREVIATIONS ..203

ANNEX 3. THE AMOLA METAMODELS206

ANNEX 4. THE SRM2IAC TRANSFORMATION PROJECT FILES209

ANNEX 5. THE IAC2JADE TRANSFORMATION PROJECT FILES ...222

ANNEX 6. THE MEETINGS MANAGEMENT SYSTEM MODELS236

The automatically generated Java files for the JADE platform .. 254

ANNEX 7. AUTOMATICALLY GENERATED JAVA CODE USING THE

RHAPSODY CASE TOOL FOR THE MARKET-MINER PROJECT269

ANNEX 8. THE MICRO SAINT CONFIGURATION FOR ASK-IT

PROJECT SIMULATION ...301

Micro Saint Task Network ... 302

10

LIST OF FIGURES

Figure 1. The Data Flow Diagrams notation .. 28

Figure 2. The Security Software level 1 DFD. ... 29

Figure 3. The Security Software level 1.1 DFD. .. 29

Figure 4. The Z language notation ... 30

Figure 5. Using the Z language for modeling data and functionality. 30

Figure 6. The waterfall development model. .. 31

Figure 7. Classes and inheritance .. 32

Figure 8. The spiral model. ... 33

Figure 9. The Rational Unified Process (Hirsch, 2002). .. 35

Figure 10. The hierarchy of states in a statechart (Harel and Kugler, 2004). 36

Figure 11. A joint transition. The grey states are those exited when the transition is

taken (Harel and Naamad, 1996). .. 37

Figure 12. A fork transition. The grey state is the one exited when the transition is

taken (Harel and Naamad, 1996). All t1, t2 and t3 must be executed. 37

Figure 13. A condition transition. The grey state is the one exited when the transition

is taken (Harel and Naamad, 1996). t1 and t2 or t1 and t3 will be executed. 37

Figure 14. Demonstrate how only full CTs reach a next state (Harel and Naamad,

1996). ... 38

Figure 15. Metamodeling stack representation (A) with model definition (B). 41

Figure 16. The general scheme of model transformation ... 42

Figure 17. The Gaia roles model. ... 46

Figure 18. The Gaia interactions model ... 47

Figure 19. The Gaia Agent model ... 47

Figure 20. A Gaia extended interactions model .. 49

Figure 21. UML 1.x agent extensions and UML 2.0 Sequence Diagrams in AUML

(Bauer and Odell, 2005) ... 50

11

Figure 22. AUML Interaction protocols can be specified in more detail (i.e., leveled)

using a combination of diagrams (Odell et al., 2001). ... 51

Figure 23. An AUML Use Case Diagram for an Order Processing application (Bauer

and Odell, 2005). .. 51

Figure 24. The vowels development phases (Ricordel and Demazeau, 2002). 53

Figure 25. The models and phases of the PASSI methodology (Cossentino, 2005). ... 54

Figure 26. The domain requirements description diagram of PASSI (Cossentino,

2005). ... 54

Figure 27. The agents identification diagram of PASSI (Cossentino, 2005). 55

Figure 28. A PASSI Roles Identification Diagram (Cossentino, 2005) 56

Figure 29. A PASSI Activity Diagram (Cossentino, 2005). .. 57

Figure 30. A screenshot from the AgentFactory tool (Chella et al., 2004) 57

Figure 31. The Prometheus phases and work products (Padgham and Winikoff,

2004). ... 58

Figure 32. Prometheus: Example of a system overview diagram (Padgham and

Winikoff, 2005) .. 59

Figure 33. The Prometheus protocol descriptor template .. 60

Figure 34. Prometheus: Example of an agent overview diagram: Meeting agent

(Padgham and Winikoff, 2005) .. 60

Figure 35. Elements of the agent viewpoint in INGENIAS (Pavón et al., 2005). 62

Figure 36. Actor diagram for a Media Shop (Giorgini et al., 2005) 63

Figure 37. The late requirements analysis model for the electronic media shop

Medi@ (Giorgini et al., 2005). ... 64

Figure 38. The Medi@ architecture in Structure-in-5 (Giorgini et al., 2005) 65

Figure 39. Store Front actor decomposition with social patterns (Giorgini et al., 2005)

.. 66

Figure 40. A statechart that describes the activities of both parties in a conversation

(Moore, 2000). ... 68

Figure 41. A statechart representation of a conversation policy with an unplanned-

for subdialog (Moore, 2000). ... 69

Figure 42. A detailed version of the English Auction protocol with agent/action path

event labels (Dunn-Davies et al., 2005) ... 71

12

Figure 43. The protocol shown in Figure 42 from the point of view of a bidder (Dunn-

Davies et al., 2005) ... 72

Figure 44. Transforming an exclusive OR part of an AUML AIP diagram to a CPN

diagram part (Mazouzi et al., 2002). .. 74

Figure 45. A translation of the FIPA-request-when protocol to a CPN (Mazouzi et al.,

2002). ... 75

Figure 46. Actor diagram (or SAG model). The circles represent the identified actors

and the rounded rectangles their goals. .. 82

Figure 47. SUC Model: A Use Case diagram for the ASK-IT project. 85

Figure 48. A portion of the SRM model for three roles of the ASK-IT project 88

Figure 49. Functionality Table for the personal assistant role of the ASK-IT project. . 90

Figure 50. A snapshot of the ASK-IT ontology. The concepts FoundServiceResults,

EServiceResponse and CallParameter (Spanoudakis and Moraitis, 2006b). 96

Figure 51. The EAC model for the Request for Services Protocol of ASK-IT project. .. 97

Figure 52. IAC model for the Personal Assistant agent in the ASK-IT project. 99

Figure 53. IAC model for the Broker agent in the ASK-IT project. 100

Figure 54. The intra-agent control model of a BDI agent .. 101

Figure 55. The Software Process Engineering Metamodel (SPEM) Notation. 106

Figure 56: ASEME Process Overview. .. 107

Figure 57. Reverse Engineering from Java code to a Class diagram. 107

Figure 58: ASEME phases and their AMOLA products. .. 108

Figure 59. ASEME process packages. ... 109

Figure 60: The ASEME Requirements Analysis Phase. ... 110

Figure 61: The SAG2SUC transformation. .. 111

Figure 62. A graphical editor of the Eclipse IDE. .. 111

Figure 63: The ASEME Analysis Phase. .. 112

Figure 64: The SUC2SRM transformation. ... 113

Figure 65. The SRM2IAC transformation. .. 115

Figure 66. The Functionality Table for the personal assistant role of the meetings

management system.. 116

Figure 67. The ASEME Design Phase .. 117

13

Figure 68: The “Define Inter-agent Control Model” work definition 117

Figure 69. The automatically generated EAC model for the “Negotiate Meeting Date”

protocol. ... 123

Figure 70. The Ontology for the meetings management system. 124

Figure 71. The complete EAC model for the “Negotiate Meeting Date” protocol. ... 125

Figure 72: The “Define Intra-agent Control Model” work definition 127

Figure 73. The intra-agent control model supporting a sub-dialog 130

Figure 74. The MARKET-MINER Product and FirmStrategy ontology concepts. 133

Figure 75. MIPA Use Case Diagram .. 135

Figure 76. MIPA Role Model (a) and the relation between Capabilities, Activities and

Functionalities (b). ... 136

Figure 77. MIPA Intra-agent Control Model (snapshot from the Rhapsody
©

 CASE

tool). ... 136

Figure 78. The EMF model unifies Java, XML, and UML technologies (Budinsky et al.,

2003). ... 142

Figure 79. The Ecore metamodel (Budinsky et al., 2003). ... 143

Figure 80. The Tropos Actor Concept metamodel (from AtlanMod repository)....... 145

Figure 81. The AMOLA SAG metamodel .. 145

Figure 82. The Usecase fragment of the UML metamodel (from AtlanMod

repository). ... 146

Figure 83. The AMOLA SUC metamodel .. 146

Figure 84. The GAIA metamodel (from AtlanMod repository). 147

Figure 85. The AMOLA SRM metamodel. .. 148

Figure 86. The Statecharts fragment of the UML metamodel (from AtlanMod

repository). ... 149

Figure 87. The AMOLA IAC metamodel. .. 149

Figure 88. The eclipse ATL project for the SAG2SUC and the SUC2SRM M2M

transformations. .. 151

Figure 89. The SAG2SUC M2M transformation scheme. ... 152

Figure 90. The ATL Transformation Run Configuration of Eclipse. 152

Figure 91. The SUC2SRM M2M transformation scheme. .. 154

14

Figure 92. The HUTN implementation architecture (Rose et al., 2008) 155

Figure 93. The Eclipse project for T2M transformation. ... 156

Figure 94. The JADE code generator project with its prerequisite projects in eclipse.

.. 160

Figure 95. The automatically generated java classes for the personal assistant agent

of the meetings management project. .. 168

Figure 96. The ASEME MDE Process for Agent Development. 170

Figure 97. The Negotiate Meeting Protocol Process ... 172

Figure 98. The ASK-IT Request for Services Protocol participant agents in a high level

process view in Micro Saint Sharp. .. 174

Figure 99. The Personal Assistant internal process. .. 174

Figure 100. The Broker agent internal process. ... 174

Figure 101. The complex provider agent internal process .. 175

Figure 102. The main properties of the BR receive message task. 176

Figure 103. The timing of the BR receive message task. ... 176

Figure 104. The execution paths after the BR receive message task. 177

Figure 105. The Broker agent’s response times (mean, maximum and minimum

service values) when a message is coming in average every 30 seconds (1), 15

seconds (2) and five seconds (3). ... 178

15

LIST OF TABLES

Table 1. Gaia Operators for Liveness Formulas ... 46

Table 2. A portion of the Requirements Per Goal (RPG) model for the Personal

Assistant Actor in ASK-IT project. .. 83

Table 3. Agent Interaction Protocol for the ASK-IT system ... 86

Table 4. Agent interaction protocols for the meetings management system 114

Table 5. Templates of extended Gaia operators (Op.) for Statechart generation 118

Table 6. MARKET-MINER evaluation results. The rows with white background are

those of the consultants, while those with grey background represent the evaluation

of the system administrators. .. 139

Table 7. Micro Saint Entity Attributes .. 301

Table 8. Micro Saint Variables ... 301

Table 9. Micro Saint Scenario Events ... 301

Table 10. Micro Saint Release Conditions and Effects ... 302

Table 11. Micro Saint Tasks Timing .. 303

Table 12. Micro Saint Path Decision .. 304

16

LIST OF LISTINGS

Listing 1. The liveness formula grammar in EBNF format. .. 87

Listing 2. The statecharts transition expression grammar in EBNF format. 92

Listing 3. The transformation process from a liveness formula to a statechart in

pseudocode. ... 119

Listing 4. An extract of the Gorgias rules for the MARKET-MINER project. Variables

start with a capital letter as in Prolog. ... 134

Listing 5. An extract from the automatically generated Product_Pricing_Agent java

class by the Rhapsody
©

 CASE tool. .. 137

Listing 6. The SUC2SRM ATL Transformation script (SUC2SRM.atl file). 153

Listing 7. A HUTN generated language example ... 155

Listing 8. An extract of the EBNF rules for HUTN mappings (Object Management

Group, 2004) .. 155

Listing 9. An extract from the IACModelInitial.model file. .. 157

Listing 10. The workflow definition for the IAC2JADE transformation (workflow.oaw).

.. 161

Listing 11. The workflow properties file (workflow.properties) 161

Listing 12. The preprocessing xpand template file (Preprocessing.xpt) 161

Listing 13. The packageHelper xtend file (PackageHelper.ext) 162

Listing 14. The packageHelper Java implementation class (PackageHelper.java) 162

Listing 15. An extract from the agent xpand template file (1) 163

Listing 16. The generated file MeetingHolder.java ... 164

Listing 17. The transformation process of nodes to java classes from the IAC model to

the JADE platform (IAC2JADE) in pseudocode. .. 164

Listing 18. The final file SendResultsBehaviour.java .. 168

Listing 19. The generated file NegotiateMeetingDateBehaviour.java 169

Listing 20. The SAG metamodel definition in XML format (SAG.ecore file) 206

Listing 21. The SUC metamodel definition in XML format (SUC.ecore file) 206

17

Listing 22. The SRM metamodel definition in XML format (SRM.ecore file) 207

Listing 23. The IAC metamodel definition in XML format (IAC.ecore file)................. 207

Listing 24. The main java file implementing the Liveness2HUTN transformation

(Liveness2IAC_HUTN.java) ... 209

Listing 25. The Model.java file ... 218

Listing 26. The Node.java file ... 219

Listing 27. The Transition.java file ... 220

Listing 28. The Variable.java file .. 221

Listing 29. The agent xpand template file (Agent.xpt) .. 222

Listing 30. The nodeHelper xtend file (NodeHelper.ext) ... 226

Listing 31. The nodeHelper Java implementation class (NodeHelper.java) 226

Listing 32. The ComplexBehaviourHelper xtend file (ComplexBehaviourHelper.ext)227

Listing 33. The ComplexBehaviourHelper Java implementation class

(ComplexBehaviourHelper.java) .. 228

Listing 34. The SAG model in XML format (SAGModel.xmi file) 236

Listing 35. The initial SUC model in XML format (SUCModelInitial.xmi file) 236

Listing 36. The refined SUC model in XML format (SUCModelRefined.xmi file) 237

Listing 37. The initial SRM model in XML format (SRMModelInitial.xmi file) 237

Listing 38. The refined SRM model in XML format (SRMModelRefined.xmi file) 238

Listing 39. The intermediate Hutn text model (IAC.hutn file) 239

Listing 40. The initial IAC model in XML format (IACModelInitial.model file) 248

Listing 41. The refined IAC model in XML format (IACModelRefined.model file) 250

Listing 42. The generated file PersonalAssistantAgent.java 254

Listing 43. The generated file _open_group_DecideResponse_sequence_

SendResults_sequence_ReceiveOutcome_close_group__one_or_more_times_

Behaviour.java ... 255

Listing 44. The generated file _open_group_DecideResponse_sequence_

SendResults_sequence_ReceiveOutcome_close_group_Behaviour.java 256

Listing 45. The generated file _open_group_ManageMeetings_sequence_

LearnUserHabits_close_group__forever__parallel_Behaviour.java 256

18

Listing 46. The generated file _open_group_ManageMeetings_sequence_

LearnUserHabits_close_group__forever__parallel_NegotiateMeetingDate_forever

_Behaviour.java ... 257

Listing 47. The generated file _open_group_ManageMeetings_sequence_

LearnUserHabits_close_group__forever_Behaviour.java ... 257

Listing 48. The generated file _open_group_ManageMeetings_sequence_

LearnUserHabits_close_group_Behaviour.java ... 258

Listing 49. The generated file _open_group_ReadSchedule_or_

RequestChangeMeeting_or_RequestNewMeeting_close_group_Behaviour.java ... 258

Listing 50. The generated file ACLMessageHolder.java ... 258

Listing 51. The generated file DecideResponseBehaviour.java 259

Listing 52. The generated file GetUserRequestBehaviour.java 259

Listing 53. The generated file LearnUserHabitsBehaviour.java 260

Listing 54. The generated file LearnUserPreferenceBehaviour.java 260

Listing 55. The generated file ManageMeetingsBehaviour.java 260

Listing 56. The generated file

NegotiateMeetingDate_forever__parallel_Behaviour.java 261

Listing 57. The generated file NegotiateMeetingDate_forever_Behaviour.java 261

Listing 58. The generated file NegotiateMeetingDateBehaviour.java 261

Listing 59. The generated file ReadScheduleBehaviour.java 262

Listing 60. The generated file ReceiveChangeResultsBehaviour.java 262

Listing 61. The generated file ReceiveNewResultsBehaviour.java 263

Listing 62. The generated file ReceiveOutcomeBehaviour.java 263

Listing 63. The generated file ReceiveProposedDateBehaviour.java 264

Listing 64. The generated file RequestChangeMeetingBehaviour.java 265

Listing 65. The generated file RequestNewMeetingBehaviour.java 265

Listing 66. The generated file SendChangeRequestBehaviour.java 265

Listing 67. The generated file SendNewRequestBehaviour.java 266

Listing 68. The generated file SendResultsBehaviour.java .. 266

Listing 69. The generated file ShowResultsBehaviour.java 267

Listing 70. The generated file UpdateScheduleBehaviour.java 267

19

Listing 71. The generated file UpdateUserPreferencesBehaviour.java 268

20

21

Chapter 1

Introduction

Agent oriented development emerges as the modern way to create software. Its

main advantage – as referred to by the literature – is to enable intelligent, social and

autonomous software development. These three qualities are argued to be the

difference with the classic object-oriented design paradigm.

However, one should not focus only on software needs as they are identified by

analysts. If the aim is to create modern software with these capabilities one must

also look into the software developer’s needs. These change in two directions. One is

the need to produce more software (in lines of code) because such systems are more

complex than traditional systems. Programming depends in writing code in a high

level human-understandable language and then translate the code to machine

readable format (compile or interpret the program). Throughout the history of

computing programming languages gained more abstract semantics always reducing

the amount of code that needs to be written for the same program. However, as

programs become more complex they tend to need more code. Then, new

abstractions emerge lowering the amount of code. Another dimension of this

direction is the (semi)automation of code generation so that programs can write big

portions of the new programs.

The second is the need to include and integrate diverse, and advanced technologies

such as computer vision, planning, argumentative reasoning, etc, that create the

need for large software developer teams including many different skills. These needs

can only be addressed by a methodology that provides many abstraction levels so

that complex software can be modeled. In addition, this methodology must indicate

the necessary technologies from the early design stages and allow for clear

development tasks decomposition. Moreover, a modular design approach will lead

22

to a clear and quick composition process. Finally, there is a need for new metaphors

that will encapsulate the new qualities of agent technology.

Automation is also an important aspect of modern software development. Model

driven engineering is a new paradigm for developing software proposing a software

development process that is based on model transformations between the different

development phases. A modern methodology should take this trend into account as

it caters for non-functional requirements such as portability, interoperability and

reusability.

The Agent Systems Engineering Methodology (ASEME) is a methodology for

developing multi-agent systems. It started as the Gaia2JADE process for

implementing Gaia models (Wooldridge et al., 2000) using the JADE agent platform

(Belifemine et al., 2001). It emerged as an evolution of the Gaia2JADE process

influenced by the requirements analysis phase of Tropos (Bresciani et al., 2004) and

the work of Moore on conversation policies (Moore, 2000). It also reflects the

author’s experience in engineering real world systems (see, e.g., Matsatsinis et al.,

2003, Moraitis et al., 2003b, Moraitis et al., 2005, Moraitis and Spanoudakis, 2007,

Spanoudakis and Moraitis, 2009).

The paragraphs present the thesis goals, a small reference to the different steps that

led to this thesis, and an outline of this document.

1.1 Thesis Goals

The goal of this thesis is to present the Agent Systems Engineering Methodology

(ASEME), which is a methodology for developing multi-agent systems. Its major

advantages to existing methodologies are that it builds on existing languages such as

statecharts (Harel and Naamad, 1996) and UML, which are familiar to engineers, in

order to represent system analysis and design models.

It provides three different levels of abstraction, thus catering for large-scale systems

development involving diverse technologies. It is agent architecture and agent

mental model independent, allowing the designer to select the architecture type and

the mental attributes of the agent that he prefers (e.g. procedural agents, belief-

desire-intentions (BDI) agents, etc).

Moreover, the ASEME process follows the modern model driven engineering style,

thus the models of each phase are produced by applying transformation rules to the

models of the previous phase. Each phase adds more detail and becomes more

formal leading gradually to implementation. Thus, ASEME is a model-driven

engineering (MDE) process that can be automated by using rules for models

transformation and knowledge for adding detail in every development phase.

A platform independent model is the output of the design phase that describes the

system and allows its implementation with the use of different platforms or

23

programming languages. The model transformation process for implementing a

multi-agent system using the popular Java Agent Development Environment (JADE)

is presented herein. The process is formally presented using the Object Management

Group’s (OMG) Software Process Engineering Metamodel (SPEM) that has been used

in the past for modeling such processes and which is also used by the Foundation of

Intelligent Physical Agents (FIPA) agent technology standardization body.

1.2 The Thesis Progression

This thesis started having as a starting point previous work on modeling MAS using

the Gaia methodology and implementing them using the JADE framework (Moraitis

et al., 2003a), such as the Image system (Moraitis et al., 2003b). Moreover, it was an

excellent opportunity to express a point of view on modular agent architectures

(Moraitis, 1994; Karacapilidis and Moraitis, 2001; Moraitis, 2002) supported for

several years now but not yet matured to a methodology.

As a first activity of this thesis, the Gaia2JADE process was developed (Moraitis and

Spanoudakis, 2006) describing the process for combining Gaia and JADE using SPEM.

This process was followed for engineering the real world system Im@gine-IT

(Moraitis et al., 2005) that was much more complex compared to that of Image as

hundreds of personal assistant agents requested services from a network of

geographically distributed brokers. Through this work, the limitations of the

Gaia2JADE process started to become evident.

In the meantime, research in AOSE showed that a lot of issues were still open (e.g. in

Henderson-Sellers and Giorgini, 2005; Dam and Winikoff, 2004). Moreover, the

model-driven engineering community matured and provided methods and tools

allowing for model transformation, the same for the service oriented engineering

community. The work presented in Spanoudakis and Moraitis, 2007a, showed how

to integrate a service oriented architecture framework (OSGi and knopflerfish) with

an agent platform.

Thus, it emerged ASEME and AMOLA (Spanoudakis and Moraitis, 2007b, 2008a,

2008b). The ASK-IT project was used as a testbed for ASEME. ASK-IT was to a large

real world system where hundreds of personal assistant agents requested services

from a network of geographically distributed brokers, who in turn consulted a group

of specialized assistant agents for mobility impaired persons. The latter deliberated

over the needed service for the end user using argumentative reasoning. ASK-IT

allowed for experimentation, for example for designing complex protocols there was

an effort to use AUML (see Spanoudakis and Moraitis, 2006a), which although could

cover the messages exchange part, left the agent program development open, i.e. it

had to be defined ad hoc.

ASEME was applied successfully for developing another real-world system, Market-

miner (see Spanoudakis and Moraitis, 2008c, 2009). The developed software was

24

evaluated and succeeded in becoming a candidate for commercialization by a

leading Greek software house.

The last part of this thesis was to implement the transformation programs in order

to automate the model transformations that had been defined in a theoretical way.

This was one of the hardest parts as it entailed the understanding and use of diverse

and new technologies (some still in their incubation state, i.e. still not in version 1.0)

as three types of transformation were used (i.e. model to model, text to model and

model to text).

1.3 Document Outline

The main contribution of this thesis is the presentation of the ASEME methodology

and process showing the development steps and their products, as well as the

models transformation between the different development phases. The latter allows

for traceability of requirements to implementation level and facilitates iteration

between the different software development phases. The models that are used by

ASEME are defined by the Agent Modeling Language (AMOLA). This thesis contains a

working example, the development of a meetings management system, which allows

for the understanding of the ASEME process and the AMOLA models. Moreover, the

reader will get a wider view of ASEME through the presentation of two real world

systems included as case studies (the ASK-IT and MARKET-MINER project results).

Chapter 2 discusses the state of the art in AOSE. It starts with the software

engineering discipline in general in order to show the progress of this field and the

current trends. Another reason for reviewing software engineering in general is that

a lot of works there have influenced the work done within this thesis, mainly the

statecharts and UML, but also trends in modular programming, model-driven

engineering and agile software development. Then the advances in the AOSE field

are presented in two main axes, firstly the existing methodologies, which are

presented and discussed, and secondly the approaches to modeling agent

interaction protocols as one of the main goals of this work was to create an inter-

agent protocol model that would be easily integrated in an agent specification.

Chapter 3 presents the AMOLA models for the requirements analysis, analysis and

design phases. Some of the most important results of this thesis are presented in this

section, i.e. the formal definition of the liveness formula of a role model and the

formal definition of a statechart based on the ordered rooted tree. The different

AMOLA models are presented using examples from the ASK-IT real-world system

conception.

Following, in Chapter 4, the ASEME process is presented. This chapter starts by

providing the reasons why there is still room for a new methodology in AOSE and

what are the challenges related to the proposal of one. It shows how and when the

models of AMOLA are used in the software development phases and another

25

important result of this work, how models of a previous phase are transformed to

models of a next phase. The ASEME process presentation is facilitated by a working

example, that of the meetings management system. At the end of the chapter the

reader will find a case study for developing a real-world agent-based system,

MARKET-MINER. This case study demonstrates how to analyze and design an agent-

based system using the ASEME process. It also shows how a logic-based reasoning

mechanism was integrated in an AMOLA design and how to get an agent prototype

using a CASE tool available in the market.

Chapter 5 is concerned with proving the feasibility of the transformations defined in

the previous chapter and also with presenting and discussing the enabling

technologies for the transformation tasks. These are diverse technologies

encompassing the whole model-driven engineering spectrum as the transformation

types used include model to mode (M2M), text to model (T2M) and model to text

(M2T) transformations. This is another originality of this methodology, the fact that

it includes three transformation types. The meetings management system is

modeled throughout this chapter showing what information is added at what model

and how the models of a previous phase are transformed to those of a next phase.

This example starts from the requirements analysis and goes through the

development phases up to code generation. All the AMOLA metamodels,

transformation programs and generated models are presented in this chapter.

Chapter 6 presents another aspect of the AMOLA design model. Its capability to be

transformed to a process model. Unfortunately, the tools that were available for

process modeling did not import any kinds of models so the transformation process

is manual. However, the capability of such process models to be used for verification

and simulation of system properties but also for evaluating the scalability of the

systems is demonstrated through a case study done in the context of the ASK-IT

project.

Chapter 7 discusses the future perspectives of this work. They are identified in two

directions. The first direction is in further evaluating and expanding the ASEME

process. This work is about implementing better graphical editors for the AMOLA

models, expanding the automatic code generation capabilities and possibilities and

further evaluating it through case studies. The second is related to further research

directions which are numerous and in very interesting fields (at least for the writer).

The thesis is concluded in Chapter 8, which summarizes its findings and results. A

number of annexes include the references, the abbreviations used throughout this

thesis and all the details related to the presented case studies, the programs that

were written for the ASEME transformation processes, the AMOLA metamodels and

the files related to the meeting management sample project.

26

27

Chapter 2

State of the Art and Related Work

The state of the art presentation starts with an overview of the evolution of software

engineering also covering its modern trends. Then, it focuses on Agent Oriented

Software Engineering (AOSE) firstly by discussing how it emerged as a scientific field

and then by presenting in detail and discussing the achievements so far.

2.1 Software Engineering

According to the IEEE Computer Society, software engineering is defined as the

application of a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software and the study of such approaches (IEEE,

1990). In the writer’s point of view, software engineering emerged as soon as

computer programs (or information systems) became products that would be used

by people other than those who built them. Thus, on one hand the development

process had to be explained and allocated a budget in a rational way and on the

other hand different engineers should be able to be involved in the process, thus all

the steps should be adequately documented.

The software engineering field has tools such as process models and methodologies

(or simply methods). The term process model guides a software project and provides

answers to the following questions (Boehn, 1988):

1. “What shall we do next?

2. How long shall we continue to do it?”

28

The methodologies are concerned with different issues such as the products

outputted by each phase and how to navigate through each phase. Tolvanen (1998)

provides the following definition for a software method:

“A predefined and organized collection of techniques and a set of rules which state by

whom and in what order the techniques are used.”

2.1.1 Structured Programming

In the beginning, when procedural languages were used for programming, software

engineering focused on defining data flows and processes that handled the data. The

Structured Systems Analysis and Design Method (SSADM) is a representative of that

era and its dominant models were the Data Flow Diagrams (DFD) as they were

proposed by Stevens et al. in 1974.

2.1.1.1 Modeling Methods

Data Flow Diagrams

DFDs define the software processes and the data structures or external systems that

they use (either to read or write information). These concepts are graphically

displayed using the notations provided in Figure 1. The modeler uses different levels

of abstraction that allow the whole system under development to be represented as

a process accessing and modifying numerous data sources or external systems. As

the modeler adds detail in subsequent views the original process is replaced by many

more specialized ones.

Figure 1. The Data Flow Diagrams notation

The reader can get an idea about DFDs by observing how a security software system

is modeled. In Figure 2 the top level of the system is displayed. In this level the whole

system is viewed as one process. This system gets information from a control panel

and several sensors and outputs information to the control panel display. It can also

output information to an alarm and through the Public Service Telephone Network

(PSTN) to the police. Figure 3 zooms in the next level (Level 1.1) where more detail is

added (more specialized processes and clearer data-flow) to the single process of

level 1.

29

Figure 2. The Security Software level 1 DFD.

Figure 3. The Security Software level 1.1 DFD.

The Z language

Later, in the late 80s more formal methods that supported a graphical notation, like

the Z language (Spivey, 1989), started to emerge. Their goal was to model systems

and be capable to validate them before implementation. Z used elements from set

theory and logic and allowed the use of the same formalism for modeling data

structures and functions (see the Z language notation in Figure 4). For example, in

Figure 5, the reader can inspect a sample model including the Tank data structure

along with the Fill Tank function. According to the figure, the Tank has a Container

30

and a Sensor. The Container has a Capacity of 100 units and the Reading of the

Sensor is the Content of the Tank. The Fill Tank function is used for adding a Quantity

in the Tank except in the case that the outcome would exceed its capacity in which

case a Message is outputted and no action is taken.

Figure 4. The Z language notation

Figure 5. Using the Z language for modeling data and functionality.

2.1.1.2 Software Processes

The waterfall model

SSADM relied on a waterfall development model (Royce, 1970) which defined clearly

distinguished successive development phases with the possibility of iteration. Those

phases were the:

1. Requirements analysis. In this phase the system requirements are gathered

and documented.

2. Analysis. In this phase the requirements are transformed to technical needs

for the hardware and software that must be included in the system.

3. Design. In this phase the system is modeled using software engineering

methods

31

4. Implementation. In this phase the system is developed according to the plans

of the previous phase.

5. Verification-Validation. This phase is mostly concerned with system

performance and correctness testing.

6. Maintenance. The software is considered a living system that needs to be

maintained until the end of its lifecycle. Maintenance is about correcting

arising problems after system delivery, adding or extending the system

functionality.

Figure 6. The waterfall development model.

2.1.2 Object Oriented Development

When the object-oriented engineering paradigm emerged, new concepts were used

such as classes, objects, polymorphism, inheritance, etc. According to Young (1992)

Object oriented programming is a new metaphor to the way a system is designed. It

is a programming technique that gives emphasis to the objects of a system instead of

the tasks that the system must undertake.

Object-oriented design (OOD) made its appearance in 1982 in a paper written by

Booch (1982). After that date, many researchers proposed new ways for modeling

systems, incorporating the object oriented programming (OOP) new concepts in

their models, and, finally, the most important technology that emerged was the

Unified Modeling Language (UML, 2005), whose first version appeared in 1997 by

the Object Management Group (OMG). In structured programming, tasks were

refined in a top-down approach so that in the end small functions could be assigned

to the developers for coding, while in object-oriented design the system functionality

32

is provided by a number of interacting objects. The latter can be assigned to

developers for coding.

The processes that emerged with the object-oriented programming paradigm

introduced the concept of iteration, i.e. the fact that a software system is developed

gradually through development cycles during each one of them the different

development phases’ products become more detailed and resemble more closely

the desired outcome.

2.1.2.1 Modeling Methods

UML

The prevailing method in OOD is UML. UML defines the class diagrams for modeling

the concepts of class and inheritance. Classes define both the data and the functions

that use or create them. The inheritance concept is depicted in Figure 7. Classes of

objects are defined grouping all object properties. Then, more specialized objects are

derived from each class adding detail. For example, the Jet is a special case of a

Flying Vehicle, which in turn is a special case of a Vehicle. The final Jet class shown in

grey background includes all the attributes defined in its predecessors.

Vehicle

Moves

Takes passengers

Needs fuel

Flying Vehicle

Flies

Ground Vehicle

Has wheels

Jet

Has wings

Helicopter

Has rotor blades

Boat

Floats

Jet

Moves

Takes passengers

Needs fuel

Flies

Has wings

Figure 7. Classes and inheritance

The attributes of a class can be defined as private, protected or public depending on

the level of access that other objects will have to the objects of the class. The objects

of a class are also called instances and they can be different based on the values of

their attributes.

A class can also define methods that provide functionality to the object that invokes

them. The objects can invoke other objects’ methods through message passing.

Polymorphism allows different descendant classes of one class to respond to the

same message with their individual way. Thus (referring to the example of Figure 7) a

33

Vehicle can receive a message to move but this method can be implemented in a

different way by a Helicopter and a Jet.

A class diagram can be used for modeling classes and for defining relationships

between the classes. Statecharts (Harel and Naamad, 1996) can be used for defining

a class behavior when it depends on the sequence by which its methods are invoked.

Other types of diagrams are also used by UML such as sequence diagrams (for

defining scenarios of messages exchanging between objects) and activity diagrams

(showing workflows that can involve one or more objects) - in many ways UML

activity diagrams are the object-oriented equivalent of data flow diagrams (Ambler,

2004).

UML also defines models for the analysis phase. Such are the use case diagrams,

which model the functionality provided by the system showing the involved actors,

their goals represented as use cases, and any dependencies among those use cases,

using the include or extend association types. The first suggests that a use case

includes the functionality of the included one. The second suggests that a use case

extends (somehow modifies) the functionality of another use case.

2.1.2.2 Software Processes

The Spiral model

In the late 80s, the development process connected the last phase of the waterfall

model to the first and embraced new ideas such as prototyping and simulation

denoting that software systems were to be developed gradually. Thus, the spiral

development model emerged (Boehm, 1988). The spiral model, depicted in Figure 8,

proposes software development in successive iterations of four phases. After each

iteration, more detail has been added to the system under development, thus

coming closer to the final result.

Figure 8. The spiral model.

34

A typical cycle of the spiral includes four steps (phases):

1. Identify the objectives related to the next implementation phase (e.g.

increase performance, add functionality, etc), the alternative means of

implementation (e.g. competing technologies) and the constraints (e.g. in

cost)

2. Evaluate the alternatives relative to the objectives and constraints and

compute the risk related to each one of them

3. Choose, develop and test the best alternative

4. Evaluate the outcome of the previous phase and plan the next cycle of

development

At the end of each cycle the progress of the project is reviewed and the decision

makers decide whether they should continue supporting this project or not (in the

case that this is not the last iteration). If they decide to continue a new cycle begins

with new goals and constraints.

The spiral model can accommodate most of the previously proposed development

models as special cases. For example, in the case of system development using only

one, carefully planned, iteration the spiral model can resemble the waterfall model.

The Rational Unified Process

The Rational Unified Process (Kruchten, 2000) is a software development process

using UML. It is iterative and its phases can include more than one iterations. In

Figure 9 the reader can see the different phases of RUP (in the horizontal axis that

also functions as the time axis) and the amount of work required in the different

disciplines that are related to a software development project (shown on the vertical

axis). The surface of the bar related to each discipline defines the amount of work

needed and at the points of time where the bar is higher that is when most of the

resources related with the discipline are spent.

RUP defines a set of artifacts, activities and roles related to each discipline and to

each phase. The four phases have the following goals (Hirsch, 2002):

1. Inception: Define the project objectives

2. Elaboration: Define system architecture and plan the next phases

3. Construction: System implementation

4. Transition: Beta-test and release the system

Like in the spiral model each iteration ends with a version of the system. The results

of the iteration are assessed and the goals for the next one are set.

The new concepts used in RUP with relation to previous processes is the

identification of business modeling, which is about describing the business processes

and the internal structure of a business in order to better understand it and better

35

define the software requirements. The environment discipline is about adapting RUP

to the needs of a specific project.

Figure 9. The Rational Unified Process (Hirsch, 2002).

2.1.3 Statecharts

Statecharts (Harel and Naamad, 1996) are used for modeling systems. They are

based on an activity-chart that is a hierarchical data-flow diagram, where the

functional capabilities of the system are captured by activities and the data elements

and signals that can flow between them. The behavioral aspects of these activities

(what activity, when and under what conditions it will be active) are specified in

statecharts.

There are three types of states in a statechart, i.e. OR-states, AND-states, and basic

states. OR-states have substates that are related to each other by “exclusive-or”, and

AND-states have orthogonal components that are related by “and” (execute in

parallel). Basic states are those at the bottom of the state hierarchy, i.e., those that

have no substates. The state at the highest level, i.e., the one with no parent state, is

called the root. The state hierarchy and the different types of states are

demonstrated in Figure 10. States S, B, C, D are OR-states, state A is an AND-state

and states B1, B2, C1, C2, D1, D2, E are basic states. In this case, the root state has

state S as a substate. The active configuration (AC) is a maximal set of states that the

system can be in simultaneously. Any active configuration includes the root state,

36

exactly one substate of each OR-state and all substates for each AND-state

contained. For example, the sets {root, S, A, B, C, D, B1, C1, D1}, {root, S, A, B, C, D,

B2, C2, D1} and {root, S, E} are valid active configurations of the statechart depicted

in Figure 10.

Figure 10. The hierarchy of states in a statechart (Harel and Kugler, 2004).

Each transition from one state (source) to another (target) is labeled by an

expression, whose general syntax is e[c]/a, where e is the event that triggers the

transition; c is a condition that must be true in order for the transition to be taken

when e occurs; and a is an action that takes place when the transition is taken. All

elements of the transition expression are optional.

Moreover, there are compound transitions (CT). These transitions can have more

than one source or target states. There are two kinds of CTs, AND-connectors and OR

connectors. AND connectors are of two types, joint transitions (more than one

sources, see Figure 11) and fork transitions (more than one targets, see Figure 12).

The most commonly used OR-connector is the condition transition (see Figure 13).

Figure 14 demonstrates the fact that only full CTs can cause a state transition. If t1,

t2 and t3 are ready to execute they form an initial CT. However, this initial CT needs

a continuation CT that includes default connectors. Thus, joined by the default

connectors t4 and t5 the initial CT becomes the full CT that can be executed {t1, t2,

t3, t4, t5}, since a transition must lead to a valid active configuration.

The scope of a transition is the lowest level OR-state that is a common ancestor of

both the source and target states. When a transition occurs all states in its scope are

exited and the target states are entered.

Multiple concurrently active statecharts are considered to be orthogonal

components at the highest level of a single statechart. If one of the statecharts

37

becomes non-active (e.g. when the activity it controls is stopped) the other charts

continue to be active and that statechart enters an idle state until it is restarted.

Figure 11. A joint transition. The grey states are those exited when the transition is

taken (Harel and Naamad, 1996).

Figure 12. A fork transition. The grey state is the one exited when the transition is

taken (Harel and Naamad, 1996). All t1, t2 and t3 must be executed.

Figure 13. A condition transition. The grey state is the one exited when the

transition is taken (Harel and Naamad, 1996). t1 and t2 or t1 and t3 will be

executed.

Statecharts were used for modeling solutions using procedural languages (e.g. C) in

STATEMATE (Harel and Naamad, 1996) and VisualSTATE (Wasowski, 2005). In their

work, Harel and Kugler (2004) proposed the semantics for modeling object oriented

systems using the statecharts language in the Rhapsody tool. The main difference

with the previous work is in the execution semantics allowing for multi-threading

and message passing (synchronous and asynchronous) between objects. They also

introduced the possibility to add a special timeout event that could trigger

transitions. They define different statecharts for each class to be developed.

38

However, each instance of the class (i.e. object) can be in a different active

configuration in runtime. Each class defines the set of events that it can receive.

Figure 14. Demonstrate how only full CTs reach a next state (Harel and Naamad,

1996).

2.1.4 Modern Approaches to Software Engineering

2.1.4.1 Agile processes

The latest software engineering techniques are extreme programming and agile

processes that emphasize on the facts that the client should be involved in all the

software development phases and that huge systems needed huge models that were

very costly to develop and maintain in an organization.

The agile development methodologies appeared in the start of the 21
st

 century

declaring a manifesto with 13 principles (Fowler and Highsmith, 2001). These

principles reflected the modern needs of software development, i.e. the need for

addressing continuously changing requirements, continuous evaluation, the need for

motivated individuals (who need to exploit new technologies as they appear) and,

finally, the need for less bureaucracy related to the extensive production of models

that few people (only the developers) can read.

The need for the agile methods has best been described by Boehn (2002):

“Plan-driven methods work best when developers can determine the requirements in

advance—including via prototyping—and when the requirements remain relatively

stable, with change rates on the order of one percent per month.”

Plan-driven methods are those that begin with the solicitation and documentation of

a set of requirements that is as complete as possible (Pikkarainen, 2008).

39

Many different agile approaches such as XP (Beck, 2000), Scrum (Schwaber and

Beedle, 2002), Crystal (Cockburn and Highsmith, 2001), and others (see Pikkarainen,

2008, for a complete list) show that agile processes are a real industry trend. Other

researchers, such as Hirsch (2002) claim that they can use an existing process, i.e.

RUP, for agile development just by narrowing the artifacts usage (in his paper he

identifies 10 to 12 needed out of more than 80 RUP artifacts). He also describes

successful projects that were developed by four persons while RUP identifies 40

roles participating in the software development process. Hirsch used these roles in

order to identify the competencies needed for achieving an activity and use them as

a checklist for his personnel in order to assign responsibilities.

2.1.4.2 Modular Programming

In computing, a module is a software entity that groups a set of (typically cohesive)

subprograms and data structures. Modularization means that functionality is

packaged and divided into small units (Meyer, 1997). Modules promote

encapsulation (i.e. information hiding) through a separation between the interface

and the implementation. Modules can also be seen as computational elements that

other modules can use (Braubach et al., 2005, Ghezzi et al., 2002). Modules hide

their internal information and they may change their implementation without

affecting other modules. They are treated as black boxes when introduced in an

information system. Szyperski (1997) defines the term component:

“A software component is a binary unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can be

deployed independently and is subject to composition by third parties.”

Especially in large, complicated programs, modularity is a desirable property. Even in

Procedural Programming, modularity is proposed to be implemented using

procedures that have strictly defined channels for input and output. Inputs are

usually specified syntactically in the form of arguments and the outputs delivered as

return values. Scoping is another technique that helps keep procedures strongly

modular. It prevents the procedure from accessing the variables of other procedures

(and vice-versa), including previous instances of itself, without explicit authorization.

This helps prevent confusion between variables with the same name being used in

different places, and prevents procedures from stepping on each other's feet.

Because of the ability to specify a simple interface, to be self-contained, and to be

reused, procedures are a convenient vehicle for making pieces of code written by

different people or different groups.

Sophisticated forms of modularity became possible with object-oriented

programming. Instead of dealing with procedures, inputs, and outputs, object-

oriented programs pass around objects. Computation is accomplished by asking an

object to execute one of its internal procedures (or one it has inherited), possibly

drawing on some of its internal state. Indeed, the “module” abstraction is considered

as one of the main conceptual advantages of object orientation (Booch, 1994).

40

2.1.4.3 Service-oriented Architecture (SoA)

This paragraph is not following the previous one without a reason as according to

Cervantes and Hall (2004) service orientation uses the idea of assembling a system

from modular building blocks, with the difference that these building blocks are

services. The difference between services and components is that the first are

contractually defined in a service description that contains syntactic, semantic and

behavioral information. Components, on the other hand need to describe more than

that, actually how they would be integrated in a computer program. Thus, the idea

of services is that not only they do not need to be integrated physically in a new

program or deployed with a new system, but they may have to be searched for and

executed on run time, that is there may have been no knowledge about them during

the time of system (or new services) development.

Bennett et al. (2000) argue that in the future, software will be delivered as a service

within the framework of an open marketplace. In this sense SoA can be considered

as a marketplace, where a service is an individual shop/trader in the market.

2.1.4.4 Model-driven Engineering

MDE (Beydeda et al., 2005) is the systematic use of models as primary engineering

artifacts throughout the engineering lifecycle. It is compatible with the recently

emerging Model Driven Architecture (MDA) paradigm (see Kleppe et al., 2003).

MDA’s strong point is that it strives for portability, interoperability and reusability,

three non-functional requirements that are deemed as very important for modern

systems design. MDA defines three models:

• A computation independent model (CIM) is a view of a system that does not

show details of the structure of systems. It uses a vocabulary that is familiar

to the practitioners of the domain in question as it is used for system

specification.

• A platform independent model (PIM) is a view of a system that on one hand

provides a specific technical specification of the system, but on the other

hand exhibits a specified degree of platform independence so as to be

suitable for use with a number of different platforms. The system is described

in platform independent format at the end of the design phase.

• A platform specific model (PSM) is a view of a system combining the

specifications in the PIM with the details that specify how that system uses a

particular type of platform.

Model driven engineering relies heavily in model transformation (Sendall and

Kozaczynski, 2003). Model transformation is the process of transforming a model to

another model. The requirements for achieving the transformation are the existence

of metamodels of the models in question and a transformation language in which to

write the rules for transforming the elements of one metamodel to those of another

metamodel. Meta is a prefix originating from the Greek word “μετά” meaning

“after”, which is used in epistemology to mean “about”.

41

In the software engineering domain a model is an abstraction of a software system

(or part of it) and a metamodel is another abstraction, defining the properties of the

model itself. Thus, like a computer program conforms to the grammar of the

programming language in which it is written a model conforms to its metamodel (or

its reference model). However, even a metamodel is itself a model. In the context of

model engineering there is yet another level of abstraction, the metametamodel,

which is defined as a model that conforms to itself (Jouault and Bézivin, 2006). We

adopt the following three definitions from the same work:

Definition 2.1. A metametamodel is a model that is its own reference model (i.e. it

conforms to itself).

Definition 2.2. A metamodel is a model such that its reference model is a

metametamodel.

Definition 2.3. A terminal model is a model such that its reference model is a

metamodel.

We call these levels: M1, M2 and M3. M1 consists of all models that are not

metamodels. M2 consists of all metamodels that are not the metametamodel. M3

consists of a unique metametamodel for each given technical space. Figure 15(A)

shows how to adapt the definition of model to this three-level modeling stack. Figure

15(B) shows the associations between the three level models according to the above

definitions. Throughout this thesis, the word model will usually refer to a terminal

model.

Figure 15. Metamodeling stack representation (A) with model definition (B).

The structure for models defined in this section is compatible with the OMG view as

illustrated in the MDA guide (see the Object and Reference Model Subcommittee,

2005). An example of this approach is the EBNF technical space: programs (M1)

adhere to grammars (M2), which adhere to the grammar of EBNF (M3).

42

After having defined the models of models (or metamodels) it is possible to define

transformations of a model to another model. The Object Management Group

issued a Request For Proposals (RFP) in 2002 titled Query/Views/Transformations

(QVT) aiming to define a language for defining model transformations. The collective

response for this CFP is referred to as QVT (Object Management Group, 2005). In the

same time, Jouault and Kurtev (2006b) proposed the ATLAS transformation language

(ATL) for model transformation adhering to the same requirements as QVT.

The overall scheme of the model transformation process followed by both ATL and

QVT is presented in Figure 16. On the top there is a common metametamodel

(MMM) to which conform two metamodels (MMa and MMb). The goal of the model

transformation process or model to model process (abbreviated as M2M) is to take a

model Ma, which conforms to MMa, as input (or source model) and produce the Mb,

which conforms to MMb as output (or target model).

Besides the source and target models the process executes a transformation

program (let it be called Tab). The Tab describes the procedure for transforming a

model that conforms to MMa to a model that conforms to MMb. The transformation

program itself is a model that conforms to a metamodel (MMt), which in turn

conforms to the metametamodel (MMM). Thus, like in the case of EBNF, MMt

defines the abstract syntax of the transformation language. Both QVT and ATL define

their abstract syntaxes through such a metamodel.

Figure 16. The general scheme of model transformation

43

2.2 Agent Oriented Software Engineering

Agent Oriented Software Engineering (AOSE) emerged after the autonomous agents

and multi-agent systems was established as a research field of the computer

science/artificial intelligence discipline. The first workshop with this name took place

in 2001 (Ciancarini and Wooldridge, 2001), although the term had already appeared

in earlier works, e.g. in Jennings (1999).

Agent-oriented development is viewed as a next step in software engineering

evolution. Agents are the descendants of objects. The new ideas incorporated in the

agent concept that characterize the notion of agency (Wooldridge and Jennings,

1995; Weiss, 2003) are also their main differences with objects (Odell, 2002):

• Autonomy. Agents can operate without the direct intervention of humans or

other entities, and can have some kind of control over their actions, internal

state and resource consumption

• Social ability. Agents use a communication language to interact with other

agents (and possibly humans). They have some kind of control over their

acquaintances and can choose their collaborators for problem solving

• Reactivity. Agents perceive their environment and respond in a timely fashion

to changes that occur in it according to their goals

• Pro-activeness. Agents are able to exhibit goal-directed behaviour by taking

the initiative, be purposeful, and not simply act in response to the

environment changes.

Other characteristics of agents are adaptability (the agent can adapt to changes in its

environment) and persistence (an agent has a lengthy persistence, unlike objects

that are instantiated to do something and then are sent to the garbage collector).

Agents originated from the distributed problem solving or distributed artificial

intelligence discipline. This discipline argued that it is more efficient to create

specialized problem solvers (agents) who can, through interaction, provide solutions

to more complex problems than the ones that one of them can solve by itself

(O’Hare and Jennings, 1996). Systems that are composed of interacting agents are

also termed as multi-agent systems (MAS).

The new characteristics and concepts of multi-agent systems and autonomous

agents needed to be integrated in a software engineering methodology. AOSE came

to cover this need. Until today, a number of methodologies have been proposed

each supporting different styles of agent programming and different agent

architectures. Thus, it emerged, the need for combining method fragments from

different methodologies. Method fragments are reusable methodological parts that

can be used by engineers in order to produce a new design process for a specific

situation (see Cossentino et al., 2007, for details). This allows a development team to

44

come up with a hybrid methodology that will support the needs of specific

programming and modeling competencies.

In what follows the most important methodologies in the literature, in the sense that

they introduce new ideas and methods for modeling a MAS, are presented. The

methodologies are viewed from the perspective of the papers and books that

proposed them, but also from the perspective of the writer and other works that

compare AOSE methodologies, such as those of Henderson-Sellers and Giorgini

(2005) and Dam and Winikoff (2003). Moreover, important works in the area of

modeling inter-agent protocols are also presented. One of the major issues in Agent

Oriented Software Engineering (AOSE) is the modeling, representation and

implementation of agent interaction protocols. A wide range of methodologies for

AOSE either adopt one existing model (most usually AUML), while others either

employ UML models (like activity diagrams), or do not address the issue and just

define messages that the agents send to each other (allowing the modeling of simple

protocols).

2.2.1 Multi-agent Systems Engineering (MaSE)

MaSE (Deloach et al., 2001) defines a process for building MAS with two phases, the

analysis phase and the design phase. During the analysis phase three activities take

place: The capturing goals activity is about defining the system goals and also

organizing them in a goal hierarchy. The next activity is about applying use cases

which builds a set of sequence diagrams corresponding to system usage scenarios.

The third activity is concerned with refining roles by defining the role model that

describes the roles in the system, their goals and the tasks they need to complete in

order to achieve them and communication links between the roles. During this

activity each task is defined as a finite state machine in the concurrent task model.

In the design phase, the first activity is about creating agent classes. In a new type of

diagram, the agent class diagram, each agent type is defined as a class whose

attributes are the roles that it aggregates. The agent class connects to other classes

indicating the possible interactions or conversations. The latter are refined in the

next activity of this phase, i.e. constructing conversations. Towards this end, another

type of diagram, i.e. the communication class diagram, which is also in the form of a

finite state machine, is employed. The third activity is about assembling the agent

classes, a step which aligns the previous models to an implementation platform.

Finally, in the forth activity of this phase the system components deployment is

decided outputting a relevant diagram.

MaSE is supported by agentTool (DeLoach and Wood, 2000), a tool allowing for the

usage of the analysis and design artifacts including an automated transformation

process for the analysis models to design models.

All in all, MaSE defines a system goal oriented MAS development methodology. The

authors define for the first time inter and intra-agent interactions that must be

integrated. However, in their models they fail to provide a modeling technique for

45

analyzing the systems and allowing for model transformation between the analysis

and design phases. Their concurrent tasks model derives from the goal hierarchy

tree and from sequence diagrams in a way that cannot be automated. MaSE agents

are related to system goals. This restricts the definition of autonomous agents.

O-MaSE (Deloach, 2005) introduced the organization concept in MaSE aiming to

overcome MaSE’s limitations towards inter-agent protocol modeling and situation of

the MAS in the environment, introducing the use of AUML (see §2.2.3) in MaSE.

2.2.2 The Gaia Methodology

The Gaia methodology (Wooldridge et al., 2000; Zambonelli et al. 2003) is an

attempt to define a general methodology that it is specifically tailored to the analysis

and design of MAS. Gaia emphasizes the need for new abstractions in order to

model agent-based systems and supports both the levels of the individual agent

structure and the agent society in the MAS development process. Gaia adds the

notion of situatedness to the agent concept. According to this notion, the agents

perform their actions while situated in a particular environment. The latter can be a

computational environment (e.g. a website) or a physical one (a room) and the agent

can sense and act in the environment.

MAS, according to Gaia, are viewed as being composed of a number of autonomous

interactive agents that live in an organized society in which each agent plays one or

more specific roles. Gaia defines the structure of a MAS in terms of a role model. The

model identifies the roles that agents have to play within the MAS and the

interaction protocols between the different roles. The Gaia methodology is a three

phase process and at each phase the modeling of the MAS is further refined. These

phases are the analysis phase, the architectural design phase and, finally, the

detailed design phase.

The objective of the Gaia analysis phase is the identification of the roles and the

modeling of interactions between the roles found. Roles consist of four attributes:

responsibilities, permissions, activities and protocols. Responsibilities are the key

attribute related to a role since they determine the functionality. Responsibilities are

of two types: liveness properties – the role has to add something good to the system,

and safety properties – the role must prevent something bad from happening to the

system. Liveness describes the tasks that an agent must fulfill given certain

environmental conditions and safety ensures that an acceptable state of affairs is

maintained during the execution cycle. In order to realize responsibilities, a role has

a set of permissions. Permissions represent what the role is allowed to do and, in

particular, which information resources it is allowed to access. The activities are

tasks that an agent performs without interacting with other agents. Finally, protocols

are the specific patterns of interaction, e.g. a seller role can support different auction

protocols. Gaia has operators and templates for representing roles and their

attributes and also it has schemas that can be used for the representation of

interactions between the various roles in a system.

46

The operators that can be used for liveness expressions-formulas along with their

interpretations are presented in Table 1. Note that activities are written underlined

in liveness formulas.

Table 1. Gaia Operators for Liveness Formulas

Operator Interpretation

x . y x followed by y

x | y x or y occurs

x* x occurs 0 or more times

x+ x occurs 1 or more times

x
ω

 x occurs infinitely often

[x] x is optional

x || y x and y interleaved

The reader can see in Figure 17 a Gaia roles model for a role named “TravelGuide”.

This role employs seven protocols and six activities (activities are underlined in the

Protocols and Activities field). In its liveness formula it describes the order that these

protocols and activities will be executed by this role. In Figure 18 the “RequestMap”

protocol is presented as a Gaia interactions model. This model shows the interacting

roles, in this case a PersonalAssistant (the initiator) and a TravelGuide (the partner

role) and the conditions under which it is initiated by the initiating role (on the

bottom left side of the figure). On the bottom right side of the figure the outcome of

the interaction is described.

Role: TravelGuide (TG)
Description: It wraps a Geographical Information System (GIS). It can query the GIS for
routes, from one point to another.
Protocols and Activities: RegisterDF, QueryGIS, InvokeGetRouteGISFunction, InvokeGet-
NearbyPOIsGISFunction, InvokeGetMapGISFunction, InvokeGetPOIsInfoGISFunction,
RequestRoutes, RespondRoutes, RequestMap, RespondMap, RequestNearbyPOIs,
RespondNearbyPOIs, RequestPOIsInfo, RespondPOIsInfo
Permissions: read GIS.
Responsibilities:

Liveness:
TRAVELGUIDE = RegisterDF. ([FindRoutes] || [ProximitySearch] ||

[CreateMap] || [GetPOIInfo])
 ω

FINDROUTES = RequestRoutes. InvokeGetRouteGISFunction.
 RespondRoutes

PROXIMITYSEARCH = RequestNearbyPOIs.
InvokeGetNearbyPOIsGISFunction. RespondNearbyPOIs

CREATEMAP = RequestMap. InvokeGetMapGISFunction. RespondMap
GETPOISINFO = RequestPOIsInfo. InvokeGetPOIsInfoGISFunction.

 RespondPOIsInfo
Safety: A successful connection with the GIS is established.

Figure 17. The Gaia roles model.

47

RequestMap

PersonalAssistant TravelGuide

Ask for a map
 The Map request includes the coordinates defining a

rectangle along with the desired displayed POIs.

Figure 18. The Gaia interactions model

Furthermore, during the analysis phase, the possible interactions with a role’s

external environment are identified and documented in the environmental model.

There, the possible actions that the role can perform to the environment along with

the perceptions that it can receive are identified. It is a computational

representation of the environment in which the MAS will be situated.

Finally, the rules that the organization should respect and enforce in its global

behavior are defined. These rules express constraints on the execution activities of

roles and protocols and are of primary importance in promoting efficiency in design

and in identifying how the developing MAS can support openness and self-interested

behavior.

In a next phase, namely the architectural design phase, the roles and interactions

models are refined and finalized by the definition of the system’s organizational

structure in terms of its topology and control regime. This activity involves

considering the organizational efficiency, the real-world organization in which the

MAS is situated, and the need to enforce the organizational rules.

Lastly, the Gaia detailed design phase, maps roles into agent types and specifies the

right number of agent instances for each type. Thus, an agent type is an aggregation

of one or more agent roles. A sample Gaia Agent model is shown in Figure 19, where

the agent types “EventsHandler” and “PersonalAssistant” are defined; each

integrating the like-named role and the “SocialType” role. However, Gaia does not

show how this integration is done in the implementation level.

Figure 19. The Gaia Agent model

48

Moreover, during this phase, the services model, the services that a role fulfils in one

or several agents, is described. A service can be viewed as a function of the agent

and can be derived from the list of protocols, activities, responsibilities and the

liveness properties of a role.

The FIPA Methodology Technical Committee (Garro et al, 2004) defined the process

of analyzing and designing a MAS using Gaia by employing the Software Process

Engineering Metamodel (SPEM), a standard developed by the Object Management

Group (2002).

Gaia, however, has specific limitations related to its use as a complete software

development methodology. It does not commit to specific techniques for modeling,

nor does it provide guidelines for code generation. The “services model” of Gaia

does not apply to modern agents who provide services through agent interaction

protocols. Furthermore, the protocol model of Gaia does not provide the semantics

to define complex protocols and the Gaia2JADE process additions remedied this

situation only for simple protocols. Moreover, Gaia does not explicitly deal with the

requirements analysis phase; however, in Zambonelli et al. (2003) the authors

propose that it could be integrated with goal-oriented approaches.

The Gaia2JADE process

The Gaia2JADE process (Moraitis and Spanoudakis, 2006), which was developed as a

preliminary result of this thesis, is concerned with the way to implement a multi-

agent system with the JADE framework (Bellifemine et al., 2001) using the Gaia

methodology for analysis and design purposes. It is not presented here in detail as

ASEME incorporates all its advantages. A preliminary version of the Gaia2JADE

process was presented by Moraitis et al. (2003a). This process is particularly

dedicated to the conversion of Gaia models to JADE code. It is described using the

Software Process Engineering Metamodel (SPEM) and extends the one proposed by

FIPA for describing the Gaia modeling process (Garro et al, 2004). Thus, it proposes

to potential MAS developers a process that covers the full software development

lifecycle. The Gaia2JADE process has been used for implementing real world multi-

agent systems conceived for providing e-services to mobile users (Moraitis et al.,

2003b; Moraitis et al., 2005).

This process used the Gaia models and provided a roadmap for transforming Gaia

liveness formulas to Finite State Machine diagrams and then provided some code

generation for JADE implementation. It also proposed some changes to Gaia such as

the incorporation of a functionality table, where the activities were refined to

algorithms, and a way to describe simple protocols. For example, in Figure 20, the

RequestMap interaction is connected to a RespondMap interaction showing that it

must follow the first in order to define the CreateMap protocol.

However, the aim of the authors was not to promote the use of Gaia methodology

against other existing methodologies, but to show how one who decided for his own

reasons, to use Gaia for the analysis and design phases, can use JADE for the

implementation phase. This extension allowed for easily conceiving and

implementing relatively simple agents. Finally, its models cannot be used for

49

simulation-optimization. The reader is directed to Moraitis and Spanoudakis (2006)

for the detailed Gaia2JADE process presentation.

CreateMap

RequestMap

PersonalAssistant TravelGuide

Ask for a map

 The Map request includes the coordinates
defining a rectangle along with the desired
displayed POIs.

RespondMap

TravelGuide PersonalAssistant

Queries the GIS for a map
 The map response contains a URL link to an

image.

Figure 20. A Gaia extended interactions model

2.2.3 Agent UML

Agent UML (AUML) started as a way to represent agent interactions by extending

UML (Odell et al., 2000). It evolved to a complete method for building agent systems

(Odell et al., 2001) and, later, it became compatible with UML 2.0 (Bauer and Odell,

2005). This is why AUML is presented in this section even though several researchers

did not consider it as a methodology but more like an infrastructure or tool (see

Bergenti et al., 2004).

AUML’s main contribution is the protocol model that allows to design inter-agent

protocols and which was adopted by FIPA. FIPA proposed several extensions to UML

1.x version (i.e. roles, decision points, concurrency, modularity and multi-casting),

some of which were implemented in the later 2.0 version (loops, alternatives,

parallelism). In Figure 21, a sample AUML protocol model is presented for modeling

the contract net protocol (Smith and Davis, 1981) in the UML 1.x with the extensions

proposed by (Odell et al., 2001) and in UML 2.0.

Figure 21 shows the semantics for modeling a decision point in the sequence

resulting to one or more alternative possibilities. For example, in the contract net

protocol (CNP) an initiator sends a call for proposals (cfp) message to all participants.

Each participant can respond either with a refuse or with a propose message. The

receipt of each of these messages by the initiator initiates a different activation box.

Activation boxes are the opaque white rectangles drawn on top of the lifelines that

represent each role and they represent that processes are being performed by that

role in response to the received message. For example, the lifeline of the initiator

role in Figure 21(a) has six activation boxes, all but the first initialized by a received

message. However, using this notation can make a protocol definition very complex

50

especially in the case that multiple rounds of proposals take place or in the case that

many different roles are involved.

Figure 21. UML 1.x agent extensions and UML 2.0 Sequence Diagrams in AUML

(Bauer and Odell, 2005)

According to AUML, modeling MAS can be a top-down decomposition process

starting from the roles and protocols. Thus, in Figure 22, the reader can see how an

activation box in a protocol model can be further elaborated using other AUML

protocol models or standard UML diagrams such as activity diagrams. However,

AUML does not describe how these models can relate to each other or to

implementation. Neither does it describe how to integrate different roles in a single

agent.

AUML allows the actors in the UML use case diagram to be included in the system

box representing agents. Moreover, they modify the association type between

actors and use cases to represent the number of messages exchanged and their

direction (from the sender towards the receiver). The authors demonstrate this

AUML use case diagram in Figure 23 showing the use cases between an Order

Handler and a Customer.

AUML has been proposed as a language for modeling multi-agent systems. However,

it does not come along with a methodology or a complete process for software

development. Many methodologies, i.e. Tropos, Mas-CommonKADS, PASSI, ADELFE

and MESSAGE (Henderson-Sellers and Giorgini, 2005), use some of its models, mainly

51

the agent interaction protocol (AIP) model. The latter has been defined as an

extension to the UML sequence diagram.

Figure 22. AUML Interaction protocols can be specified in more detail (i.e., leveled)

using a combination of diagrams (Odell et al., 2001).

Figure 23. An AUML Use Case Diagram for an Order Processing application (Bauer

and Odell, 2005).

However, AIP has specific shortcomings when it comes to defining complex protocols

(also see Paurobally et al., 2004). The most important ones are the following:

• the decision points of the participants are not obvious. Only message

exchanging is modeled

• there are no semantics for expressing time-dependent concepts like timeouts

52

• it does not allow the designer to easily model a group that participates in a

protocol, but whose members can choose individual actions. In the latter

case the designer must include all possible group members in the diagram

The AUML layered approach to protocols provides a mechanism for specifying the

program that implements a protocol but does not specify how it is integrated with

other such programs (other protocols), or how to integrate it with the other agent

capabilities.

2.2.4 Vowels

The Vowels methodology and the Volcano respective multi-agent platform (Ricordel

and Demazeau, 2002) is one of the first approaches to engineering multi-agent

systems. The main idea of the vowels methodology is that a MAS is consisted of four

major component types (each corresponding to a Latin vowel), a) the Agent, b) the

Environment, c) Interactions, and d) Organization. It is a methodology that

introduced these four different aspects in MAS development for the first time in a

modular architecture.

Different design techniques can used to analyze and design each component type.

Agents can range from simple automata to complex knowledge-based systems. The

environment is usually a model of the real world on which physical agents act (e.g.

robots). Interactions can be either message-based or blackboard-based or even

based to effects on the environment (an aspect not really addressed even by later

methodologies). Organizations can be static or dynamic ones following hierarchical

or market-like structures.

The component types are also called bricks and are interconnected through another

kind of brick, the wrapper. The wrappers are used in order to resolve

incompatibilities between models. They add flexibility to the MAS model, however

they impose a constraint to the developer to define a wrapper for each brick to

which he wants to connect an existing one. The methodology aims to the creation of

a large number of bricks and wrappers thus facilitating the development of future

MAS. That is why the methodology urges developers to define their new bricks to be

as generic as possible. Moreover, this approach also creates a big overhead for the

engineer that wants to replace an existing brick with a new one having to implement

new wrappers for all the bricks connected to it (see Briot et al., 2006).

The different phases of the vowels methodology are presented in Figure 24. The

analysis phase consists of two steps. During the first step, a domain ontology is

created for describing the information that will be used for defining the problem.

The second step is about giving a precise solution to the problem in an

implementation independent manner. In the design phase, the engineer chooses the

possible orientation of the application towards a specific vowel (brick type), then

chooses the model of each brick and the needed wrapper bricks. Then, in the

development phase, the bricks are created (programmed or chosen among existing

53

ones). Finally, during the deployment phase the MAS is deployed using a specific

language that describes what building blocks will be deployed.

Figure 24. The vowels development phases (Ricordel and Demazeau, 2002).

2.2.5 PASSI

PASSI (Burrafato and Cossentino, 2002; Cossentino, 2005) is an AOSE methodology

that aims to allow engineers experienced in UML to model and implement agent-

based systems. Thus, all the models that they define are derived from UML models.

The PASSI methodology is summarized in Figure 25 where the five phases of the

methodology along with the models related to each one of them are depicted.

In the Domain Requirements Description model the modeler identifies the system

use cases (see Figure 26). In the agent identification phase PASSI splits the traditional

UML system box (the one that includes all system use cases) to different boxes

grouping the different agents’ use cases (see the Agent Identification Diagram in

Figure 27). The six different boxes represent six different agent types and the use

case dependencies between them are labeled as «communicate».

The roles identification phase is about creating extended UML sequence diagrams.

PASSI defines that each object in the sequence diagram represents an agent’s role

with the convention that the objects are named as <role_name>:<agent_name> (see

a sample roles identification diagram in Figure 28). However, this convention does

not allow the participation of more than one instances of a role of a specific agent

54

type in a scenario (e.g. for defining a scenario where a manager agent broadcasts a

request for proposals to many, e.g. task agents).

Figure 25. The models and phases of the PASSI methodology (Cossentino, 2005).

Figure 26. The domain requirements description diagram of PASSI (Cossentino,

2005).

55

Figure 27. The agents identification diagram of PASSI (Cossentino, 2005).

Then, in the task specification phase a UML activity diagram is created for each agent

showing two swimlanes, the first (the one on the left side in Figure 29) containing

the tasks of other agents that send or receive messages to or from the tasks of the

agent in question (e.g. the Purchase Manager agent on the right side in Figure 29).

The next three models in the Agent society model extend the UML class diagram to

define an ontology (according to FIPA standards) the roles of the agents (as classes

associated with the realized protocols with arrows from the initiator to the

responder) and the protocols descriptions (usually through AUML AIP diagrams). The

FIPA defined protocols are built in allowing the developer that is satisfied by one of

them to select it.

The Agent Implementation model phase iterates between the Agent Structure

Definition and Agent Behaviour Definition models in two levels, the multi-agent and

the single agent one. They are static views (extended UML class diagrams), the Agent

Structure Definition depicting the agents with the possible association paths (in the

multi-agent structure definition) and with the tasks of an agent (in the single agent

structure definition). The same holds for the Agent Behaviour Definition, in the

multi-agent level showing the tasks of all agents in a UML activity diagram and in the

agent level only one agent’s tasks.

56

Figure 28. A PASSI Roles Identification Diagram (Cossentino, 2005)

In the code model the developer can choose among ready implementations of FIPA

protocols and previously developed code to associate with agent’s tasks, helped by

the PASSI PTK tool and a specific AgentFactory application that reads the class

diagrams of the previous level (Chella et al., 2004).

Chella et al. (2006) proposed an agile version of the PASSI methodology in which

they use tools for allowing patterns reuse and automatic production of parts of the

design documentation. In their work they allow for agile development using only half

the artifacts of the PASSI methodology.

All in all, PASSI starts immediately in use case description omitting the stakeholders

and goals identification phase. PASSI extends the UML use case diagram notation

and semantics in a way not easily apparent to a modeler that is familiar with it. Then

again, the scenarios (or AUML AIP models) are used by the engineer in order to

produce the task specification diagram without a clear transformation technique.

57

Figure 29. A PASSI Activity Diagram (Cossentino, 2005).

Figure 30. A screenshot from the AgentFactory tool (Chella et al., 2004)

58

2.2.6 Prometheus

The Prometheus methodology has been proposed by Padgham and Winikoff (2003

and 2004). It provides a method and a process for developing multi-agent systems.

Prometheus supports the development of intelligent agents linking the word

intelligence with the analysis and design of an agent as an entity with goals, beliefs,

plans and events. It uses the JACK Intelligent Agents Platform (Winikoff, 2005) for

system implementation that is also centered on the definition of these terms. It has

been conceived as a methodology that will be used by non-experts, including

undergraduate students.

Prometheus defines three phases; a) system specification, b) architectural design

and c) detailed design (see an overview of the methodology phases and work

products in Figure 31). During the first phase the environment to which the system

under development will be situated is defined along with the goals and functionality

of the overall system. The environment is defined as a series of events that can be

perceived by the system (percepts) and a series of actions that the system will be

able to execute. Then the modeler defines the system goals, the functionality

needed to achieve these goals and use case scenarios that show sequences of

interleaved actions, percepts, and exchanged messages.

Figure 31. The Prometheus phases and work products (Padgham and Winikoff,

2004).

59

The second phase (architectural design) defines three activities; firstly, the agent

types are determined by grouping functionalities. Each agent type is assigned an

agent descriptor that includes these functionalities, information about when and

how the agent is instantiated and destroyed, the data, percepts and actions related

to it and, finally, the agents that it interacts with. Then during the second activity,

the system overview diagram is created. It shows the agents types, the possible

interactions, the data handled by each agent type, the possible messages that an

agent can send, the actions and percepts of the whole system and the agents related

to each of them. The system overview diagram can be seen as a static view of the

system. In Figure 32 an example of a system overview diagram is presented along

with an explanation of the different icons used for drawing it. The agents are

connected with the different message types that they exchange. They are also

associated with percepts, data and actions.

Figure 32. Prometheus: Example of a system overview diagram (Padgham and

Winikoff, 2005)

The third activity of the architectural design phase defines the dynamic view of the

system as valid sequences of messages exchange between the different agent types.

Towards this end, the AUML agent interaction diagrams are employed. In Figure 33

the protocol descriptor template is presented. Each protocol has a name, a

description, one or more messages involved, the scenarios of the previous phase to

which it corresponds, the names of the involved agents and a notes field, where the

AIP diagrams are placed.

60

Protocol Descriptor
Name:
Description:
Included Messages: For each indicate the source and destination, e.g. request (AnAgent→
AnotherAgent)
Scenarios:
Agents:
Notes:

Figure 33. The Prometheus protocol descriptor template

The detailed design phase focuses in the agent level. Thus, the agent capabilities are

defined as the events that can be generated and received by the agent. Moreover,

other elements such as internal events, plans, and detailed data structures are

defined for each agent type and depicted in the agent overview diagram. These

elements correspond to JACK agent code. In Figure 34, the reader can see a sample

agent overview diagram for the Meeting agent. It has some similarities with the

system overview diagram, however here the agent capabilities replace the agents.

One issue that will surely draw the reader’s attention is the association between

capabilities with messages (internal messages).

Figure 34. Prometheus: Example of an agent overview diagram: Meeting agent

(Padgham and Winikoff, 2005)

In Prometheus the authors use the terms of functionality and capability. However,

they are not used as independent terms. In fact, functionalities and capabilities refer

61

to the same concept as it evolves through the development phases (i.e. the abilities

that the system needs to have in order to meet its design objectives). The support

for implementation, testing and debugging of Prometheus models is limited and it

has less focus on early requirements and analysis of business processes (Henderson-

Sellers and Giorgini, 2005).

Another limiting issue of the methodology is the fact that the protocols definition

using AIP diagrams is not used later somehow formally at the agent level. This means

that the developer has to undertake the mental task of transforming the AIP

diagrams to processes. In their book, Padgham and Winikoff (2004) propose that

process diagrams are to be developed by looking at the protocols involving the agent

in question, as well as the scenarios developed and the goals of the agent. This

contradicts the overview diagram shown in Figure 31 and is an issue that almost all

the AOSE methodologies suffer from, the lack of a systematic way to integrate

interaction protocol specifications to the agent capabilities.

2.2.7 Ingenias

Ingenias (Pavón and Gómez-Sanz, 2003) is a methodology that emerged with a

development environment allowing for agent development using the Ingenias

metamodel. Its metamodel is the richest one among AOSE methodologies containing

more than 300 concepts (the ecore1 metamodel of Ingenias can be downloaded from

http://ingenias.sourceforge.net). This feature can also be considered as

exceptionally restrictive to developers that want to use their own agent

architectures but also needing more learning time than all other methodologies in

order to begin working with it. Its process is also hard to learn and use (especially in

iterative development) as it consists of about 100 activities (Pavón et al., 2005).

It defines a whole new set of models and associates them with UML models aiming

to define the concepts relevant to agent development and ground them to UML for

helping the development phase with an object oriented language. The reader can

only take a taste of the INGENIAS diagrams (this thesis cannot go in detail to this

methodology as it would be very lengthy) in Figure 35. The agent viewpoint

describes the functionality of an agent in terms of goals, tasks and capabilities (or

roles it plays). These are captured by the following concepts:

• The Mental State includes all the information needed for the decision making

processes of an agent. This information is the agent’s goals, beliefs and facts.

• The Mental state manager (M) provides operations for creating, deleting and

modifying Mental State entities.

• The Mental state processor is responsible for deciding which task to execute

among the agent’s tasks.

1 See Chapter 5 for the definition of the ecore metametamodel.

62

INGENIAS clearly distinguishes between an agent and an application showing that

agent technology isn’t about substituting existing frameworks, for example for

building user interfaces but for adding new characteristics to computer systems.

Agents access applications through a kind of Application Programming Interface (API)

that they offer. An issue that INGENIAS leaves to the developer is whether he will

define first the tasks or goals of an agent. Maybe this is the result of the lack of a

requirements analysis phase. Moreover, Ingenias does not offer the convenience of

gradually modeling a multi-agent system by considering it at different levels of

abstraction.

Figure 35. Elements of the agent viewpoint in INGENIAS (Pavón et al., 2005).

García-Magariño et al. (2009) in their original work present an algorithm to generate

model transformations by-example. This algorithm facilitates the generation of

many-to-many transformations between arbitrary graphs of elements; dealing with

transformation languages that do not directly support graphs of elements in their

source or target models. They developed the MTGenerator tool for the application

of the algorithm to support the agent-oriented software processes of the INGENIAS

methodology, which implements the algorithm for the ATLAS transformation

language.

Their approach allows the engineer to define himself the transformations that he

wants to apply to models complying with the INGENIAS metamodel. Taking into

account the huge Ingenias metamodel and the many possible paths that the

engineer can follow, this solution on one hand gives a freedom to the engineer but

burdens him with the additional work to define the transformations himself.

63

2.2.8 Tropos

TROPOS (Bresciani et al., 2004) is a methodology whose main difference with other

methodologies is its focus in the early requirements analysis phase where the actors

and their intentions are identified in the form of goals. The latter are divided in two

categories, hard goals (related to functional properties of the actors) and soft goals

(related to non functional properties of the actors). Actor diagrams depict the actors,

their goals and dependencies on other actors for realizing a goal. Then, goal

diagrams analyze the goals of a specific actor to subgoals and plans for achieving the

goal. In the late requirements phase the models are extended adding possible

interactions between goals (helpful or conflicting goals).

Thus, a sample actor diagram is presented in Figure 36 for a media shop. The main

actors are Customer, Media Shop, Media Supplier, and Media Producer. The

Customer actor depends on the Media Shop actor to fulfill the goal “Buy Media

Items”. The Media Shop actor depends on the Customer actor for its softgoals

“Increase Market Share” and ”Happy Customers”. The Customer also depends on

Media Shop to fulfill the task “Consult Catalogue”. Likewise, there are dependencies

between the Media Shop and Media Supplier actors and between the Media

Supplier and Media Producer actors to complete the value chain.

Figure 36. Actor diagram for a Media Shop (Giorgini et al., 2005)

In the late requirements analysis the selected for implementation actor(s) plans and

goals are refined. The relevant model for the media shop and specifically its Medi@

actor is presented in Figure 37. In this model the analyst can find tasks

decomposition like in the case of “Shopping Cart” that is achieved by the subtasks

“Select Item”, “Add Item”, “Check Out” and “Get Identification Detail”. The

definition of a task that contributes to a softgoal is denoted by a an association

towards the softgoal with plus or minus signs indicating a positive or negative

influence.

The architectural design phase is a three step process that starts by including new

actors in an extended actor diagram. In the next step the capabilities of each actor

64

are identified and finally they are grouped to agent types. A suggested approach to

defining actors is the Structure-in-5, which specifies that an organization is an

aggregate of five sub-structures:

Figure 37. The late requirements analysis model for the electronic media shop

Medi@ (Giorgini et al., 2005).

65

a) the Operational Core at the bottom, which carries out the basic tasks and

procedures directly linked to the production of products and services,

b) the Strategic Apex at the top, which makes executive decisions ensuring that

the organization fulfills its mission in an effective way and defines the overall

strategy of the organization in its environment,

c) a list of managers in the middle responsible for supervising and coordinating

the activities of the Operational Core. Such are also the Technostructure (for

adapting the organization to the operational environment and standardizing

procedures) and the Support (providing services not in the business core such

as a cafeteria) that influence the operating core only indirectly.

A structure-in-5 analysis for the Medi@ is presented in Figure 38. The Decision

Maker actor corresponds to the Strategic Apex role, the Store Front to the

Operational Core role and the Back Store to the Support role (providing accessory

services such as creating a back-up for the database). Finally, the Coordinator and

Billing Processor act as managers.

Figure 38. The Medi@ architecture in Structure-in-5 (Giorgini et al., 2005)

The next phase, detailed design, is concerned with modeling the capabilities and

plans of the agents using UML activity diagrams and the agents’ interactions using

AUML interaction diagrams. Finally, in its implementation phase, Tropos provides

some heuristics and guidelines for mapping Tropos concepts to BDI concepts, which

66

can themselves be mapped to JACK constructs for implementation. Figure 39 shows

the suggested decomposition of the Store Front actor based on several existing

patterns such as the booking pattern (between the Shopping Cart and the

information broker), or the matchmaker pattern (the “Source Matchm.” locates the

appropriate source for the Info Broker).

TROPOS provides a formal language and semantics that greatly aid the requirements

analysis phase. It is a process centric design approach and the detailed design phase

of TROPOS proposes the use of AUML. Finally, Tropos has been applied for modeling

relatively simple agents, not complex ones (Henderson-Sellers and Giorgini, 2005).

An MDA-compliant work based on Tropos has been presented by Perini and Susi

(2006), where the authors define rules for transforming a Tropos plan decomposition

diagram to a UML activity diagram. They present their rules formally and show how

they can build a tool for applying these rules automatically. However, they do not

tackle the issue of transforming an AIP diagram to a plan.

Figure 39. Store Front actor decomposition with social patterns (Giorgini et al.,

2005)

Finally, even as Tropos starts by identifying stakeholders and their goals in the

requirements analysis phase, it ends up by proposing the development of a system

composed by a large number of agents not representing the original actors, but

more actors that appear during the tasks decomposition. This is better shown in the

case of the example of MEdi@ where the shopping cart (usually a data structure for

storing items selected by the user while exploring an electronic store’s web site) is

identified as an actor (to be developed as an agent). A classical software engineering

architecture would define the shopping cart as a stateful object that is instantiated

for a user’s session (see Jacyntho et al., 2002).

67

2.2.9 Modeling inter-agent protocols

This paragraph will first define what an agent communication language is and then it

will focus on the proposal of Moore on conversation policies (as it is an important

background for this work). It also discusses other approaches trying to encompass

the most popular directions and methods for modeling inter-agent protocols.

2.2.9.1 Agent Communication Language

The term Agent Communication Language (ACL) is used for describing any agent

communication language. Languages for communicative agents are intended to play

the role that natural languages play for their human counterparts (Labrou et al.,

1999). Usually, the message types of ACLs (or performatives) are understood as

speech acts. The latter are defined by the Speech Act Theory (SAT).

One of the works that firstly proposed SAT is that of Austin's (1975). A speech act is

an act that a speaker performs when making an utterance. Performatives express

the intent of an agent when it sends a message to another agent. Thus, a message

has four parts, a) the sender, b) the receiver, c) the performative and d) the message

content (what is said). For example, the performative “inform” may be interpreted

as a request that the receiving agent adds the message content to its knowledge-

base. SAT is also accepted by FIPA in defining the communicative acts of the FIPA

standard Agent Communication Language (ACL, see FIPA TC Communication, 2002b).

A message can be defined by the atom:

performative(sender, receiver, content)

2.2.9.2 Conversation Policies And The Need For Exceptions

Moore (2000) proposes an inter-agent protocol formalism based on statecharts and

the Formal Language for Business Communication (FLBC) ACL (Moore and

Kimbrough, 1995). For his work on conversation policies, Moore makes the

assumption that developers that adopt his models can understand a formal

specification and implement it in whatever way they see fit. In the FLBC, Moore

defines, for example, that the message request(sender, receiver, action) expresses

that:

a) The receiver believes that the sender wants him to do the action

b) The receiver believes that that the sender wants the receiver to want to do

the action (Moore, 1999)

However, some agents might not have the ability (or the need) to model their (or

other agents) beliefs and would respond in directly doing the action. According to

the work of Moore, the conversation policies are implementation independent. A

conversation policy (CP) defines:

a) how one or more conversation partners respond to messages they receive,

68

b) what messages a partner expects in response to a message it sends, and,

c) the rules for choosing among competing courses of action.

A CP is well-formed if it does not contain contradictory directions for what a partner

should do. Moore allows a message to interrupt a current conversation when it is

neither an expected, nor the standard reply to the previous message. Moore’s

conversation policies allow for exceptions when a conversation is interrupted by

assuming that an agent has stored all allowed CPs in a kind of repository where he

can browse a new policy to handle the exception in the form of a subdialog to the

original one. When this subdialog terminates the original one can resume.

Moore introduces the idea of modeling the activities of the participants in a

conversation as orthogonal components of a statechart. In Figure 40 a conversation

between a broker agent (represented by the AND-state “asked if appropriate broker

for a product”) and a provider agent (represented by the AND-state “advertise with

broker”). Note that the transition expressions contain the actions of sending and

receiving a message.

Figure 40. A statechart that describes the activities of both parties in a

conversation (Moore, 2000).

In Figure 41, the provider is assumed to be executing the “inform broker about

product we sell” conversation when an inform message arrives. This message is not

expected, but has the same conversation id with the currently executing

conversation. Conversations are assumed to have a unique identification string (the

conversation id) so that the receiver can identify the relevant conversation to this

message (an agent may be concurrently involved to many conversations). In Figure

41 this id is the “conversation823”. This inform message is tested against available

69

CPs. The CP “standard effects for inform” is found in the agent’s repository that

starts with an inform message. This CP is activated and when it is finished the

previous CP resumes.

Figure 41. A statechart representation of a conversation policy with an unplanned-

for subdialog (Moore, 2000).

2.2.9.3 Other Works

Paurobally et al. (2004) propose that an inter-agent protocol should be:

a) correct (having no contradictory states),

b) unambiguous (defining what each agent should do),

c) complete (defining all possible outcomes) and,

d) verifiable (its properties can be verified).

Recognizing the fact that a protocol should have both a graphical and formal

representation they combine the language of statecharts and a language based on

Propositional Dynamic Logic (PDL), the Agent Negotiation Meta-Language (ANML).

Propositional dynamic logic, or PDL, was derived from dynamic logic in 1977 by

Michael Fischer and Richard Ladner. PDL blends the ideas behind propositional logic

and dynamic logic by adding actions while omitting data; hence the terms of PDL are

actions and propositions.

ANML models agent interaction protocols in the form of multi-modal theories,

leading to an abstract theory of an interaction in a group. ANML extends PDL

allowing the definition of agent groups, sets of agents, sets of states, ANML formulas

70

and complex processes. The formulas of ANML model processes and states, for

example, the formula [a]A means that A holds after executing process a. Paurobally

et al. (2004) examined all the possibilities for graphically modeling an inter-agent

protocol and recognized several advantages and disadvantages to each one of them.

The most important ones are presented below with the plus sign indicating an

advantage and the minus sign indicating a disadvantage:

• AUML (see §2.2.3)

+ The exchange of messages is shown explicitly

+ The process of the interaction over time is explicitly presented

through the timelines

- Poses certain difficulties in multi-parties protocols

- There is no way to express time dependent actions such as timeouts

• Petri Nets (see e.g. Mazouzi et al., 2002)

+ Allow concurrency and synchronization

+ They are supported by tools that detect conflicts

- Very hard to read and conceive

- Very difficult to merge, i.e. design the possibility of an agent

participating in more than one petri nets

- Poor scalability due to the fact that there is redundancy in repeating

the same parts of the protocol for different agent roles

- Limited reusability and abstraction

• Statecharts

+ States and processes can be treated equally allowing an agent to refer

and reason about the state of an interaction

+ Statechart notation is more amendable for extension – simple

semantics

+ Visual models are easier to conceive and display – engineers familiar

with UML can start working with them immediately

- Participating roles are not shown explicitly

- Compound transitions are not shown in detail

- There is a question of completeness

Then, the authors define the templates for transforming the ANML formulas to

statecharts, extending the statecharts language in the process. The representation of

71

all computation is in transitions, while states just describe a situation (where specific

conditions hold).

The reader can get a feeling of the modeling of protocols using propositional

statecharts (as the authors have named them). The representation can be general

(see Figure 42), or specialized for a specific agent participant (see Figure 43). The

expressions in the transitions are ANML formulas include actions and conditions.

The proposal of Paurobally et al. (2004) and later by Dunn-Davies et al. (2005) has

some issues that are identified as limiting. The first is the representation of all

computation in transitions, while states just describe a situation. In another point of

view the transitions should respond to events and messages, while states would

allow each agent to perform operations dependent on the situation (this way

functionality is also identified). Moreover, they do not use the orthogonality feature

of the statecharts because they consider that the agents are not subsystems and

that in this case they would have to combine parts of interactions between

temporally autonomous agents into a pseudo whole. Furthermore, they argue that

in a typical interaction protocol the agent states are not independent, as many or all

of the agents may be in the same protocol state at any particular time or may be

following a similar sub-protocol.

Figure 42. A detailed version of the English Auction protocol with agent/action

path event labels (Dunn-Davies et al., 2005)

However, in the view of this thesis, orthogonality is very helpful for providing a

complete view of the protocol including all possible actors. Then, when it comes to

implementation, each agent type can realize only the orthogonal component that

corresponds to his role. Also, using orthogonality, one can develop (and simulate)

agents that can concurrently participate into more than one protocols as will be

72

shown in Chapter 3. Another issue related to their work is the absence of a modeling

process for generating the statecharts from specific requirements. Finally, the

extended statecharts that they use can be executed only using the Agent

Negotiation Meta-Language (ANML). The change in the language of statecharts is so

radical that the extended statecharts cannot be used by existing CASE tools and

ANML is not used in general by software engineers.

Figure 43. The protocol shown in Figure 42 from the point of view of a bidder

(Dunn-Davies et al., 2005)

Formara and Colombetti (2003) propose a way to define interaction protocols using

a commitment-based ACL. A commitment object consists of the following fields:

• a unique identifier

• a reference to the commitment’s debtor

• a reference to the creditor

• the commitment’s content, that is, the representation of the proposition to

which the debtor is committed relative to the creditor

• a list of propositions that have to be satisfied in order for the commitment to

become active;

• its state that can correspond to any one element of the finite set {unset,

cancelled, pending, active, fulfilled, violated}

• a timeout valid only for unset commitments

73

A protocol is based on a set of speech acts as operations on commitment objects. It

is described by an interaction diagram, that is, a graph whose nodes represent

system states, and whose edges represent certain types of state transitions. In an

interaction diagram, state transitions correspond either to speech acts performed by

the interacting agents, or to environmental events strictly related to the interaction.

The speech acts have a specific effect on commitments altering their state. Thus, in

their work, Formara and Colombetti (2003) assume the existence of a specific mental

model of the agents, the one related to commitments. Like in the previously

presented work (Paurobally et al., 2004) they define both a logical and graphical

method for representing the protocols.

König (2003) presents a new possibility in inter-agent protocols definition. He uses

the state transition diagrams (STD) formalism to model protocols, but also decision

activities, thus, using for both the same formalism. An STD is a special case of a Finite

State Machine (FSM) that allows transitions between states either when an external

or an internal event occurs to the system (according to his work, transitions in FSMs

can only contain external events).

König defines a protocol as a structured exchange of messages. Then, he compares

three approaches to modeling conversation policies, i.e. those based on STDs, FSMs

and Petri nets. He observes that all approaches modeling conversations from the

viewpoint of an observer are using either STD or petri nets, in contrast to those using

FSM (or statecharts) that are representing the conversation from the viewpoint of a

participating agent. For modeling a conversation from the point of view of a

participating agent who receives and sends messages, König argues that a model

supporting input and output operations is more suitable. When a conversation

should be modeled from an observer’s view, it is sufficient to use a model which is

able to express that a message has been transmitted from one agent to another, like

a transition in a STD or in a petri net. He chooses STD aiming to model both activities

and protocols, allowing also for object-oriented development.

He makes the assumption that only two agents are involved in a protocol, i.e. the

primary (who initiates the interaction) and the secondary. Moreover, the messages

exchange is always synchronous, when one of them sends a message the other one

is in a state of receiving a message (they cannot both be sending at the same time).

Then he defines an FSM for the observer and from it he derives the FSMs of the

participants. In a next level (higher level of abstraction) he defines communication

acts that can make use of the protocols in the form of STDs. Finally, in a third level he

defines the activities of the agents that can invoke one or more communication acts

and assume a wait state until the acts finish. The acts themselves can choose to

execute one or more protocols and enter a wait state until they are finished. All

these can only happen sequentially.

Mazouzi et al. (2002), define protocols using the Colored Petri Nets (CPN) formalism.

Petri Net emerged as a graphical tool for the description and analysis of concurrent

processes which arise in systems with many components (distributed systems). A

Petri net is a directed bipartite graph. It consists of places, transitions, and directed

arcs. Arcs run between places and transitions, never between places or between

74

transitions. The places from which an arc runs to a transition are called the input

places of the transition; the places to which arcs run from a transition are called the

output places of the transition. Places may contain any non-negative number of

tokens. A distribution of tokens over the places of a net is called a marking.

A transition of a Petri net may fire whenever there is a token at the end of all input

arcs; when it fires, it consumes these tokens, and places tokens at the end of all

output arcs. A firing is atomic, i.e., a single non-interruptible step. Execution of Petri

nets is nondeterministic: when multiple transitions are enabled at the same time,

any one of them may fire. If a transition is enabled, it may fire, but it doesn't have to.

Since firing is nondeterministic, and multiple tokens may be present anywhere in the

net (even in the same place), Petri nets are well suited for modeling the concurrent

behavior of distributed systems. They were invented by Carl Adam Petri in 1939 (see

the latest version of 2007).

Mazouzi et al. show how to transform an AUML interaction diagram to a CPN. They

defined transformation templates, such as the one shown in Figure 44, for creating a

petri net through an existing AUML AIP. In the figure the reader can see a protocol

part where the initiator sends a request message, a query message or a not-

understood message to the participant. This is transformed to a petri net by defining

a transition with two outputs, one going to the next place of the initiator (the

leftmost arrow in the petri net part of Figure 44) and the other to a place that is the

input of three possible transitions, the “Send request”, “Send query” and “Send not-

understood”. Only one of these will take the token to fire and produce its output

place. The latter will be enabling a transition in the participant petri net.

Figure 44. Transforming an exclusive OR part of an AUML AIP diagram to a CPN

diagram part (Mazouzi et al., 2002).

75

Using such templates the AIP diagram in Figure 45 is transformed (or translated as

the authors call this process) to the petri net in the same figure. See the application

of the template of Figure 44 in the regions surrounded by dashed lines.

Their work allows for protocol reuse by defining ways to integrate existing protocols

into new ones. Moreover, in their work the protocol complexity remains tractable

(overcoming a major drawback of petri nets). However, CPN models in AOSE have

yet to mature if they are to be used for creating agent models using an existing agent

platform.

Figure 45. A translation of the FIPA-request-when protocol to a CPN (Mazouzi et

al., 2002).

2.2.10 Model Driven Agents Development

The CAMLE (an acronym for the Caste-centric Agent-oriented Modeling Language

and Environment) modeling language (Zhu and Shan, 2005) proposed a model driven

76

approach to the development of MAS leading to implementation using the language

SLABS (an acronym for the Specification Language for Agent-Based Systems). CAMLE

supports two software development phases, design and implementation. It proposes

caste diagrams for defining the agent roles and their relationships. Collaboration

diagrams define scenarios of the agents’ interactions. In the agent level they define

scenario diagrams and behavior diagrams. All these modes are CAMLE specific.

CAMLE defines a transformation process for the behavior diagrams to SLABS code.

Therefore, its applicability is limited as it is platform specific. Moreover, CAMLE does

not cater for concurrency.

An interesting work is presented by Jayatilleke et al. (2005), where the authors

propose a component based approach to designing Belief-Desire-Intentions (BDI)

architectures. They define a general BDI framework that is expressed in XML format

(PIM). Then they use an XSLT (XML transformation stylesheets) for defining the

transformation of the XML model to JACK platform code (PSM model). Their work

focuses in defining the XML metamodel for BDI-relevant entities as goals, events,

triggers, plans, actions, beliefs, and, finally, agents and then in defining the XSL

transformation to JACK code (Winikoff, 2005). However, the authors did not show

how to define an XSLT for another platform.

Hahn et al. (2009) defined a metamodel (PIM4Agents) that can be used to model

MAS in the Platform Independent Model (PIM) level of the Model-Driven

Architecture (MDA). The added value of their work is that PIM4Agents instances can

be instantiated with both the JADE and JACK agent development environments.

Their approach is similar to the one followed in the Gaia2JADE process (as they state

in their paper) for transforming roles to JADE behaviours. They define a metamodel

for defining the behavior aspect of the PIM4Agents model. The Behaviour refers to a

set of Flows that can be of type InformationFlow or ControlFlow. Each Behaviour

contains a set of Steps that are linked to each other via a Flow. The ControlFlow

describes in which order Steps are executed. The InformationFlow describes the

order in which information flows between Steps. Each Flow connects exactly two

Steps. A Step can be specialized as a StructuredTask or Task. A StructuredTask can be

specialized to Scope and Plan. Both are connected to a Condition that mainly defines

a set of facts that are connected by a logical operator. The Plan can have two

Conditions, a precondition that has to be satisfied in order to execute the Plan and a

post-condition that defines the fact that should be valid after the Plan execution.

2.2.11 Other works

Depke et al. (2002) introduced the idea of agents modeled as roles within the use

cases diagram system box. In the requirements specification, analysis and design

phases they worked with three different views of the system, a structural model, a

functional model and a dynamic model. Each phase refines the models of the

previous one. They change the semantics of UML class diagrams using them for the

structural model by replacing class methods with messages and operations. For the

dynamic model they use statecharts, however, they alter the way of forming

77

transition expressions allowing only the usage of class operations. For the functional

model, they use attributed graphs in pairs showing the state of the system before

and after the reception of an inter-agent message as graph transformation rules that

define how an event changes the state of the system.

All in all, their approach is based on altered UML diagrams and attributed graphs

presenting two disadvantages, a) they do not show how the final design models can

be implemented (since there are no tools using their models), and b) the software

engineers that are familiar with UML may be confused with the different and not

adequately explained semantics. Moreover, the notion of inter-agent protocols is

absent and their design does not address any known agent communication

language.

2.2.11.1 The concepts of Capability and Functionality

The reason for exploring the existing uses of these terms is because they have been

associated with the agent modeling process by many researchers and methodologies

(e.g. the Prometheus methodology that has already been presented) and are also

used within the methodology presented here-in. Therefore besides Prometheus the

following interesting works are also discussed.

Braubach et al. (2005) proposed a capability concept for BDI agents. In their view,

capability is “a cluster of plans, beliefs, events and scoping rules over them”.

Capabilities can contain sub-capabilities and have at most one parent capability.

Finally, the agent concept is defined as an extension of the capability concept

aggregating capabilities. However, this capability concept is limited to the BDI agent

architecture and in agent development an agent is something more than an

assortment of capabilities. The agent should also be able to coordinate his

capabilities.

Capability in AML (Trencansky and Cervenka, 2005) is used to model an abstraction

of a behavior in terms of its inputs, outputs, pre-conditions, and post-conditions. A

behavior is the software component and its capabilities are the signatures of the

methods that the behavior realizes accompanied by pre-conditions for the execution

of a method and post-conditions (what must hold after the method’s execution).

This approach is similar to service oriented architectures and, thus, considers the

agent as an aggregation of services. Thus, in this case we have a simplistic definition

of agent as an object that provides information about its methods similarly to SoA

approaches.

2.2.11.2 Agile Agent Development

Knublauch’s approach (2002) for extreme programming of MAS relies on process

modeling to capture and clarify requirements, to visually document agent

functionality, and to enable communication with domain experts. Their process

metamodel was designed to be easy to comprehend and use by end users of the

agent application, to be extensible for specific types of agents, and to allow for

automatic and semi-automatic transformation into executable code. Thus process

78

models are deemed as very important for achieving an agile process. They use the

AGIL-Shell for modeling the process using the Gaia models (mentioning that other

tools, such as VISIO could also be used). Thus, they link the agile development

process to using process modeling of MAS and their results provide evidence that an

agile process such as XP is suitable for the development of MAS, even though their

experiments were not using an agent platform and developed rather simple agents.

79

Chapter 3

The Agent Modeling Language

(AMOLA)

The Agent MOdeling LAnguage (AMOLA) provides the syntax and semantics for

creating models of multi-agent systems covering the analysis and design phases of

the ASEME software development process. It supports a modular agent design

approach and introduces the concepts of intra- and inter-agent control. The first

defines the agent’s lifecycle by coordinating the different modules that implement

his capabilities, while the latter defines the protocols that govern the coordination of

the society of the agents. The modeling of the intra and inter-agent control is based

on statecharts. The analysis phase builds on the concepts of capability and

functionality. AMOLA deals with both the individual and societal aspect of the

agents.

3.1 The Basic Characteristics of AMOLA

The Agent Modeling Language (AMOLA) describes both an agent and a multi-agent

system. Before presenting the language itself, some key concepts must be identified.

Thus, the concept of functionality is defined to represent the thinking, thought and

senses characteristics of an agent. Then, the concept of capability is defined as the

ability to achieve specific goals (e.g. the goal to decide in which restaurant to have a

diner this evening) that requires the use of one or more functionalities. Therefore,

the agent is an entity with certain capabilities, including inter and intra-agent

communication. Each of the capabilities requires certain functionalities and can be

80

defined separately from the other capabilities. The capabilities are the modules that

are integrated using the intra-agent control concept to define an agent. Each agent is

considered a part of a community of agents, i.e. a multi-agent system. Thus, the

multi-agent system’s modules are the agents and they are integrated into it using

the inter-agent control concept.

The originality in this work is the intra-agent control concept that allows for the

assembly of an agent by coordinating a set of modules, which are themselves

implementations of capabilities that are based on functionalities. Here, the concepts

of capability and functionality are distinct and complementary, in contrast to other

works where they refer to the same thing but at different stages of development,

e.g. in Prometheus (Padgham and Winikoff, 2005). The agent developer can use the

same modules but different assembling strategies, proposing a different ordering of

the modules execution producing in that way different profiles of an agent, like in

the case of the KGP agent (see Bracciali et al., 2006). Using this approach, an agent

can have a decision making capability that is based on an argumentation based

decision making functionality. Another implementation of the same capability could

be based on a different functionality, e.g. multi-criteria decision making based

functionality.

Then, in order to represent system designs, AMOLA is based on statecharts, a well-

known and general language and does not make any assumptions on the ontology,

communication model, reasoning process or the mental attitudes (e.g. belief-desire-

intentions) of the agents giving this freedom to the designer. Other methodologies

impose (like Prometheus or Ingenias, for the latter see Pavón et al., 2005) or strongly

imply (like Tropos) the agent mental models. Of course, there are some developers

who want to have all these things ready for them, but there are others that want to

use different agent paradigms according to their expertise. For example, one can use

AMOLA for defining Belief-Desire-Intentions based agents, while another for defining

procedural agents.

The AMOLA models are related to the requirements analysis, analysis and design

phases of the software development process. AMOLA aims to model the agent

community by defining the protocols that govern agent interactions and each part of

the community, the agent, focusing in defining the agent capabilities and the

functionalities for achieving them. The details that instantiate the agent’s

functionalities are beyond the scope of AMOLA that has the assumption that they

can be achieved using classical software engineering techniques. In the requirements

analysis phase, AMOLA defines the System Actors and Goals (SAG) and the

Requirements Per Goal (RPG) models. In the analysis phase AMOLA defines the

System Use Cases model (SUC), the Agent Interaction Protocol model (AIP), the

System Roles Model (SRM) and the Functionality Table (FT). In the design phase

AMOLA defines the Inter-Agent Control (EAC) model and the Intra-Agent Control

(IAC) model.

Throughout this chapter, some parts of the analysis and design models of a real-

world agent-based system, which was developed during this thesis, are presented.

The requirements were to develop a system that allows a user to access a variety of

81

location-based services supported by a brokering system. The system should learn

the habits of the user and support him while on the move. It should connect to an

OSGi2 service for getting the user’s coordinates using a GPS device. It should also

handle dangerous situations for the user by reading a heart rate sensor (again an

OSGi service) and call for help. A non-functional requirement for the system is to

execute on any mobile device with the OSGi service architecture. The broker has

access to a variety of existing web services but should also provide added value

services. For more details about the real-world system, which will be referred to as

ASK-IT for the remainder of this document, the reader can refer to Moraitis and

Spanoudakis, 2007.

3.2 The Requirements Analysis Phase Model

3.2.1 System Actors and Goals Model (SAG)

The AMOLA model for the requirements analysis phase is the SAG model that is

composed by the Actor diagram, which is similar to the Tropos actor diagram (thus, a

Tropos requirements analysis method fragment could be combined with minimal

effort with ASEME), containing the actors and their goals. The SAG model is a graph

involving actors who each have individual goals. A goal of one actor may be

dependent for its realization to another actor; such a goal is also called dependum.

The depender actor depends on the dependee in order to achieve the dependum.

Graphically, actors are represented as circles and goals as rounded rectangles.

Dependencies are navigable from the depender to the dependum and from the

dependum to the dependee. Note that for simplicity of presentation, if a goal has no

dependees is just drawn next to the depender. The goals are then related to

functional and non-functional requirements in plain text form. An entity can qualify

as an actor if it represents a real world entity (e.g. a “broker”, the “director of the

department”, etc).

An example of a SAG model is presented in Figure 46. It is a subset of the SAG model

for the ASK-IT System. This model was created after identifying the stakeholders

relevant to this project (Spanoudakis et al., 2005). Such are the:

• User: The user is a mobility impaired person that wants to get infomobility

services tailored to his needs (e.g. find the nearest toilet that is accessible

according to his type of impairment). This user is assumed to wander in the

environment having access to the internet and wherever possible access to

local area networks using technologies like Wi-Fi. He also has constant access

to devices and services that are on his person and move around with him.

2 The Open Services Gateway initiative (OSGi) alliance is a worldwide consortium of technology innovators

defining a component integration platform. Find out more in http://www.osgi.org

82

Such can be a GPS device. He also needs assistance in handling dangerous

situations (e.g. if he has a heart attack)

• Broker: This is the ASK-IT B2C (Business to Consumer) Operator. He is

interested in aggregating services offered by diverse service providers either

globally or locally. Whenever a user makes a request he matches the request

to his repository of available services and selects the most relevant one to

request on behalf of the user.

• The Added Value Service Providers: These service providers can provide a

simple service or they can introduce new added value services through the

aggregation of one or more simple services accessed through the broker. A

simple service provider offers map information for a specific city. An added

value service provider offers map information for any city including the

capability to add points of interest offered by many independent providers

Figure 46. Actor diagram (or SAG model). The circles represent the identified actors

and the rounded rectangles their goals.

The stakeholders are modeled as actors. A stakeholder that is assisted by software

introduces a new actor, usually named as personal assistant. Thus, in Figure 46 the

above three stakeholders are represented by four actors, the user, his personal

assistant, the broker and the added value service provider. The user needs to get

location based services and for that he is dependent to his personal digital assistant.

The latter has three individual goals, to adequately service his user, to learn his/her

habits and to autonomously handle a dangerous situation. The personal assistant

depends on the broker (BR) for getting services. The broker represents a network

operator or portal stakeholder who acts as a service aggregator and offers the

services to its users. Its goals include the maintenance of a service repository, finding

the best service for a user and accessing several web services offered by third

parties. Moreover, he depends for getting added-value services to such a

stakeholder (the “Added-value service provider” or AVSP), who provides specialized

83

services for users with special needs or capabilities. For example, an organization of

mobility impaired persons maintains a repository of accessible streets and buildings

and can provide trip planning services to such persons. For offering their service they

depend on the broker themselves in order to get maps or public transport routing

options.

3.2.2 The Requirements Per Goal Model

The Requirements per goal (RPG) is a simple model aiming to associate SAG goals to

requirements presented in plain text mode. For adding the goal requirements the

engineer should add the answers to the following questions:

• Why does the actor have this goal and why does he depend to another for it

(this is the most important question and its answer is usually the goal’s

name)

• What is the outcome of achieving the goal (identify related resources)

• How is he expected to achieve this goal (identify the task to be performed for

reaching this goal)

• When is this goal valid (identify timing requirements)

A non-functional requirement for the personal assistant’s service user goal is to be

executed on a mobile device. Another is that it should reply to a user request within

10 seconds (see Table 2).

Table 2. A portion of the Requirements Per Goal (RPG) model for the Personal

Assistant Actor in ASK-IT project.

Personal Assistant goals

Service User

Delivery of the service within 10 seconds

The service is offered from a mobile device with the OSGi service
architecture

The user can request a mapping or a routing service

An implementation of AMOLA can choose to unify the two models (SAG and RPG) to

one by adding a new property to the goal concept of the SAG model and catalogue

the requirements related to that goal there (this is the approach followed in the

AMOLA implementation in Chapter 5). As each requirement is related to a goal this is

a logical approach. However, in the AMOLA specification these are left as two

separate models for two reasons: The first is that by not altering the graphic

representation of the Tropos actor diagram it is easy for Tropos practitioners to

adapt to the AMOLA SAG model. The second reason is that a common practice in

requirements management is to gather requirements in a tabular form, like the one

84

shown in Table 2, where they provide identification numbers to requirements for

referring to them in the project lifeline.

3.3 The Analysis Phase Models

The main models associated with this phase are the System Use Cases model (SUC),

the Agent Interaction Protocol model (AIP), the System Roles Model (SRM) and the

Functionality Table (FT). The SUC is an extended UML use case diagram and the SRM

is mainly inspired by the Gaia methodology (Wooldridge et al., 2000). Thus, a Gaia

roles model method fragment can be used with minimal transformation effort.

3.3.1 The System Use Cases Model (SUC)

The use case diagram (SUC) helps to visualize the system including its interaction

with external entities, be they humans or other systems. No new elements are

needed other than those proposed by UML. However, the semantics change.

Firstly, the actor “enters” the system and assumes a role. Agents are modeled as

roles, either within the system box (for the agents that are to be developed) or

outside the system box (for existing agents in the environment). Human actors are

represented as roles outside the system box (like in traditional UML use case

diagrams). The human roles are distinguished by their name that is written in italics.

This approach aims to show the concept that we are modeling artificial agents

interacting with other artificial agents or human agents. Secondly, the different use

cases must be directly related to at least one artificial agent role.

The general use cases can be decomposed to simpler ones using the include use case

relationship. General use cases are also referred to as capabilities. A use case that

connects two or more (agent) roles implies the definition of a special capability type:

the participation of the agent in an interaction protocol (e.g. negotiation). A use case

that connects a human and an artificial agent implies the need for defining a human-

machine interface (HMI), another agent capability. A use case can include a second

one showing that its successful completion requires that the second also takes place.

The SUC model presented in Figure 47 is part of the use cases for ASK-IT. Actually, it

is a part focusing in the personal assistant (PA) role. The reader should notice at this

point that the general use cases correspond to the goals of the requirements analysis

phase. It is also important to note that at this phase the task of the system modeler

is not to identify goals and dependencies between actors, like in the SAG, but to

analyze the behavior of the system in order to achieve specific tasks. However, at the

highest level of abstraction these tasks correspond to the system goals. The

difference is that the know-how related to this phase is not that of the business

modeler or the business consultant, it is that of the systems engineer or analyst.

85

<<include>>

Figure 47. SUC Model: A Use Case diagram for the ASK-IT project.

3.3.2 The Agent Interaction Protocols Model (AIP)

An AIP (the reader should take care not to confuse it with the AIP model of AUML,

for the remainder of this document AIP will refer to the AMOLA model) defines one

or more participating agent roles, the rules for engaging (why would the roles

participate in this protocol), the outcomes that they should expect in successful

completion and the process that they would follow in the form of a liveness formula.

The liveness formula is a process model that describes the dynamic behavior of the

role inside the protocol. It connects all the role’s activities using the Gaia operators

(see Table 1). The liveness formula defines the dynamic aspect of the role, that is

which activities execute sequentially, which concurrently and which are repeating.

As an example, the Request for Services AIP, which was built within the ASK-IT

project, is presented in Table 3. This protocol is similar to the FIPA Request protocol

(see FIPA TC Communication, 2002a) standard. There are two roles involved, the

Service Requester (SR) and the Service Provider (SP). Someone would expect to see

the personal assistant and the broker roles implicated, however, the reader should

notice that the same use case exists between the broker and added-value service

provider roles. Thus, the protocol is defined abstractly defining two abstract roles,

the SR and SP. The rules for engaging and outcomes are described in free text

format. However, the last part is where the process that needs to be followed by the

participants is described in a liveness formula. The SUC model shows what a

participant in a protocol does. At this point the question that needs to be answered

is when the participant acts. So, by the SUC model the analyst can see that the SR

sends and receives a message, however, in the AIP model he defines that he first

sends the request message and then receives the response message.

This protocol is shared by many SUC roles (or concrete roles), for example the

personal assistant (PA), the broker (BR) and the added-value service provider (AVSP)

can use it as service requesters (SR). However, only the BR and the AVSP can use it as

service providers (SP). The broker role is a classic broker as it has been defined by

86

Klucsh and Sycara (2001), i.e. the service requester knows how to form a valid

request for processing by the service provider but he only interacts with the broker.

Thus, the same protocol can be used both for the broker and the service provider.

Table 3. Agent Interaction Protocol for the ASK-IT system

Request for Services

Participants Service Requester (SR) Service Provider (SP)

Rules for
engaging

He needs to get an e-service within a specific
amount of time

He will profit by providing a service within a
specific amount of time

Outcomes
He has obtained the e-service results or a
denial of service message or a service failure
message, or no response

He has provided the e-service results or a denial
of service message or a service failure message,
or timed out

Process
request for services = send request message.
receive response message

request for services = receive request message.
process request. send response message

3.3.3 The Systems Roles Model (SRM)

The system roles model (SRM) is mainly inspired by the Gaia roles model

(Wooldridge et al., 2000). A role model is defined for each agent role. The role model

contains the following elements: a) the interaction protocols that this agent will be

able to participate in, b) the liveness model that describes the role’s behavior. The

liveness model has a formula at the first line (root formula) where activities or

capabilities can be added. A capability must be decomposed to activities in a

following formula. The Gaia operators have been enriched with a new operator, the

|x
ω
|
n, with which we can define an activity that can be concurrently instantiated and

executed more than one times (n times).

The liveness formula grammar has not been defined formally in the literature, thus it

is defined here using the Extended Backus–Naur Form (EBNF), which is a metasyntax

(or metametamodel, as it was referred to in §2.1.4.4) notation used to express

context-free grammars. It is a formal way to describe computer programming

languages and other formal languages. It is an extension of the basic Backus–Naur

Form (BNF) metasyntax notation. EBNF was originally developed by Niklaus Wirth

(1996). The EBNF syntax for the liveness formula is presented in Listing 1, using the

BNF style followed by Russel and Norvig (2003), i.e. terminal symbols are written in

bold. The reader should note that the process property of the AIP model corresponds

to the formula as it is defined in Listing 1.

A portion of the SRM for the personal assistant (PA), added-value service provider

(AVSP) and broker (BR) roles in ASK-IT is presented in Figure 48. The PA role

participates to the request for services protocol as the service requester. In his

liveness model, the root formula states that he executes forever the “service user”

capability in parallel with the “handle dangerous situation” capability. Each of these

87

capabilities is detailed in the following two formulas that have their name on the left

hand side. Other compound elements are further detailed in following formulas.

Listing 1. The liveness formula grammar in EBNF format.

liveness → { formula }

formula → leftHandSide = expression

leftHandSide → string

expression → term

 | parallelExpression

 | orExpression

 | sequentialExpression

parallelExpression → term || term || … || term

orExpression → term | term | … | term

sequentialExpression → term . term . … . term

term → basicTerm

 | (expression)

 | [expression]

 | term*

 | term+

 | term
ω

 | |term
ω
|
number

basicTerm → string

number → digit | digit number

digit → 1 | 2 | 3 | …

string → letter | letter string

letter → a | b | c | …

The reader should note the interconnection between the role model (SRM) and the

agent interaction protocol (AIP) model. For example, the Personal Assistant (PA) role

in Figure 48, in the second line, indicates that he participates in the “Request for

Services” protocol as a service requester (SR). This implies that the process part

(from the AIP model in Table 3) related to an abstract protocol role (e.g. SR) that a

concrete role (e.g. PA) assumes must be imported in the liveness model as-is. The

88

imported formulas in the liveness formulas of the three concrete roles shown in

Figure 48 are written in italics.

The protocol participation related capability of a concrete role when the protocol

has been defined for abstract roles includes the abstract role abbreviation so that

the modeler can know which process field he must import. Therefore, if the PA role

used in his liveness model the “request for services” capability, the modeler would

not know whether he should import the SR or SP process of the protocol in the next

formula. However, by using the name “request for services SR” (look at the last

element of the right hand side of the third liveness formula of PA in Figure 48) the

modeler knows that he should import the “send request message. receive response

message” process from the AIP model in Table 3 (the part in italics in the next

formula).

Role: Personal Assistant (PA)

Protocols: request for services: service requester

Liveness:

personal assistant = (service user)
ω
 || (handle dangerous situation)

ω

service user = get user order. get user coordinates. get user preferences. request for services
SR. present information to the user. learn user habits.

handle dangerous situation = invoke heart rate service. determine user condition. [get user
coordinates. request for services SR]

request for services SR = search broker. [send request message. receive response message]

learn user habits = learn user preference. update user preferences.

Role: Broker (BR)

Protocols: request for services: service requester, request for services: service provider

Liveness:

broker = |request for services SP
ω
|
10

request for services SP = receive request message. process request. send response
message

process request = service match. [(invoke data management | request for services SR)]

request for services SR = send request message. receive response message

Role: Complex Provider (CP)

Protocols: request for services: service requester, request for services: service provider

Liveness:

complex provider = |request for services SP
ω
|
10

request for services SP = receive request message. process request. send response
message

process request = (decide route type. request for services SR. sort routes) | (decide POI
types. request for services SR. decide POIs. request for services SR)

request for services SR = send request message. receive response message

Figure 48. A portion of the SRM model for three roles of the ASK-IT project

89

The analyst can then choose to add activities to the protocol part in the liveness

formula but he has to keep the imported part intact. For example, the analyst has

added to the PA another activity at the right hand side of the “request for services”

formula, i.e. the “search broker” (see the liveness formulas of the PA role in Figure

48) and makes the execution of the protocol optional (putting all the protocol’s

activities inside brackets). However, the imported protocol process part “send

request message. receive response message” remains unchanged.

There is a reason for this restriction when building the liveness formulas. An agent

must comply with a protocol specification. This means that he must do his part of

the protocol as it is specified. The agent is free to do things before or after a protocol

is executed. The agent is also free to determine how to achieve the tasks specified by

the protocol (but he must do them and in the specified order).

Generalizing, at the liveness formulas part of SRM the analyst can add as many

formulas as he sees fit. Here the role is analyzed in a top-down process. Another

example is the use of the Service Provider (SP) process part of the “Request for

Services” protocol (see Table 3) by the broker role (in Figure 48). The analyst has

chosen to expand the “process request” activity to more specific ones in a next

formula having the “process request” on the left hand side.

3.3.4 The Functionality Table (FT)

The functionality table is where the analyst associates each activity participating in

the liveness formulas of the SRM to the technology or tool (functionality) that it will

use (see an example of FT in Figure 49 for the capabilities of the PA). The

communicate capability includes the “send message” and “receive message”

activities and is shared by all agents as proposed by the Foundation of Intelligent

Physical Agents (FIPA). This is the point where the analyst proposes the use of a

platform for instantiation, e.g., in our example, the Java Agent Development

Environment (JADE), an open source framework that adheres to the FIPA standards.

This strategic choice also defines the programming language that will be used, in this

case Java.

Returning to the ASK-IT example, the non-functional requirement for the PA to

execute on any mobile device running OSGi services reveals that such a device must

at least support the Java Mobile Information Device Profile (MIDP), which offers a

specific record for storing data. Therefore, the activities that want to store or read

data from a file must use the MIDP record technology.

An AMOLA implementation might choose to incorporate the functionality table in

the SRM model adding a “functionality” property to each activity (as is done in

Chapter 5). This approach is more compact and would better serve the needs of the

developer. However, a decision maker would prefer to see this information in a

tabular format (like in Figure 49) in order to gain a quick understanding about the

technologies involved in developing each agent.

90

Capabilities Activities Functionalities

communicate

invoke OSGi service

send message

<decomposition> <uses>Legend:

get user coordinates

service user

machine learning

MIDP record

technology

JADE FIPA AMS
receive message

learn user habits

request for services

present information

to the user

learn user preference

search broker JADE FIPA DF

update user

preferences

get user preferences

Human-Machine

Interface (HMI)
get user order

handle dangerous

situation

invoke heart rate

service

determine user

condition algorithm

Figure 49. Functionality Table for the personal assistant role of the ASK-IT project.

3.4 The Design phase Models

The models associated with the Design phase are the inter-agent control and intra-

agent control. They define the functional and behavioral aspects of the multi-agent

system. In the past, the MaSE methodology (Deloach et al., 2001) defined agent

behavior as a set of concurrent tasks, each specifying a single thread of control that

integrates inter-agent as well as intra-agent interactions. The AMOLA models go one

step further by modeling the interaction among the capabilities of an agent, i.e. what

they call the different threads of control, but also their execution cycle. The model

associated to the first level of this phase is the inter-agent control, which defines

interaction protocols by defining the necessary roles and the interaction among

them. The implementation of the inter-agent control is done at the agent level via

the capabilities and their appropriate interaction defined via the intra-agent control.

Finally, in the third level each capability is defined with regard to its functionality,

what technology is used, how it is parameterized, what data structures and

algorithms should be implemented. The intra-agent control model (IAC) defined in

this phase corresponds to the Platform Independent Model (PIM) level of MDA.

91

3.4.1 The Inter-Agent Control Model (EAC)

The inter-agent control is defined as a statechart. It should be initialized by

transforming the agent interaction protocols of the analysis phase to statecharts.

Harel and Kugler (2004) present the statechart language adequately but not

formally. Several authors have presented formal models for this language, as such an

approach is needed for developing relevant statecharts-based CASE tools. David et

al. (2003) proposed a formal model for the RHAPSODY tool, Mikk et al. (1997) for the

STATEMATE tool and Wąsowski and Sestoft (2002) for VisualSTATE. The first one has

been used as basis for the definition of the AMOLA statecharts as it is the first

intended for object-oriented language implementation (VisualSTATE and

STATEMATE are for C language development). These models not only formally

describe the elements of the statechart, they also focus on the execution semantics.

Mikk et al. (1997), for example adopt the Z language for modeling statecharts.

However, this issue is out of the scope of this work. It is assumed that, as long as the

language of statecharts is not altered, a statechart can be executed with any

semantics available depending on the available CASE tool. The formal model that is

adopted here-in is a subset of the ones presented in the literature as there are

several features of the statecharts not used herein, such as the history states (which

are also defined differently in these works).

Before formally defining the statechart for the EAC model, the elements that

compose the transition expressions are examined. Then, the transition expressions

are defined in EBNF. Transitions are usually triggered by events. Such events can be:

a) a sent or received (or perceived, in general) inter-agent message,

b) a change in one of the executing state’s variables (also referred to as an intra-

agent message),

c) a timeout, and,

d) the ending of the executing state activity.

The latter case is also true for a transition with no expression. Note that each state

automatically starts its activity on entrance. A message event is expressed by P(x,y,c)

where P is the performative, x is the sender role, y the receiver role and c the

message body.

The items that the designer can use for defining the state transition expressions are

the message performatives, the ontology used for defining the messages content

and the timers. An agent can define timers as normal variables initializing them to a

value representing the number of milliseconds until they timeout (at which time

their value is equal to zero). The transition expressions can use the timeout unary

predicate, which is evaluated to true if the timer value is equal to zero, and false

otherwise. Timers are initialized in the action part of a transition expression, while

the timeout predicate can be used in both the event and condition parts of the

transition expression depending on the needs of the designer.

92

Besides inter-agent messages and timers there is another kind of events, the intra-

agent messages. The change of a value of a variable can have consequences in the

execution of a protocol. The variables taking part in a transition expression imply the

fact that they are defined in the closest common ancestor OR state of the source and

target states of the transition or higher in the statechart nodes hierarchy. Listing 2

shows the grammar for defining the transition expressions of the statechart. The

intention regarding the performative definition is not to enumerate all possible

performatives, the modeler can define such as he sees fit.

Listing 2. The statecharts transition expression grammar in EBNF format.

transitionExpression → [event] [[condition]] [/action]

event → timeout(variable)

 | performative(variable, variable, variable)

 | variable (comparisonOperator | equalNotEqualOperator) (variable |
value)

 | predicate ∧∧∧∧ variable (comparisonOperator |
equalNotEqualOperator) (variable | value)

 | quantifier index, (performative(variableindex, variable, variable) [∨∨∨∨
performative(variableindex, variable, variable)] | performative(variable,

variableindex, variable) [∨∨∨∨ performative(variable, variableindex,
variable)]), (cardinalValue | intNumber) comparisonOperator index
comparisonOperator (cardinalValue | intNumber)

 | event logicalOperator event

 | (event)

quantifier → ∃∃∃∃ | ∀∀∀∀

index → letter

cardinalValue → |set|

set → string

condition → variable (comparisonOperator | equalNotEqualOperator) (variable |
value)

 | condition logicalOperator condition

 | (condition)

 | not(condition)

 | predicate = (True | False)

action → variable = (variable | value)

 | action connectiveOperator action

93

 | predicate = (True | False)

comparisonOperator → >>>> | ≥≥≥≥ | <<<< | ≤≤≤≤

equalNotEqualOperator → ==== | ≠≠≠≠

connectiveOperator → ;

arithmeticOperator → ++++ | ---- | //// | ****

logicalOperator → ∧∧∧∧ | ∨∨∨∨

variable → string

predicate → string (string [term])

term → , (string | value) | term, (string | value)

value → intNumber | realNumber | “string” | ∅∅∅∅

realNumber → intNumber.intNumber

intNumber → digit | digit intNumber

digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

string → letter | letter string

letter → a | b | c | …

performative → request | inform | propose | …

Each state is defined by its name, the variables that are used by its activity and

transition expressions, its type and the algorithm that is executed as its activity. Its

type can be one of OR, AND, CONDITION, BASIC and two specializations of the basic

state, START and END. Start is represented by a black dot and END by a black dot in a

circle. Some definitions of the used background concepts (e.g. graphs and trees) will

be required and, thus, are given before the formal statechart’s definition.

Definition 3.1 (Knuth, 1997). A graph is generally defined to be a set of points (called

vertices) together with a set of lines (called edges) joining certain pairs of distinct

vertices. There is at most one edge joining any pair of vertices. Two vertices are

called adjacent if there is an edge joining them. If V and V’ are vertices and if n > 0,

we say that (V0, V1,..., Vn) is a path of length n from V to V’ if V = V0, Vk is adjacent to

Vk+1 for 0 ≤ k < n, and Vn = V’. The path is simple if V0, V1,..., Vn-1 are distinct and if

V1,..., Vn-1, Vn are distinct.

Definition 3.2 (Knuth, 1997). A graph is connected if there is a path between any two

vertices of the graph. A cycle is a simple path of length three or more from a vertex

to itself.

Definition 3.3 (Rosen, 1999). A directed graph (V, E) consists of a set of vertices V

and a set of edges E that are ordered pairs of elements of V (Rosen, 1999).

94

Definition 3.4 (Rosen, 1999). A tree is defined to be a connected graph with no

cycles (Rosen, 1999).

Theorem 3.1 (Rosen, 1999). An undirected graph is a tree if and only if there is a

unique simple path between any two of its vertices

Definition 3.5 (Rosen, 1999). A tree a particular vertex of which is designated as the

root is called a rooted tree.

Since there is a unique path from the root to each vertex of the graph (from

Theorem 3.1) each edge is directed away from the root. Suppose that T is a rooted

tree. If v is a vertex other than the root, the parent of v is the unique vertex u such

that there is a directed edge from u to v. When u is the parent of v, v is called a child

of u. A vertex of the tree is called a leaf if it has no children. Vertices that have

children are called internal vertices.

Definition 3.6 (Rosen, 1999). An ordered rooted tree is a rooted tree where the

children of each internal vertex are ordered.

To produce a total order of the vertices of an ordered rooted tree all the vertices

must be labeled. This is achieved recursively as follows:

1. Label the root with the integer 0. Then label its k children (at level 1) from left

to right with 0.1, 0.2, 0.3, …, 0.k.

2. For each vertex ν at level n with label A, label its kν children, as they are drawn

from left to right, with A.1, A.2, …, A.kν.

Thus, A.1 means that A is the parent of A.1.

The definition below for the statechart is inspired by the definition proposed by

David et al. (2003).

Definition 3.7. A statechart is a tuple (L, δ) where:

• L = (S, λ, Var, Name, Activity) is an ordered rooted tree structure representing

the states of the statechart.

o S⊆�* is the set of all nodes in the tree.

o λ: S�{AND, OR, BASIC, START, END, CONDITION} is a mapping from

the set of nodes to labels giving the type of each node. For l∈S let

AND(l) denote that λ(l)=AND. Similarly OR(l) denotes that λ(l)=OR and

the same holds for all labels. START and END denote those nodes

without activity, which exist so that execution can start and end inside

OR-states. BASIC corresponds to a basic state. A condition state is

denoted as CONDITION. START, END, BASIC and CONDITION nodes are

leaves of L.

o Var is a mapping from nodes to sets of variables. var(l) stands for the

subset of local variables of a particular node l.

95

o Name is a mapping from nodes to their names. name(l) stands for the

name of a particular node l.

o Activity is a mapping from nodes to their algorithms in text format

implementing the processes of the respective states. activity(l) stands

for the algorithm of a particular state that is represented by node l.

• δ ⊆ S × TE × S is the set of state transitions, where TE is a set of

transitionExpression elements (see Listing 2).

The following are also defined according to the definitions of David et al. (2003):

Definition 3.8. Let l an internal vertex of an ordered rooted tree L. We call sons(l) =

{l.x ∈ S|x ∈ �} the children of l

Definition 3.9. Let l, k two vertices of an ordered rooted tree L such that ∃x∈�, k.x =

l. Then the vertex k is called parent to l and it is denoted as parent(l)

Definition 3.9. Let l a vertex of an ordered rooted tree L. Then, the ancestors of l are

defined as ancestors(l) = parent(l) ∪ ancestors(parent(l))

A state name that starts with the string “send” implies an inter-agent message

sending behavior for the activity of the state. A send state has only one exiting

transition and its event describes the message(s) sent. Similarly, a state name that

starts with the string “receive” implies that the activity of the state should wait for

the receipt of one or more inter-agent messages. Again, the type and number of the

expected messages is implied by the events monitored by the transition expressions

that have this state as source.

This formalism allows for environment-based communication by defining state

activities that monitor for a specific effect in the environment. This effect can be

expected to be caused by any other agent or a particular agent. Such activities can

be, for example, “wait for someone to appear” or “wait until my counterpart lifts the

object” respectively.

The ontology can be defined in object-oriented format or in logic based format. The

definition of the ontology using one format does not forbid the development of the

system using the other, as, for example, Spanoudakis and Moraitis (2008) defined a

way to encode an ontology that was developed using the Protégé ontology editor, in

object-oriented format, to Prolog (logic programming) format (see the details in

§4.9.3).

In Figure 50 a portion of the ASK-IT ontology (a complete report can be found in

Spanoudakis and Moraitis, 2006b) is presented showing the concepts:

• CallParameter. This concept describes a service parameter. Such a parameter

has a type (withType property), and value (different value properties one for

each parameter type supported, for example, if the type is string the

property withStringValue will store the value).

96

Figure 50. A snapshot of the ASK-IT ontology. The concepts FoundServiceResults,

EServiceResponse and CallParameter (Spanoudakis and Moraitis, 2006b).

97

• EServiceResponse. An instance of this concept has one property with multiple

cardinality. This means that its hasParameterOut property is a list of

instances of type CallParameter.

• FoundServiceResults. An instance of this concept is returned as the content

of the inform message of the service provider (SP) role, if, of course, the

service invocation has been successful. Its properties are:

a) an instance of the EServiceRequest concept, which is the content of the

original service requester (SR) role’s request message,

b) an instance of the EServiceResponse concept.

Having formally defined the statechart as it is used in AMOLA it is now possible to

proceed to the definition of the inter-agent control (EAC) model. The EAC is a

statechart that contains an initial (START) state, an AND-state named after the

protocol and a final (END) state. The AND-state contains as many OR-states as the

protocol roles named after the roles. Two transitions connect the START state to the

AND state and the AND state to the END state.

The EAC for the ASK-IT “Request for Service” protocol is presented as an example in

Figure 51. The two participating roles each have their own orthogonal component.

The service provider (SP) is waiting for a message request. The service requester (SR)

starts by sending a message request, then both execute a transition, the SR to the

“receive response message” activity and the SP to the “process request” activity. As

soon as the message processing ends, the SP replies to the SR and both complete the

protocol. In the case of a timeout the protocol again ends for both roles. Note the

START node and END nodes of the protocol as a black dot and as a black dot inside a

circle at the left side of the “Request for Services” AND state.

Request for Services

 service provider (sp) service requester (sr)

receive

request

message

Request(sr,sp,request)

/t1 = 10000

send

request

message

process

request

Request(sr,sp,request)

/t2 = 10000

request ≠∅

receive

response

message

Inform(sp,sr,results) ∨

Refuse(sp,sr,results) ∨

Failure(sp,sr,results) ∨

timeout(t1) = True

send

response

message

Inform(sp,sr,results) ∨

Refuse(sp,sr,results) ∨

Failure(sp,sr,results)

cresults ≠∅

timeout(t2) = True

Figure 51. The EAC model for the Request for Services Protocol of ASK-IT project.

98

For the service requester (SR, the left hand side OR state inside the AND state in

Figure 51) the protocol starts as soon as the request variable is assigned a value. This

is denoted by the request ≠ ∅ intra-agent event. Then the SR goes to the “send

request message state”. It remains in that state until the message to its counterpart,

i.e. the service provider (SR), is sent. The event of sending this message, which must

have the Request performative, the SR as sender, the SP as receiver and the message

content being the value of the request variable as the Request(sr, sp, request) atom

suggests, causes another transition, targeting the “receive response message” state.

The same transition executes the action t1 = 10000 that sets the timer t1 to timeout

in 10000 milliseconds (or 10 seconds). The receipt of an inter-agent message with

performative Inform, Refuse, or Failure from the SP with a value for the results

variable in its content, or the timeout of the timer t1 can cause the final transition of

this OR state to its END state.

Let’s now see what the service provider (SP, the OR state inside the AND state in

Figure 51 on the right) does all this time. The SP is automatically transited to the

“receive request message” state (as the transition from the START state has no

expression). There, the SP executes an activity that waits for a message by a SR. The

SP transition to the next state has the same expression with the SR transition from

the “send request message state” to the “receive response message”. Therefore,

when he gets to the next state, i.e. the “process request”, the SP has received the

Request message from the SR and he has set his timer (t2) to timeout in 10000

milliseconds. Now, the SP has two possibilities for making a transition. The first

possibility is that he assigns a value to his results variable, while the second is that

the t2 timer timeouts. In the first case there is a transition enabled targeting the

“send response message” state, while in the second case there is a transition to the

END state that finishes the protocol execution for this role. From the “send response

message” state the SP can take the transition to the END state after sending an

Inform, Refuse, or Failure message to his counterpart.

Here the reader should note that the inter-agent control model does not impose a

specific way for interpreting the exchanged messages or a technology for exchanging

them. These issues are defined by the developers according to the platform that

they will use for deploying their system and their expertise. For example, in FLBC

(Moore and Kimbrough, 1995) the effects of a request message are linked to the

beliefs of the sender which may not be the case in another communication language

with different semantics. Thus, a procedural agent might not have a model of beliefs

in contrast with a BDI (i.e. belief-desire-intention, see Dastani et al., 2005) agent.

At this point, the main difference with Moore’s proposal (2000) becomes evident. In

the EAC model, all states represent activities, while in Moore’s work they just

represent a point in time where a condition is true (like in finite state machines).

The EAC model defines an inter-agent protocol addressing the disadvantages of

statecharts as they were presented by Paurobally et al. (2003) and discussed in

§2.2.9.3. Participating roles are shown explicitly, each having his own orthogonal

component in the statechart. The issue of compound transitions is handled by not

using them for building the statechart. The question of completeness is handled by

99

introducing the obligatory association of a state to an activity. In the case of

protocols, the participants that are not the initiators ensure the fact that a sub-state

will be entered by having a first state that waits to receive a message.

3.4.2 The Intra-Agent Control Model (IAC)

In the agent level, the intra-agent control (IAC) is defined using statecharts in the

same way with the inter-agent control model (EAC). The difference is that the top

level state (root) corresponds to the modeled agent (which is named after the agent

type). One IAC is defined for each agent type.

In Figure 52 the IAC model for the personal assistant (PA) agent in the ASK-IT project

is presented, while in Figure 53 the reader can see the IAC model for the broker (BR)

agent. In the next chapter an algorithm for automatically generating these models

from the SRM will be presented. The reader can see that the IAC model of the PA

uses the request for services protocol as a service requester (SR) two times. The

broker implements the service provider (SP) role of the same protocol and within the

“process request” state he uses the request for services protocol as a SR. This is how

the IAC model can integrate protocols with other agent capabilities seamlessly.

service user

 service userω handle dangerous situationω

personal assistant

get user

order

get user

coordinates

get user

preferences

handle dangerous situations

present

information

to the user

invoke heart

rate service

determine

user

condition

learn user habits

learn user

preference

update user

preferences

get user

coordinates
c

request for services SR

search

broker

receive

response

message

send request

message

c

request for services SR

search

broker

receive

response

message

send request

message

c

Figure 52. IAC model for the Personal Assistant agent in the ASK-IT project.

100

request for services SP

request for services SPω 7 10 times

broker

receive

request

message

send

response

message

process request

c
service

match

invoke data

management

request for services SR

receive

message

send

message

c

c

Figure 53. IAC model for the Broker agent in the ASK-IT project.

The IAC model can accommodate the use of diverse agent architectures. For

example, Figure 54 shows how we can model an existing BDI architecture (i.e. the

one proposed by Dastani et al., 2005) using AMOLA. The lifecycle of this agent starts

in the “receive message” state. Then, as soon as a message arrives or another

enabling event occurs the BDI agent enters the “apply goal planning rules” OR state.

Within that OR state, more specific activities match the goals with rules, select rules

matching the agent’s beliefs and apply a goal planning rule. The next OR state, i.e.

“apply plan revision rules” and its substates find rules matching to the plans, select

rules matching the agent’s beliefs and apply the selected plan revision rule. Finally,

the agent reaches the “execute plan” state that depending on the selected plan may

send a message, take an external action or an internal (or mental) action, or do

nothing. After finishing the plan execution the agent returns to his message receiving

state. This is an example of how someone can use the IAC model to coordinate the

agent’s capabilities and to accommodate a well-known type of architecture in a

platform independent manner, i.e. the way to implement this model is not yet

chosen at this time.

101

Figure 54. The intra-agent control model of a BDI agent

102

103

Chapter 4

The Agent Systems Engineering

Methodology (ASEME) Process

The goal of this chapter is to define a methodology and process for agent-based

systems development. Such a process starts from system requirements, continues

with analysis, design, implementation and testing ever since the waterfall model.

The modern processes add detail on how to program (e.g. pair programming in XP),

how to manage a project, when the client has to participate, etc. These issues are

out of the scope of this work.

This work aims to deliver a lightweight software development process. Lightweight

means that it will limit the engineering artifacts down to the necessary ones that will

allow for the development of small to large scale systems and the application of all

existing approaches to a development process, i.e. waterfall or iterative

development. The process will demonstrate the steps needed for development. The

complexity will be within the steps, thus an ontology for a simple project can be one

or two classes, while for a complex project it can range to hundreds of classes.

The reasons why there is still room for a new methodology in AOSE and what are the

challenges related to the proposal of a new one such as ASEME are presented before

venturing into the description of the ASEME process

104

4.1 Why a New Methodology in AOSE

AOSE has been established as a research field the last years. A large number of

methodologies and works in this field have contributed to the state of the art.

However, there is still room for a new methodology that will try to integrate

important missing characteristics. The latter along with the reasons for selecting

them are discussed in this paragraph.

First of all, there should be a straightforward transformation process between the

models of the development phases following the guidelines of the modern MDE

paradigm. MDE addresses three non-functional requirements in software

engineering, i.e. portability, interoperability and reusability. Moreover, a clear

transformation process between the software development phases from

requirements analysis down to implementation allows for traceability of

requirements. This allows for a developer to answer the question of which part of his

program addresses which requirement. A number of authors in AOSE have

introduced concepts and ideas from the model-driven engineering domain. Most of

them just introduce a MDE technique for transforming one of their models to

another in one phase, e.g. from a Tropos plan decomposition diagram to a UML

activity diagram by Perini and Susi (2006) and from a BDI (Belief-Desire-Intention)

representation in XML format to JACK platform code by Jayatilleke et al. (2004). A

more recent work García-Magariño et al. (2009) presents an algorithm to generate

model transformations by-example that allows the engineer to define himself the

transformations that he wants to apply to models complying with the INGENIAS

metamodel. However, until today, no methodology provides an MDE approach

defining model transformations between all the software development phases.

Considering agents as complex software there should be different levels of

abstraction that will allow system modelers to have a clear view of the whole system

and be able to “zoom in” different components and view more detail. This approach

has been considered as very important even from the era of Data Flow Diagrams.

The right level of such abstractions would include:

• a society level where the modeler can have a static and a dynamic view of the

agents and their interactions

• an agent level where the modeler can inspect the parts/modules (or

components of the agent) and the behavior of an individual agent

• the capability level, where the modeler can inspect the details of each of the

agent’s modules.

The first two levels are directly related to AOSE, the capability level is more related

to classic software engineering. The different software development phases should

each define its models regarding all these three levels of abstraction. Existing

methodologies usually start by defining the agents and their protocols in an analysis

(or architectural design) phase and then focus in each agent in a design (or detailed

design) phase.

105

The models of an agent design language should be agent mental model independent

as there is yet no globally recognized formalism for defining it. Thus the developer

should be able to define any kind of agent architecture he desires. However, it would

be very useful to define templates or models adhering to the most important agent

architectures. Thus, the methodology should include two useful abstractions

identified in the literature of AOSE, namely capability and functionality. These have

been used with different meanings in the past in order to provide new concepts for

modeling agent-based systems with relation to previous methodologies like, e.g. for

object-oriented development.

Another important issue in a new methodology should be the definition of a proper

integration method between inter-agent protocols and agent capabilities. Existing

methodologies achieve this through a step that is not automated and depends on

the engineer’s capability to mentally transform a type of diagram (e.g. an AUML

Agent Interaction Protocol) to another (e.g. an activity diagram).

We believe that the module based approach proposes the right level of

decomposition of an agent because it allows for the reusability of the modules as

independent software components in different types of agents, having some

common capabilities. Thus the new methodology should allow for modular design

and modules reuse.

A new methodology should also provide guidelines as to what constitutes an agent.

In most of the methodologies agents are just aggregates of capabilities without

explaining what is the right level of complexity of an agent, when does the system

modeler identify an agent entity. Sometimes, the agent methodologies forget the

issue of agenthood and when an identified software component should qualify as an

agent.

Finally, the works in the AOSE domain do not adequately address the issue of non-

functional requirements. Only Tropos provides a means for documenting them in the

requirements analysis phase as soft goals. Then, Tropos uses them in two ways. The

first is to evaluate identified tasks as helping or restricting the soft-goals. The second

is to identify tasks that pursue the soft-goals (in which case soft goals become

functional requirements). Non-functional requirements need a way to influence the

way to implement a system or task (see Garcia et al., 2006) and this is what a new

methodology must seek.

4.2 ASEME Process Overview

ASEME uses AMOLA and defines the software development process using the

Software Process Engineering Metamodel (SPEM) language. SPEM allows for the

graphical representation of software development processes using the notation

presented in Figure 55. A Process is defined as a series of Phases that produce Work

Products. In each phase simple or complex activities take place. A complex activity is

106

defined as a Work Definition. Activities are achieved by Human Roles and they may

produce Intermediate Products which can be either Text or Graphical Models. The

phases are described by Process Packages that include the associated roles and work

products. Each process package defines a process that contains work definitions and

/or activities connected through dashed arrows like in flowcharts. The black dot

shows where the process starts and the black dot in a circle where it ends (like in

statecharts). An activity (or work definition) has input and output products. An arrow

from an activity to a product means that the product is created (or updated) by the

activity. An arrow from a product to an activity means that the product is an input of

the activity.

Figure 55. The Software Process Engineering Metamodel (SPEM) Notation.

The next paragraph provides an overview of the process while the following ones

provide details for each development phase. A small example on how to develop a

meetings management system is used throughout this section for the ASEME

process demonstration. This example (the meetings management system) has been

widely used in the past for demonstrating the use of methodologies (e.g. for the

Prometheus and MAS-CommonKADS methodologies in Henderson-Sellers and

Giorgini, 2005). This system’s requirements are, in brief, to support the meetings

arrangement process. The user needs to be assisted in managing his meetings by a

personal assistant. The latter manages the user’s schedule and services the user. The

meetings organization process is managed by the secretariat to which the users

submit their requests to schedule a new meeting or change the date of an existing

one. The secretariat contacts the users’ assistants whenever she needs to negotiate

a meeting date.

The software development phases of the Agent Systems Engineering Methodology

(ASEME) are presented in Figure 56. There are six phases, the first four produce

system models (development phases), while the last two (verification and

optimization phases) evaluate and optimize these models.

The ASEME process is iterative, allowing for incremental development and provides

the original possibility to jump backwards to any previous phase due to the utilized

model driven engineering (MDE) approach. MDE allows this possibility as the models

107

of a subsequent phase are created by those in the previous phase. As this process is

straightforward the inverse is also possible (return to the model of a previous phase

using the model of a next phase). This is also called reverse engineering. For

example, having a Java class a developer can easily reverse engineer the class

diagram (see Figure 57). This is because the process of transforming a class diagram

to code is automatic and straightforward.

Figure 56: ASEME Process Overview.

In ASEME the SAG, SRM, IAC and a Platform Specific Model (PSM) are the main

models outputted by the requirements analysis, analysis, design and implementation

phases respectively. Each of these models is produced by applying simple

transformation rules to the previous phase model and this transformation is

traceable, that is it can be reverse engineered.

Figure 57. Reverse Engineering from Java code to a Class diagram.

108

Three levels of abstraction are defined for each phase. The first is the societal level.

There, the whole multi-agent system functionality is modeled. Then, the agent level

zooms in each part of the society, i.e. the agent. Finally, the details that compose

each of the agent’s parts are defined in the capability level. The reader is reminded

that the concept of capability is defined as the ability of an agent to achieve specific

tasks that require the use of one or more functionalities. The latter refer to the

technical solution(s) to a given class of tasks. Moreover, capabilities are decomposed

to simple activities, each of which corresponds to exactly one functionality. Thus, an

activity corresponds to the instantiation of a specific technique for dealing with a

particular task. ASEME is mainly concerned with the first two abstraction levels

assuming that development in the capability level can be achieved using classical (or

even technology-specific) software engineering techniques.

In Figure 58, the ASEME phases, the different levels of abstraction and the models

related to each one of them are presented. The phases, the human roles

participating in each of them and their products are presented using the SPEM

notation in Figure 59. Some of the products (like the ontology product of the design

phase) are not AMOLA models and in the next paragraph their type and purpose will

be explained. In the same figure the reader can see the human roles that are

expected to work at each phase. In the following each of these phases will be

enriched with a process definition.

Capabilities
Use case Diagram,

Roles Model

Functionalities
Functionality

Table

Agent Control
Intra-agent control

model

Components

Society Control
Inter-agent control

model, Ontology,

Message Types

Roles and Protocols
Use case Diagram,

Agent Interaction

Protocols

Agent Level Capability Level

Development

Phase Society Level

Design

AMOLA Models

Analysis

AMOLA Models

Levels of Abstraction

Agent code Capabilities code
Platform

management code
Implementation

Agent testing
Component

testing
Protocols testingVerification

Goals
Actor Diagram

Requirements
Requirements per

goal

Actors
Actor Diagram

Requirements

Analysis

AMOLA Models

Agent resources
Code

optimization

Number of

instantiated agents
Optimization

Figure 58: ASEME phases and their AMOLA products.

109

An important characteristic of ASEME is automation. A large number of activities are

automated, which means that the modeler has nothing more to do than execute a

simple command, or “click” in the used Integrated Development Environment (IDE).

These activities are those that transform a model to another model. In the SPEM

process diagrams such activities are named after the pattern <MODEL A>2<MODEL

B>. Chapter 5 describes the technical solutions for automating these activities using

the Eclipse IDE. Thus, the ASEME developers would benefit very much from using

eclipse and the projects presented in Chapter 5. However, the ASEME process

describes in detail the transformation procedure therefore even a modeler that uses

a blackboard for drawing his models can follow it.

The Eclipse Foundation (created in 2004) is a not-for-profit, member supported

corporation that hosts the Eclipse projects and helps cultivate both an open source

community and an ecosystem of complementary products and services (for more

information visit http://www.eclipse.org/).

Design

Available

Message Types

Analysis

Firm Representative

Requirements Analysis

Implementation

Agent

program

Behaviours

repository

RPGSAG

SUC SRM FTAIP

IAC

EAC

Ontology

Business Consultant Analyst

Designer

Developer

Declarative or

procedural

knowledge

Figure 59. ASEME process packages.

4.3 Requirements Analysis Phase

In Figure 60, the requirements analysis phase is presented in SPEM notation. The

three levels of abstraction are represented by the three activities. In the society

level, the actors and their goals that depend on other actors are defined; in the

agent level, the individual goals of each actor are identified, and, in the capability

level, specific requirements, functional and non-functional, are assigned to each one

of these goals. The output of the requirements analysis phase is the SAG model,

110

containing the actors and their goals and the RPG (Requirements per Goal) table that

associates requirements to each goal. All these activities are manual, usually

performed by a business consultant (a representative of the organization that will

develop the software) together with a firm representative that is the client.

Figure 60: The ASEME Requirements Analysis Phase.

Regarding the running example for the meetings management system, the actors

involved are the user and the assistant that helps him to manage his meetings. The

latter is adaptable to a specific user, thus is modeled as a personal assistant.

Moreover, there is the secretariat role that is represented by the meetings manager

actor. The reader can see the SAG model in Figure 61. The goal of the user to

manage his meetings is dependent on the personal assistant. In the agent level

individual goals are defined; one such is the adaptation to user needs for the

personal assistant, named “learn user habits”. In the capability level the functional

and non-functional requirements for each goal are defined in free text.

Eclipse supports the modeler in every activity by providing graphical or text editors

for the AMOLA models. These editors are based in the AMOLA metamodels

presented in §5.1. The Sample Reflective Ecore Model Editor of Eclipse is shown in

Figure 62. In this figure the business consultant edits the SAG model (it is the same

one shown in Figure 61). The reader can see the properties of the selected goal

(LearnUserHabits) at the bottom of the figure (note that the goal requirements are

included as one of the goal’s properties). The reader can also notice that the edited

file (SAGModel.xmi) has the xmi extension which implies that it is a standardized

XML file (this file is included in Annex 6). Thus, an experienced consultant in XML can

edit this file directly using a text editor. The task of improving the AMOLA graphical

editors is part of the future work and it is intended that in the future the editor will

have the same look as the SAG model in Figure 61.

111

SUC

SAG SAG Actors

→ SUC

Roles

SAG Goals

→ SUC

Use cases

manage

meetings

personal

assistant

meetings

manager

request

new

meeting

user

learn user

habitsnegotiate

meeting

date

request

change

meeting

Personal Assistant User
Meetings

Manager

manage

meetings

negotiate

meeting

date

request

new

meeting

learn user

habits
request

change

meeting

transformation

Figure 61: The SAG2SUC transformation.

Figure 62. A graphical editor of the Eclipse IDE.

112

4.4 Analysis Phase

The ASEME analysis phase is presented in Figure 63. The first activity transforms the

SAG model to an AMOLA use case diagram (SUC model). The model transformation

process (SAG2SUC) is straightforward and is graphically presented in Figure 61. The

actors are transformed to roles and the goals to use cases. The SUC model is used as

an intermediate model, used only within the analysis phase, aiming to facilitate the

creation of the SRM model, which is the output of the analysis phase. This activity

can be automated if the analyst uses the Eclipse IDE with the SAG2SUC project

presented in §5.2.1.1.

Figure 63: The ASEME Analysis Phase.

The next activity refines the use cases in order to produce a rich SUC model. In the

society level, the use cases connecting two agent roles are elaborated. Concurrently,

in the agent level, the use cases that have only one role participant are refined. UML

suggests the use of sequence diagrams and activity diagrams for refining use cases.

Another possible approach is the use of the MAS-CommonKADS task model (Iglesias,

1998) method fragment or research efforts in Goal-Oriented Requirements

Engineering (Lamsweerde, 2001). Note that the use of such methods is optional, a

modeler can work directly on the use case diagram. The analyst refines the “request

new meeting” use case for the “personal assistant role” and assigns cardinality to the

“negotiate meeting date” use case showing that two or more “personal assistant”

roles are involved (see the SUC model in Figure 64). The Sample Reflective Ecore

Model Editor of Eclipse or any XML editor can be used for graphically or textually

(respectively) editing the SUC model.

113

It is important to note that during the SUC refinement activity, the analyst no longer

refines goals (like in the SAG model), but he tries to analyze the behavior of the

system to specific tasks. The difference is that the know-how related to this phase is

not that of the business modeler or the business consultant, it is that of the systems

engineer.

The next ASEME activity is about defining the Agent Interaction Protocols (AIP), or

simply protocols. Protocols (in the society level) originate from use cases that

connect two artificial agent roles (e.g. the “request new meeting” is a protocol use

case). For example, in Figure 61, there is the “request new meeting” use case that

was created by transforming a goal of the requirements analysis phase. Let’s call

such use cases (those that correspond to a goal) the general use cases. In the SUC

model in Figure 64 the “request new meeting” is refined for the “Personal Assistant”

actor to the simple tasks “send new request” and “receive new results” (these use

cases are included by the general use case). The included use cases of a use case that

connects two agent roles are used to create liveness formulas in the agent

interaction protocol Process field.

Figure 64: The SUC2SRM transformation.

Two AIP models for the meetings management system are presented in Table 4. The

first is the “Request new meeting” discussed earlier and the second is a more

complex model, the “Negotiate meeting date”. Both define two roles, i.e. Personal

Assistant and Meetings Manager, the rules for engaging (why would they participate

114

in this protocol), the outcomes that they should expect in successful completion and

the process that they would follow in the form of a liveness formula. Any text editor

can be used for defining the AIP model.

After refining the use cases, the SUC model is transformed to the system roles model

(SRM). Figure 64 shows the transformation (SUC2SRM) process. A role model is

created for each actor in the use case diagram. Each of the use cases connected to

this role is transformed to an activity connected to others with a question mark. This

activity can be automated if the analyst uses the Eclipse IDE with the SUC2SRM

project presented in §5.2.1.2.

Table 4. Agent interaction protocols for the meetings management system

 Request new meeting Negotiate meeting date

Participants Personal Assistant Meetings Manager Personal Assistant Meetings Manager

Rules for
engaging

He needs to create a
meeting

-
He needs to create or
participate to a
meeting

He has a meeting with
more than one
participants that has no
date assigned to it

Outcomes
He has received a
confirmation of the
meeting creation

-
He has scheduled
participation to a
meeting

He has arranged a
meeting that met all
the participants needs

Process
request new meeting
= send new request.
receive new results

request new meeting
= receive new
request. send new
results

negotiate meeting date
= receive proposed
date. (decide
response. send results.
receive outcome)+

negotiate meeting date
= (decide on date.
send proposed date.
receive results)+. send
fixed date.

After the SUC2SRM transformation (shown in Figure 64) the formulas connect the

activities with question marks. During the next ASEME activity, the analyst arranges

the different capabilities in the liveness formulas in the right sequence and connects

them with the appropriate Gaia operators (see Table 1), so that the formulas depict

the process model of each role (see the SRM model in Figure 65). In the liveness

property of the role, its name appears in the left hand side of the first formula (root

formula). The use cases included by each capability are inserted as activities in a

lower level formula (that has the capability on the left hand side). Thus, while in the

SUC model the behavior (use cases) related to the roles is identified, in the SRM

model the dynamic aspect of this behavior, i.e. what happens and when it happens,

is defined. The Sample Reflective Ecore Model Editor of Eclipse or any XML editor can

be used for graphically or textually (respectively) editing the SRM model.

The last activity of this ASEME phase defines the functionality table where the

analyst associates each activity participating in the liveness formulas of the SRM to

the technology or tool (functionality) that it will use (see Figure 66). Depending on

the development iteration the functionalities can be vague and abstract (like the

“machine learning” functionality) or concrete and final (like the “JADE FIPA AMS”

and “argumentation-based decision making” functionalities). Depending on the

choices made in this activity the risk related to the software development iteration

may differ. Any text editor can be used for defining the Functionality Table (FT).

115

IAC

SRM

Role: Personal Assistant

Protocols: Negotiate meeting date: personal assistant, Request change meeting: personal

assistant, Request new meeting: personal assistant

Liveness:

personal assistant = (manage meetings. learn user habits)ω || (negotiate meeting date)ω

manage meetings = get user request. (read schedule | request change meeting | request new

meeting). show results

learn user habits = learn user preference. update user preferences

request change meeting = send change request. receive change results

request new meeting = send new request. receive new results

negotiate meeting date = receive proposed date. (decide response. send results. receive

outcome)+. update schedule

Liveness

formula → IAC

states and

transitions (use

gaia operators

transformation

table)

transformation

personal assistant

learn user habits

update user

preferences

learn user

preference

 manage meetings

show

results

get user

request

request new

meeting

send new

request

receive new

results

request change

meeting

send

change

request

receive

change

results

read

schedule

c

negotiate meeting date

receive

proposed

date

update

schedule

decide

response

send

results

receive

outcome

Figure 65. The SRM2IAC transformation.

Moreover, the identified technologies indicate the competences needed by the

software development team. Finally, functionalities may be connected with different

properties, such as programming language, execution environment and resources

needed for their completion. For example the “argumentation based decision

making” functionality can have the following properties:

• Programming language: Prolog

116

• Execution environment: SWI-Prolog3 installed with Java interface (JPL)

• Resources needed: The Gorgias framework4 and a knowledge base file

Figure 66. The Functionality Table for the personal assistant role of the meetings

management system.

4.5 Design Phase

The ASEME design phase is presented in Figure 67. The three work definitions reflect

the three different levels of abstraction in the software development. In the society

level we have the inter-agent control model, in the agent level the intra-agent

control model and in the capability level the models of the different components

that will be used by the agent. Thus, each agent is considered to be part of a multi-

agent system.

The agents communicate using interaction protocols that are described by the inter-

agent control (EAC), which defines the participating roles and their responsibilities in

the form of tasks. The agents implement the roles that they can assume through

their capabilities. The capabilities are the modules that are integrated using the

intra-agent control (IAC) concept.

The first work definition (“define inter-agent control model”) of the design phase is

detailed in Figure 68. It consists of four activities and produces four models.

The first activity, AIP2EAC, uses the “Gaia operators transformation templates” for

transforming the process part of the agent interaction protocol model to a

3 SWI-Prolog offers a comprehensive Free Software Prolog environment. Find out more in http://www.swi-

prolog.org/
4 Gorgias is a general argumentation framework that combines the ideas of preference reasoning and abduction.

Find out more in http://www.cs.ucy.ac.cy/~nkd/gorgias/

117

statechart, namely the inter-agent control model (EAC). A state diagram is generated

by an initial AND-state named after the protocol. Then, all participating roles define

OR sub-states. The right hand side of the liveness formula of each role is transformed

to several states within each OR-state by interpreting the Gaia operators in the way

described in Table 5. This table has three columns. The first depicts a Gaia formula

with a certain operator. The second shows how to draw the statechart relevant to

this operator using the common statechart graphic language. The third shows how

the same Gaia formula is transformed to the statechart representation defined in

this thesis (as a tree branch).

Figure 67. The ASEME Design Phase

Figure 68: The “Define Inter-agent Control Model” work definition

118

The tree branch representation (in Table 5) uses grey arrows to connect a father

node to its sons. On the top left of each node the label of the node is shown. The

root node of each branch is supposed to have a label Land the other nodes are

labeled accordingly. The type of each node is written centered in the middle of the

node. Finally, the name of each node is centered in the bottom of each node. The

reader should note that the nodes for the x or y variables of the Gaia formula do not

have a node type. This is because it is possible that they are basic or non-basic

nodes. If they are basic then the node’s type is set to BASIC, otherwise another

branch is added with this node as the root and as the reader can notice all templates

set the type of the root of the branch.

Table 5. Templates of extended Gaia operators (Op.) for Statechart generation

Op. Template Tree Branch

x | y

x*

x
ω

x . y

x+

119

Op. Template Tree Branch

[x]

|x
ω
|
n

Sx

Sy

Sx

Sx

7 n instances

L.2

AND

L.2.2

OR

L.2.1

OR

L

|xω|n
OR

L.2.1.2 L.2.2.2

x x
... ...

L.2.n

OR

L.2.n.2

x
...

...

L.1

START

L.2.1.1

START

L.2.2.1

START

L.2.n.1

START

x || y

Sx

Sy

Sx

Sy

L.2

AND

L.2.2

OR

L.2.1

OR

L

x||y
OR

L.2.1.2

x
...

L.1

START

L.3

END

L.2.1.1

START

L.2.1.3

END

L.2.2.1

START

L.2.2.3

END

L.2.2.2

y
...

A designer can use the Gaia transformation templates to transform the liveness

formula to a statechart. Alternatively, he can use an implementation of the recursive

algorithm for building the statechart tree, which is presented in Listing 3 and it is

executed in order to transform the liveness model to a statechart as it is defined in

Definition 3.7 (see page 94). This algorithm is an important result of this thesis and

the designer can use the Eclipse IDE with the SRM2IAC project presented in §5.2.2

for automating the transformation.

Listing 3. The transformation process from a liveness formula to a statechart in

pseudocode.

Program transform(liveness)
 Var root = 0

 S = S ∪ {root}
 Name(root) = liveness->formula1->leftHandSide

120

 createStatechart(formula1->expression, root)
End Program

Procedure createStatechart(expression, father)
 var terms = 0
 for each termi in expression
 terms = terms + 1
 end for
 if terms > 1 then
 if expression is sequentialExpression then
 λ(father) = OR

 S = S ∪ {father.1}
 λ(father.1) = START
 var k=2
 for each termi in expression

 S= S ∪ {father.k}
 Name(father.k) = termi

 δ = δ ∪ {(father.(k-1), {}, father.k)}

 k = k + 1
 end for

 S = S ∪ {father.k}

 δ = δ ∪ {(father.(k-1), {}, father.k)}
 λ(father.k) = END
 else if expression is orExpression
 λ(father) = OR

 S = S ∪ {father.1}
 λ(father.1) = START

 S = S ∪ {father.2}
 λ(father.2) = CONDITION

 δ = δ ∪ {(father. 1, {}, father.2)}
 k = 3
 for each termi in expression

 S= S ∪ {father.k}
 Name(father.k) = termi

 δ = δ ∪ {(father.2, {}, father.k)}
 k = k + 1
 end for

 S = S ∪ {father.k}
 λ(father.k) = END
 var endNode = k
 k = k - 1
 while (k>2)

 δ = δ ∪ {(father.k, {}, father.endNode)}
 k = k – 1
 end while
 else if expression is parallelExpression
 λ(father) = OR

 S = S ∪ {father.1}
 λ(father.1) = START

 S = S ∪ {father.2}
 λ(father.2) = AND
 Name(father.2) = expression

 δ = δ ∪ {(father.1, {}, father.2)}

 S = S ∪ {father.3}
 λ(father.3) = END

 δ = δ ∪ {(father.2, {}, father.3)}
 k=1
 for each termi in expression

121

 S = S ∪ {father.2.k}
 λ(father.2.k) = OR
 Name(father.2.k) = “||”+termi

 S = S ∪ {father.2.k.1}
 λ(father.2.k.1) = START

 S = S ∪ {father.2.k.2}
 Name(father.2.k.2) = termi

 δ = δ ∪ {(father.2.k.1, {}, father.2.k.2)}

 S = S ∪ {father.2.k.3}
 λ(father.2.k.3) = END

 δ = δ ∪ {(father.2.k.2, {}, father.2.k.3)}
 k = k + 1
 end for
 end if
 for each termi in expression
 if termi is basicTerm
 handleBasicTerm(termi, getNode(father, termi)
 else
 if termi is of type ‘(‘term’)’ then
 createStatechart(term, getNode(father, termi))
 else if (termi is of type ‘[‘term’]’) or (termi is of type term’*’) then
 λ(parent(getNode(father, termi))) = OR

 S = S ∪ getNode(father, termi).1
 λ(getNode(father, termi).1) = START

 S = S ∪ getNode(father, termi).2
 λ(getNode(father, termi).2) = CONDITION

 S = S ∪ getNode(father, termi).3
 Name(getNode(father, termi).3) = term
 if term is basicTerm
 handleBasicTerm(term, getNode(father, termi).3)
 else
 createStatechart(term, getNode(father, termi).3)
 end if

 S = S ∪ getNode(father, termi).4
 λ(getNode(father, termi).4) = END

 δ = δ ∪ (getNode(father, termi).1, {}, getNode(father, termi).2)

 δ = δ ∪ (getNode(father, termi).2, {}, getNode(father, termi).3)

 δ = δ ∪ (getNode(father, termi).2, {}, getNode(father, termi).4)
 if termi is of type term’*’ then

 δ = δ ∪ (getNode(father, termi).3, {}, getNode(father, termi).3)
 end if

 δ = δ ∪ (getNode(father, termi).3, {}, getNode(father, termi).4)
 else if (termi is of type term’

ω
’) or (termi is of type term’+’) then

 λ(getNode(father, termi)) = OR

 S = S ∪ getNode(father, termi).1
 λ(getNode(father, termi).1) = START

 S = S ∪ getNode(father, termi).2
 Name(getNode(father, termi).2) = term
 if term is basicTerm
 handleBasicTerm(term, getNode(father, termi).2)
 else
 createStatechart(term, getNode(father, termi).2)
 end if

 δ = δ ∪ (getNode(father, termi).1, {}, getNode(father, termi).2)

 δ = δ ∪ (getNode(father, termi).2, {}, getNode(father, termi).2)
 if termi is of type term’+’ then

 S = S ∪ getNode(father, termi).3

122

 λ(getNode(father, termi).3) = END

 δ = δ ∪ (getNode(father, termi).2, {}, getNode(father, termi).3)
 end if
 else if termi is of type ‘|’term’

ω
|
n
’ then

 λ(getNode(father, termi)) = AND
 For j=1 to n

 S = S ∪ getNode(father, termi).j
 λ(getNode(father, termi).j) = OR

 S = S ∪ getNode(father, termi).j.1
 λ(getNode(father, termi).j.1) = START

 S = S ∪ getNode(father, termi).j.2
 Name(getNode(father, termi).j.2) = term
 if term is basicTerm
 handleBasicTerm(term, getNode(father, termi).j.2)
 else
 createStatechart(term, getNode(father, termi).j.2)
 end if

 δ = δ ∪ (getNode(father, termi).j.1, {}, getNode(father, termi).j.2)

 δ = δ ∪ (getNode(father, termi).j.2, {}, getNode(father, termi).j.2)
 End for
 end if
 end if
 end for
end function

Function getNode(father, term)
 QueuedList queue
 queue.addLast(father)
 Do while queue.notEmpty()
 elementi = queue.getFirst()
 If Name(elementi) = term then
 Return elementi
 Else
 For each sonj in sons(elementi)
 queue.addLast(sonj)
 end for
 End if
 end do
end function

Function handleBasicTerm(term, node)
 Var isBasic = true
 For each formulai in liveness
 If (formulai->leftHandSide = term)
 createStatechart(formulai->expression, node)
 isBasic = false
 End if
 end for
 If isBasic
 λ(node) = BASIC
 end if
end function

The liveness model for the EAC model for a protocol named protocol_name including

n roles is the:

 protocol_name = (role 1 process) || (role 2 process) || … || (role n process)

123

For the case of the meetings management system the liveness formula for the

negotiate meeting protocol is the (using the defined processes in Table 4):

negotiate_meeting_protocol = (receive proposed date. (decide response. send

results. receive outcome)+) || (decide on date. send proposed date. receive

results)+. send fixed date)

After applying the transformation algorithm, the statechart depicted in Figure 69 is

created.

receive

proposed

date

negotiate meeting date protocol

send fixed

date

decide on

date

send

proposed

date

receive

results

decide

response

send

results

receive

outcome

 personal assistant (p) meetings manager (m)

Figure 69. The automatically generated EAC model for the “Negotiate Meeting

Date” protocol.

Then, in the next activity, the designer defines the message performatives allowed

within the protocol. A message is expressed by P(x,y,c) where P is the performative, x

is the sender, y the receiver and c the message body. For the meetings management

system, P ∈ {accept, propose, reject, inform}. The designer can use any text editor for

defining the message types.

The items that the designer must define at the next activity are the data structures

used for defining the protocol parameters (also referred to as the ontology), the

timers and the message contents (also part of the ontology). A first issue in the

ontology is how to reference agents. According to the FIPA standard (FIPA TC Agent

Management, 2004) an agent is identified by the Agent Identifier (AID) that contains

its name, a list of addresses and a list of resolvers. For the case of software agents

the use of FIPA standards can save a developer a lot of time. The ontology for the

124

meetings management system is presented in Figure 70. The designer can use a

number of existing tools or frameworks for producing the ontology. UML class

diagrams (as in Figure 70 for the meetings management system) or the Protégé5

ontology editor (as will be shown later in the MARKET-MINER case study) are

examples of graphical tools that can be used at this activity.

Figure 70. The Ontology for the meetings management system.

Finally, in the last activity of the “Define Inter-agent Control Model” work definition,

the transition expressions are defined. The resulting statechart for the negotiate

meeting date protocol (starting from the analysis model presented in Table 4) is

depicted in Figure 71.

The preconditions of the agent interaction protocol become the conditions of a

transition from a START state that targets the first state of the protocol for each role.

The preconditions for the meetings manager role, which have been described in free

text in the agent interaction protocol model (see rules for engaging in Table 4),

concern the arrangement of a meeting with a list of more than one participants

(personal assistants). They become the conditions for the transition that has as

source the START state within the meetings manager OR state. The conditions are

that the Meeting type (see the Meeting type definition in Figure 70) variable meeting

has the property isArranged equal to False and its personalAssistants list has more

than one entries. The first condition is expressed in logic-based format, i.e.

isArranged(meeting) = False, using the procedure that will be defined in the case study

later in this chapter (see §4.9.3) for transforming an ontology expressed in object-

oriented format (like in Figure 70) to logic-based format.

It is worth taking a close look to Figure 71 as it depicts a more complex protocol than

the one presented earlier in Figure 51 and one that implicates more than two

participants. There is a meetings manager role and more than one personal assistant

roles. Let’s see how the meetings manager role can manage this situation. If his

preconditions are met (as was shown in the previous paragraph), he enters the large

5 Protégé is a free, open source ontology editor and knowledge-base framework. Find out more in

http://protege.stanford.edu/

125

grey OR state. The START state causes a transition to the white OR state

automatically as there is no transition expression and again, using an automatic

transition from the START state the meetings manager enters the “decide on date”

state.

receive

proposed

date

propose(m, p, meeting)

negotiate meeting date protocol

[isArranged(meeting) = False ∧

personalAssistants(meeting, n) ∧ n > 1]

send fixed

date

∀ i, inform(m, pi, meeting),

0 < i ≤ N

/isArranged(meeting) = True

decide on

date

∀ i, propose(m, pi, meeting),

0 < i ≤ n

send

proposed

date

date(meeting, d) ∧ d≠∅

receive

results

∀i, accept(pi,m,meeting) ∨

 reject(pi,m,meeting),

0 < i ≤ n

∀i, accept(pi,m,meeting),

0 < i ≤ n

∃ i, reject(pi,m,meeting), 0 < i ≤ n

inform(m, p, meeting)

/isArranged(meeting) = True

decide

response

accept(p,m,meeting)

∨ reject(p,m,meeting)

send

results

receive

outcome

propose(m, p, meeting)

 personal assistant (p) meetings manager (m)

Figure 71. The complete EAC model for the “Negotiate Meeting Date” protocol.

The event date(meeting, d) ∧ d≠∅ implies that the transition to the “send proposed

date” state will only be taken after the date property of the meeting variable has

been assigned a value by the activity of the “decide on date” state. As soon as this is

achieved, the “send proposed date” state is entered. The event ∀i, propose(m, pi,

meeting), 0 < i ≤ n shows that this state can only be exited after n messages with

performative propose have been sent to the n different personal assistant

participants of this protocol (and meeting). After sending the messages the meetings

manager takes the transition to the “receive results” state. This state is itself exited if

n messages with performative either Reject or Accept have been received.

126

After the last transition, the white OR state must be exited. The reader can see that

there are two possibilities. One is towards the END state that is taken on the event

that all the personal assistants have sent messages with the Accept performative. If,

however there is even one personal assistant that has sent a message with the

Reject performative this state is re-entered and the procedure is repeated until all

the personal assistants reply with the Accept performative.

In the latter case the “send fixed date” state is entered. The activity of this state is

about sending a last Inform message to all the personal assistant agents participants,

which informs them about the final agreed meeting date. This is the enabling event

of the transition exiting this state and, before finishing, the predicate isArranged is

evaluated to True. The same action is undertaken by the final transition of the

personal assistant’s orthogonal component. Thus, in a successful completion of the

protocol both the personal assistants and the meetings manager have an arranged

agreed upon meeting.

The second work definition of the ASEME design phase, i.e. “Define intra-agent

control model”, is detailed in Figure 72. The intra-agent control is created by

transforming the liveness model of the role (SRM) to a state diagram (IAC). This is

achieved by interpreting the Gaia operators in the way described in Table 5. Initially,

the statechart has only one state named after the left-hand side of the first liveness

formula of the role model. Then, this state acquires substates. The latter are

constructed by reading the right hand side of the liveness formula from left to right,

and substituting the operator found there with the relevant template in Table 5. If

one of the states is further refined in a next formula, then new substates are defined

for it in a recursive way. The transformation process (SRM2IAC) is shown graphically

in Figure 65. The designer can use the Eclipse IDE with the SRM2IAC project

presented in §5.2.2 for automating the transformation.

The next activity imports the transition expressions from the inter-agent control

(EAC) for the part of the statechart containing a protocol (i.e. the part of the

statechart produced from the formula whose left hand side is a protocol capability).

For example, the expression for the transition from the activity “send results” to the

activity “receive outcome” in Figure 65 (IAC) must be the same as the one in Figure

71 (EAC). Thus, the designer must copy the transition expression from the EAC model

to the IAC model. The Sample Reflective Ecore Model Editor of Eclipse or any XML

editor can be used for graphically or textually (respectively) editing the IAC model.

The last activity of this work definition is about enriching the rest of the statechart

with transition expressions, updating the ontology if necessary. Again, the Sample

Reflective Ecore Model Editor of Eclipse or any XML editor can be used for editing the

transition expressions of the IAC model.

The final work definition of the ASEME design phase (i.e. “Define components”, the

last work definition shown in Figure 67) is about designing the activities that are

executed in each state. The input needed is the “Functionality table” to indicate the

technology (e.g. which library to import and which programming language to use),

the “Ontology” to show the data structures that will be used by this activity and the

“Intra-agent control model” that lists all the activities as states. The output depends

127

on the technology used for each activity and can be declarative or procedural

knowledge (or both).

Figure 72: The “Define Intra-agent Control Model” work definition

4.6 Implementation Phase

The implementation phase’s goal is to transform the platform independent model to

a platform dependent model, i.e. an implementation model. This phase can have

different instantiations according to the implementation platform. The

implementation phase details a transformation process of the PIM to PSM and then

to a computer program. The IAC model can be transformed to any language that is

supported by a statecharts-based case tool. Rhapsody, for instance can transform

the statechart model to C++ and Java code. However, it is important to provide a

transformation process for an agent development platform as the ASEME process is

about agent development.

In Chapter 5 (§5.2.3.2) the transformation process of the IAC model to agent code

using the JADE agent development platform is presented in detail. Using this process

the developer can automatically generate all JADE agent and behavior classes that

will be needed along with the classes representing the IAC model used variables.

Moreover, a large part of the needed code is automatically generated, or even the

totality of the code depending on the behaviour type. The JADE platform was

selected for demonstrating the capability to transform the IAC model to an agent

implementation for several reasons:

128

a) Bordini et al. (2006), in their survey of programming languages and platforms

for Multi-Agent Systems, found that the most popular agent platform is JADE

b) It is open source, thus available to anyone, a fact which increases the

potential visibility of this work

c) It has an excellent users community (about 4.5 messages per day in the jade-

develop mailing list for the year 2008) that helps new users to achieve their

goals quickly (minimizing learning time) and that continuously provides new

add-ons

d) It is compliant with the FIPA standards

e) It can be compiled for use on devices with limited resources such as PDAs and

mobile phones

However, the last paragraph of this chapter (4.9) also shows the usage of the

commercial Rhapsody tool for developing a Java language statecharts-based

prototype modeled by ASEME.

4.7 Verification and Optimization Phases

During the Verification Phase the system’s functionality is verified in comparison to

its requirements. The verification phase can be carried out in parallel for the three

different abstraction levels; however, the best approach is sequential: the software

components are tested for the successful implementation of algorithms, the agents

for the successful implementation of capabilities and the MAS for its overall correct

operation.

The Optimization Phase is concerned with the optimization of the system. The

algorithms in the capability level can be optimized in execution time or resource

consumption. In the agent level, the number of concurrently executing capabilities

can be optimized, i.e. how many instances of the “negotiate meeting date” capability

should the personal assistant be executing concurrently to meet his requirements.

Finally, in the societal level, the number of agents that will be instantiated and the

strategy for instantiating or destroying agents while the system is in operation is

optimized.

Both verification and optimization can be related to the concept of scalability.

Scalability (see Rana and Stout, 2000) is defined as the ability of a solution to work

when the size of the problem increases. A MAS can scale when the number of agents

in a platform increases or when the number of agents among several platforms

increases. To our knowledge the current AOSE methodologies rarely address the

issue and do not provide documented solutions. Sturm and Shehory (2004) after

performing an evaluation of AOSE methodologies concluded that scalability is not

supported by the methodologies.

129

In Chapter 6, a process model based approach for verification and optimization is

presented in detail. Moreover, the usage of this approach for the addressing of a

scalability issue in a real world system development process is presented as a case

study.

4.8 Support for Sub-dialogs

The work of Moore (2000) supports the possibility of an agent getting involved in a

sub-dialog when in a dialog. In AMOLA, the model for describing such dialogs is the

inter-agent control model (EAC). Moore supposed that the agent has access to a

repository of dialogs and dynamically selects a sub-dialog model whenever an

incoming message is not permitted by the existing dialog but is permitted by another

in the repository. In this section we show how AMOLA models such sub-dialogs.

AMOLA models use the following assumption: The role that starts a protocol (i.e.

sends the first message) assigns a conversation identification string (CIS) to it. This

token is also used by all following messages in the same protocol (or dialog). When a

message arrives, the agent checks its CIS and allocates it to the relevant receive

message activity for processing. This activity, however, will only use this message if it

triggers a state transition. If the message is not of the type expected, then it is not

used. By defining the way that such a message will be handled, sub-dialogs can be

allowed within dialogs: A message with a specific CIS that is not used by the relevant

protocol activity is treated as a new protocol message and is, thus, forwarded to all

activities that wait for similar performative messages. The first activity that uses it

gets priority for the specific CIS until its protocol finishes.

Let’s provide an example. Imagine that the meetings manager loses the scheduled

meetings data and needs to ask (after a first failed exchange of messages) the

participants of a new meeting for their schedules. This question is not foreseen by

the “Negotiate Meeting Date” protocol (see Figure 71). The personal assistant

presented in Figure 65 will disregard this question (he is just waiting for propose

messages). However, the personal assistant (PA) depicted in Figure 73 will be able to

answer the request. This PA implements another protocol, the “Provide Schedule

Information” protocol (on the right side of the figure) that is a simple protocol that

waits for a message, reads the user’s schedule and sends it back to the requester.

Being in the receive outcome sub-state of the negotiate meeting date protocol state

the PA waits either an inform or propose message from the Meetings Manager

(consult Figure 71 for the transition expressions). The request message for the user’s

schedule will arrive with the same CIS. The receive outcome state gets first the

chance to process this message, however it disregards it (is not a legal response).

Then the next activity that waits for a message, receive schedule request gets a

chance to process it. The activity finds that it is a legal message asking for the user’s

schedule. It processes it and then finishes. The Meetings Manager sends the inform

130

message as he found a date for the meeting and the receive outcome state finally

catches the response it has been waiting for.

Figure 73. The intra-agent control model supporting a sub-dialog

Thus, AMOLA caters for implementation of the theoretical concept of sub-dialogs as

it has been proposed by Moore. This is another originality of this thesis. The JADE

framework allocates messages using the policy described here. Therefore, if the

developer chooses to use JADE for the AMOLA models implementation (as it is

described in Chapter 5) then he can use sub-dialogs.

4.9 A Case Study: The MARKET-MINER project

The MARKET-MINER project is of great interest as a case study for ASEME and

AMOLA, as it demonstrates the capability of AMOLA to create models that will be

developed using just an object-oriented programming language such as Java and not

a specialized agent-oriented platform. Moreover, it demonstrates the development

of an agent that uses argumentation for decision making, a logic-based technology.

Firstly, the MARKET-MINER agent’s requirements are presented so that the reader

understands what the project aimed in achieving. A brief description of the used

argumentation framework follows in order to show how the agent would perform its

131

decision making. Then, the domain knowledge modeling procedure is presented.

This procedure is interesting, in a knowledge engineering point of view, because it

was developed using a popular open source tool and was used in object-oriented

format (for use by the different agent modules) but also in logic format (for use by

the argumentation framework). The process of transforming the object oriented

ontology to a logic-based one is presented in detail. Finally, the ASEME process steps

followed are presented in detail demonstrating its use.

4.9.1 The MARKET-MINER Project. An Introduction

Automating the product pricing procedure in many different types of enterprises like

retail businesses, factories, even firms offering services is an important issue.

Product pricing is concerned with deciding on which price each of a firm’s products

will have in the market. The product pricing agent that is presented in this case study

allows for the integration of the views of different types of decision makers (like

financial, production, marketing officers) and can reach a decision even when these

views are conflicting. This is achieved with the use of argumentation.

Argumentation has been used successfully in the last years as a reasoning

mechanism for autonomous agents in different situations, as for example for

deliberating over the needs of a user with a combination of impairments (Moraitis

and Spanoudakis, 2007) and for selecting the funds that should be included in an

investment portfolio (Spanoudakis and Pendaraki, 2007c). It is the first time that it

was used for decision making in the retail business sector. Argumentation responded

well to the MARKET-MINER requirements, which demanded a system that would

have the possibility to apply a pricing policy adjusted to the market context, in the

meanwhile reflecting the points of views of diverse decision makers.

4.9.2 The Argumentation Framework

Decision makers, be they artificial or human, need to make decisions under complex

preference policies that take into account different factors. In general, these policies

have a dynamic nature and are influenced by the particular state of the environment

in which the agent finds himself. The agent's decision process needs to be able to

synthesize together different aspects of his preference policy and to adapt to new

input from the current environment. The product pricing decision maker was

modeled as such an agent.

In order to address requirements like the above, Kakas and Moraitis (2003) proposed

an argumentation based framework to support an agent's self deliberation process

for drawing conclusions under a given policy. The Gorgias open source framework

based on the Prolog language provides an implementation for the framework of

Kakas and Moraitis. It was the framework that was chosen for modeling the decision

making functionality of the MARKET-MINER product pricing agent.

132

Gorgias defines a specific language for the object level rules and the priorities rules

of the second and third levels. A negative literal is a term of the form neg(L). The

language for representing the theories is given by rules with the syntax:

rule(Signature, Head, Body)

In this rule syntax, Head is a literal, Body is a list of literals and Signature is a

compound term composed of the rule name with selected variables from the Head

and Body of the rule. The predicate prefer/2 is used to capture the higher priority

relation (h_p) defined in the theoretical framework. It should only be used as the

head of a rule. Using the previously defined syntax we can write the rule:

rule(Signature, prefer(Sig1, Sig2), Body).

This rule means that the rule with signature Sig1 has higher priority than the rule

with signature Sig2, provided that the preconditions in the Body hold. If the modeler

needs to express that two predicates are conflicting he can express that by using the

rule:

conflict(Sig1,Sig2).

This rule indicates that the rules with signatures Sig1 and Sig2 are conflicting. A

literal’s negation is considered by default as conflicting with the literal itself.

4.9.3 Domain Knowledge Modeling

Firstly, the domain knowledge was gathered in free text format by questioning the

decision makers that participate in the product pricing procedure. They were officers

in Financial, Marketing and Production departments of firms in the retail business

but also in the manufacture domain. Then, their statements were processed aiming

on one hand to discover the domain ontology and on the other hand the decision

making rules. For example, let’s consider the expression “If the firm has a high-low

strategy then if it advertises a product and its price is low the products that

accompany it in the consumers’ basket are priced high”. This expression identifies

the concepts “firm strategy” and “product”. The concept firm strategy can have the

property “high-low” and the product can have the property “price” and can be

related to other products as “accompanied in the consumer’s basket by” them.

The next step was to ask a team of decision makers to decide on priorities between

the different conflicting extracted rules. These priorities could be default or

dependent on context.

The Protégé ontology editor was used for defining the domain concepts and their

properties and relations. In Figure 74, the Product concept and its properties are

presented. The reader can see the properties identified previously hasPrice and

isAccompaniedBy. Price is defined as a real number (Float) and isAccompaniedBy

relates the product to multiple other instances of products that accompany it in the

consumer’s cart. In the figure, the firm strategy concept is also presented. Its

properties are all Boolean and represent the different strategies that the firm can

133

have activated at a given time. For example, the hitCompetition property is set to

true if the firm’s strategy is to reduce the sales of its competitors. The property

retail_business characterizes the firm as one in the retail business sector.

Figure 74. The MARKET-MINER Product and FirmStrategy ontology concepts.

The knowledge base definition, however, needed to be expressed in logic-based

format as the Gorgias argumentation framework uses the Prolog language. The

following procedure must be used in order to use the concepts and their properties

as they are defined in Protégé:

• A Boolean property is encoded as a unary predicate, for example the

advertisedByUs property of the Product concept is encoded as

advertisedByUs(ProductInstance).

• A property with a string, numerical, or any concept instance value is encoded

as a binary predicate, for example the hasPrice property of the Product

concept is encoded as hasPrice(ProductInstance, FloatValue).

• A property with a string, numerical, or any concept instance value with

multiple cardinality is encoded as a binary predicate in two ways:

o The first possibility is for the second term of the predicate to be a list.

Thus, the isAccompaniedBy property of the Product concept is

encoded as isAccompaniedBy(ProductInstance, [ProductInstance1,

ProductInstance2, …]), where product instances must not refer to the

same product.

o A second possibility is to create multiple predicates for the property.

For example the hasProductType property of the Product concept is

134

encoded as hasProductType(ProductInstance, ProductTypeInstance).

In the case that a product has more than one product types, one such

predicate is created for each product type.

Then, the Gorgias framework was used for writing the rules. The goal of the

knowledge base would be to decide on whether a product should be priced high, low

or normally. Thus it emerged, the hasPricePolicy property of the Product concept.

After this decision, the object-level rules were written, each having as head the

predicate hasPricePolicy(Product, Value) where Value could be low, high or normal –

the relevant limitation for this predicate is also defined in the ontology (see the

hasPricePolicy property of the Product concept in Figure 74).

Then, the different policies were defined as conflicting, thus only one policy was

acceptable per product. In order to resolve conflicts, the firm (executive) officers

were consulted. They defined priorities over the conflicting object rules. Consider,

for example, the rules presented in Listing 4.

Listing 4. An extract of the Gorgias rules for the MARKET-MINER project. Variables

start with a capital letter as in Prolog.

…
rule(r1_2_2(Product), hasPricePolicy(Product, low),

[hitProductTypeCompetition(ProductType), hasProductType(Product, ProductType)]).

rule(r2_3(Product), hasPricePolicy(Product, high),

[newTechnologyProduct(Product), advertisedInvention(Product)]).

rule(pr1_2_6(Product), prefer(r1_2_2(Product), r2_3(Product)), []).
…

Rules r1_2_2 and r2_3 are conflicting if they are both activated for the same

product. The first states that a product should be priced low if the firm wants to hit

the competition for its product type, while the second states that a new technology

product that is an advertised invention should be priced high. To resolve the conflict

the pr1_2_6 priority rule is added, which states that r1_2_2 is preferred to r2_3.

4.9.4 The Product Pricing Agent

This section presents the market-miner product pricing agent (also referred to as

MIPA) development process. Then two important aspects of it are presented in

detail, the decision making module and the human-computer interaction.

MIPA (the market-miner product pricing agent) was engineered using ASEME. During

the analysis phase, the actors and the use cases related to the agent-based system

were identified (see Figure 75). The system actor is MIPA, while the external actors

that participate in the system’s environment are the user, external systems of

competitors, weather report systems (as the weather forecast influences product

135

demand as in the case of umbrellas) and municipality systems (as local events like

concerts, sports, etc, also influence consumer demand). The actors were too few to

need to start with a requirements analysis phase. Firstly, the general use cases (like

interact with user) were identified and they were then elaborated in more specific

ones (like present information to the user and update firm policy) using the

<<include>> relation.

Figure 75. MIPA Use Case Diagram

Then, the roles model was created, as it is presented in Figure 76(a). This model

defines the dynamic aspect of the system, general use cases were transformed to

capabilities, while the specific ones were transformed to activities.

The next step was to associate each activity to a functionality, i.e. the technology

that would be used for its implementation. In Figure 76(b) the reader can observe

the capabilities, the activities that they decompose to and the functionality

associated with each activity. The choice of these technologies is greatly influenced

by non-functional requirements. For example the system will need to connect on

diverse firm databases. Thus, the JDBC6 technology was selected, as it is database

provider independent.

The last step, before implementation, is to extract from the roles model the

statechart that resembles the agent. This is achieved by transforming the liveness

formula to a statechart in a straightforward process that uses templates to transform

activities and Gaia operators to states and transitions (see the transformation

process in §4.5 for more details). The resulting statechart, i.e. the intra-agent control

(as it is called in ASEME) is depicted in Figure 77. It was defined in the Rhapsody

CASE tool. This tool automates the process of transforming a statechart to C++, Java,

C and Ada code.

6 The Java Database Connectivity (JDBC) API is the industry standard for database-independent connectivity

between the Java programming language and a wide range of databases – SQL databases and other tabular data

sources, such as spreadsheets or flat files. The JDBC API provides a call-level API for SQL-based database

access. Find out more in http://java.sun.com/javase/technologies/database/

136

Role: Product Pricing Agent
Liveness:
product pricing agent = (decide on

pricing policy)
ω
 || (interact with

user)
ω
 || [(get market

information)
ω
]

decide on pricing policy = wait for
new period. get products
information. determine pricing
policy. fix prices.

interact with user = (present
information to the user | update
firm policy)+

get market information = get weather
information. get local
information. get competition
information. update facts

(a) (b)

Figure 76. MIPA Role Model (a) and the relation between Capabilities, Activities

and Functionalities (b).

Figure 77. MIPA Intra-agent Control Model (snapshot from the Rhapsody
©

 CASE

tool).

137

In Listing 5 an extract from the automatically generated code for MIPA is presented.

It is the place where the programmer is instructed to write the code for connecting

to the web service for getting products information as the entry activity of the state.

In the relevant java method’s comments the reader can also observe the position of

the specific state activity in the states hierarchy as it is represented by the

Rhapsody
©

 tool (ROOT. ProductPricingAgent. ForeverDecideOnPricingPolicy.

DecideOnPricingPolicy. GetProductsInformation). The automatically generated code

for the MIPA intra-agent control is included in its totality in Annex 7.

Listing 5. An extract from the automatically generated Product_Pricing_Agent java

class by the Rhapsody
©

 CASE tool.

…
 public void GetProductsInformationEnter() {
 //#[state
ROOT.ProductPricingAgent.ForeverDecideOnPricingPolicy.DecideOnPricingPolicy.GetProdu
ctsInformation.(Entry)
 //connect to web service
 //#]
 }
…

The details of the implementation beyond this point are not relevant to this thesis;

however, the reader can find more information about the implementation in

Spanoudakis and Moraitis (2008c and 2009).

4.9.5 Evaluation

The product pricing agent application was evaluated by SingularLogic SA

(http://www.singularlogic.eu), the largest Greek software vendor for SMEs. The

Software business unit is involved in the development and provision of business

software products for the SME market, the provision of services (implementation

and adaptation of applications, training and maintenance services), as well as the

promotion and support of products by third parties, both in the entirety of the Greek

market and the Balkan markets. The unit's software applications are trusted by

40,000 businesses both in Greece and abroad.

The MARKET-MINER project included the application analysis, design,

implementation and evaluation phases. It also produced an exploitation plan (Toulis

et al., 2007a). The application evaluation goals were to measure the overall

satisfaction of its users. In the evaluation report (Toulis et al., 2007b) three user

categories were identified, System Administrators, Consultants and Data Analysts.

At this point the reader should note that the MARKET-MINER project had a wider

scope than that of the product pricing agent, therefore this paragraph will focus in

138

the part of the study relevant to it - the pricing application. Thus, only the

Consultants and System Administrators user categories are relevant (data analysts

were engaged in the data mining module of MARKET-MINER that is beyond the

scope of this thesis).

The following criteria were used for measuring user satisfaction:

• Performance (C1): This criterion measures the capability of the system to

produce valid and accurate results.

• Usability (C2): This criterion measures the satisfaction of the user with regard

to his experience in using the system, including the training phase and the

ease of achieving his tasks.

• Interoperability (C3): MARKET-MINER depends heavily on its seamless

integration with legacy systems databases. Thus we needed to measure the

openness of the system or the efficiency of connecting it to the existing

databases.

• Security and Trust (C4): MARKET-MINER accesses enterprise databases and

handles sensitive information relevant to the firm’s market strategy. Thus, it

is important that the user feels that the data are securely handled and

remain confidential.

The users expressed their views in a relevant questionnaire where each criterion was

presented with several sub-criteria and they marked their experience on a scale of

one (dissatisfied) to five (completely satisfied) and their evaluation of the

importance of the criterion on a scale of one (irrelevant) to five (very important). The

evaluation was based on 25 questionnaires, 15 of which were completed by decision

makers (with financial background), seven by data analysts (computer science

background) and three by system administrators.

The consultants were experienced in applying business intelligence solutions to

enterprises mostly in the retail sector. The retail sector was identified as the most

important for the project’s exploitation by the exploitation strategy report. They

evaluated the system with regard to all the criteria. The system administrators were

experienced in setting up and maintaining information systems in the business

software sector. They evaluated the system only with regard to the criteria C3 and

C4. Also, experienced independent scientists in the economic (as consultants) and

computer science (as system administrators) fields working at another MARKET-

MINER project partner (Informatics and Telematics Institute, Greece) evaluated the

application for the same criteria.

The Process of Evaluation of Software Products, also referred to as MEDE-PROS

(Colombo and Guerra, 2002) was used for evaluating the MARKET-MINER system.

MEDE-PROS is in use for over 15 years, continually evolving and it has been applied

to more than 360 software products.

The results of the evaluation of the MARKET-MINER software prototype are

presented in Table 6 and they have been characterized as “very satisfactory” by the

139

SingularLogic research and development software assessment unit. MARKET-MINER

has been decreed as worthy for recommendation for commercialization and addition

to the Firm’s software products suite.

Table 6. MARKET-MINER evaluation results. The rows with white background are

those of the consultants, while those with grey background represent the

evaluation of the system administrators.

Criterion Criterion Performance Criterion Importance

C1 86% 0,78

C2 83% 0,88

C3 91% 0,88

C4 83% 0,64

C3 86% 0,92

C4 61% 0,92

140

141

Chapter 5

Metamodels and Model

Transformations

This chapter aims to show the technical details for implementing the model

transformations that were introduced in §Chapter 4 and that occur in the ASEME

process. Model transformations allow the models of a previous phase to be

automatically transformed to models of a next phase. The requirement for defining a

model transformation procedure is the existence of metamodels that describe the

source and target models.

There are four types of transformation techniques (Langlois et al., 2007) each of

which is handled by different technologies:

• Model to Model (M2M) transformation. This kind of transformation is used

for transforming a type of graphical model to another type of graphical

model. An example of such transformation is the SAG2SUC transformation

where a System Actors Goals (SAG) diagram is transformed to a System Use

Case (SUC) diagram. A M2M transformation is based on the source and target

metamodels and defines the transformations of elements of the source

model to elements of the target model.

• Text to Model (T2M) transformation. This kind of transformation is used for

transforming a textual representation to a graphical model. The textual

representation must adhere to a language syntax definition usually using

BNF. A liveness formula proposes such a kind of syntax. The graphical model

must have a metamodel. Then, a transformation of the text to a graphical

model can be defined, as in the case of the SRM2IAC transformation.

142

• Model to Text (M2T) transformations. Such transformations are used for

transforming a visual representation to code (code is text). Again, the syntax

of the target language must be defined along with the metamodel of the

graphical model.

• Text to Text (T2T) transformations. Such transformations are used for

transforming a textual representation to another textual representation. This

is usually the case when a program written for a specific programming

language is transformed to a program in another programming language.

In the heart of the model transformation procedure is the Eclipse Modeling

Framework (EMF), as it was presented by Budinsky et al. (2003). EMF unifies Java,

XML, and UML technologies, allowing the modeler to switch between them as they

provide the same information in a different representation. Figure 78 shows how

EMF unifies these three. Regardless of which one is used to define it, an EMF model

is the common high-level representation that "glues" them all together.

Figure 78. The EMF model unifies Java, XML, and UML technologies (Budinsky et

al., 2003).

Ecore (Budinsky et al., 2003) is EMF’s model of a model (metamodel). Using ecore, a

modeler can define models. It functions as a metametamodel and it is used for

constructing metamodels. It defines that a model is composed of instances of the

EClass type, which can have attributes (instances of the EAttribute type) or reference

other EClass instances (through the EReference type). Finally, EAttributes can be of

various EDataType instances (such are integers, strings, real numbers, etc). Figure 79

shows the ecore metamodel in detail.

A similar technology, the Meta-Object Facility (MOF), is an Object Management

Group (2001) standard for representing metamodels and manipulating them. There

are a number of essential concepts used in MOF modeling. A Package is used to

encapsulate a collection of related Classes and Associations. Packages can also

contain simple type definitions. Classes exist in the commonly-used sense of the

word, describing an object and its properties. These properties are represented

through Attributes and References, which can be inherited using a multiple-

inheritance system. Attributes have a name and a type. This includes a range of

143

types from basic types such as integers, strings, and booleans to more complex types

such as enumerations, and through to structured types. In addition, attributes have

both upper and lower limits on the number of times that they can appear within a

class instance. An Association is used to represent a relationship between instances

of two classes, each of which plays a role within the association. Associations can

have the additional property of containment; an association represents a

containment relationship if one of the participant classes does not exist outside the

scope of the other. A Class participating in an association can also contain a

Reference to the association. A reference appears much like an attribute, but reflects

the set of class instances that participate in the Association with the containing class

instance.

Figure 79. The Ecore metamodel (Budinsky et al., 2003).

MOF is older than EMF and it influenced its design. MOF was initially designed

primarily for use with the Common Object Request Broker Architecture (CORBA).

CORBA is an architecture that enables programs, called objects, to communicate

with one another regardless of what programming language they were written in or

what operating system they're running on.

EMF, on the other hand, is a product of the Eclipse project, an open source project

and was intended as a low-cost tool to obtain the benefits of formal modeling and

Java code generation. As a consequence, one could say that EMF took a bottom-up

approach whereas MOF took a top-down approach (Gerber and Raymond, 2003).

However, the EMF meta-model is simpler than the MOF meta-model in terms of its

concepts, properties and containment structure, thus, the mapping of EMF’s

concepts into MOF’s concepts is relatively straightforward and is mostly 1-to-1

translations. EMF is used today by the IBM WebSphere/Rational product family,

other Independent Software Vendors (ISVs) like TogetherSoft, Ensemble, Versata

and Omondo and a large open source community becoming a de facto standard in

MDE. Moreover, third parties define MDE tools based on EMF technology, like the

144

openArchitectureWare (oAW) platform for model-driven software development. For

all these reasons it was decided that for the ASEME metamodeling, the EMF

technology would be used.

In the following, the AMOLA metamodels are presented in detail. Then, the

automatic model transformations that occur in the ASEME process are described

along with the utilized technologies. Finally, the overall tool supported MDE ASEME

process is summarized in §5.3.

5.1 The Metamodels

Bernon et al. (2005) present the metamodels of the most popular AOSE

methodologies. These include metamodels for the Gaia and Tropos methodologies.

These models were used as a basis for defining the SAG and SRM metamodels. The

SUC and IAC metamodels were mainly inspired by the UML metamodel. Existing

metamodels can be found in ecore format (and a number of other formats as well) in

the zoos repository of the AtlanMod (for "Atlantic Modeling") team (2008), located

in Nantes (France).

The following paragraphs define the AMOLA metamodels. Each time, the metamodel

that inspired the AMOLA metamodel is presented as well. The goal of the author in

doing so is twofold. On one hand the reader can see for himself that models

following the original metamodel can be transformed to AMOLA models with a

straightforward process (achieved just by aligning concepts), thus such method

fragments can be easily inserted in the AMOLA process. On the other hand, the

simplicity of the AMOLA models will become evident, showing that it is ideal for agile

development. The metamodels are presented in figures so that they are better

understood by the reader. They are, however, also included in their ecore XML

format in Annex 3. The graphical models are automatically generated using the

Eclipse EMF tools.

5.1.1 System Actor Goal model (SAG)

The SAG model is a subset of the Actor model of the Tropos ecore model (Actor

Concept 1.0) as it is maintained in the zoos repository. It is the same metamodel that

appears in Susi et al. (2005). It is presented graphically in Figure 80.

As the AMOLA System Actors Goals diagram does not use all these concepts a more

compact version of the Tropos Actor Concept metamodel has been defined, the one

that appears in Figure 81. Thus, there are the Actor and Goal concepts. The actor

references his goals using the EReference my_goal, while the Goal references a

unique depender and zero or more dependees (according to §3.2.1). The reader

should notice the choice to add the requirements EAttribute of Goal where the

145

“requirements per goal” (RPG) information is stored. The SAG metamodel is

presented in ecore XML format in Listing 20 in Annex 3.

Figure 80. The Tropos Actor Concept metamodel (from AtlanMod repository).

Figure 81. The AMOLA SAG metamodel

5.1.2 Use case model (SUC)

The same procedure was followed for defining the SUC metamodel. The UML

metamodel is a huge metamodel but a fragment of it including the concepts related

to use case diagrams is presented in Figure 82. The fragment is available as-is in the

AtlanMod (2008) zoos site.

146

Again, a compact metamodel containing the concepts used by AMOLA has been

defined using the ecore metametamodel and it is presented in Figure 83. It follows

the definitions using free text of §3.3.1.The concept UseCase has been defined that

can include and be included by other UseCase concepts. It interacts with one or

more roles, which can be Human roles (HumanRole) or Agent roles (SystemRole).

The SUC metamodel is presented in ecore XML format in Listing 21 in Annex 3.

Figure 82. The Usecase fragment of the UML metamodel (from AtlanMod

repository).

Figure 83. The AMOLA SUC metamodel

147

5.1.3 Role model (SRM)

The SRM model is a subset of the GAIA 1.0 ecore model as it is archived in the zoos

repository of the AtlanMod (2008). It is the same metamodel that appears in Bernon

et al. (2005). It is presented graphically in Figure 84.

Figure 84. The GAIA metamodel (from AtlanMod repository).

A more compact metamodel containing the concepts used by AMOLA (according to

§3.3.3) has been defined using the ecore metametamodel and it is presented in

Figure 85. The SRM metamodel defines the concept Role that references the

concepts:

• Activity, that refers to a simple activity with two attributes, name (its name)

and functionality (the description of what this activity does),

• Capability that refers to groups of activities (to which it refers) achieving a

high level goal, and,

148

• Protocol. The protocol’s attributes name and participant refer to the relevant

items in the EAC model.

The Role concept also has the name and liveness attributes (the first is the role name

and the second its liveness formula). The SRM metamodel is presented in ecore XML

format in Listing 22 in Annex 3. The reader should note that the functionality

attribute of the Activity concept incorporates the information that is included in the

AMOLA Functionality Table (associate each activity to a unique functionality).

Figure 85. The AMOLA SRM metamodel.

5.1.4 Intra-agent control model (IAC)

The inspiration for defining the IAC metamodel mainly came from the UML

statechart definition (presented in Figure 86).

Aiming to define the statechart using the AMOLA definition of statechart (§3.4.1),

the IAC metamodel differs significantly from the UML statechart (see Figure 87).

However, a UML statechart can be transformed to an IAC statechart although some

elements would be difficult to define (UML does not cater for transition expressions

and association of variables to nodes).

Thus, the IAC metamodel contains nodes and transitions according to Definition 3.7

in §3.4.1. The metamodel defines a Model concept that has nodes, transitions and

variables EReferences. Note that it also has a name EAttribute. The latter is used to

define the namespace of the IAC model. The namespace should follow the Java or C#

modern package namespace format (see a sample namespace for the meetings

management system in the next section with the transformations).

149

Figure 86. The Statecharts fragment of the UML metamodel (from AtlanMod

repository).

Figure 87. The AMOLA IAC metamodel.

The nodes contain the following attributes (followed by the relevant concept name

in the statechart definition):

• name (Name). The name of the node,

• type (λ). The type of the node (one of AND, OR, BASIC, START, END),

• label (label). The node’s label, and

• activity (Activity). The activity related to the node.

150

Nodes also refer to variables. The Variable EClass has the attributes name and type

(e.g. the variable with name “count” has type “integer”). Finally the transitions have

four attributes:

• name, usually in the form <source node label>TO<target node label>

• TE, the transition expression following the relevant grammar (see Listing 2)

• source, the source node, and,

• target, the target node.

 The IAC metamodel is presented in ecore XML format in Listing 23 in Annex 3.

5.2 The Transformations

Three types of transformation techniques are used in the ASEME process. Firstly,

two M2M transformations occur, SAG2SUC (read SAG to SUC) and SUC2SRM, then a

T2M, the SRM2IAC and, finally, a M2T, the IAC2JADE. Each type of transformation

required a different technology use, including programming language, tools usage

and expertise in building a relevant project. However, now that the tools have been

created in Eclipse the ASEME developer can achieve the transformations with a

single “click”. This section describes how the transformation tools were realized in

the context of this thesis.

5.2.1 M2M Transformations

For model to model transformation the Atlas Transformation Language was used

(ATL). Another alternative to Atlas would be the Query-View Transformation

language, however, Atlas was better documented on the internet with a user guide

and examples, while the only resource located for QVT was a presentation.

Therefore, and as the requirements of both languages (ATL and QVT) are the same

(Jouault and Kurtev, 2006b) the decision was to choose the better documented one.

The structure of an ATL transformation project in the Eclipse Integrated

Development Environment (IDE) is shown in Figure 88. Three folders contain the files

used, the ATL_files folder containing the transformation scripts in ATL, the

metamodels folder containing the metamodels and the models folder containing the

models.

5.2.1.1 SAG2SUC transformation

The SAG2SUC transformation is a classic M2M transformation using ATL. The ATL

rules are presented in Figure 88. At the top, the IN and OUT metamodels are defined

151

followed by rules that have an input model concept instance and one or more output

concept model instances. The first rule (Goal2UseCase) takes as input a SAG Goal

concept and creates a SUC UseCase concept copying its properties. The ATL is

declarative and has catered for the cases that a concept references another. The

depender and dependee references of a SAG Goal are both transformed to interacter

references of the SUC UseCase. The ATL engine realizes that the transformation is

not about an EAttribute (like in the case of the name attribute) and searches the

rules to find one that transforms the types of the EReference (i.e. the SAG Actor

concepts to a SUC Role). It finds the second rule (Actor2Role) and fires it, thus

creating the EReference type objects and completing the first rule firing.

Figure 88. The eclipse ATL project for the SAG2SUC and the SUC2SRM M2M

transformations.

Thus, having the SAG2SUC.atl file the requirements for achieving a M2M

transformation are met and the general scheme presented in Figure 16 can be

instantiated to the one presented in Figure 89.

To execute the transformation the ATL Transformation type in the Eclipse Run

Configurations must be instantiated. It launches a dialog where the type of

metamodels (EMF in this case) is chosen along with the metamodel and model files

(see Figure 90). The source and target models for the meetings management

example are presented in Listing 34 (SAGModel.xmi) and Listing 35

152

(SUCModelInitial.xmi) in Annex 6 so that the reader can see the input and output

models of the transformation. Thus, if the ASEME modeler uses the same names for

his own models he can automatically cause the transformation by executing the

ASEME_SAG2SUC transformation. This holds for every transformation defined in this

chapter.

Figure 89. The SAG2SUC M2M transformation scheme.

Figure 90. The ATL Transformation Run Configuration of Eclipse.

153

5.2.1.2 SUC2SRM transformation

After the SAG2SUC transformation the modeler works on the SUC model (using the

Sample Reflective Ecore Model Editor of Eclipse) adding detail in the form of included

use cases, assigning specific technologies to the defined use cases and cardinality.

When he is finished he can proceed to the next transformation, the SUC2SRM one.

The ATL technology is again used and the rules for this transformation are presented

in Listing 6. It has one more rule as the UseCases can be transformed to either

Capabilities (if they include others) or to simple activities. This time, again, the first

rule (Role2Role) orchestrates the transformation procedure.

The transformation scheme is presented in Figure 91. The ATL rules are applied to

the refined SUC model and create the initial SRM model. The source and target

models for the meetings management example are presented in Listing 36

(SUCModelRefined.xmi) and Listing 37 (SRMModelInitial.xmi) in Annex 6. The ASEME

modeler just has to execute the ASEME_SUC2SRM ATL transformation.

Listing 6. The SUC2SRM ATL Transformation script (SUC2SRM.atl file).

-- @path SRM=/ASEME_ATL/metamodels/SRM.ecore

-- @path SUC=/ASEME_ATL/metamodels/SUC.ecore

module SUC2SRM; -- Module Template

create OUT : SRM from IN : SUC;

rule Role2Role {
 from

 i : SUC!Role

 to

 o_1 : SRM!Role (

 name <- i.name,

 activities <- Sequence {} ->

 union(i.interacts_with -> select(e | not(e.interacter->size()>1))),

 capabilities <- Sequence {} ->

 union(i.interacts_with -> select(e | e.interacter->size()>1))

)

}

rule UseCase2Activity {
 from

 i : SUC!UseCase ((not(i.interacter->size()>1))and(i.include->size()=0))
 to

 o_1 : SRM!Activity (

 name <- i.name,

 functionality <- i.specified_by

)

}

rule UseCase2Capability {
 from

 i : SUC!UseCase ((i.interacter->size()>1)or(i.include->size()>0))
 to

 o_1 : SRM!Capability (

 name <- i.name,

 activities <- i.include

)

}

154

Figure 91. The SUC2SRM M2M transformation scheme.

5.2.2 T2M – The SRM2IAC transformation

The trick in text to model transformations is to define the meta-model of the text to

be transformed. This can be done in the form of an EBNF syntax (for languages with

a grammar) or through string manipulation. Efftinge and Völter (2006) presented the

xtext framework in the context of the oAW project. According to their work, an xText

grammar is a collection of rules. Each rule is described using sequences of tokens.

Tokens either reference another rule or one of the built- in tokens (e.g. STRING, ID,

LINE, INT). A rule results in a meta type, the tokens used in the rule are mapped to

properties of that type (comments, name, attributes and references). xText is used

to automatically derive the meta model from the grammar. Then a textual

representation of a model following this grammar can be parsed and the meta-

model is automatically generated.

Rose et al. (2008) described an implementation of the Human-Usable Textual

Notation (HUTN) specification of OMG (Object Management Group, 2004) using

Epsilon, the Extensible Platform for Specification of Integrated Languages for mOdel

maNagement (Kolovos et al., 2006), which is a suite of tools for MDE. OMG created

HUTN aiming to offer three main benefits to MDE:

• a generic specification that can provide a concrete HUTN language for any

MOF model

• the HUTN languages to be fully automated both for production and parsing

• the HUTN languages to conform to human-usability criteria

An example of a HUTN-generated language is presented in Listing 7 (the text in bold

face is the literal text stream, whereas the text in bold-and-italic face describe

omitted detail which should not be taken literally).

155

Listing 7. A HUTN generated language example

FamilyPackage “id-001” {

Class instances here
Association instances or links here

}

HUTN mappings are defined using EBNF rules (see Listing 8). The italicized words

enclosed in angle brackets indicate a placeholder for a literal Family Package value

that must be substituted with an actual value (e.g., <PackageName>). The HUTN

example in Listing 7 adheres to the grammar extract presented in Listing 8.

Listing 8. An extract of the EBNF rules for HUTN mappings (Object Management

Group, 2004)

PackageInstance := PackageHeader { PackageBody }
PackageHeader := <PackageName> PackageIdentifier
…

The HUTN implementation architecture of the Epsilon platform is presented in Figure

92, where the reader can see the text model being transformed to an abstract syntax

tree (AST) model that is meta-model agnostic (does not depend to a meta-model or

modeling language). It can then be transformed to an intermediate model where

references between elements are resolved and which then can be validated with

regard to the HUTN specification. Then a second transformation creates the target

model which may be defined in EMF, MOF, or other modeling languages.

Figure 92. The HUTN implementation architecture (Rose et al., 2008)

The HUTN implementation automates the transformation process by eliminating the

need for a grammar specification by auto defining it accepting as input the relevant

EMF meta-model. This is the main reason for choosing HUTN for ASEME. In Figure 93

the eclipse project for the SRM2IAC transformation is presented. It is a simple Java

156

project where after installing the epsilon project, the HUTN nature (by right-clicking

on the project icon on the Package explorer) has been turned on. The input for this

transformation is the SRM refined model, mainly the liveness formula.

Figure 93. The Eclipse project for T2M transformation.

Then, the transformation process from a liveness formula to a statechart (IAC model)

presented in §4.5 (see Listing 3) is implemented in the “Liveness2HUTN.java” file

(presented in Listing 24 in Annex 4). As its name suggests, this Java program

transforms the liveness formula of an SRM role to a HUTN file. This transformation is

a T2T transformation, however, there is no specific MDE technique used for this (just

a Java string manipulation function). The algorithm creates a model including nodes,

transitions and variables objects by instantiating the relevant classes Model, Node,

Transition and Variable each of which has a method toHutnString() which prints the

element data in the format shown in Figure 93. The usage of the HUTN technology

also helped a lot in debugging the algorithm as the output was in human-readable

format.

The ASEME modeler just has to execute the “Liveness2HUTN.java” file in order to

create the HUTN representation of the IAC model. The .hutn file created for the

meetings management project from the liveness formula of the refined SRM model

is presented in Listing 39 (IACModelInitial.hutn) in Annex 6. Then, simply by right-

clicking to the hutn file and selecting to generate the model the initial IAC model is

generated (shown in XML format) in Listing 40 (IACModelInitial.model). An extract of

this file where the XML elements representing the Hutn representation part visible in

Figure 93 is presented in Listing 9.

Thus, the IAC model has now been initialized with the information available in the

SRM model and it can be refined in the design phase, again using the Sample

Reflective Ecore Model Editor of Eclipse.

157

Listing 9. An extract from the IACModelInitial.model file.

<?xml version="1.0" encoding="UTF-8" ?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:IAC="http://mi.parisdescartes.fr/ASEME/metamodels/IAC">
 <IAC:Node name="_open_group_ReadSchedule_or_RequestChangeMeeting_or_

RequestNewMeeting_close_group_" type="OR" label="0.2.1.2.2.2.3" activity="null" />
 <IAC:Node name="GetUserRequest" type="BASIC" label="0.2.1.2.2.2.2" activity="null"

/>

...

5.2.3 M2T Transformation

The last transformation type used in the ASEME process is M2T. The platform

independent IAC model must be transformed to a platform dependent one and to

executable code. Klatt (2007) takes a closer look in M2T transformation and

describes the usage of the Xpand language in the oAW project. The Xpand language

allows to define templates and to access functions defined in the Xtend language

(see more information below).

Another commonly used M2T transformation language is the Java Emitter Templates

(JET). It provides a framework and several facilities for code generation. JSP7 like

templates are used and by this it makes it easy to learn for developers already

familiar with this technology. It is easy to extend with custom tags like it is possible

for JSPs.

The advantages of Xpand are the fact that it is source model independent, which

means that any of the oAW project parsers can be used for common software

models such as MOF or EMF. Its vocabulary is limited allowing for a quick learning

curve while the integration with Xtend allows for handling complex requirements.

Then, oAW allows for defining workflows that can help a modeler to achieve

multiple parsings of the model with different goals. These are the reasons for

choosing Xpand for the ASEME M2T transformation.

An overview of the JADE framework, for which the target text model will be

generated is presented before the description of the transformation process.

5.2.3.1 The Java Agent Development Framework (JADE)

JADE (Bellifemine et al, 2007) is a software development framework fully

implemented in Java language aiming at the development of multi-agent systems

and applications that comply with FIPA standards for intelligent agents. JADE

provides standard agent technologies and offers to the developer a number of

features in order to simplify the development process:

7 JavaServer Pages (JSP) technology provides a simplified, fast way to create dynamic web content. Find more

information in http://java.sun.com/products/jsp/

158

• Distributed agent platform. The agent platform can be distributed on several

hosts, each of which executes one Java Virtual Machine.

• FIPA-Compliant agent platform, which includes the Agent Management

System the Directory Facilitator and the Agent Communication Channel (FIPA

TC Agent Management, 2002).

• Efficient transport of agent communication language (ACL) messages

between agents (FIPA TC Communication, 2002).

All inter-agent communication is performed through message passing and the FIPA

ACL is the language that is used to represent the messages. Each agent is equipped

with an incoming message box and message polling can be blocking or non-blocking

with an optional timeout. Moreover, JADE provides methods for message filtering.

The developer can apply advanced filters on the various fields of the incoming

messages such as sender, performative or ontology.

FIPA specifies a set of standard interaction protocols such as FIPA-request, FIPA-

query, etc. that can be used as standard templates to build agent conversations. For

every conversation among agents, JADE distinguishes the role of the agent that

starts the conversation (initiator) and the role of the agent that engages in a

conversation started by another agent (responder). According to the structure of

these protocols, the initiator sends a message and the responder can subsequently

reply by sending a not-understood or a refuse message indicating the inability to

achieve the rational effect of the communicative act, or an agree message indicating

the agreement to perform the communicative act. When the responder performs

the action he must send an inform message. A failure message indicates that the

action was not successful. JADE provides ready-made behaviour classes for both

roles, following most of the FIPA specified interaction protocols (FIPA TC

Communication, 2002). JADE provides the AchieveREInitiator and

AchieveREResponder classes, a single homogeneous implementation of interaction

protocols such as these mentioned above. Both classes provide methods for

handling all possible protocol states.

In JADE, agent tasks or agent intentions are implemented through the use of

behaviours. Behaviours are logical execution threads that can be composed in

various ways to achieve complex execution patterns and can be initialized,

suspended and spawned at any given time. The agent core keeps a task list that

contains the active behaviours. JADE suggests the use of one thread per agent

instead of one thread per behaviour to limit the number of threads running in the

agent platform. A scheduler, hidden to the developer, carries out a round robin

policy among all behaviours available in the queue. The behaviour can release the

execution control with the use of blocking mechanisms, or it can permanently

remove itself from the queue in run time. Each behaviour performs its designated

operation by executing the core method action().

Behaviour is the root class of the behaviour hierarchy that defines several core

methods and sets the basis for behaviour scheduling as it allows state transitions

159

(starting, blocking and restarting). The children of this base class are

SimpleBehaviour and CompositeBehaviour.

The classes that descend from SimpleBehaviour represent atomic simple tasks that

can be executed a number of times specified by the developer. The class

CyclicBehaviour models atomic behaviours that must be executed forever. So, its

done() method always returns false.

Classes descending from CompositeBehaviour support the handling of multiple

behaviours according to a policy. The actual agent tasks that are executed through

this behaviour are not defined in the behaviour itself, but inside its children

behaviours. The class SequentialBehaviour is a CompositeBehaviour that executes its

sub-behaviours sequentially and terminates when all sub-behaviours are done. The

class ParallelBehaviour is a CompositeBehaviour that executes its sub-behaviours

concurrently and terminates when a particular condition on its sub-behaviours is

met. Proper constants to be indicated in the constructor of this class are provided to

create a ParallelBehaviour that ends when all its sub-behaviours are done, when any

one among its sub-behaviour terminates or when a user defined number N of its

sub-behaviours have finished.

The developer creates his agents by extending the JADE Agent class. He can add any

number of behaviours along with defining the agent’s initialization and termination

handling functionality. A special descendant of the Agent class, the GUIAgent, allows

for the creation of agents with a graphical user interface (GUI), allowing for the

agent’s interaction with a human user. The latter is facilitated by a GUI event

exchange mechanism that also allows the definition of parameters that accompany

the event. Whenever a specified GUI event occurs the agent can add a new

behaviour passing to its constructor the relevant parameters and a reference to the

GUI so that the behaviour can reply to the user.

5.2.3.2 The IAC2JADE Transformation

The eclipse M2T project (IAC_EMF.generator) and its referenced projects are

presented in Figure 94. It references the IAC_EMF.edit and IAC_EMF.editor projects.

They are automatically generated by the IAC_EMF project that is an eclipse EMF

project. There, the IAC.genmodel (automatically generated from IAC.ecore) is used

to generate the edit and editor projects that contain the automatically generated

java classes for editing IAC models.

Figure 94 shows on the right side the refined IAC model for the meetings

management system. The first element in the model is the Model concept whose

name attribute, which is shown next to its type (Model), is the namespace of the

project (i.e. fr.parisdescartes.mi.meetingsmanagement).

The ASEME IAC2JADE transformation project is the IAC_EMF.generator (or simply

generator project). It has two main folders, the scr and the src-gen. The first one

contains the transformation templates and helper files, while the second is the one

that receives the generated java files. The transformation process is comprised of

multiple steps and the workflow file of oAW allows to define this process (another

160

advantage of using Xpand). The workflow file can be used to define execution

parameters, usually through property files, and file generating components.

The workflow file used in this process is presented in Listing 10. It initially loads some

parameters through a property file (the “workflow.properties” file is presented in

Listing 11 in detail), specifically the name of the IAC model file, the character

encoding used and the directory for producing the source code. Then, a component

(the one with with id xmiParser) parses the model file and validates it. A following

component cleans up the src-gen folder. Then, the next component generates a file.

The goal of this pass is to get the name of the model which corresponds to its

namespace. The “path.properties” file is generated that contains this name. This

component executes the Preprocessing template shown in Listing 12.

Figure 94. The JADE code generator project with its prerequisite projects in eclipse.

161

Listing 10. The workflow definition for the IAC2JADE transformation

(workflow.oaw).

<workflow>

 <property file="workflow.properties"/>

 <component id="xmiParser" class="org.openarchitectureware.emf.XmiReader">

 <modelFile value="${modelFile}"/>

 <metaModelPackage value="IAC.IACPackage"/>

 <outputSlot value="model"/>

 <firstElementOnly value="true"/>

 </component>

 <component id="dirCleaner"

class="org.openarchitectureware.workflow.common.DirectoryCleaner">

 <directory value="${srcGenPath}"/>

 </component>

 <component id="path_generator" class="org.openarchitectureware.xpand2.Generator">

 <metaModel id="mm" class="org.openarchitectureware.type.emf.EmfMetaModel">

 <metaModelPackage value="IAC.IACPackage"/>

 </metaModel>

 <expand value="templates::Preprocessing::pathProperty FOR model"/>

 <outlet path="${srcGenPath}/" overwrite='true'/>

 </component>

 <property file="${srcGenPath}/path.properties"/>

 <component id="code_generator" class="org.openarchitectureware.xpand2.Generator">

 <metaModel id="mm" class="org.openarchitectureware.type.emf.EmfMetaModel">

 <metaModelPackage value="IAC.IACPackage"/>

 </metaModel>

 <expand value="templates::Agent::javaClass FOR model"/>

 <outlet path="${srcGenPath}/${path}/">

 <postprocessor class="org.openarchitectureware.xpand2.output.JavaBeautifier"/>

 </outlet>

 </component>

</workflow>

Listing 11. The workflow properties file (workflow.properties)

modelFile=IACModelRefined.model

srcGenPath=src-gen

fileEncoding=UTF-8

Listing 12. The preprocessing xpand template file (Preprocessing.xpt)

«IMPORT IAC»
«EXTENSION fr::parisdescartes::mi::aseme::m2t::IACmodel::packageHelper»

«DEFINE pathProperty FOR IAC::Model»

 «FILE "path.properties"»

path=«packagePath()»

 «ENDFILE»
«ENDDEFINE»

The preprocessing Xpand template file imports the IAC metamodel namespace and

uses the packageHelper Xtend helper file shown in Listing 13. As the reader can see

162

the helper file just declares a function that can then be implemented by a

programming language, in this case Java. The full namespace of the Java class and

called method is included in the helper file method definition. The Java

implementation is shown in Listing 14; it gets the name of the processed IAC model

and replaces the dots with slashes so as to produce the folder for storing the

generated java files. In the case of the meetings management project for the

package namespace “fr.parisdescartes.mi.meetingsmanagement” the output of this

method is the “fr/parisdescartes/mi/meetingsmanagement”.

Listing 13. The packageHelper xtend file (PackageHelper.ext)

import IAC;

String packagePath(Model e) :

 JAVA fr.parisdescartes.mi.aseme.m2t.IACmodel.PackageHelper.packagePath(IAC.Model);

Listing 14. The packageHelper Java implementation class (PackageHelper.java)

package fr.parisdescartes.mi.aseme.m2t.IACmodel;

import IAC.Model;

public class PackageHelper {

 public static String packagePath(Model e) {

 System.out.print("defining the package path");

 String result =e.getName().replaceAll("\\.", "/");

 return result;

 }

}

Returning to the “Preprocessing.xpt” file (shown in Listing 12), after the IMPORT and

EXTENSION statements there is the DEFINE statement that defines templates. The

specific define template is named pathProperty (this is the template that the

workflow file invoked) and is executed for an IAC model. The FILE statement defines

the name of the file that is outputted and its body is the file template. In this case

the file contains a simple line that writes “path=” and then the result of the

packagePath Xtend function is placed. This is how Xpand cooperates with Xtend.

The workflow continues by loading the “path.properties” created property file and

then reloads the IAC model for producing the java classes in the path defined by the

path property. The agent xpand template file (“Agent.xpt”, see Listing 29 in Annex 5)

is a much more complex Xpand template file, the same holds for its Xtend helper

functions (“nodeHelper.ext” and “ComplexBehaviourHelper.ext”, Listing 30 and

Listing 32 in Annex 5) and their java implementation files (“NodeHelper.java” and

“ComplexBehaviourHelper.java”, Listing 31 and Listing 33 in Annex 5). An extract of

the agent Xpand file is shown in Listing 15 so as to explain its functionality.

163

Listing 15. An extract from the agent xpand template file (1)

«IMPORT IAC»

«EXTENSION fr::parisdescartes::mi::aseme::m2t::IACmodel::nodeHelper»
«EXTENSION fr::parisdescartes::mi::aseme::m2t::IACmodel::ComplexBehaviourHelper»

«DEFINE javaClass FOR IAC::Model»
 «LET name AS packageName»

 «EXPAND nodeClass(packageName, this) FOREACH nodes»
 «EXPAND variableHolderClass(packageName, this) FOREACH variables»

 «ENDLET»
«ENDDEFINE»

«DEFINE variableHolderClass(String packageName, Model model) FOR IAC::Variable»

 «FILE variableHolderFileName()»

 package «packageName»;

 import jade.core.behaviours.Behaviour;

 «IF type.compareTo("ACLMessage")==0»import jade.lang.acl.ACLMessage;«ENDIF»

 public class «type»Holder {

 «type» «lowerCaseFirstCharacterOfVariable(this)» = null;

 Behaviour owner;

 public «type»Holder(Behaviour owner) {

 super();

 this.owner = owner;

 }

 public «type» get«type»() {

 return «lowerCaseFirstCharacterOfVariable(this)»;

 }

 public void set«type»(«type» «lowerCaseFirstCharacterOfVariable(this)») {

 this.«lowerCaseFirstCharacterOfVariable(this)» =
«lowerCaseFirstCharacterOfVariable(this)»;

 }

 public Behaviour getOwner() {

 return owner;

 }

 }

 «ENDFILE»
«ENDDEFINE»

...

The first definition (javaClass), the one invoked by the workflow file, takes an IAC

model concept and expands its variables and nodes. It defines the packageName

variable using the Xpand LET statement setting it to the model’s name attribute.

For each variable in the model a java class will be created (through the

variableHolderClass expansion definition). The package is defined by the

packageName parameter. If the variable type is that of an ACLMessage then the

relevant class is imported from the jade framework. For all other variable types it is

assumed that the ontology created for this project will contain them.

In the case of the meetings management project, there are two variable types, the

Meeting variable type refers to a class defined in the ontology of the project and the

ACLMessage variable type (see Listing 16 and Listing 50 respectively in Annex 6). The

reader should notice that the class generated by the Xpand template is named after

the type of the variable including the string “Holder”. Thus, the class generated for

the Meeting variable type is the MeetingHolder class. The latter has two attributes,

the owner, which is a reference to a JADE Behaviour class (where the behavior that

instantiates this variable is inserted through the class constructor) and the meeting

164

attribute that references the Meeting class. This approach, which is transparent to

the developer, allows a behaviour to change a variable value and this change to be

visible to all behaviours that share this variable.

Listing 16. The generated file MeetingHolder.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.behaviours.Behaviour;

public class MeetingHolder {
 Meeting meeting = null;

 Behaviour owner;

 public MeetingHolder(Behaviour owner) {

 super();
 this.owner = owner;

 }

 public Meeting getMeeting() {
 return meeting;

 }

 public void setMeeting(Meeting meeting) {
 this.meeting = meeting;

 }

 public Behaviour getOwner() {
 return owner;

 }

}

The agent Xpand template file continues by defining relevant templates for the

agent class (extending the jade.core.Agent class) and its behaviours. Four types of

behaviours are automatically generated according to the transformation process.

The transformation algorithm is presented in pseudocode in Listing 17. The

algorithm reads the statechart model (IAC) and creates Java source code files using

templates (as defined in the Xpand agent template file). The information from the

statechart is included in the “< >” signs whenever needed.

Listing 17. The transformation process of nodes to java classes from the IAC model

to the JADE platform (IAC2JADE) in pseudocode.

For each node in S
 If node is root then
 create file f = ”<name(node)>Agent.java”
 defining “public class <name(node)>Agent extends jade.core.Agent”
 Else if λ(node)=”BASIC"
 create file f = ”<name(node)>Behaviour.java”
 defining “public class <name(node)>Behaviour extends SimpleBehaviour”
 Else if λ(node)=”AND"
 create file f = ”<name(node)>Behaviour.java”
 defining “public class <name(node)>Behaviour extends ParallelBehaviour”

 Else if sons(node).size() = 2 and ∃ transitionExpression x | (node.2, x, node.2) ∈ δ

 create file f = ”<name(node)>Behaviour.java”

165

 defining “public class <name(node)>Behaviour extends CyclicBehaviour”

 Else if sons(node).size() = 3 and ∃ transitionExpression x | (node.2, x, node.2) ∈ δ

 create file f = ”<name(node)>Behaviour.java”
 defining “public class <name(node)>Behaviour extends SimpleBehaviour”

 Else if ∃x∈sons(node) | λ(x)=CONDITION

 If sons(node).size() = 4
 create file f = ”<name(node)>Behaviour.java”
 defining “public class <name(node)>Behaviour extends SimpleBehaviour”
 Else
 create file f = ”<name(node)>Behaviour.java”
 defining “public class <name(node)>Behaviour extends SequentialBehaviour”
 End if
 Else
 create file f = ”<name(node)>Behaviour.java”
 defining “public class <name(node)>Behaviour extends SequentialBehaviour”
 End if
End for

In plain words, the idea behing the transformation algorithm is that each node of the

statechart (IAC) is processed. If it is the root, then it is transformed to an agent JADE

class. In what follows, the main details of implementation that have been

implemented are discussed for each java class type. The agent class setup method is

defined adding the sub-behaviours, i.e. the sons of the node that are of type OR,

AND or BASIC (called the eligible nodes from now on). Notice that the nodes of type

START, END and CONDITION are not transformed to Behaviour classes; they are only

used for determining the other nodes’ transformation to some kind of behaviour.

For each of the other (than the root) eligible nodes one of the following holds

(searching from top to bottom):

• If the node’s type is “BASIC” then it is transformed to a JADE SimpleBehaviour

(it extends the jade.core.behaviours.SimpleBehaviour class).

o If the node’s name starts with “Send”, then add a reference to the

JADE ACLMessage class and write code for sending a message

depending on the events of the transitions that have this node as

their source (a result of such a transformation is the

SendResultsBehaviour that can be viewed in Listing 68 in Annex 6).

o Else, if the node’s name starts with “Receive”, then add a reference to

the JADE ACLMessage class and write code for receiving a message

depending on the events of the transitions that have this node as

their target. Also, add a reference to the MessageTemplate JADE class

that is used for defining the type of message expected and instantiate

it according to the events of the transitions that have this node as

their target (a result of such a transformation is the

ReceiveOutcomeBehaviour that can be viewed in Listing 62 in Annex 6).

o Else, add in the action method of the behavior class the contents of

the Activity attribute of the node (a result of such a transformation is

the DecideResponseBehaviour that can be viewed in Listing 51 in Annex

6).

166

• Else, if the node’s type is “AND” then it is transformed to a JADE

ParallelBehaviour (it extends the jade.core.behaviours.ParallelBehaviour class).

All the eligible sons of the node are added as threaded behaviours and the

ParallelBehaviour ends when all its children have ended (a result of such a

transformation is the _open_group_ManageMeetings_sequence_LearnUserHabits

_close_group__forever__parallel_NegotiateMeetingDate_forever_Behaviour that

can be viewed in Listing 46 in Annex 6).

• Else, if the node has two sons, the second of which has a transition to itself

then the latter is the case of a behavior that will execute forever. Thus this

node must be transformed to a behavior that will continuously instantiate its

second son (the first is a node of type START, thus is ignored). This is achieved

by transforming it to a CyclicBehaviour (it extends the jade.core.behaviours.

CyclicBehaviour class) that checks if the eligible son has finished and if this is

true it restarts it (a result of such a transformation is the NegotiateMeeting

Date_forever_Behaviour that can be viewed in Listing 57 in Annex 6).

• Else, if the node has three sons, the second of which has a transition to itself

then the latter is the case of a behavior that will execute one or more times.

Thus this node must be transformed to a behavior that will continuously

instantiate its second son (the first is a node of type START, thus is ignored)

while a specific condition holds. This is achieved by transforming it to a

SimpleBehaviour that checks if the eligible son has finished and then if the

condition of the transition that has it as target is true it restarts it. If not the

behavior terminates (a result of such a transformation is the _open_group_

DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group

__one_or_more_times_Behaviour that can be viewed in Listing 43 in Annex 6).

• Else if the node has a son whose type is CONDITION then

o If the node has four sons, then its third son is the case of a behavior

that will execute zero or more times (see the template for the x* Gaia

operator in Table 5). Thus this node must be transformed to a

behavior that will conditionally instantiate its third son (the first is a

node of type START, the second the one of type CONDITION). This is

achieved by transforming it to a SimpleBehaviour that conditionally

adds the sub-behaviour in its constructor and that checks (in its action

method) if the eligible son has finished and then if the condition of

the transition that has it as target is true it restarts it. If not the

behavior terminates.

o Else this node has a number of eligible sons one of which must be

instantiated. It is transformed to a SequentialBehaviour (it extends the

jade.core.behaviours.SequentialBehaviour class) and at its constructor it

conditionally instantiates one of its sons (a result of such a

transformation is the _open_group_ReadSchedule_or_RequestChange

Meeting_or_RequestNewMeeting_close_group_Behaviour that can be

viewed in Listing 49 in Annex 6).

167

• Else this node has a number of eligible sons that must be executed

sequentially. This is achieved by transforming it to a SequentialBehaviour and

adding all its eligible sons sub-behaviours (a result of such a transformation is

the _open_group_DecideResponse_sequence_SendResults_sequence_Receive

Outcome_close_group_Behaviour that can be viewed in Listing 44 in Annex 6).

All the automatically generated classes for the PersonalAssistant agent of the

meetings management sample project are include in Annex 6 from Listing 42 to

Listing 71. If the user has inserted the activity related to each node in java code

format he has to denote this by starting the activity description with the string

“/*Java code*/”. In this case the code is inserted as-is in the action method of the

SimpleBehaviour. Thus, code generation can come up to 100% of the needed code.

However, in normal projects it is expected that diverse technologies will be involved,

in which case the programmer will have to edit the action methods of the simple

behaviours. This was the case for the MARKET-MINER and ASK-IT projects where

prolog code and web services invocations had to be integrated in the agent’s code.

The reader should note that MARKET-MINER was not implemented using JADE,

however the same holds for any implementation platform.

Thus, the ASEME developer can generate all the needed classes for his project just

by executing the “workflow.oaw” transformation workflow file in the Eclipse IDE.

The resulting files are the JADE Agent and Behaviour descendant classes along with

the variable holder classes, 31 files total for the personal assistant agent and they

are shown in Figure 95.

In the same figure, the SendResultsBehaviour is depicted. It is worth discussing it

along with its attributes and methods. The properties of the class are two holders for

ACL messages and one holder for the Meeting class. These are initialized through its

constructor. The action and done methods have been produced and an if-else

statement has been introduced in the action method initializing the performative of

the message to be sent. As the designer has not defined the conditions for sending

one or the other message type the conditions in the if-else statement are filled with

the comment “/*insert condition*/”. Then the developer is reminded to insert more ACL

message initialization code with a comment and the message is sent.

The final version of the “SendResultsBehaviour.java” is shown in Listing 18. The only

editing that the developer needed to do to this file was to define the condition of the

if-else statement (shown with grey background). This of course is a very simple

message sending behaviour, however it is demonstrated that all the mundane code

has been prepared for the developer.

Thus, among the 31 defined classes the developer will need just to define the action

methods of 14 of them, seven of which are message send and receive methods,

which will just require a final touch. Therefore, the developer will just have to write

code for seven methods. Everything else has already been prepared by the ASEME

tools.

168

Figure 95. The automatically generated java classes for the personal assistant

agent of the meetings management project.

Listing 18. The final file SendResultsBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.SimpleBehaviour;

import jade.lang.acl.ACLMessage;

public class SendResultsBehaviour extends SimpleBehaviour {

 MeetingHolder e = null;

 ACLMessageHolder accept = null;
 ACLMessageHolder reject = null;

 boolean finished = false;

 public SendResultsBehaviour(Agent a, MeetingHolder e,

 ACLMessageHolder accept, ACLMessageHolder reject) {

 super(a);

 this.e = e;
 this.accept = accept;

 this.reject = reject;

 }

 public void action(){
 ACLMessage msg = null;

 if (accept.getACLMessage()!=null) {

 msg = accept.getACLMessage();

169

 }

 else {

 msg = reject.getACLMessage();

 }

 myAgent.send(msg);

 finished = true;

 }

 public boolean done() {

 return finished;

 }

}

Finally, it is worth showing how a capability has been developed as a software

module. In Listing 19 the automatically generated “NegotiateMeetingDateBehaviour

.java” file is presented. It is the implemented personal assistant’s part of the

“Negotiate Meeting Date” protocol. The reader can see that it defines the ACL

message holders for the types of messages that it handles and which it then uses for

adding its children behaviours to the agent scheduler. This behaviour along with its

children behaviours (i.e. the _open_group_DecideResponse_sequence_SendResults_

sequence_ReceiveOutcome_close_group__one_or_more_times_Behaviour, _open_group_

DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group_

Behaviour, DecideResponseBehaviour, ReceiveProposedDateBehaviour, ReceiveOutcome

Behaviour, SendResultsBehaviour, UpdateScheduleBehaviour) and the used variables

(MeetingHolder and ACLMessageHolder) can be used by any future JADE agent that

wants to participate as a personal assistant to the “Negotiate Meeting Date”

protocol. He just has to import the identified classes of the

fr.parisdescartes.mi.meetingsmanagement Java package and add the

NegotiateMeetingDateBehaviour to his agent’s behaviour scheduler.

Listing 19. The generated file NegotiateMeetingDateBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SequentialBehaviour;

public class NegotiateMeetingDateBehaviour extends SequentialBehaviour {

 MeetingHolder e = null;
 ACLMessageHolder accept = new ACLMessageHolder(this);

 ACLMessageHolder inform = new ACLMessageHolder(this);
 ACLMessageHolder propose = new ACLMessageHolder(this);

 ACLMessageHolder reject = new ACLMessageHolder(this);

 public NegotiateMeetingDateBehaviour(Agent a, MeetingHolder e) {
 super(a);

 this.e = e;

 addSubBehaviour(new ReceiveProposedDateBehaviour(this.myAgent, e,

 propose));

 addSubBehaviour(new

_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group__o

ne_or_more_times_Behaviour(

 this.myAgent, e, accept, inform, propose, reject));
 addSubBehaviour(new UpdateScheduleBehaviour(this.myAgent, e, inform));

 }

}

170

5.3 The ASEME MDE Process

Having defined the models and transformations participating in the ASEME MDE

agent development process it is now possible to present a diagram showing this

process. It is a more compact process than the one shown in Chapter 4 as it only

includes the models of the agent abstraction level of ASEME. Thus, the SPEM

diagram shown in Figure 96 summarizes the process specified in this chapter for

agents’ development.

The activities for editing a model, e.g. “Edit the SAG model” are those performed by

the human developer, while the transformation activities, e.g. the “SAG2SUC” are

automated. The modeler uses one model until the “SRM2IAC” activity where one IAC

model is created for each agent type. Then the modeler must work in each IAC

model separately. Finally, in the “IAC2JADE” activity one agent class and many

behavior classes are automatically generated for each IAC model instance.

Figure 96. The ASEME MDE Process for Agent Development.

171

Chapter 6

Process Modeling

There exist situations in massive multi-agent systems where the number of

executing agents is very important for measuring future system stability and

performance. The main contribution of the paper of Rana and Stout (2000) is to

highlight the importance of combining performance engineering with agent oriented

design methodologies, to design and build large agent based applications. In such an

application, for example, in the e-Marketplace middleware framework of Yamamoto

and Nakamura (1999), the performance decreases as the number of shop agents (a

type of agent that they use) increases. This means that if a site hosts many shops

and, thus, agents, the site needs a more powerful computer. These situations can be

simulated and optimized using a process transformation approach.

This chapter is about defining a transformation process of the AMOLA design models

(statecharts) to process models. These can be used at the verification and

optimization phases of ASEME and they can be present in all development iterations

since the AMOLA models of the design phase are statecharts. Statecharts can be

transformed to process models, since all states represent an activity that is executed

by a specific agent role resource. Both statecharts and process models are supported

by commercial and open source tools (e.g. STATEMATE for statecharts and Micro

Saint Sharp for process models) that allow for simulation and thus, can greatly aid

the verification and optimization phases. Micro Saint Sharp can also be used for

optimizing process models.

172

6.1 Transforming IAC and EAC Models to

Process Models

Both in the societal level of abstraction and the agent level of abstraction in the

design phase of the ASEME methodology, the statecharts of the inter-agent protocol

and intra-agent control models can be transformed to processes. Using the

formalism proposed by Lonchamp (1993), for the intra-agent control model we find

the concept of Activity similar to the one we have defined. We assign to it, as a

resource, the software library that realizes the underlying functionality. Similarly,

capabilities are Tasks whose resources are the relevant modules. Finally, for the

inter-agent protocols model the resources for the protocols states activities are the

respective agent types. In this way the ASEME design models can be simulated and

optimized using relevant tools like SIMPROCESS (April et al., 2006) or Micro Saint

Sharp (Bloechle and Schunk, 2003).

To illustrate the process of transforming a statechart to a process model one can

use, for instance, the open source Intalio tool (see http://bpms.intalio.com/ for more

details). The statechart in Figure 71 is transformed to the business process diagram

presented in Figure 97. In Intalio, the message reception activities are represented as

circles with an envelope inside. The circle with the square that starts the Meetings

Manager process resembles the need for some conditions to be satisfied so that the

process starts. Finally, a diamond with an X resembles an exclusive choice (either

one or the other). The states of the inter-agent control model (see Figure 71) are

transformed to processes in the business process diagram. The transitions between

states are transferred as they are except in the case of transitions that are enabled

by an inter-agent message event. The latter are becoming transitions from the

sending process to the receiving process. The conditions on the transitions can be

represented in Intalio and the process can be directly simulated, or even deployed to

executable code (only if the activities can be implemented with the available Intalio

tools). The meetings manager role interacts with all the personal assistant roles in

the way presented in Figure 97.

Figure 97. The Negotiate Meeting Protocol Process

173

6.2 A Case Study: The ASK-IT project

This ASK-IT project’s agent system was developed using the Gaia2JADE process for

multi-agent systems development, the predecessor of ASEME. Thus, the output of

the analysis phase was the Gaia roles model. Initially, there were two reasons for

simulating the ASK-IT system. The first was that the ASK-IT service providers needed

to know if the system can satisfy non-functional user requirements, one of which

was the delivery of the service within ten seconds. The frequency of service requests

was calculated to be one request per 30 seconds. The second was to find out how

would the system scale when service demand increased for use in preparing the

project’s exploitation plan.

The intra-agent control model was transformed to a process model using the

approach described in the previous paragraph. The tool that was used was the Micro

Saint Sharp Gold edition. Micro Saint Sharp is a flexible discrete-event simulation

software package for modeling all types of processes (http://www.maad.com/index.pl

/micro_saint). It allows for modeling a process where activities can be complex, i.e. be

analyzed to more specific ones in various abstraction levels. In this way it is possible

to transform a non BASIC IAC node to a complex activity (or task) and BASIC IAC

nodes to simple tasks.

It is out of the scope of this thesis to present the way that the Micro Saint Sharp tool

works, however the reader will understand its basic functionality while reading

through this section. The first part of the Micro Saint modeling process is to identify

the process involved and set some goals.

Then the process elements must be identified in the form of simple and composite

tasks. In the highest level of abstraction there is the multi-agent system. The

Personal Assistant (PA), Broker (BR) and the Added-Value Service Provider (AVSP)

agents participate in the simulated scenario. The goal is to analyze the process

followed during the execution of the Request for Services protocol on the server side

(time to respond to the PA). The high level view of the process is shown in Figure 98.

The start task resembles the user that initiates a service request. Arrows in the figure

show the direction of the process execution.

Zooming in the PA the process is very simple as the only part of the PA relevant to

this study is the Request for Services protocol initiator part. The protocol is initiated

when the PA sends a request message and is terminated when he receives the

response. Figure 99 shows this part of the process. The higher level processes, with

which the low level processes are connected, are shown as squeezed hexagons with

a dotted line border.

174

The broker (BR) is a more complex process and resembles the broker agent’s IAC

(see Figure 53). The BR is shown in Figure 100 having put all the simple processes in

the same level for a more effective presentation.

Figure 98. The ASK-IT Request for Services Protocol participant agents in a high

level process view in Micro Saint Sharp.

Figure 99. The Personal Assistant internal process.

Figure 100. The Broker agent internal process.

Finally, the Added-Value Service Provider (AVSP) is presented in Figure 101. The

process model resembles the AVSP’s IAC model (the reader can see the AVSP’s

liveness formula in Figure 48). When the AVSP receives a message, it is either a

mapping or a routing request. In order to satisfy this request the AVSP uses several

simple services offered by the broker. Therefore, the reader can see that the AVSP

175

not only sends to the broker the service response but also service requests. The

AVSP offers an added value service by orchestrating many simple service requests on

behalf of the PA and returning only the most relevant results to the serviced user

profile.

Figure 101. The complex provider agent internal process

Before presenting the Micro Saint simulation process the reader needs to become

familiar with some concepts. Messages in Micro Saint are simulated as entities that

traverse the system’s tasks. A task can take time to handle an entity, can produce

more entities and can act upon the properties of an entity. Whenever an entity is

about to enter a task a release condition is tested. If the release condition is true the

task can start execution. Then the modeler can define beginning and ending effects

for the process. In Figure 102 these data are defined for the BR receive message

process. Thus, this task can only start if there is an available CPU, which it then uses

as a resource by consuming it while executing (the beginning effect lowers the

number of CPUs by one, while the ending effect raises this number by one).

The reader should note that this task has not been defined in the Broker’s IAC model

(see Figure 53). It was introduced so that the Agent platform’s message receiving

activity could be simulated (and also measured for the time it takes to execute).

After executing a message receiving activity many times in the JADE platform it was

determined that the time of its execution would be modeled with a gamma

probability distribution function with a mean value of 2 milliseconds and a standard

deviation of 2 milliseconds. This information is inserted in the next tab of the Micro

Saint task definition dialog presented in Figure 103. The gamma distribution is often

used to model nonnegative random variables and the Micro Saint Sharp User Guide

(Alion Science and Technology, 2008) suggests using it for task times when a task

cannot be done much faster than the mean time, yet could take much longer.

The third important thing to define for a task is the path that the entity will follow

after leaving it. For the BR receive message task there are two possibilities, one is to

go to the BR receive request task and the other is to go to the BR receive response

task. The method for selecting where to branch is to check two important properties

of the entity, the sender and the performative. Thus, if the sender is the PA then it is

176

a new request. It is the same if the sender is the AVSP and the performative is

“Request”. In all the other cases (i.e. the sender to be the AVSP and the performative

to be different to “Request”) it is a service response. This information is inserted to

the Paths tab of the Task dialog as shown in Figure 104. The reader should note that

the language used for writing the expressions in the dialogs is the C#.

Figure 102. The main properties of the BR receive message task.

Figure 103. The timing of the BR receive message task.

177

Figure 104. The execution paths after the BR receive message task.

All the information needed for reproducing this simulation is provided in Annex 8.

After all the tasks have been completed, the simulation is ready to execute. Initially,

the model had the restriction posed by the IAC model that the broker could have at

most 10 instances of the request for services protocol executing. In field tests

everything had worked fine. In the simulation, though, when more than one request

per 10 seconds was issued a side effect was recognized. If 10 requests were sent

within a short time (i.e. before the broker had completed any one of them) then the

broker had consumed his resources and when the AVSPs sent their requests he could

not service them and in this way the system failed to respond. Thus, after the

simulation it was decided to allow for unlimited number of instances of the request

for services protocol for the broker to execute in parallel.

After fixing this issue, the simulations were done again and the results for a mean

request arrival time of 30, 15 and 5 seconds are presented in Figure 105. Each of the

three cases is presented in table form with three columns:

• Clock: The clock ticked in milliseconds and the overall simulation time was 30

minutes (or 1,800,000 milliseconds). The table data are ordered according to

the time passed.

• Entity.Tag: Each entity gets a tag when it is born starting from one. As the

reader can see the entities do not complete their lifecycle always in the order

with which they are introduced into the system.

178

Clock Entity.Tag TimeSystem Clock Entity.Tag TimeSystem Clock Entity.Tag TimeSystem

49026,15 1 7277,12 28151,63 1 7277,12 14235,29 1 7277,12

113160,65 2 5395,60 59278,13 2 5395,60 22357,16 3 2476,33

122675,52 3 3390,57 63057,15 3 3414,68 25631,04 2 7670,19

130159,90 4 5189,93 66809,83 4 4324,84 30982,75 4 6568,39

163688,24 5 4794,08 77612,41 5 6166,61 53378,06 5 11382,45

171308,33 6 3112,60 78981,77 6 2959,68 53830,09 7 7382,00

198684,29 7 7680,04 84855,49 7 4009,88 54656,10 6 9264,55

238609,75 8 7727,28 92089,79 8 8600,19 61487,94 8 5886,32

245741,33 9 7134,24 109838,12 9 5250,49 68377,42 10 4261,89

270145,82 10 4853,68 115235,81 10 5706,90 70890,55 9 8868,01

341097,11 11 4980,08 116749,71 11 3744,22 74081,17 11 6620,95

416899,82 12 8392,50 141939,06 12 3882,45 81922,93 12 8029,23

460855,57 13 8381,43 148529,24 13 8584,19 84704,60 13 2492,73

470306,39 14 3384,41 166133,68 14 8887,41 91738,01 14 5151,96

484243,87 15 4799,52 170650,91 15 4829,10 95240,72 15 7634,97

495758,04 16 5270,09 181132,72 16 3688,30 104651,09 16 5809,45

503396,48 17 3575,99 190507,40 17 9176,40 108676,87 17 4636,24

529562,55 18 6983,56 216021,45 18 6700,01 115433,39 19 6975,63

562412,88 19 7925,93 223808,66 19 8951,57 116947,57 21 7231,67

564501,02 20 3156,55 231335,16 20 6367,71 117145,06 18 9708,36

618883,21 21 3550,63 233961,96 21 2492,14 119441,36 20 10271,44

645772,68 22 8274,06 256653,05 23 3659,99 124036,87 22 4792,37

715621,55 23 1436,23 260004,56 22 8446,97 135476,98 23 5443,55

731482,07 24 6605,36 263131,54 24 2917,45 136645,40 24 3230,17

732096,97 25 4908,03 303458,48 25 3457,65 140860,27 26 3283,42

808946,44 26 3922,34 339815,88 26 4931,41 144217,70 25 10199,27

826972,03 27 7062,80 361188,47 27 3977,80 148708,67 27 4874,29

832303,96 28 3847,17 377896,45 28 4239,13 159586,09 28 5737,36

874068,55 29 4595,74 399984,56 29 3038,50 180404,07 29 2364,08

880236,84 30 3437,46 418043,70 30 8424,35 184408,86 30 1791,41

929295,34 31 8090,11 452162,35 31 2001,86 196272,44 31 8041,10

984276,00 32 7462,90 … … … … … …

993094,23 33 5377,21 1250101,38 80 3774,36 1689001,86 304 12041,25

1018441,90 34 7850,43 1257236,39 81 1736,37 1689051,68 305 6633,93

1073659,41 35 1887,93 1263753,81 82 6488,45 1691510,82 307 5228,11

1080287,78 36 6927,05 1294529,23 83 6961,88 1695248,79 306 9607,74

1122869,95 37 2976,49 1324085,38 84 3601,68 1695369,61 308 2095,65

1153465,57 39 2183,59 1325147,33 85 4422,76 1704413,24 309 10056,95

1154694,79 38 6527,49 1330766,44 86 6703,55 1705672,76 310 10288,13

1192207,11 40 4885,26 1362124,09 87 2686,61 1708012,14 311 11679,76

1219386,82 41 7632,16 1371852,04 88 5640,76 1711027,00 312 5012,96

1222371,41 42 5921,83 1380704,30 89 7537,03 1713290,56 313 6311,91

1224564,19 43 5369,14 1406984,27 90 3170,21 1713517,16 314 4269,67

1249000,68 44 1882,38 1407864,18 91 2967,99 1719886,36 316 4635,73

1275700,67 45 3551,47 1449966,67 92 4942,72 1723296,11 317 3917,51

1303171,22 46 8212,72 1456403,68 93 6094,67 1723404,88 315 8294,86

1305210,03 47 3737,15 1489325,30 94 2963,67 1726715,10 318 4023,59

1307980,75 48 2493,82 1502884,51 95 4201,85 1730569,43 319 4783,14

1355722,05 49 1847,44 1529002,40 96 3591,10 1736649,54 320 5316,99

1392124,14 50 6002,85 1541228,19 98 7370,96 1745232,75 321 7182,12

1429074,61 51 4035,66 1541423,66 97 8208,82 1753182,26 322 14713,14

1440766,13 52 5471,22 1627889,10 99 4670,53 1754918,09 325 9784,50

1491243,48 53 5731,98 1632800,18 100 2418,23 1754921,23 326 4056,10

1505447,66 54 2445,92 1645122,77 101 7013,93 1754953,04 323 11909,92

1533004,83 55 4740,00 1671344,04 102 8328,92 1756532,40 324 12658,17

1613091,27 56 7460,34 1672775,36 103 6743,40 1761889,24 327 1900,82

1634274,43 57 6953,50 1686752,98 104 892,86 1769177,81 328 4942,09

1655310,52 58 6720,44 1699000,65 105 5861,38 1772898,38 329 3567,35

1669748,92 59 3810,26 1734153,62 106 2524,53 1780128,14 330 5123,63

1689609,06 60 7560,49 1741522,45 107 7140,02 1785146,16 331 3948,79

1744526,56 61 3451,17 1765053,74 108 5121,95 1796496,70 333 8623,13

1753827,64 62 7578,12 1773298,50 109 3077,34 1796550,38 332 8886,97

mean 5287,48 mean 5169,84 mean 6669,70

max 8392,50 max 12576,34 max 14713,14

min 1436,23 min 892,86 min 1791,41

(1) (2) (3)

Figure 105. The Broker agent’s response times (mean, maximum and minimum

service values) when a message is coming in average every 30 seconds (1), 15

seconds (2) and five seconds (3).

179

• TimeSystem: The total time that an entity spent into the system. This time is

calculated from the moment that the message leaves the PA Send Request

task (see its ending effect in Annex 8) until the moment that it is received by

the PA Receive Response task.

At the bottom of the columns three figures are calculated, the mean, the maximum

(max) and the minimum (min) TimeSystem value for all entities. The simulation

proves that the requested non-functional requirements are met for the 30 seconds

request arrival time even for the worst case scenario. The 15 second and 5 second

columns in Figure 105 show how the system scales for increasing demand.

Thus, using a process model and simulation during the verification and optimization

phases the modeler can:

• Determine if the system meets its requirements

• Determine how the system would scale

• Identify errors in system conception and propose strategies for resolving

them either through a next development iteration (including risks calculation

and different technology use) or by directly returning to the phase that

introduced the error and restarting from there (useful in agile development).

In this case the modeler returned to the liveness formula of the broker and

replaced the |request for services SP
ω
|
10 element with |request for services

SP
ω
|
MAX_INT

• Optimize the system using tools in the market regarding resource allocation

and consumption (in this case the only resource was the CPU). An

optimization model in OptQuest for Micro Saint Sharp has three major

elements:

o Decision variables. Decision variables are quantities over which you

have control, such as the amount of product to make, the number of

dollars to allocate among different investments, or which operational

rules to select from a limited set.

o Constraints. Constraints describe relationships among decision

variables that restrict the values of the decision variables. For

example, a constraint might ensure that the total amount of money

allocated among various investments cannot exceed a specified

amount, or it might ensure that no more than one operational rule

from a certain group can be selected.

o Objective. The objective presents a mathematical representation of

the optimization model’s objective, such as maximizing profit or

minimizing cost, in terms of the decision variables.

180

181

Chapter 7

Future Perspectives

This first ASEME methodology specification sets the foundation for the

establishment of ASEME as an AOSE methodology but can also be considered as a

start of a multi-path research effort.

7.1 Further Evaluate and Expand ASEME

A first evaluation of the methodology has been done through the MARKET-MINER

project, however, more results can be obtained that can help ASEME establish itself

as a reliable AOSE methodology.

An important aspect of the ASEME establishment is to implement an eclipse add-on

that can guide the developer through the development steps and supply him with

nice graphical editing tools. The Sample Reflective Ecore Model editor or the epsilon

exceed editor of Eclipse that were used in this thesis provide a minimal functionality.

The modeler should be able to see and edit his diagrams using the right graphical

representation like in the case of the Rhapsody tool.

Another possibility is to integrate to the code generation possibilities the ability to

automatically generate code for interfacing with standardized environment-related

systems such as an OSGi service, a web service and human-machine interfaces.

The author’s work in integrating an OSGi service oriented framework with the JADE

environment can be extended in order to develop Xpand template files for

generating the additional components and agents needed for this task. Challenges

182

include the automatic definition of the services descriptions based on an ontology

(which could be externally defined) and the deployment in different platforms (e.g.

PDA) that have different capabilities.

Integration with web services is another aspect and the JADE framework already has

a relevant package which can be used, again with the challenge of automatically

integrating a foreign ontology.

The need for a human-machine interface can automatically be derived by the SUC

model role types. Then, the different transitions exiting a user interface use case can

be transformed to different choices for the user in an automatically generated form.

Finally, the ASEME implementation phase can be enriched with transformations to

other agent platforms such as JACK, which is used by many existing AOSE

methodologies. The following are the main concepts modeled by JACK (Winikoff,

2005):

• Agent: The agent defines the events that he can send or receive, the data

(like beliefsets) he handles, and the plans and capabilities he has access to.

• Beliefset: A beliefset is a relational database storing variables (beliefs). The

change of the value of a belief can generate an event which can trigger an

agent plan execution.

• Event: An event is an occurrence in time that represents some sort of change

that requires a response. Events model incoming inter-agent messages, new

goals being adopted, and, generally, information received from the

environment.

• Plan: A plan is a “recipe” for dealing with an event type. Plans indicate which

event they handle, a context condition which describes in which situations

the plan can be used, and a plan body, which is what is actually executed.

• Capability: A capability is a modularization construct. It allows to group plans

and beliefsets. It is very similar to the agent class. One could say that the

agent is the top level capability.

The challenge of transforming the IAC to the JACK platform is considered not to be

trivial, however a few guidelines can easily be extracted. The JACK plan can be seen

as a BASIC IAC state including the event and condition for the transition that will

have it as target. The state activity is the plans body. Capabilities define the

capability level variables (as beliefs) and define which plan is executed when (like the

OR states). There can be parallel plan execution (AND states) defined by plans.

Variables participating in IAC transition expressions (the AMOLA intra-agent

messages) will be included in the JACK agent beliefset and occurring changes to be

defined as events triggering the interested plan.

Another interesting possibility is to define the M2M transformations for the Gaia,

Tropos and UML models so that existing system models can be ported to the AMOLA

language and further elaborated using the ASEME process. This way, the process of

183

integrating a method fragment (of Gaia, Tropos or UML) to ASEME will be

automated.

Finally, the most common agent interaction protocols (e.g. those defined by FIPA)

can be defined as EAC models allowing the developers to use them automatically, as

the PASSI methodology does (Cossentino, 2005).

7.2 Research Directions

7.2.1 Automate Software Development

One of the most important challenges is to define knowledge for enriching the

models at each development phase. In the SUC model the knowledge should be

related to how to decompose a general task to specific ones. Moreover, the specific

tasks must be associated with a technology for achieving them. In the SRM model

the knowledge must be related to how to assemble the previously defined tasks to

realize a capability.

In the IAC model the knowledge must be related to variables definition and

documenting the functionality in a format as close as possible to the developed

code. As the IAC is platform independent it is difficult to point out a specific language

for describing the functionality, however a pseudocode or any platform dependent

implementation could be used.

7.2.2 Self-Assessment and Self-Healing Agent Capability

The IAC model can be used by a new module of the agent which can keep track of

the occurring transitions and detect anomalous or not frequent situations. For

example, the ASK-IT broker agent can keep track of the web service invocation

results and suddenly realizes that whenever it invokes a web service he always gets a

failure result, while normally he get a failure in 3% of invocations. This could mean

that its web service invocation component has failed, or it is outdated and needs an

update. This meta-information on the agents executing lifecycle can be very useful if

it can be automated in the agent’s code generation.

7.2.3 Automate the Process Model Generation

An important research direction is towards automating the IAC model

transformation to a process model. The problem with this issue is that unlike the

software development community were metamodels for various model types are

generally standardized, process models are not widespread and thus, there are no

184

tools available in the market supporting a common format. However, a more

focused research effort in this direction might bring about something like a process

metamodel for the eclipse environment along with tools for simulation similar to

those in the market.

7.2.4 Incorporate Organizational Rules

Having defined protocols and allowed agents to incorporate them in their

capabilities the next challenge is to regulate the ability of an agent to participate in a

protocol. Several authors in the literature have worked on organization rules and

norms for regulating agent-based interactions. The question is whether this is a

design issue or a runtime issue.

Zambonelli et al (2003) propose that organizational rules should be defined starting

from the analysis phase of a system. These rules can define when an agent is allowed

to participate in a protocol with a given role. Moreover, these rules are defined in an

organizational level, not in the agents’ definitions. In ASEME they could be

incorporated in the EAC model in the form of constraints in the first transition of

each participant. However, in this case there must be a way for these rules to find

their way to implementation independently from the produced agent code but

constraining their execution. Sowmya and Ramesh (1998) define a logical

specification language capable to express safety and liveness properties for

statecharts. It would be interesting to see how to define such rules in the EAC model

and also transform them to a platform implementation (such as JADE) with the

capability of preventing agents from starting a protocol or participating to it.

Alberti et al. (2006) propose a tool executing on an agent platform that is logic based

and check the agents for compliance with the interaction protocols. Researchers

have proposed temporal logics for verifying statecharts in the past and one of these

could be adapted to verify the EAC model instances on the runtime. Moreover, the

work of Alberti et al. (2006) could be extended for also checking the authorization of

an agent to initiate or participate to a given protocol.

185

Chapter 8

Conclusion

Summarizing, this thesis presents the Agent Systems Engineering Methodology

(ASEME) and the Agent Modeling Language (AMOLA). AMOLA defines the System

Actors Diagram (SAG) and the Requirements Per Goal (RPG) models for the ASEME

requirements analysis phase, where the modeler defines the actors and their goals,

the latter associated to requirements, using the Eclipse tool.

Then, AMOLA defines the System Use Case (SUC), Agent Interaction Protocol (AIP),

System Roles Model (SRM) and Functionality Table (FT) models at the Analysis phase.

The modeler uses the SAG2SUC transformation to automatically instantiate a SUC

model from the previous phase SAG model (transforming actors to roles and goals to

use cases). Subsequently, he uses the Eclipse tool in order to decompose the general

use cases to specific ones using the “include” UML relationship.

Continuing the analysis phase, the modeler uses the SUC2SRM transformation to

automatically transform the SUC model to a SRM (transforming general use cases to

capabilities and specific use cases to activities). Then, he associates the activities to

functionalities and uses the Eclipse tool to write liveness formulas.

In the ASEME design phase AMOLA defines the Inter- and Intra-Agent Control

models (EAC and IAC respectively). The SRM2IAC transformation automatically

transforms the liveness formulas to statecharts. The modeler needs to use the

Eclipse tool to define the transition expressions and variables related to each node.

In the ASEME implementation phase the modeler chooses a platform and

instantiates the design phase models. Here-in the automatic transformation of the

IAC model to agent program for the JADE platform has been demonstrated. The next

step for ASEME is the development of a graphical tool that will aid the modeler to

186

navigate through the different development stages making transparent the use of

the projects defined in Chapter 5.

At this point it is useful to also summarize the issues related to the novelty of this

thesis and its contribution to the state of the art. First of all, AMOLA defines the

intra-agent control (IAC), whose novelty is to allow the modeling of interactions

between the different capabilities of an agent. Moreover, through the possibility to

define alternative modes of such interactions, it allows the implementation of

different behaviors (or profiles) for an agent. For this purpose, the statecharts and

their orthogonality feature are used in an original way.

Another result of this thesis is the definition of the grammar for constructing Gaia

liveness formulas extended with a new operator allowing for specifying a number of

parallel instances of the same behavior. This result can be used by any practitioner of

the Gaia methodology, if he wants to define a transformation from the liveness

model to any kind of model (like in this thesis where it is transformed to a

statechart).

AMOLA has the unique ability to model both inter-agent protocols (EAC) and agent

capabilities (IAC) using the same formalism, i.e. the statecharts. This is one of the

most important aspects of this work. Thus, integration of capabilities and protocols is

seamless and so the individual and social aspects of an agent are represented in a

natural unified way. This is why all participants in protocols are defined as different

orthogonal components.

The IAC model provides an architecture that accommodates the extension of

conversation policies that Moore defined in a theoretical way. According to this

approach the agent uses the repository of conversation policies (or protocols that he

implements) as orthogonal components sharing specific variables. Thus, while a

protocol executes another can be launched in parallel and influence the outcome of

the first by changing some of its variables.

ASEME defines an original recursive algorithm for transforming Gaia liveness

formulas to statecharts. This result can be used by Gaia methodology practitioners

“as is”.

The output of the design phase (IAC) is platform independent as it adheres to the

well known language of statecharts for which numerous CASE tools are available in

the market. The use of one of them, i.e. Rhapsody has been demonstrated.

The models of AMOLA can lead to agent development without imposing constraints

on how the mental model of the agent will be represented (in contrast to most

existing methodologies, like, e.g., Ingenias and Prometheus). The implementation of

a BDI architecture using the IAC model has been demonstrated.

ASEME defines three clear abstraction levels throughout the development phases, a

unique originality in contrast to all other methodologies.

ASEME defines a different meta-model for each development phase while all other

methodologies have a unique meta-model covering all the software phases. This

187

metamodel is more complex and difficult to understand what information is added

at each phase. In ASEME the information to be added at each phase is clear and the

models used are common in the software engineering community, which means that

any engineer can quickly adapt to the ASEME process.

ASEME is the first AOSE methodology to include three types (M2M, M2T and T2M) of

transformations.

AMOLA clearly defines and uses the abstractions of agent, capability and

functionality for aiding the system analysis phase. ASEME models agents out of real

world actors and not like in most methodologies (usually those that end by

proposing a way to produce JACK code, like Tropos and Prometheus) where agents

are simply grouped capabilities with arbitrary criteria, or in MaSE where system

goals are developed as agents.

The transformation of the IAC or EAC to a process model allows for scaling the

results and observing the system in different levels of abstraction through

simulation.

ASEME can be considered as an agile process allowing for rapid prototyping needing

in the fastest case (the one presented herein) the editing of just four models (SAG,

SUC, SRM, IAC). Hirsch (2002) proposes an agile version of the Rational Unified

Process (RUP) where of the 80+ artifacts of RUP, only 10 to 12 are used on small

projects. Agile PASSI uses seven models.

Each ASEME capability can be implemented as a different software module.

Repositories of agent interaction protocols implementations can be defined and

integrated in new agent designs as capabilities.

The inter-agent control (EAC) model defines both agent activities and exchanged

messages in an agent protocol. In other methodologies, a protocol definition

includes a number of defined messages and an order of sending and receiving them,

not the functionality achieved by each participant within the protocol. ASEME

provides a complete definition of the participation of a role in a protocol which can

be reused and integrated with an agent’s capabilities as sub-state of an OR-state or

AND-state in the IAC model. Then, the modeler can choose to use any technology he

wants for realizing the protocol activities.

ASEME uses non-functional requirements to influence the type of architectural

solution and technologies that must be applied (see Garcia et al., 2006). Reading the

functionality table a project manager can identify the competencies needed for his

implementation team. Moreover, he can argue for or against the use of a specific

technology also identifying the risks related to his choices (e.g. one technological

solution may be more robust but also more expensive). The only methodology that

allows for modeling non-functional requirements is Tropos, which defines soft goals

for capturing them. However, Tropos does not show how these influence the

development process afterwards. In the point of view of this work non-functional

requirements do not add tasks and plans to a system but influence the way that the

188

functional requirements will be met (selection of technologies, needed development

effort, and cost of equipment).

ASEME has already been used for modeling a real world agent system (see

Spanoudakis and Moraitis, 2008) with a successful evaluation.

Numerous possibilities exist for extending this work and it is one of the intentions of

the writer to try to inspire other researchers in delving into one of the identified

paths.

189

Annex 1.

References

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., and Torroni, P. (2006).

Compliance verification of agent interaction: a logic-based tool. Applied

Artificial Intelligence, 20(2-4), 133–157.

Alion Science and Technology, Micro Saint Sharp User Guide, 2008,

http://www.computing.surrey.ac.uk/courses/cs366/MSaint.pdf

Ambler, Scott W. The Object Primer: Agile Model-Driven Development with UML 2.0.

Cambridge University Press, 3
rd

 edition, 2004.

April, J., Better, M., Glover, F., Kelly, J. and Laguna M. Enhancing Business Process

Management With Simulation Optimization. In Proceedings of the 38th

conference on Winter simulation (Monterey, California, USA, December 3-6,

2006). WSC ’06, 642–649.

AtlanMod, AtlantEcore Zoo - An ATL-auto-generated mirror of Atlantic zoo expressed

in EMF XMI 2.0, conforming to Ecore, 2008, http://www.emn.fr/x-

info/atlanmod/index.php/Ecore

Austin, John L.. How To Do Things With Words. Harvard University Press, 2nd edition,

1975.

Bauer, B. and Odell, J., UML 2.0 and Agents: How to Build Agent-based Systems with

the new UML Standard, in Journal of Engineering Applications of AI, Volume

18, Issue 2, pp 141-157, March, 2005.

Beck, K. 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley

Longman, Inc. 190 p.

190

Bellifemine, F., A. Poggi, and G. Rimassa. Developing Multi-Agent Systems with JADE.

In C. Castelfranchi and Y. Lespérance, editors, Intelligent Agents VII. Agent

Theories, Architectures, and Languages-7th. International Workshop, ATAL-

2000, Boston, MA, USA, July 7–9, 2000, Proceedings, Lecture Notes in Artificial

Intelligence. Volume 1986/2001, Springer-Verlag, Berlin, 2001.

Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: Jade Programmer’s Guide. JADE 3.6

http://jade.tilab.com/doc/programmersguide.pdf, 18 June 2007

Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L., and Munro, M. 2000.

Service-based software: the future for flexible software. In Proceedings of the

Seventh Asia-Pacific Software Engineering Conference (December 05 - 08,

2000). APSEC. IEEE Computer Society, Washington, DC, 214.

Bergenti, F., Gleizes, M.P. and Zambonelli, F. editors. Methodologies and Software

Engineering for Agent Systems. Kluwer, 2004.

Bernon, C., Cossentino, M., Pavon, J.: (2005) Agent Oriented Software Engineering.

The Knowledge Engineering Review, Cambridge University Press, 20: pp.99-

116.

Beydeda, S., Book, M., Gruhn, V.: Model-Driven Software Development. Springer

(2005)

Bloechle, Wendy K. and Schunk, Daniel. MICRO SAINT SHARP SIMULATION

SOFTWARE. In Proceedings of the 2003 Winter Simulation Conference, Vol.1,

7-10 Dec. 2003, pp. 182 - 187

Boehm B, "A Spiral Model of Software Development and Enhancement",

"Computer", "IEEE", 21(5):61-72, May 1988

Boehm, B. "Get Ready for Agile Methods, with Care," IEEE Computer, vol. 35, no. 1,

pp. 64-69, 2002.

Booch, G. 1982. Object-oriented design. Ada Lett. I, 3 (Mar. 1982), 64-76. DOI=

http://doi.acm.org/10.1145/989791.989795

Booch G. Object-Oriented Analysis and Design with Applications. Addison Wesley,

1994

Booch, Grady, Rumbaugh, James and Jacobson, Ivar. The Unified Modeling Language

Reference Manual, Pearson Higher Education (2
nd

 edition), 2004

Bordini R., Braubach L., Dastani M., El Fallah Seghrouchni A., Gomez-Sanz J.J., Leite J.,

O’Hare G., Pokahr A., Ricci A., « A Survey of Programming Languages and

Platforms for Multi-Agent Systems », Informatica, No. 30, 2006, p. 33-44.

Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W. and Stathis, K.: Crafting the

Mind of a PROSOCS Agent. Applied Artificial Intelligence, 20(4-5), April (2006)

Braubach, L., A. Pokahr, and W. Lamersdorf. Extending the Capability Concept for

Flexible BDI Agent Modularization. R. Bordini, M. Dastani, J. Dix, and A. El

191

Fallah Seghrouchni. Proceedings of the Third International Workshop on

Programming Multi-Agent Systems (ProMAS'05). 2005. pp.99-114.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A. 2004. TROPOS:

An Agent-Oriented Software Development Methodology. J. Auton. Agent.

Multi-Ag. 8, 3 (October 2004), 203-236.

Briot J.-P., Meurisse T., Peschanski F., « Une expérience de conception et de

composition de comportements d’agents à l’aide de composants », L’Objet,

11(3), 2006.

Budinsky, F., Steinberg, D., Ellersick, R., Merks, E., Brodsky, S.A., Grose, T.J.: Eclipse

Modeling Framework. Addison Wesley (2003).

Burrafato, P., Cossentino, M.: Designing a multi-agent solution for a bookstore with

the PASSI methodology. Fourth International Bi-Conference Workshop on

Agent-Oriented Information Systems (AOIS-2002). May 2002, Toronto, Ontario,

Canada at CAiSE'02

Cervantes, H. and R. S. Hall. Autonomous Adaptation to Dynamic Availability Using a

Service-Oriented Component Model. Proceedings of the 26th International

Conference on Software Engineering (ICSE’04), 23-28 May, 2004, pp. 614-623.

Chella, A. Cossentino, M., Sabatucci, L.. Tools and patterns in designing multi-agent

systems with PASSI. WSEAS Transactions on Communications, 3(1):352–358,

2004.

Chella, A. Cossentino, M., Sabatucci, L., and Seidita, V., ”Agile PASSI: An Agile Process

for Designing Agents”, International Journal of Computer Science and Eng.

Special Issue on ”Software Eng. for Multi-Agent Systems”, May 2006

Ciancarini P. and Wooldridge M. (eds.) Agent-oriented software engineering.

Springer Verlag, Berlin, Germany, 2001.

Cockburn, A. & Highsmith, J. 2001. Agile Software Development: The People Factor.

Computer, Vol. 34, No. 11, pp. 131–133

Colombo, R. and Guerra, A. “The Evaluation Method for Software Product”, Proc. of

the 15th Int. Conf. on Software & Systems Engineering & Applications (ICSSEA

2002), Paris, France, December 3-4, 2002.

Cossentino M. (2005). From Requirements to Code with the PASSI Methodology. In:

Henderson-Sellers and Giorgini (2005), chapter IV, pp. 79—106.

Cossentino, M., Gaglio, S., Garro, A. and Seidita, V. 2007. Method fragments for

agent design methodologies: from standardisation to research. Int. J. of Agent-

Oriented Software Engineering, 1, 1 (April 2007), 91-121.

Dam KH, Winikoff M. Comparing Agent-Oriented Methodologies. In P. Giorgini, B.

Henderson-Sellers, and M. Winikoff, editors, Agent-Oriented Information

192

Systems (AOIS 2003): Revised Selected Papers, pages 78–93. Springer LNAI

3030, 2004, pp. 78-93.

Dastani, M., van Riemsdijk, M.B. and Meyer, J.-J.Ch. Programming multi-agent

systems in 3APL. In 2005 Multiagent Systems, Artificial Societies, and Simulated

Organizations, 15. Springer-Verlag, 39-67.

David, Alexandre and Deneux, Johann and d'Orso, Julien. A Formal Semantics for

UML Statecharts, Uppsala University, 2003, 2003-010,

http://www.cs.aau.dk/~adavid/publications/16-TC03-010.pdf

DeLoach, S. A. and Wood, M., “Developing Multiagent Systems with agentTool”,

Proceedings of the 7th The Seventh International Workshop on Agent

Theories, Architectures, and Languages (ATAL’00), Boston, USA, July, 2000.

Deloach, S.A., Wood, M.F. and Sparkman, C.H. 2001. Multiagent Systems

Engineering. Int. J. Softw. Eng. Know. 11, 3 (June 2001), 231-258

Deloach, S.A.: Multiagent systems engineering of organization-based multiagent

systems. In: Software Engineering for Multi-Agent Systems IV, LNCS

3914/2006, pages 109-125, Springer Berlin / Heidelberg, 2006.

Depke R., Heckel R. and Kuster J.M. 2002. Formal agent-oriented modeling with UML

and graph transformation. J. Sci. Comput. Program. 44, 2, 229-252.

Dunn-Davies, H.R., Cunningham, R.J. and Paurobally, S. Propositional Statecharts for

Agent Interaction Protocols. In 2005 Electronic Notes in Theoretical Computer

Science, 134. Elsevier, 55-75.

Eclipse. An open source integrated development environment (IDE),

http://www.eclipse.org/

Efftinge, Sven and Völter, Markus. oAW xText: A framework for textual DSLs. In

Eclipse Summit 2006 Workshop: Modeling Symposium, 2006.

http://www.eclipsecon.org/summiteurope2006/presentations/ESE2006-

EclipseModelingSymposium12_xTextFramework.pdf

FIPA TC Agent Management, FIPA Agent Management Specification, Document

number SC00023K, Foundation for Intelligent Physical Agents, March 2004,

http://www.fipa.org/specs/fipa00023/

FIPA TC Communication, FIPA Request Interaction Protocol Specification, Document

number SC00026H, Foundation for Intelligent Physical Agents, December

2002a. URL: http://www.fipa.org/specs/ fipa00026/

FIPA TC Communication, FIPA Communicative Act Library Specification, Document

number SC00037J, Foundation for Intelligent Physical Agents, December

2002b. URL: http://www.fipa.org/specs/fipa00037/

193

FIPA TC Communication, FIPA ACL Message Structure Specification, Document

number SC00061G, Foundation for Intelligent Physical Agents, December

2002c. URL: http://www.fipa.org/specs/fipa00061/

Fischer, M. J. and Ladner, R. E. 1977. Propositional modal logic of programs. In

Proceedings of the Ninth Annual ACM Symposium on theory of Computing

(Boulder, Colorado, United States, May 04 - 04, 1977). STOC '77. ACM, New

York, NY, 286-294. DOI= http://doi.acm.org/10.1145/800105.803418

Fornara, N. and Colombetti, M. 2003. Defining interaction protocols using a

commitment-based agent communication language. In Proceedings of the

Second international Joint Conference on Autonomous Agents and Multiagent

Systems (Melbourne, Australia, July 14 - 18, 2003). AAMAS '03. ACM, New

York, NY, 520-527. DOI= http://doi.acm.org/10.1145/860575.860659

Fowler, M. and J. Highsmith, "The Agile Manifesto," in Software Development,

August 2001, pp. 28-32.

Garcia, J., Laguna, M., Carvajal, Y. and Baixauli B.: Requirements variability support

through MDD and graph transformation. In International Workshop on Graph

and Model Transformation, pp. 161--173. Tallinn, Estonia (2006)

García-Magariño, Iván, Gómez-Sanz, Jorge J. and Fuentes-Fernández, Rubén. Model

Transformations for Improving Multi-agent Systems Development in INGENIAS.

The 10th International Workshop on Agent-Oriented Software Engineering

AOSE'09 May 11, 2009, Budapest Hungary

Garro, A., Turci, P., Huget, M.P.: Meta-Model Sources: Gaia. FIPA Methodology

Technical Committee, Foundation for Intelligent Physical Agents,

http://www.fipa.org/ , 2004

Gerber, A., Raymond, K.: Mof to emf: there and back again. In: eclipse '03:

Proceedings of the 2003 OOPSLA workshop on eclipse technology eXchange,

New York, NY, USA, ACM Press (2003) 60-64

Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering.

Prentice Hall, ISBN: 0133056996, 2002

Giorgini Paolo, Kolp Manuel, Mylopoulos John, Castro Jaelson. Tropos: A

Requirements-Driven Methodology for Agent-Oriented Software. In

Henderson-Sellers B. and Giorgini P. (eds) Agent-Oriented Methodologies. Idea

Group Publishing. 2005, pp. 20-45

Hahn, C., Madrigal-Mora, C., Fischer, K. A platform-independent metamodel for

multiagent systems. Autonomous Agents and Multi-Agent Systems, Volume 18,

Issue 2, April 2009, Pages 239-266

Harel, D. and Naamad, A. 1996. The STATEMATE Semantics of Statecharts. ACM T.

Softw. Eng. Meth. 5, 4 (October 1996), 293-333.

194

Harel D. and Kugler, H. “The RHAPSODY Semantics of Statecharts (Or on the

Executable Core of the UML)”, Integration of Software Specification

Techniques for Application in Engineering, LNCS 3147, Springer-Verlag Berlin

Heidelberg, 2004, pp. 325–354

Henderson-Sellers B. and Giorgini P. 2005 Agent-Oriented Methodologies. Idea

Group Publishing.

Hirsch, M.: Making RUP agile. In: Conference on Object Oriented Programming

Systems Languages and Applications. ACM Press New York, NY, USA, 2002.

IEEE Standard Glossary of Software Engineering Terminology. IEEE std 610.12-1990,

1990

Iglesias, C. A., Garijo, M., González, J. C., & Velasco, J. R. (1998). Analysis and design

of multiagent systems using MAS-CommonKADS. In N. Callaos & M. Torres

(Eds.), Intelligent agents IV: Agent theories, architectures and languages, LNAI

1365 (pp. 313-326). Berlin: Springer-Verlag.

Jacyntho, M. D., Schwabe, D., and Rossi, G. (2002). A software architecture for

structuring complex web applications. Journal of Web Engineering, 2(1-2), pp.

37-60.

Jayatilleke, G.B., Padgham, L. and Winikoff, M. 2005. A model driven component-

based development framework for agents. Int. J. Comput. Syst. Sci. Eng. 20, 4

(July), 273-282.

Jennings, N.R.: Agent-Oriented Software Engineering. In: Proceedings of the 9
th

European Workshop on Modeling Autonomous Agents in a Multi-Agent World

(MAAMAW’99). LNCS, 1647, Springer-Verlag (1999)

Jouault F., Bézivin J., KM3: A DSL for Metamodel Specification. In Formal Methods for

Open Object-Based Distributed Systems, Proceedings of the 8th IFIP WG 6.1

International Conference, (FMOODS 2006), Bologna, Italy, June 14-16, 2006.

pp. 171-185.

Jouault, F. and Kurtev, I. On the Architectural Alignment of ATL and QVT. In

Proceedings of the 2006 ACM Symposium on Applied Computing (Dijon,

France, April 23-27, 2006). SAC 06. ACM Press, 1188-1195 (2006a)

Jouault, F. and Kurtev, I.: Transforming models with ATL. In: Satellite Events at the

MoDELS 2005 Conference. Volume 3844 of Lecture Notes in Computer

Science., Springer-Verlag 128–138 (2006b)

Kakas A, Moraitis P, Argumentation based decision making for autonomous agents.

In Proc of the 2nd Int Conf on Auton Agents and Multi-Agent Syst, Melbourne,

Australia, July 14-18, 2003

Karacapilidis, N., Moraitis P.,: Intelligent Agents for an Artificial Market System. Proc.

fifth International Conference on Autonomous Agents (AGENTS'01), pp. 592-

599, Montreal, Canada (2001)

195

Klatt, B., Xpand : A Closer Look at the Model2Text Transformation Language,

http://bar54.de/benjamin.klatt-Xpand.pdf , 06 July 2007.

Kleppe, A., Warmer, S. and Bast, W. 2003 MDA Explained. The Model Driven

Architecture: Practice and Promise. Addison-Wesley.

Klucsh M., Sycara K.: Brokering and Matchmaking for Coordination of Agent

Societies: A Survey. In Omicini et al. (editor), Coordination of Internet Agents,

Springer, 2001

Knublauch, H. ''Extreme programming of multi-agent systems,'' in {tiProceedings of

the 1st International Joint Conference on Autonomous Agents and Multiagent

Systems}, ACM Press: Bologna (I), 2002, pp. 704-711.

Knuth, Donald E.: The art of computer programming, volume 1 (3rd ed.):

fundamental algorithms, Addison Wesley Longman Publishing Co., Inc.,

Redwood City, CA, 1997

Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Object Language (EOL). In:

Rensink, A.,Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.

Springer, Heidelberg (2006)

König R.. State-based modeling method for multiagent conversation protocols and

decision activities. In R. Kowalczyk, J. P. M¨uller, H. Tianfield, and R. Unland,

editors, Agent Technologies, Infrastructures, Tools, and Applications for E-

Services, volume 2592 of Lecture Notes in Computer Science, pages 151–166.

Springer, 2003. http://www.springerlink.com/content/8yqqm6b2w6eprnqx/

Kruchten, P. The Rational Unified Process, An Introduction. Addison-Wesley, Second

Edition, 2000

Labrou, Y.; Finin, T.; Yun Peng, "Agent communication languages: the current

landscape," Intelligent Systems and their Applications, IEEE , vol.14, no.2,

pp.45-52, Mar/Apr 1999,

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=757631&isnumber=16

422

Lamsweerde, A. V. Goal-Oriented Requirements Engineering: A Guided Tour,

Proceedings RE’01 - 5th IEEE International Symposium on Requirements

Engineering, Toronto, August, 2001, pp. 249-263. Available at:

http://www.isys.ucl.ac.be/staff/stephane/EGMI2110Slide/Avl01.pdf

Langlois, B., Jitia, C.E., Jouenne, E.. DSL Classification. In 7th OOPSLA Workshop on

Domain-Specific Modeling, 2007. http://www.dsmforum.org/events/DSM07/

papers/langlois_jitia.pdf

Larman, C.. Agile and Iterative Development: A Manager's Guide. Addison-Wesley

Pub Co; 1st edition, 2003

Lonchamp Jacques: A Structured Conceptual and Terminological Framework for

Software Process Engineering. Proceedings of the Second International

196

Conference on the Software Process: Continuous Software Process

Improvement, Berlin, Germany, February 25-26, 1993. IEEE Computer Society,

1993, ISBN 0-8186-3600-9, pp. 41-53

Matsatsinis, N., Moraitis, P., Psomatakis, V. and Spanoudakis, N. “An Agent-Based

System for Products Penetration Strategy Selection”, Applied Artificial

Intelligence Journal, Taylor & Francis, Vol. 17, No. 10, 2003, pp. 901-925.

Mazouzi, H., Seghrouchni, A. E., and Haddad, S. 2002. Open protocol design for

complex interactions in multi-agent systems. In Proceedings of the First

international Joint Conference on Autonomous Agents and Multiagent

Systems: Part 2 (Bologna, Italy, July 15 - 19, 2002). AAMAS '02. ACM, New York,

NY, 517-526. DOI= http://doi.acm.org/10.1145/544862.544866

Meyer, B.. Object-Oriented Software Construction, Prentice Hall PTR, ISBN

0136291554, 1997

Mikk, E., Lakhnech, Y., Petersohn, C. and Siegel, M.. On formal semantics of

Statecharts as supported by STATEMATE. In Second BCS-FACS Northern Formal

Methods Workshop. Springer-Verlag, 1997,

http://reference.kfupm.edu.sa/content/o/n/on_formal_semantics_of_statech

arts_as_su_123245.pdf

Moore, Scott A. and Kimbrough, Steven O.. Message management systems at work:

Prototypes for business communication. Journal of Organizational Computing,

5(2):83-100, 1995.

Moore, Scott A.. A foundation for flexible automated electronic commerce. Working

paper at the University of Michigan Business School no. 99-011, May 1999.

http://deepblue.lib.umich.edu/bitstream/2027.42/35926/2/b2014129.0001.00

1.pdf

Moore, S.A. “On conversation policies and the need for exceptions”, Issues in Agent

Communication, Lecture Notes in Artificial Intelligence 1916, Springer, 2000,

pp. 144–159.

Moraitis P., "Multi-Agent Systems Paradigm and Distributed Decision Making", PhD

Thesis, Paris Dauphine University, December 1994

Moraitis, P.: Decision Theoretic and Logic Based Agents for Multi-Agent Systems.

Habilitation for Research Supervising, University Paris-Dauphine, France

(2002)

Moraitis, P., Petraki, E., Spanoudakis, N.: Engineering JADE Agents with the Gaia

Methodology. R. Kowalszyk, J. Muller, H. Tianfield, R. Unland (eds), Lecture

Notes in Computer Science (LNCS), vol. 2592: “Agent Technologies,

Infrastructures, Tools, and Applications for e-Services”, Springer-Verlag, 2003a,

pp 77-91

Moraitis, P., Petraki, E. and Spanoudakis, N.. Providing Advanced, Personalised

Infomobility Services Using Agent Technology. In: Proc. of the 23rd SGAI

197

International Conference on Innovative Techniques and Applications of

Artificial Intelligence (AI2003), Peterhouse College, Cambridge, UK, December

15-17, 2003b

Moraitis, P., Petraki, E. and Spanoudakis, N.. An Agent-based System for Infomobility

Services. In: Proceedings of the third European Workshop on Multi-Agent

Systems (EUMAS2005), Brussels, Belgium, December 7 - 8, 2005

Moraitis, P. and Spanoudakis N. 2006. The Gaia2JADE Process for Multi-Agent

Systems Development. J. Appl. Artif. Intell. 20, 2-4 (February-April 2006), 251-

273.

Moraitis, P., Spanoudakis N.: Argumentation-based Agent Interaction in an Ambient

Intelligence Context. IEEE Intelligent Systems, 22(6), pp. 84-93 (2007)

O’Hare, G. M. P., & Jennings, N. R. (Eds.). (1996) . Foundations of distributed artificial

intelligence. New York: John Wiley & Sons, Inc.

Object and Reference Model Subcommittee (ORMSC) of the OMG Architecture

Board: A Proposal for an MDA Foundation Model, white paper OMG-

ORMSC/05-08-01, http://www.omg.org/cgi-bin/doc?ormsc/05-08-01 (2005)

Object Management Group. Meta Object Facility (MOF) Core Specification (06-01-

01), January 2001. http://www.omg.org/spec/MOF/2.0/PDF/

Object Management Group: Software Process Engineering Metamodel Specification.

OMG, 2002, http://www.omg.org

Object Management Group: Object Constraint Language (OCL), OMG Document

ptc/03-10-14 (2003)

Object Management Group. Human-Usable Textual Notation V1.0 (04-08-01), August

2004. http://www.omg.org/docs/formal/04-08-01.pdf

Object Management Group: Revised Submission for MOF 2.0

Query/View/Transformations RFP, OMG Document ad/2005-07-01 (2005)

Odell, J. Objects and agents compared. Journal of Object Computing, 1(1), May 2002.

Odell J., Parunak H. V. D. and Bauer B. Extending UML for Agents. In Proc. of the

Agent-Oriented Information Systems (AOIS) Workshop at the 17th National

conference on Artificial Intelligence (AAAI), 2000.

Odell, J., Parunak, H. V. D. and Bauer, B. Representing Agent Interaction Protocols in

UML. In Agent-Oriented Software Engineering, LNCS 1957/2001. Springer, 201-

218.

OSGi alliance. A worldwide consortium of technology innovators defining a

component integration platform, http://www.osgi.org

Padgham, L. and Winikoff, M. Prometheus: A Methodology for Developing Intelligent

Agents. In G. Goos, J. Hartmanis, and J. van Leeuwen (eds) Agent-Oriented

198

Software Engineering III, Lecture Notes in Computer Science, Volume

2585/2003, Springer Berlin / Heidelberg, ISBN 978-3-540-00713-5, DOI

10.1007/3-540-36540-0, pp. 174-185

Padgham, L. and Winikoff, M. 2004 Developing Intelligent Agent Systems: A Practical

Guide. Wiley.

Padgham, L. and Winikoff, M. Prometheus: A Practical Agent-Oriented Methodology.

In Henderson-Sellers B. and Giorgini P. (eds) Agent-Oriented Methodologies.

Idea Group Publishing. 2005

Paurobally, S., Cunningham, R. and Jennings, N.R. Developing agent interaction

protocols using graphical and logical methodologies. In 2004 Programming

Multi-Agent Systems, LNCS 3067/2004. Springer, 149-168.

Pavón J., and Gómez-Sanz J. (2003). Agent-Oriented Software Engineering with

INGENIAS. In: Multi-Agent Systems and Applications III, 3
rd

 International

Central and Eastern European Conference on Multi-Agent Systems

(CEEMAS’03), Lecture Notes in Computer Science 2691, Springer Verlag, pp.

394-403.

Pavón, J., Gómez-Sanz, J.J. & Fuentes, R.: The INGENIAS Methodology and Tools. In:

Henderson-Sellers, B. and Giorgini, P., editors: Agent-Oriented Methodologies.

Idea Group Publishing, pp. 236-276 (2005)

Perini, A. and Susi, A. Automating Model Transformations in Agent-Oriented

Modeling. In 2006 Agent-Oriented Software Engineering VI, LNCS 3950.

Springer, 167-178.

Petri, Carl Adam; Reisig, Wolfgang. "Petri net". Scholarpedia 3(4):6477.

http://www.scholarpedia.org/article/Petri_net

Pikkarainen, Minna (2008) Towards a Framework for Improving Software

Development Process Mediated with CMMI Goals and Agile Practices. VTT

Publications 695. Espoo: VTT Technical Research Centre of Finland. ISBN 978-

951-38-7122-2, URI: http://www.vtt.fi/inf/pdf/publications/2008/P695.pdf

Protégé. A free, open source ontology editor and knowledge-base framework,

http://protege.stanford.edu/

Rana, O. F. and Stout, K. 2000. What is scalability in multi-agent systems?. In

Proceedings of the Fourth international Conference on Autonomous Agents

(Barcelona, Spain, June 03 - 07, 2000). AGENTS '00. ACM, New York, NY, 56-63.

DOI= http://doi.acm.org/10.1145/336595.337033

Ricordel, P. and Demazeau, Y. (2002). Volcano, a vowels-oriented multi-agent

platform. In From Theory to Practice in Multi-Agent Systems, Second

International Workshop of Central and Eastern Europe on Multi-Agent Systems

(CEEMAS 2001), volume 2296 of Lecture Notes in Computer Science, pages

253-262. Springer.

199

Rose, L.M., Paige, R.F., Kolovos, D.S. and Polack, F.. Constructing models with the

Human-Usable Textual Notation. In 11th International Conference on Model

Driven Engineering Languages and Systems (MoDELS), volume 5301 of LNCS,

pages 249-263. Springer, 2008.

Rosen H. Kenneth. Discreet Mathematics and its Applications. Forth edition, McGraw

Hill, 1999

Royce, Winston W. Managing the Development of Large Software Systems: Concepts

and Techniques. In: Technical Papers of Western Electronic Show and

Convention (WesCon) August 25-28, 1970, Los Angeles, USA.

Russel, Stuart and Norvig, Peter. Artificial Intelligence a Modern Approach. Second

Edition, Prentice Hall, 2003

Schwaber, K. & Beedle, M. 2002. Agile Software Development with Scrum. Prentice-

Hall. Upper Saddle River, NJ. 0-13-067634-9 158.

Sendall, S. and Kozaczynski, W. 2003. Model Transformation: The Heart and Soul of

Model-Driven Software Development. IEEE Softw. 20, 5 (Sep. 2003), 42-45.

DOI= http://dx.doi.org/10.1109/MS.2003.1231150

Smith, Reid G. and Davis, Randall. Frameworks for Cooperation in Distributed

Problem Solving. In: IEEE Transactions on Systems, Man and Cybernetics,

Volume: 11, Issue 1, Jan. 1981, pp. 61-70, ISSN: 0018-9472

http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=4308579&isnumbe

r=4308570

Sowmya, S. R. and Ramesh, S. - Extending Statecharts with Temporal Logic, IEEE

Transactions on Software Engineering, Vol. 24, No. 3, March 1998.

Spanoudakis N., Zangherati S. and Lazaro Ramos J.P.: Agent Platform Architecture.

ASK-IT project internal deliverable ID3.1.1, 2005, http://www.ask-it.org

Spanoudakis N., Moraitis, P.: Engineering a Brokering Framework for Providing

Semantic Services to Agents on Lightweight Devices. In: Proc. ECAI'06

Workshop on Context and Ontologies: Theory, Practice and Applications

(C&O'06), Riva del Garda, Italy, 2006a

Spanoudakis N., Moraitis, P.: Agent Communication Protocol. ASK-IT project internal

deliverable ID3.1.2, 2006b, http://www.ask-it.org

Spanoudakis, N. and Moraitis, P.. An Ambient Intelligence Application Integrating

Agent and Service-Oriented Technologies. In: Proceedings of the 27th SGAI

International Conference on Artificial Intelligence (AI2007), Peterhouse

College, Cambridge, UK, December 10-12, 2007a

Spanoudakis N., Moraitis, P.: The Agent Systems Methodology (ASEME): A

Preliminary Report. In: Proceedings of the 5th European Workshop on Multi-

Agent Systems (EUMAS'07), Hammamet, Tunisia, December 13 - 14, 2007b

200

Spanoudakis N. and Pendaraki K.. A Tool for Portfolio Generation Using an

Argumentation Based Decision Making Framework. In Proc of the Annu IEEE Int

Conf on Tools with Artif Intell, Patras, Greece, October 29-31, 2007c

Spanoudakis, N. and Moraitis, P.. The Agent Modeling Language (AMOLA). In:

Proceedings of the 13th International Conference on Artificial Intelligence:

Methodology, Systems, Applications (AIMSA 2008), Springer, Lecture notes in

Computer Science (LNCS), Volume 5253/2008, Varna, Bulgaria, September 4-6,

2008a

Spanoudakis, N. and Moraitis, P.. An Agent Modeling Language Implementing

Protocols through Capabilities. In: Proceedings of The 2008 IEEE/WIC/ACM

International Conference on Intelligent Agent Technology (IAT-08) , Sydney,

Australia, December 9-12, 2008b

Spanoudakis N., Moraitis, P.: An Autonomous Agent Application for Product Pricing.

In: Proceedings of the 6th European Workshop on Multi-Agent Systems

(EUMAS'08), Bath, UK, December 18-19, 2008c

Spanoudakis N., Moraitis, P.: Automated Product Pricing Using Argumentation. In:

Proceedings of the 5th IFIP Conference on Artificial Intelligence Applications &

Innovations (AIAI 2009) Thessaloniki, Greece, April 23-25, 2009

Spivey, J. Michael. The Z Notation: a Reference Manual. Prentice Hall, 1989.

Stevens W., G. Myers, L. Constantine, "Structured Design", IBM Systems Journal, 13

(2), 115-139, 1974.

Sturm, Arnon and Shehory, Onn. A comparative evaluation of agent oriented

methodologies. In Bergenti et al. (2004), chapter 7, pp. 127-149

Susi, A., Perini, A., Giorgini, P. and Mylopoulos, J.. The Tropos Metamodel and its

Use. Informatica, 29(4):401–408, 2005.

SWI-Prolog. A Free Software Prolog environment, http://www.swi-prolog.org/

Szyperski, C., “Component Software: beyond object-oriented programming”, ACM

Press/Addison-Wesley Publishing Co., 1997.

Tolvanen, J. P. 1998. Incremental Method Engineering with Modeling tools. Doctoral

Thesis. University of Jyväskylä. 301 p.

Toulis, P., Tzovaras, D., Spanoudakis, N. “MARKET-MINER Project Exploitation Plan”,

MARKET-MINER Project, Deliverable Π6.1 (in Greek language), Singular Logic

S.A., Greece, February 2007a.

Toulis, P., Tzovaras, D., Pantelopoulos, S. “MARKET-MINER System Evaluation

Report”, MARKET-MINER Project, Deliverable Π5.1 (in Greek language),

Singular Logic S.A., Greece, February 2007b.

Trencansky, I. and Cervenka, R.: Agent Modeling Language (AML): A comprehensive

approach to modeling MAS. Informatica 29(4), pp. 391–400 (2005)

201

UML. Unified Modeling Language Specification. ISO 19501:2005

Wąsowski, A., and Sestoft, P. On the formal semantics of visualSTATE statecharts.

Tech. Rep. TR-2002-19, IT University of Copenhagen, Sept. 2002.

http://www.it-c.dk/~wasowski/papers/vsfsem.pdf

Wąsowski A.: Code Generation and Model Driven Development for Constrained

Embedded Software. PhD dissertation. IT University of Copenhagen (2005)

https://www.itu.dk/people/wasowski/papers/wasowski-dissertation-

20050909.pdf

Weiss, Michael. Patterns for Motivating an Agent-Based Approach. In G. Goos, J.

Hartmanis, and J. van Leeuwen (eds) Conceptual Modeling for Novel

Application Domains, Lecture Notes in Computer Science, Volume 2814/2003,

Springer Berlin / Heidelberg, 2003

Winikoff, M. Jack Intelligent Agents: An Industrial Strength Platform. In Rafael H.

Bordini, Mehdi Dastani, Jürgen Dix and Amal El Fallah Seghrouchni (eds), Multi-

Agent Programming Languages, Platforms and Applications. Multiagent

Systems, Artificial Societies, and Simulated Organizations, Volume 15, ISBN

978-0-387-24568-3 (Print) 978-0-387-26350-2 (Online), DOI 10.1007/b137449,

Springer US, 2005, pp. 175-193

Winikoff, M.. JACK
TM

 intelligent agents: An industrial strength platform. Chapter 7 in

R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-

Agent Programming: Languages, Platforms and Applications. Number 15 in

Multiagent Systems, Artificial Societies, and Simulated Organizations. Springer,

2005, pages 175–193.

Wirth, Niklaus. Extended Backus-Naur Form (EBNF), 1996. ISO/IEC 14977:1996(E).

Wooldridge, M. & Jennings, N. (1995), “Intelligent Agents: Theory and Practice”, The

Knowledge Engineering Review 10 (2), 115-152.

Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented

Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems

Vol. 3. No. 3 (2000) 285-312

Yamamoto, G. and Nakamura, Y. 1999. Architecture and performance evaluation of a

massive multi-agent system. In Proceedings of the Third Annual Conference on

Autonomous Agents (Seattle, Washington, United States). O. Etzioni, J. P.

Müller, and J. M. Bradshaw, Eds. AGENTS '99. ACM, New York, NY, 319-325.

DOI= http://doi.acm.org/10.1145/301136.301219

Young DA - 1992 - Object-oriented programming with C++ and OSF/Motif, Prentice-

Hall, Inc. Upper Saddle River, NJ, USA

Zambonelli, F., Jennings, N.R. and Wooldridge, M. 2003. Developing multiagent

systems: the Gaia Methodology. ACM T. Softw. Eng. Meth. 12, 3 (July 2003),

317-370.

202

Zhu, H. and Shan, L. Caste-Centric Modeling of Multi-Agent Systems: The CAMLE

Modeling Language and Automated Tools. In Beydeda, S. and Gruhn, V. (eds.)

2005 Model-driven Software Development. Springer, 57-89.

203

Annex 2.

Abbreviations

A

AC Active Configuration (§2.1.3)

ACL Agent Communication Language (§2.2.9)

AID Agent Identifier (§4.5)

AMOLA Agent Modeling Language (§Chapter 3)

ANML Agent Negotiation Meta-Language (§2.2.9.3)

AOSE Agent-Oriented Software Engineering (§2.2)

API Application Programming Interface

ASEME Agent Systems Engineering Methodology (§Chapter 4)

ATL ATLAS Transformation Language (§2.1.4.4)

AUML Agent UML (§2.2.3)

AVSP Added-Value Service Provider (§3.2.1)

B

BR Broker Agent (§3.2.1)

C

CASE Computer-Aided Software Engineering,

http://en.wikipedia.org/wiki/Computer-aided_software_engineering

CIM Computation Independent Model (§2.1.4.4)

CIS Conversation Identification String (§4.8)

CP Conversation Policy (§2.2.9.2)

CPN Colored Petri Nets (§2.2.9.3)

CT Compound Transition (§2.1.3)

E

EBNF Extended Backus–Naur Form (§3.3.3)

EMF Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/

204

F

FIPA Foundation for Intelligent Physical Agents, http://fipa.org

FLBC
Formal Language for Business Communication (§2.2.9.2), http://www-

personal.umich.edu/~samoore/research/flbc/

FSM Finite State Machine (§2.2.9.3)

H

HUTN
Human-Usable Textual Notation (§5.2.2),

http://www.omg.org/technology/documents/formal/hutn.htm

I

IAC Intra-Agent Control (§3.4)

IDE Integrated Development Environment

ISV Independent Software Vendor

J

JADE Java Agent Development Environment, http://jade.tilab.com/

JDBC
Java DataBase Connectivity,

http://java.sun.com/javase/technologies/database/

JET Java Emitter Templates (§5.2.3)

JSP JavaServer Pages, http://java.sun.com/products/jsp/

K

KM3 Kernel MetaMetaModel (§2.1.4.4)

M

M2M Model to Model transformation (Chapter 5)

M2T Model to Text transformation (Chapter 5)

MAS Multi-Agent System

MDA Model-Driven Architecture (§2.1.4.4)

MDE Model-Driven Engineering (§2.1.4.4)

MIPA Market-Miner Project Product Pricing Agent (§4.9.4)

MOF
Meta-Object Facility,

http://www.omg.org/technology/documents/formal/mof.htm

O

oAW
openArchitectureWare, a platform for model-driven software

development (§5.2.3), http://www.openarchitectureware.org/

OMG Object Management Group, http://www.omg.org

OOD Object Oriented Development (or Design, §2.1.2)

OOP Object Oriented Programming (§2.1.2)

OSGi Open Services Gateway initiative, http://www.osgi.org

P

PA Personal Assistant (§3.2.1)

PDL Propositional Dynamic Logic (§2.2.9.3)

PIM Platform Independent Model (§2.1.4.4)

PSM Platform Specific Model (§2.1.4.4)

Q

QVT Query/Views Transformations (§2.1.4.4)

R

RPG Requirements per Goal document (§3.2.1)

RUP Rational Unified Process (§2.1.2.2)

205

S

SAG System Actors and Goals (§3.2)

SP Service Provider (§3.3.2)

SR Service Requester (§3.3.2)

SRM System Roles Model (§3.3)

STD State Transition Diagram (§2.2.9.3)

SUC System Use Cases (§3.3)

T

T2M Text to Model transformation (§5.2.2)

T2T Text to Text transformation (Chapter 5)

U

UML Unified Modeling Language (§2.1.2.1)

206

Annex 3.

The AMOLA Metamodels

Listing 20. The SAG metamodel definition in XML format (SAG.ecore file)

<?xml version="1.0" encoding="UTF-8" ?>

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="SAG"

nsURI="http://mi.parisdescartes.fr/ASEME/metamodels/SAG" nsPrefix="SAG">
 <eClassifiers xsi:type="ecore:EClass" name="Actor">

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EReference" name="my_goal" upperBound="-1"
eType="#//Goal" eOpposite="#//Goal/depender" />

 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Goal">

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EReference" name="depender" lowerBound="1"
eType="#//Actor" eOpposite="#//Actor/my_goal" />

 <eStructuralFeatures xsi:type="ecore:EReference" name="dependee" upperBound="-1"
eType="#//Actor" />

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="requirements"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />

 </eClassifiers>

</ecore:EPackage>

Listing 21. The SUC metamodel definition in XML format (SUC.ecore file)

<?xml version="1.0" encoding="UTF-8" ?>

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="SUC"

nsURI="http://mi.parisdescartes.fr/ASEME/metamodels/SUC" nsPrefix="SUC">
 <eClassifiers xsi:type="ecore:EClass" name="UseCase">

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EReference" name="interacter" ordered="false"

upperBound="-1" eType="#//Role" eOpposite="#//Role/interacts_with" />

207

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="specified_by"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EReference" name="include" ordered="false"
upperBound="-1" eType="#//UseCase" eOpposite="#//UseCase/included_by" />

 <eStructuralFeatures xsi:type="ecore:EReference" name="included_by" ordered="false"
upperBound="-1" eType="#//UseCase" eOpposite="#//UseCase/include" />

 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Role">

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EReference" name="interacts_with"
ordered="false" upperBound="-1" eType="#//UseCase" eOpposite="#//UseCase/interacter"

/>

 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="HumanRole" eSuperTypes="#//Role" />
 <eClassifiers xsi:type="ecore:EClass" name="SystemRole" eSuperTypes="#//Role" />

</ecore:EPackage>

Listing 22. The SRM metamodel definition in XML format (SRM.ecore file)

<?xml version="1.0" encoding="UTF-8" ?>

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="SRM"
nsURI="http://mi.parisdescartes.fr/ASEME/metamodels/SRM" nsPrefix="SRM">

 <eClassifiers xsi:type="ecore:EClass" name="Role">
 <eStructuralFeatures xsi:type="ecore:EReference" name="activities" ordered="false"

lowerBound="1" upperBound="-1" eType="#//Activity" />
 <eStructuralFeatures xsi:type="ecore:EReference" name="protocols" ordered="false"

upperBound="-1" eType="#//Protocol" />
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="liveness" ordered="false"

lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"

/>

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EReference" name="capabilities" ordered="false"
upperBound="-1" eType="#//Capability" />

 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="Activity">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name" ordered="false"

unique="false" lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="functionality"
ordered="false" unique="false" eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString" />
 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="Protocol">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name" ordered="false"

unique="false" lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="participant" ordered="false"
unique="false" lowerBound="1" upperBound="-1" eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString" />
 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="Capability">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name" ordered="false"

unique="false" lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EReference" name="activities" upperBound="-1"
eType="#//Activity" />

 </eClassifiers>

</ecore:EPackage>

Listing 23. The IAC metamodel definition in XML format (IAC.ecore file)

<?xml version="1.0" encoding="UTF-8" ?>

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" xmi:id="_3GNeoVAnEd64JYB58_U7Wg"

name="IAC" nsURI="http://mi.parisdescartes.fr/ASEME/metamodels/IAC" nsPrefix="IAC">

 <eClassifiers xsi:type="ecore:EClass" xmi:id="_3GNeolAnEd64JYB58_U7Wg" name="Node">

208

 <eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="_3GOFsFAnEd64JYB58_U7Wg"
name="name" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="_3GOFslAnEd64JYB58_U7Wg"
name="type" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="_3GOFtFAnEd64JYB58_U7Wg"
name="label" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"

/>

 <eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="_3GOFtlAnEd64JYB58_U7Wg"

name="activity" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString" />

 <eStructuralFeatures xsi:type="ecore:EReference" xmi:id="_3GOFuFAnEd64JYB58_U7Wg"
name="variables" upperBound="-1" eType="#_3GOFu1AnEd64JYB58_U7Wg" />

 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" xmi:id="_3GOFuVAnEd64JYB58_U7Wg" name="root"

eSuperTypes="#_3GNeolAnEd64JYB58_U7Wg" />
 <eClassifiers xsi:type="ecore:EClass" xmi:id="_3GOFu1AnEd64JYB58_U7Wg"

name="Variable">
 <eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="_3GOFvFAnEd64JYB58_U7Wg"

name="name" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />
 <eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="_3GOFvlAnEd64JYB58_U7Wg"

name="type" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />
 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" xmi:id="_3GOFwFAnEd64JYB58_U7Wg"
name="Transition">

 <eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="_3GOFwVAnEd64JYB58_U7Wg"

name="TE" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />
 <eStructuralFeatures xsi:type="ecore:EReference" xmi:id="_3GOFw1AnEd64JYB58_U7Wg"

name="source" lowerBound="1" eType="#_3GNeolAnEd64JYB58_U7Wg" />
 <eStructuralFeatures xsi:type="ecore:EReference" xmi:id="_3GOFxVAnEd64JYB58_U7Wg"

name="target" lowerBound="1" eType="#_3GNeolAnEd64JYB58_U7Wg" />
 <eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="_3GOFx1AnEd64JYB58_U7Wg"

name="name" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />
 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" xmi:id="_3GOFyVAnEd64JYB58_U7Wg" name="Model">
 <eStructuralFeatures xsi:type="ecore:EReference" xmi:id="_3GOFylAnEd64JYB58_U7Wg"

name="nodes" upperBound="-1" eType="#_3GNeolAnEd64JYB58_U7Wg" />
 <eStructuralFeatures xsi:type="ecore:EReference" xmi:id="_3GOFzFAnEd64JYB58_U7Wg"

name="transitions" upperBound="-1" eType="#_3GOFwFAnEd64JYB58_U7Wg" />
 <eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="_3GOFzlAnEd64JYB58_U7Wg"

name="name" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />
 <eStructuralFeatures xsi:type="ecore:EReference" name="variables" upperBound="-1"

eType="#_3GOFu1AnEd64JYB58_U7Wg" />
 </eClassifiers>

</ecore:EPackage>

209

Annex 4.

The SRM2IAC transformation

project files

Listing 24. The main java file implementing the Liveness2HUTN transformation

(Liveness2IAC_HUTN.java)

package fr.parisdescartes.mi.aseme.t2m.srm2iac;

import java.io.File;

import java.io.FileOutputStream;
import java.io.PrintWriter;

import java.util.Enumeration;
import java.util.Hashtable;

import java.util.Iterator;

import java.util.LinkedList;
import java.util.List;

import java.util.StringTokenizer;
import java.util.regex.Pattern;

import java.util.regex.Matcher;

public class Liveness2IAC_HUTN {

 String liveness = null;
 Hashtable<String, Node> nodes = new Hashtable<String, Node>();

 Hashtable<String, Variable> variables = new Hashtable<String, Variable>();
 Hashtable<String, Transition> transitions = new Hashtable<String, Transition>();

 Hashtable<String, String> formulas = new Hashtable<String, String>();

 /**

 * @param args

 */

 public static void main(String[] args) {

 // TODO Auto-generated method stub
 Liveness2IAC_HUTN liveness2IAC = new Liveness2IAC_HUTN();

 liveness2IAC.liveness = args[0];

 liveness2IAC.liveness=liveness2IAC.liveness.replaceAll(" ", "");

 liveness2IAC.transform();

 }

210

 public void transform() {

 StringTokenizer line = new StringTokenizer(this.liveness, "\n");
 while (line.hasMoreTokens()) {

 String tmp = line.nextToken();

 StringTokenizer formulaElements = new StringTokenizer(tmp, "=");

 String leftHandSide = formulaElements.nextToken();

 String formula = formulaElements.nextToken();

 formulas.put(leftHandSide, formula);

 }

 line = new StringTokenizer(liveness, "\n");
 StringTokenizer formulaElements = new StringTokenizer(line.nextToken(),

 "=");

 String leftHandSide = formulaElements.nextToken();

 line = null;
 formulaElements = null;

 Node root = new Node();

 root.setLabel("0");

 root.setName(leftHandSide);

 this.nodes.put(root.getLabel(), root);

 // call the createStatechart recursive process

 this.createStatechart(formulas.get(leftHandSide),

 root.getLabel());

 //create model

 Model m = new Model();

 for (Enumeration<String> iterator = nodes.keys(); iterator.hasMoreElements();) {

 m.addNode(iterator.nextElement());

 }

 for (Enumeration<String> iterator = transitions.keys();

iterator.hasMoreElements();) {

 m.addTransition(iterator.nextElement());

 }

 // create output

 try {
 PrintWriter out = new PrintWriter(new FileOutputStream(new File(

 "IAC.hutn")));

 out

 .write(new String(

 "@Spec{\n"

 + " Metamodel \"IAC\"{\n"

 + " nsUri: \"http://mi.parisdescartes.fr/ASEME/metamodels/IAC\"\n"

 + " }\n" + "}\n" + "IAC{\n"));

 for (Enumeration<Node> enumerator = nodes.elements(); enumerator

 .hasMoreElements();) {

 out.write(enumerator.nextElement().toHutnString());

 }

 for (Enumeration<Variable> enumerator = variables.elements(); enumerator

 .hasMoreElements();) {

 out.write(enumerator.nextElement().toHutnString());

 }

 for (Enumeration<Transition> enumerator = transitions.elements(); enumerator

 .hasMoreElements();) {

 out.write(enumerator.nextElement().toHutnString());

 }

 out.write(m.toHutnString());

 out.write(new String("}\n"));

 out.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public void createStatechart(String expression, String father) {

 // this integer will be used for selecting the connector for getting the

 // terms after the if section

 int expressionType = 0;

 // pattern for parallelExpression : expressionType=1

 Pattern patternParallelExpression = Pattern

 .compile("(((\\(.+\\))|([\\w&&[^()]])+)(ω?)\\|\\|)+((\\(.+\\))|([\\w&&[^()]])+)(ω?)"

);

 Matcher parallelMatcher = patternParallelExpression.matcher(expression);

 // pattern for orExpression : expressionType=2

 Pattern patternOrExpression = Pattern

 .compile("(((\\(.+\\))|([\\w&&[^()]])+)(ω?)\\|)+((\\(.+\\))|([\\w&&[^()]])+)(ω?)");

211

 Matcher orMatcher = patternOrExpression.matcher(expression);

 // pattern for sequentialExpression : expressionType=3

 Pattern patternSequentialExpression = Pattern

 .compile("(((\\(.+\\))|([\\w&&[^()]])+)(ω?)\\.)+((\\(.+\\))|([\\w&&[^()]])+)(ω?)");

 Matcher sequentialMatcher = patternSequentialExpression

 .matcher(expression);

 Node tmpNode;

 Transition tmpTransition;

 if (sequentialMatcher.find()

 && (sequentialMatcher.group().length() == expression.length())) {

 expressionType = 3;

 System.out.print("a sequential expression processed: " + expression

 + "\n");

 nodes.get(father).setType(Node.TYPE_OR);

 tmpNode = new Node();

 tmpNode.setLabel(father + ".1");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_START);

 nodes.put(tmpNode.getLabel(), tmpNode);

 int k = 2;
 for (Iterator<String> iterator = this.findTermsInExpression(

 expression, ".").iterator(); iterator.hasNext();) {

 String term = iterator.next();

 tmpNode = new Node();

 tmpNode.setLabel(father + "." + k);

 tmpNode.setName(this.computeNodeName(term));

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();

 tmpTransition.setSource(father + "." + (k - 1));

 tmpTransition.setTarget(father + "." + k);

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 k = k + 1;

 }

 tmpNode = new Node();

 tmpNode.setLabel(father + "." + k);

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_END);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();

 tmpTransition.setSource(father + "." + (k - 1));

 tmpTransition.setTarget(father + "." + k);

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 } else if (orMatcher.find()

 && (orMatcher.group().length() == expression.length())) {

 expressionType = 2;

 System.out

 .print("an or expression processed: " + expression + "\n");

 nodes.get(father).setType(Node.TYPE_OR);

 tmpNode = new Node();

 tmpNode.setLabel(father + ".1");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_START);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 tmpNode.setLabel(father + ".2");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_CONDITION);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();

 tmpTransition.setSource(father + ".1");

 tmpTransition.setTarget(father + ".2");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 int k = 3;

 for (Iterator<String> iterator = this.findTermsInExpression(

 expression, "|").iterator(); iterator.hasNext();) {

 String term = iterator.next();

212

 tmpNode = new Node();

 tmpNode.setLabel(father + "." + k);

 tmpNode.setName(this.computeNodeName(term));

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();

 tmpTransition.setSource(father + ".2");

 tmpTransition.setTarget(father + "." + k);

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 k = k + 1;

 }

 tmpNode = new Node();

 tmpNode.setLabel(father + "." + k);

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_END);

 nodes.put(tmpNode.getLabel(), tmpNode);

 int tmpCounter = k;
 for (k = tmpCounter - 1; k > 2; k--) {

 tmpTransition = new Transition();

 tmpTransition.setSource(father + "." + k);

 tmpTransition.setTarget(father + "." + tmpCounter);

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 }

 } else if (parallelMatcher.find()

 && (parallelMatcher.group().length() == expression.length())) {

 expressionType = 1;

 System.out.print("a parallel expression processed: " + expression

 + "\n");

 nodes.get(father).setType(Node.TYPE_OR);

 tmpNode = new Node();

 tmpNode.setLabel(father + ".1");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_START);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 tmpNode.setLabel(father + ".2");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_AND);

 // tmpNode.setName(expression);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();

 tmpTransition.setSource(father + ".1");

 tmpTransition.setTarget(father + ".2");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpNode = new Node();

 tmpNode.setLabel(father + ".3");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_END);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();

 tmpTransition.setSource(father + ".2");

 tmpTransition.setTarget(father + ".3");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 int k = 1;
 for (Iterator<String> iterator = this.findTermsInExpression(

 expression, "||").iterator(); iterator.hasNext();) {

 String term = iterator.next();

 tmpNode = new Node();

 tmpNode.setType(Node.TYPE_OR);

 tmpNode.setLabel(father + ".2." + k);

 tmpNode.setName(tmpNode.getLabel());

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 tmpNode.setLabel(father + ".2." + k + ".1");

 tmpNode.setName(tmpNode.getLabel());

213

 tmpNode.setType(Node.TYPE_START);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 tmpNode.setLabel(father + ".2." + k + ".2");

 tmpNode.setName(this.computeNodeName(term));

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();

 tmpTransition.setSource(father + ".2." + k + ".1");

 tmpTransition.setTarget(father + ".2." + k + ".2");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpNode = new Node();

 tmpNode.setLabel(father + ".2." + k + ".3");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_END);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();

 tmpTransition.setSource(father + ".2." + k + ".2");

 tmpTransition.setTarget(father + ".2." + k + ".3");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 k = k + 1;

 }

 }

 List<String> myTerms = null;

 switch (expressionType) {
 case 0:

 myTerms = new LinkedList<String>();

 myTerms.add(expression);

 break;
 case 1:

 myTerms = this.findTermsInExpression(expression, "||");
 break;

 case 2:
 myTerms = this.findTermsInExpression(expression, "|");

 break;
 case 3:

 myTerms = this.findTermsInExpression(expression, ".");
 break;

 }

 for (Iterator<String> iterator = myTerms.iterator(); iterator.hasNext();) {

 String term = iterator.next();

 // pattern for basicTerm

 Pattern patternBasicTerm = Pattern.compile("^\\w+$");

 Matcher basicTermMatcher = patternBasicTerm.matcher(term);

 // pattern for (term)

 Pattern patternComplexParenthesisTerm = Pattern

 .compile("^\\(.+\\)$");

 Matcher complexParenthesisTermMatcher = patternComplexParenthesisTerm

 .matcher(term);

 // pattern for [term]

 Pattern patternComplexOptionalTerm = Pattern.compile("^\\[.+\\]$");

 Matcher complexOptionalTermMatcher = patternComplexOptionalTerm

 .matcher(term);

 // pattern for termω

 Pattern patternForeverTerm = Pattern.compile(".+ω$");

 Matcher foreverTermMatcher = patternForeverTerm.matcher(term);

 // pattern for term+

 Pattern patternOneOrMoreTimesTerm = Pattern.compile(".+\\+$");

 Matcher oneOrMoreTimesTermMatcher = patternOneOrMoreTimesTerm

 .matcher(term);

 // pattern for term*

 Pattern patternZeroOrMoreTimesTerm = Pattern.compile(".+*$");

 Matcher zeroOrMoreTimesTermMatcher = patternZeroOrMoreTimesTerm

 .matcher(term);

 // pattern for |termω|n

 Pattern patternParallelManyTimesTerm = Pattern

 .compile("^\\|.+(ω\\|(\\d)+)$");

 Matcher parallelManyTimesTermMatcher = patternParallelManyTimesTerm

 .matcher(term);

 if (complexParenthesisTermMatcher.find()

 && (complexParenthesisTermMatcher.group().length() == term

214

 .length())) {

 this.createStatechart(term.substring(1, term.length() - 1),

 this.getNode(father, term));
 } else if (complexOptionalTermMatcher.find()

 && (complexOptionalTermMatcher.group().length() == term

 .length())) {

 this.nodes.get(getNode(father, term)).setType(

 Node.TYPE_OR);

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".1");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_START);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".2");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_CONDITION);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".3");

 String insideTerm = term.substring(1, term.length() - 1);

 tmpNode.setName(this.computeNodeName(insideTerm));

 nodes.put(tmpNode.getLabel(), tmpNode);

 basicTermMatcher = patternBasicTerm.matcher(insideTerm);

 if (basicTermMatcher.find()

 && (basicTermMatcher.group().length() == insideTerm

 .length())) {

 this.handleBasicTerm(insideTerm, this.getNode(father, term)

 + ".3");

 } else {
 this.createStatechart(insideTerm, this

 .getNode(father, term)

 + ".3");

 }

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".4");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_END);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();
 tmpTransition.setSource(this.getNode(father, term) + ".1");

 tmpTransition.setTarget(this.getNode(father, term) + ".2");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpTransition = new Transition();

 tmpTransition.setSource(this.getNode(father, term) + ".2");

 tmpTransition.setTarget(this.getNode(father, term) + ".3");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpTransition = new Transition();

 tmpTransition.setSource(this.getNode(father, term) + ".2");
 tmpTransition.setTarget(this.getNode(father, term) + ".4");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpTransition = new Transition();
 tmpTransition.setSource(this.getNode(father, term) + ".3");

 tmpTransition.setTarget(this.getNode(father, term) + ".4");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 } else if (zeroOrMoreTimesTermMatcher.find()

 && (zeroOrMoreTimesTermMatcher.group().length() == term

 .length())) {

 this.nodes.get(getNode(father, term)).setType(

 Node.TYPE_OR);

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".1");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_START);

215

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".2");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_CONDITION);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".3");

 String insideTerm = term.substring(0, term.length() - 1);

 tmpNode.setName(this.computeNodeName(insideTerm));

 nodes.put(tmpNode.getLabel(), tmpNode);

 basicTermMatcher = patternBasicTerm.matcher(insideTerm);

 if (basicTermMatcher.find()

 && (basicTermMatcher.group().length() == insideTerm

 .length())) {

 this.handleBasicTerm(insideTerm, this.getNode(father, term)

 + ".3");

 } else {

 this.createStatechart(insideTerm, this

 .getNode(father, term)

 + ".3");

 }

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".4");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_END);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();
 tmpTransition.setSource(this.getNode(father, term) + ".1");

 tmpTransition.setTarget(this.getNode(father, term) + ".2");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpTransition = new Transition();

 tmpTransition.setSource(this.getNode(father, term) + ".2");
 tmpTransition.setTarget(this.getNode(father, term) + ".3");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpTransition = new Transition();
 tmpTransition.setSource(this.getNode(father, term) + ".2");

 tmpTransition.setTarget(this.getNode(father, term) + ".4");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpTransition = new Transition();
 tmpTransition.setSource(this.getNode(father, term) + ".3");

 tmpTransition.setTarget(this.getNode(father, term) + ".3");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpTransition = new Transition();

 tmpTransition.setSource(this.getNode(father, term) + ".3");
 tmpTransition.setTarget(this.getNode(father, term) + ".4");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 } else if (foreverTermMatcher.find()

 && (foreverTermMatcher.group().length() == term.length())) {

 this.nodes.get(getNode(father, term)).setType(Node.TYPE_OR);
 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".1");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_START);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".2");

 String insideTerm = term.substring(0, term.length() - 1);

 tmpNode.setName(this.computeNodeName(insideTerm));

 nodes.put(tmpNode.getLabel(), tmpNode);

 basicTermMatcher = patternBasicTerm.matcher(insideTerm);

216

 if (basicTermMatcher.find()

 && (basicTermMatcher.group().length() == insideTerm

 .length())) {

 this.handleBasicTerm(insideTerm, this.getNode(father, term)

 + ".2");

 } else {

 this.createStatechart(insideTerm, this

 .getNode(father, term)

 + ".2");

 }

 tmpTransition = new Transition();
 tmpTransition.setSource(this.getNode(father, term) + ".1");

 tmpTransition.setTarget(this.getNode(father, term) + ".2");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpTransition = new Transition();

 tmpTransition.setSource(this.getNode(father, term) + ".2");
 tmpTransition.setTarget(this.getNode(father, term) + ".2");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 } else if (oneOrMoreTimesTermMatcher.find()

 && (oneOrMoreTimesTermMatcher.group().length() == term

 .length())) {

 this.nodes.get(getNode(father, term)).setType(Node.TYPE_OR);
 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".1");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_START);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 String insideTerm = term.substring(0, term.length() - 1);

 tmpNode.setLabel(getNode(father, term) + ".2");

 tmpNode.setName(this.computeNodeName(insideTerm));

 nodes.put(tmpNode.getLabel(), tmpNode);

 basicTermMatcher = patternBasicTerm.matcher(insideTerm);

 if (basicTermMatcher.find()

 && (basicTermMatcher.group().length() == insideTerm

 .length())) {

 this.handleBasicTerm(insideTerm, this.getNode(father, term)

 + ".2");

 } else {

 this.createStatechart(insideTerm, this

 .getNode(father, term)

 + ".2");

 }

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + ".3");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_END);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();
 tmpTransition.setSource(this.getNode(father, term) + ".1");

 tmpTransition.setTarget(this.getNode(father, term) + ".2");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpTransition = new Transition();

 tmpTransition.setSource(this.getNode(father, term) + ".2");
 tmpTransition.setTarget(this.getNode(father, term) + ".2");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpTransition = new Transition();
 tmpTransition.setSource(this.getNode(father, term) + ".2");

 tmpTransition.setTarget(this.getNode(father, term) + ".3");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 } else if (parallelManyTimesTermMatcher.find()

217

 && (parallelManyTimesTermMatcher.group().length() == term

 .length())) {

 this.nodes.get(getNode(father, term)).setType(Node.TYPE_AND);
 for (int k = 1;k<=Integer.parseInt(term.substring(term.lastIndexOf("|")+1,

term.length())); k++) {

 tmpNode = new Node();

 tmpNode.setType(Node.TYPE_OR);

 tmpNode.setLabel(getNode(father, term) + "." + k);

 tmpNode.setName(tmpNode.getLabel());

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + "." + k + ".1");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_START);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + "." + k + ".2");

 String insideTerm = term.substring(term.indexOf("|")+1,

term.lastIndexOf("ω"));

 tmpNode.setName(this.computeNodeName(insideTerm));

 nodes.put(tmpNode.getLabel(), tmpNode);

 basicTermMatcher = patternBasicTerm.matcher(insideTerm);

 if (basicTermMatcher.find()

 && (basicTermMatcher.group().length() == insideTerm

 .length())) {

 this.handleBasicTerm(insideTerm, getNode(father, term) + "." + k + ".2");
 } else {

 this.createStatechart(insideTerm, getNode(father, term) + "." + k + ".2");

 }

 tmpNode = new Node();

 tmpNode.setLabel(getNode(father, term) + "." + k + ".3");

 tmpNode.setName(tmpNode.getLabel());

 tmpNode.setType(Node.TYPE_END);

 nodes.put(tmpNode.getLabel(), tmpNode);

 tmpTransition = new Transition();

 tmpTransition.setSource(getNode(father, term) + "." + k + ".1");

 tmpTransition.setTarget(getNode(father, term) + "." + k + ".2");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 tmpTransition = new Transition();

 tmpTransition.setSource(getNode(father, term) + "." + k + ".2");

 tmpTransition.setTarget(getNode(father, term) + "." + k + ".3");

 tmpTransition.setName(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget());

 transitions.put(tmpTransition.getSource() + "TO"

 + tmpTransition.getTarget(), tmpTransition);

 }

 } else if (basicTermMatcher.find()

 && (basicTermMatcher.group().length() == term.length())) {

 this.handleBasicTerm(term, this.getNode(father, term));

 }

 }

 }

 public String parent(String node) {

 return (node.substring(0, node.lastIndexOf(".")));

 }

 public void handleBasicTerm(String term, String node) {

 boolean isBasic = true;
 if (formulas.containsKey(term)) {

 this.nodes.get(node).setType(Node.TYPE_OR);
 this.createStatechart(formulas.get(term), node);

 isBasic = false;

 }

 if (isBasic) {

 nodes.get(node).setType(Node.TYPE_BASIC);

 }

 }

 public String computeNodeName(String term) {
 String nodeName = new String(term);

 nodeName = nodeName.replaceAll("\\|\\|", "_parallel_");

218

 nodeName = nodeName.replaceAll("ω", "_forever_");

 nodeName = nodeName.replaceAll("\\.", "_sequence_");

 nodeName = nodeName.replaceAll("\\|", "_or_");

 nodeName = nodeName.replaceAll("*", "_zero_or_more_times_");

 nodeName = nodeName.replaceAll("\\+", "_one_or_more_times_");

 nodeName = nodeName.replaceAll("\\(", "_open_group_");

 nodeName = nodeName.replaceAll("\\)", "_close_group_");

 nodeName = nodeName.replaceAll("\\[", "_open_option_");

 nodeName = nodeName.replaceAll("\\]", "_close_option_");

 return nodeName;

 }

 public String getNode(String father, String term) {
 LinkedList<String> queue = new LinkedList<String>();

 queue.addLast(father);

 while (queue.size() > 0) {

 String first = queue.removeFirst();

 if (nodes.get(first).getName().equalsIgnoreCase(

 this.computeNodeName(term))) {
 return first;

 } else {
 for (Iterator<String> iterator = getSons(first).iterator(); iterator

 .hasNext();) {

 String son = iterator.next();

 queue.addLast(son);

 }

 }

 }

 return null;

 }

 public List<String> getSons(String father) {
 int i = 1;

 List<String> results = new LinkedList<String>();
 while (nodes.containsKey(father + "." + i)) {

 results.add(father + "." + i);

 i++;

 }

 return results;

 }

 public List<String> findTermsInExpression(String expression,

 String connector) {

 List<String> foundTerms = new LinkedList<String>();
 StringTokenizer t = new StringTokenizer(expression, connector);

 String currentTerm = new String();
 while (t.hasMoreTokens()) {

 int parenthesis = 0;

 currentTerm = currentTerm + t.nextToken();

 for (int i = 0; i < currentTerm.length(); i++) {

 if (currentTerm.regionMatches(i, "(", 0, 1))

 parenthesis++;

 if (currentTerm.regionMatches(i, ")", 0, 1))

 parenthesis--;

 }

 if (parenthesis == 0) {

 foundTerms.add(currentTerm);

 System.out.print("found term: " + currentTerm + "\n");

 currentTerm = new String();
 } else

 currentTerm = currentTerm + connector;

 }

 return foundTerms;

 }

}

Listing 25. The Model.java file

package fr.parisdescartes.mi.aseme.t2m.srm2iac;

import java.util.Iterator;

import java.util.LinkedList;

import java.util.List;

219

public class Model {

 List<String> nodes = new LinkedList<String>();
 List<String> transitions = new LinkedList<String>();

 String name = null;

 public List<String> getNodes() {
 return nodes;

 }

 public void setNodes(List<String> nodes) {

 this.nodes = nodes;

 }

 public void addNode(String newNode) {
 this.nodes.add(newNode);

 }

 public List<String> getTransitions() {

 return transitions;

 }

 public void setTransitions(List<String> transitions) {
 this.transitions = transitions;

 }

 public void addTransition(String newTransition) {

 this.transitions.add(newTransition);

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {
 this.name = name;

 }

 public String toHutnString() {

 String modelType = "Model";

 String result = new String(" " + modelType + " \""

 + this.getName() + "\"{\n" + " name: \""
 + this.getName() + "\"\n");

 if (this.nodes.size() > 0) {

 result = result + " nodes: ";

 boolean first = true;
 for (Iterator<String> iterator = nodes.iterator(); iterator

 .hasNext();) {

 if (!first)

 result = result + ", ";

 result = result + "Node \"" + iterator.next() + "\"";

 first = false;

 }

 result = result + "\n";

 }

 if (this.transitions.size() > 0) {

 result = result + " transitions: ";

 boolean first = true;

 for (Iterator<String> iterator = transitions.iterator(); iterator

 .hasNext();) {

 if (!first)

 result = result + ", ";

 result = result + "Transition \"" + iterator.next() + "\"";

 first = false;

 }

 result = result + "\n";

 }

 result = result + " }\n";

 return result;

 }

}

Listing 26. The Node.java file

package fr.parisdescartes.mi.aseme.t2m.srm2iac;

import java.util.Iterator;

import java.util.LinkedList;
import java.util.List;

public class Node {

 public static final String TYPE_OR = "OR";

220

 public static final String TYPE_AND = "AND";
 public static final String TYPE_START = "START";

 public static final String TYPE_END = "END";
 public static final String TYPE_CONDITION = "CONDITION";

 public static final String TYPE_BASIC = "BASIC";
 String type = null;

 String name = null;
 String label = null;

 String activity = null;
 List<String> variables = new LinkedList<String>();

 public List<String> getVariables() {

 return variables;

 }

 public void setVariables(List<String> variables) {
 this.variables = variables;

 }

 public void addVariable(String newVariable) {

 this.variables.add(newVariable);

 }

 public String getType() {
 return type;

 }

 public void setType(String type) {

 this.type = type;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {
 this.name = name;

 }

 public String getLabel() {

 return label;

 }

 public void setLabel(String label) {
 this.label = label;

 }

 public String getActivity() {

 return activity;

 }

 public void setActivity(String activity) {
 this.activity = activity;

 }

 public String toHutnString() {

 String nodeType = "Node";//(this.getLabel().equalsIgnoreCase("0"))?"root":"Node";

 String result = new String(" "+nodeType+" \"" + this.getLabel() + "\"{\n"

 + " type: \"" + this.getType() + "\"\n" + " name: \""

 + this.getName() + "\"\n" + " label: \"" + this.getLabel()
 + "\"\n" + " activity: \"" + this.getActivity() + "\"\n");

 if (this.variables.size() > 0) {

 result = result + " variables: ";

 boolean first = true;
 for (Iterator<String> iterator = variables.iterator(); iterator

 .hasNext();) {

 if (!first)

 result = result + ", ";

 result = result + "Variable \"" + iterator.next() + "\"";

 first = false;

 }

 result = result + "\n";

 }

 result = result + " }\n";

 return result;

 }

}

Listing 27. The Transition.java file

package fr.parisdescartes.mi.aseme.t2m.srm2iac;

public class Transition {
 String source = null;

 String target = null;

221

 String TE = null;
 String name = null;

 public String getName() {
 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getSource() {
 return source;

 }

 public void setSource(String source) {

 this.source = source;

 }

 public String getTarget() {
 return target;

 }

 public void setTarget(String target) {

 this.target = target;

 }

 public String getTE() {
 return TE;

 }

 public void setTE(String te) {

 TE = te;

 }

 public String toHutnString(){

 return new String(" Transition \""+this.getName()+"\"{\n" +
 " name: \""+this.getName()+"\"\n" +

 " TE: \""+this.getTE()+"\"\n" +
 " source: Node \""+this.getSource()+"\"\n" +

 " target: Node \""+this.getTarget()+"\"\n" +

 " }\n");

 }

}

Listing 28. The Variable.java file

package fr.parisdescartes.mi.aseme.t2m.srm2iac;

public class Variable {
 String type=null;

 String name =null;
 public String getType() {

 return type;

 }

 public void setType(String type) {
 this.type = type;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {
 this.name = name;

 }

 public String toHutnString(){

 return new String(" Variable \""+this.getName()+"\"{\n" +
 " type: \""+this.getType()+"\"\n" +

 " name: \""+this.getName()+"\"\n" +

 " }\n");

 }

}

222

Annex 5.

The IAC2JADE transformation

project files

Listing 29. The agent xpand template file (Agent.xpt)

«IMPORT IAC»
«EXTENSION fr::parisdescartes::mi::aseme::m2t::IACmodel::nodeHelper»

«EXTENSION fr::parisdescartes::mi::aseme::m2t::IACmodel::ComplexBehaviourHelper»

«DEFINE javaClass FOR IAC::Model»
 «LET name AS packageName»

 «EXPAND nodeClass(packageName, this) FOREACH nodes»

 «EXPAND variableHolderClass(packageName, this) FOREACH variables»
 «ENDLET»

«ENDDEFINE»

«DEFINE variableHolderClass(String packageName, Model model) FOR IAC::Variable»
 «FILE variableHolderFileName()»

 package «packageName»;

 import jade.core.behaviours.Behaviour;

 «IF type.compareTo("ACLMessage")==0»import jade.lang.acl.ACLMessage;«ENDIF»

 public class «type»Holder {

 «type» «lowerCaseFirstCharacterOfVariable(this)» = null;

 Behaviour owner;

 public «type»Holder(Behaviour owner) {

 super();

 this.owner = owner;

 }

 public «type» get«type»() {

 return «lowerCaseFirstCharacterOfVariable(this)»;

 }

 public void set«type»(«type» «lowerCaseFirstCharacterOfVariable(this)») {
 this.«lowerCaseFirstCharacterOfVariable(this)» =

«lowerCaseFirstCharacterOfVariable(this)»;

 }

 public Behaviour getOwner() {

223

 return owner;

 }

 }

 «ENDFILE»

«ENDDEFINE»

«DEFINE nodeClass(String packageName, Model model) FOR IAC::Node»
 «IF !name.startsWith("0")»

 «IF label.compareTo("0")==0»
 «EXPAND agentClass(packageName, model) FOR this»

 «ELSE»
 «EXPAND behaviourClass(packageName, model) FOR this»

 «ENDIF»
 «ENDIF»

«ENDDEFINE»

«DEFINE agentClass(String packageName, Model model) FOR IAC::Node»
 «FILE classFileName()»

 package «packageName»;

 import jade.core.Agent;

 public class «className()» extends Agent{

 public void setup(){

 //add behaviour

 addBehaviour(«getAgentBehaviour(this,model)»);

 }

 protected void takeDown() {

 doDelete();

 }

 }

 «ENDFILE»

«ENDDEFINE»

«DEFINE behaviourClass(String packageName, Model model) FOR IAC::Node»
 «IF type.compareTo("BASIC")==0»

 «EXPAND simpleBehaviourClass(packageName, model) FOR this»
 «ELSE»

 «IF determineBehaviourType(this,model).compareTo("parallel")==0»
 «EXPAND parallelBehaviourClass(packageName, model) FOR this»

 «ELSEIF (determineBehaviourType(this,model).compareTo("sequence")==0) ||
(determineBehaviourType(this,model).compareTo("or")==0)»

 «EXPAND sequenceBehaviourClass(packageName, model) FOR this»
 «ELSEIF determineBehaviourType(this,model).compareTo("forever")==0»

 «EXPAND cyclicBehaviourClass(packageName, model) FOR this»
 «ELSEIF determineBehaviourType(this,model).compareTo("one_or_more_times")==0»

 «EXPAND simpleOneOrMoreBehaviourClass(packageName, model) FOR this»

 «ELSEIF determineBehaviourType(this,model).compareTo("zero_or_more_times")==0»
 «EXPAND simpleZeroOrMoreBehaviourClass(packageName, model) FOR this»

 «ENDIF»
 «ENDIF»

«ENDDEFINE»

«DEFINE simpleZeroOrMoreBehaviourClass(String packageName, Model model) FOR IAC::Node»
 «FILE classFileName()»

 package «packageName»;

 import jade.core.Agent;

 import jade.core.behaviours.Behaviour;

 import jade.core.behaviours.SimpleBehaviour;

 public class «className()» extends SimpleBehaviour{

 «addVariables(this,model)»

 protected boolean finished;

 Behaviour simpleZeroOrMoreTimesBehaviour = null;

 public «className()»(Agent a«getParams(this,model)»){

 super(a);

 «instantiateParams(this,model)»
 if («getTransitionToChildOf(this,model)»){

 simpleZeroOrMoreTimesBehaviour = new «getCyclicBehaviour(this,model)»;

 myAgent.addBehaviour(simpleZeroOrMoreTimesBehaviour);

 finished = false;

 }

224

 else finished = true;

 }

 public void action(){

 if (simpleZeroOrMoreTimesBehaviour.done()){

 if («getTransitionToSelfConditionOfChild(this,model)»){

 simpleZeroOrMoreTimesBehaviour = new «getCyclicBehaviour(this,model)»;

 myAgent.addBehaviour(simpleZeroOrMoreTimesBehaviour);

 }

 else finished = true;

 }

 }

 public boolean done() {

 return finished;

 }

 }

 «ENDFILE»
«ENDDEFINE»

«DEFINE simpleOneOrMoreBehaviourClass(String packageName, Model model) FOR IAC::Node»

 «FILE classFileName()»

 package «packageName»;

 import jade.core.Agent;

 import jade.core.behaviours.Behaviour;

 import jade.core.behaviours.SimpleBehaviour;

 public class «className()» extends SimpleBehaviour{

 «addVariables(this,model)»

 protected boolean finished;

 Behaviour simpleOneOrMoreTimesBehaviour = null;

 public «className()»(Agent a«getParams(this,model)»){

 super(a);

 «instantiateParams(this,model)»

 finished = false;

 simpleOneOrMoreTimesBehaviour = new «getCyclicBehaviour(this,model)»;

 myAgent.addBehaviour(simpleOneOrMoreTimesBehaviour);

 }

 public void action(){

 if (simpleOneOrMoreTimesBehaviour.done()){

 if («getTransitionToSelfConditionOfChild(this,model)»){
 simpleOneOrMoreTimesBehaviour = new «getCyclicBehaviour(this,model)»;

 myAgent.addBehaviour(simpleOneOrMoreTimesBehaviour);

 }

 else finished = true;

 }

 }

 public boolean done() {

 return finished;

 }

 }

 «ENDFILE»
«ENDDEFINE»

«DEFINE cyclicBehaviourClass(String packageName, Model model) FOR IAC::Node»

 «FILE classFileName()»

 package «packageName»;

 import jade.core.Agent;

 import jade.core.behaviours.Behaviour;

 import jade.core.behaviours.CyclicBehaviour;

 public class «className()» extends CyclicBehaviour{

 «addVariables(this,model)»

 Behaviour foreverBehaviour = null;

 public «className()»(Agent a«getParams(this, model)») {

 super(a);

225

 «instantiateParams(this,model)»
 foreverBehaviour = new «getCyclicBehaviour(this,model)»;

 myAgent.addBehaviour(foreverBehaviour);

 }

 public void action() {

 if (foreverBehaviour.done()){

 foreverBehaviour = new «getCyclicBehaviour(this,model)»;

 myAgent.addBehaviour(foreverBehaviour);

 }

 }

 }

 «ENDFILE»

«ENDDEFINE»

«DEFINE sequenceBehaviourClass(String packageName, Model model) FOR IAC::Node»
 «FILE classFileName()»

 package «packageName»;

 import jade.core.Agent;

 import jade.core.behaviours.SequentialBehaviour;

 public class «className()» extends SequentialBehaviour {

 «addVariables(this,model)»

 public «className()»(Agent a«getParams(this, model)») {

 super(a);

 «instantiateParams(this,model)»
 «IF determineBehaviourType(this,model).compareTo("or")==0»

 «addConditionalSubBehaviour(this,model)»
 «ELSE»

 «addSubBehaviours(this,model)»
 «ENDIF»

 }

 }

 «ENDFILE»
«ENDDEFINE»

«DEFINE parallelBehaviourClass(String packageName, Model model) FOR IAC::Node»

 «FILE classFileName()»

 package «packageName»;

 import jade.core.Agent;

 import jade.core.behaviours.ParallelBehaviour;

 import jade.core.behaviours.ThreadedBehaviourFactory;

 public class «className()» extends ParallelBehaviour{

 ThreadedBehaviourFactory tbf = null;

 «addVariables(this,model)»

 public «className()»(Agent a«getParams(this, model)»){

 super(a,ParallelBehaviour.WHEN_ALL);

 «instantiateParams(this,model)»

 tbf = new ThreadedBehaviourFactory();

 «addParallelBehaviours(this,model)»

 }

 }

 «ENDFILE»
«ENDDEFINE»

«DEFINE simpleBehaviourClass(String packageName, Model model) FOR IAC::Node»

 «FILE classFileName()»

 package «packageName»;

 import jade.core.Agent;

 import jade.core.behaviours.SimpleBehaviour;

 «importMessageClasses(this)»

 public class «className()» extends SimpleBehaviour{

 «addVariables(this,model)»

 «addMessageTemplateVariable(this)»

 boolean finished = false;

 public «className()»(Agent a«getParams(this,model)»){

226

 super(a);

 «instantiateParams(this,model)»

 }

 public void action(){

 «addAction(this, model)»

 }

 public boolean done() {

 return finished;

 }

 }

 «ENDFILE»

«ENDDEFINE»

Listing 30. The nodeHelper xtend file (NodeHelper.ext)

import IAC;

String className(Node e) :

 JAVA fr.parisdescartes.mi.aseme.m2t.IACmodel.NodeHelper.className(IAC.Node);

String classFileName(Node e) :

 JAVA fr.parisdescartes.mi.aseme.m2t.IACmodel.NodeHelper.classFileName(IAC.Node);

String variableFileName(Variable e) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.NodeHelper.variableFileName(IAC.Variable);

String variableHolderFileName(Variable e) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.NodeHelper.variableHolderFileName(IAC.Variable

);

String lowerCaseFirstCharacterOfVariable(Variable e) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.NodeHelper.lowerCaseFirstCharacterOfVariable(I

AC.Variable);

Listing 31. The nodeHelper Java implementation class (NodeHelper.java)

package fr.parisdescartes.mi.aseme.m2t.IACmodel;

import IAC.Node;
import IAC.Variable;

public class NodeHelper {

 public static String className(Node e) {
 return

((e.getLabel().equalsIgnoreCase("0"))?e.getName()+"Agent":e.getName()+"Behaviour");

 }

 public static String classFileName(Node e) {

 return className(e)+".java";

 }

 public static String variableFileName(Variable e) {

 return e.getType()+".java";

 }

 public static String variableHolderFileName(Variable e) {

 return e.getType()+"Holder.java";

 }

 public static String lowerCaseFirstCharacterOfVariable(Variable e) {

 return new String(e.getType().substring(0,

1).toLowerCase()+e.getType().substring(1));

 }

}

227

Listing 32. The ComplexBehaviourHelper xtend file (ComplexBehaviourHelper.ext)

import IAC;

String addVariables(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.addVariables(IAC.Node,

IAC.Model);

String getParams(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.getParams(IAC.Node,

IAC.Model);

String getCyclicBehaviour(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.getCyclicBehaviour(IAC.

Node, IAC.Model);

String getAgentBehaviour(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.getAgentBehaviour(IAC.N

ode, IAC.Model);

String getTransitionToSelfConditionOfChild(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.getTransitionToSelfCond

itionOfChild(IAC.Node, IAC.Model);

String addAction(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.addAction(IAC.Node,

IAC.Model);

String addMessageTemplateVariable(Node e) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.addMessageTemplateVaria

ble(IAC.Node);

String importMessageClasses(Node e) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.importMessageClasses(IA

C.Node);

String getTransitionToChildOf(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.getTransitionToChildOf(

IAC.Node, IAC.Model);

String instantiateParams(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.instantiateParams(IAC.N

ode, IAC.Model);

String addParallelBehaviours(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.addParallelBehaviours(I

AC.Node, IAC.Model);

String addSubBehaviours(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.addSubBehaviours(IAC.No

de, IAC.Model);

String addConditionalSubBehaviour(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.addConditionalSubBehavi

our(IAC.Node, IAC.Model);

List subBehavioursOf(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.subBehavioursOf(IAC.Nod

e, IAC.Model);

228

String determineBehaviourType(Node e , Model m) :

 JAVA

fr.parisdescartes.mi.aseme.m2t.IACmodel.ComplexBehaviourHelper.determineBehaviourType(

IAC.Node, IAC.Model);

Listing 33. The ComplexBehaviourHelper Java implementation class

(ComplexBehaviourHelper.java)

package fr.parisdescartes.mi.aseme.m2t.IACmodel;

import java.util.Iterator;

import java.util.StringTokenizer;
import java.util.regex.Matcher;

import java.util.regex.Pattern;

import org.eclipse.emf.common.util.BasicEList;
import org.eclipse.emf.common.util.EList;

import IAC.Model;

import IAC.Node;
import IAC.Transition;

import IAC.Variable;

public class ComplexBehaviourHelper {

 public static final String TYPE_FOREVER = "forever";
 public static final String TYPE_ONE_OR_MORE_TIMES = "one_or_more_times";

 public static final String TYPE_ZERO_OR_MORE_TIMES = "zero_or_more_times";
 public static final String TYPE_SEQUENCE = "sequence";

 public static final String TYPE_OR = "or";
 public static final String TYPE_PARALLEL = "parallel";

 public static boolean existConditionInSubNodesOf(Node e, Model m) {

 boolean result = false;

 // TO DO define the attributes

 EList<Node> tmp = subNodesOf(e, m);

 for (Iterator<Node> iterator = tmp.iterator(); iterator.hasNext();) {

 Node node = iterator.next();

 if (node.getType().equalsIgnoreCase("CONDITION")) {
 result = true;

 }

 }

 return result;

 }

 public static String addParallelBehaviours(Node e, Model m) {

 String result = new String();
 for (Iterator<Node> iterator = subBehavioursOf(e, m).iterator(); iterator

 .hasNext();) {

 Node node = iterator.next();

 String params = new String();
 boolean firstParam = true;

 for (Iterator<Variable> iterator2 = node.getVariables().iterator(); iterator2

 .hasNext();) {

 Variable tmpVar2 = iterator2.next();

 for (Iterator<Variable> iterator3 = e.getVariables().iterator(); iterator3

 .hasNext();) {

 Variable tmpVar3 = iterator3.next();

 if (tmpVar2.getName().equalsIgnoreCase(tmpVar3.getName())) {

 params = params + ", " + tmpVar2.getName();

 if (firstParam)

 firstParam = false;

 }

 }

 }

 result = result + "\nmyAgent.addBehaviour(tbf.wrap(new "

 + node.getName() + "Behaviour(this.myAgent" + params

 + ")));";

 }

 return result;

 }

229

 public static String getCyclicBehaviour(Node e, Model m) {
 String result = new String();

 for (Iterator<Node> iterator = subBehavioursOf(e, m).iterator(); iterator

 .hasNext();) {

 Node node = iterator.next();

 String params = new String();

 boolean firstParam = true;
 for (Iterator<Variable> iterator2 = node.getVariables().iterator(); iterator2

 .hasNext();) {

 Variable tmpVar2 = iterator2.next();

 for (Iterator<Variable> iterator3 = e.getVariables().iterator(); iterator3

 .hasNext();) {

 Variable tmpVar3 = iterator3.next();

 if (tmpVar2.getName().equalsIgnoreCase(tmpVar3.getName())) {

 params = params + ", " + tmpVar2.getName();

 if (firstParam)

 firstParam = false;

 }

 }

 }

 result = result + node.getName() + "Behaviour(this.myAgent"

 + params + ")";

 break;

 }

 return result;

 }

 public static String getAgentBehaviour(Node e, Model m) {
 String result = new String();

 for (Iterator<Node> iterator = subBehavioursOf(e, m).iterator(); iterator

 .hasNext();) {

 Node node = iterator.next();

 String params = new String();

 boolean firstParam = true;
 for (Iterator<Variable> iterator2 = node.getVariables().iterator(); iterator2

 .hasNext();) {

 Variable tmpVar2 = iterator2.next();

 for (Iterator<Variable> iterator3 = e.getVariables().iterator(); iterator3

 .hasNext();) {

 Variable tmpVar3 = iterator3.next();

 if (tmpVar2.getName().equalsIgnoreCase(tmpVar3.getName())) {

 params = params + ", " + tmpVar2.getName();

 if (firstParam)

 firstParam = false;

 }

 }

 }

 result = result + "new " + node.getName() + "Behaviour(this"

 + params + ")";

 break;

 }

 return result;

 }

 public static String addSubBehaviours(Node e, Model m) {
 String result = new String();

 for (Iterator<Node> iterator = sortSubNodes(subBehavioursOf(e, m))

 .iterator(); iterator.hasNext();) {

 Node node = iterator.next();

 String params = new String();

 boolean firstParam = true;
 for (Iterator<Variable> iterator2 = node.getVariables().iterator(); iterator2

 .hasNext();) {

 Variable tmpVar2 = iterator2.next();

 for (Iterator<Variable> iterator3 = e.getVariables().iterator(); iterator3

 .hasNext();) {

 Variable tmpVar3 = iterator3.next();

 if (tmpVar2.getName().equalsIgnoreCase(tmpVar3.getName())) {

 params = params + ", " + tmpVar2.getName();

 if (firstParam)

 firstParam = false;

 }

 }

 }

 result = result + "\naddSubBehaviour(new " + node.getName()

 + "Behaviour(this.myAgent" + params + "));";

230

 }

 return result;

 }

 public static String addConditionalSubBehaviour(Node e, Model m) {
 String result = new String();

 EList<Node> tmp = subBehavioursOf(e, m);

 boolean allowedNullOnce = false;

 for (int i = 0; i < tmp.size(); i++) {

 Node node = tmp.get(i);

 String params = new String();
 boolean firstParam = true;

 for (Iterator<Variable> iterator2 = node.getVariables().iterator(); iterator2

 .hasNext();) {

 Variable tmpVar2 = iterator2.next();

 for (Iterator<Variable> iterator3 = e.getVariables().iterator(); iterator3

 .hasNext();) {

 Variable tmpVar3 = iterator3.next();

 if (tmpVar2.getName().equalsIgnoreCase(tmpVar3.getName())) {

 params = params + ", " + tmpVar2.getName();

 if (firstParam)
 firstParam = false;

 }

 }

 }

 String condition = null;
 for (Iterator<Transition> iterator = m.getTransitions().iterator(); iterator

 .hasNext();) {

 Transition tmpT = iterator.next();

 if (tmpT.getTarget().getLabel().equalsIgnoreCase(

 node.getLabel())) {

 condition = getConditionOfExpression(tmpT.getTE());

 }

 }

 if (condition == null)

 condition = "null";

 if ((condition.equalsIgnoreCase("null")) && (i < tmp.size() - 1)

 && (!allowedNullOnce)) {

 tmp.remove(i);

 tmp.add(node);

 i--;

 allowedNullOnce = true;
 } else {

 if (i == 0) {

 result = result

 + "\nif ("

 + (condition.equalsIgnoreCase("null") ? "/*insert condition*/"

 : "/*" + condition + "*/") + ") ";

 } else if ((i == tmp.size() - 1)

 && (condition.equalsIgnoreCase("null"))) {

 result = result + "\nelse ";

 } else {

 result = result

 + "\nelse if("

 + (condition.equalsIgnoreCase("null") ? "/*insert condition*/"

 : "/*" + condition + "*/") + ") ";

 }

 result = result + "addSubBehaviour(new " + node.getName()

 + "Behaviour(this.myAgent" + params + "));";

 }

 }

 return result;

 }

 public static boolean existTransitionToSelf(Node e, Model m) {
 boolean result = false;

 for (Iterator<Transition> iterator = m.getTransitions().iterator(); iterator

 .hasNext();) {

 Transition tmp = iterator.next();

 if ((tmp.getSource().getLabel().equalsIgnoreCase(e.getLabel()))

 && (tmp.getTarget().getLabel().equalsIgnoreCase(e

 .getLabel()))) {

 result = true;

 }

 }

 return result;

231

 }

 public static String getTransitionToSelfConditionOfChild(Node e, Model m) {

 String result = "true";

 for (Iterator<Transition> iterator = m.getTransitions().iterator(); iterator

 .hasNext();) {

 Transition tmp = iterator.next();

 if ((tmp.getSource().getLabel().equalsIgnoreCase(subBehavioursOf(e,

 m).get(0).getLabel()))

 && (tmp.getTarget().getLabel()

 .equalsIgnoreCase(subBehavioursOf(e, m).get(0)

 .getLabel()))) {

 result = (tmp.getTE().equalsIgnoreCase("null") ? "/*insert condition*/"

 : tmp.getTE());

 }

 }

 return result;

 }

 public static String getTransitionToChildOf(Node e, Model m) {

 String result = "true";

 for (Iterator<Transition> iterator = m.getTransitions().iterator(); iterator

 .hasNext();) {

 Transition tmp = iterator.next();

 if ((!(tmp.getSource().getLabel().equalsIgnoreCase(subBehavioursOf(

 e, m).get(0).getLabel())))

 && (tmp.getTarget().getLabel()

 .equalsIgnoreCase(subBehavioursOf(e, m).get(0)

 .getLabel()))) {

 result = tmp.getTE();

 }

 }

 return result;

 }

 public static String determineBehaviourType(Node e, Model m) {
 if (e.getType().equalsIgnoreCase("AND")) {

 System.out

 .print("\nFound a behaviour with name: " + e.getName()

 + " found of type: "

 + ComplexBehaviourHelper.TYPE_PARALLEL);

 return ComplexBehaviourHelper.TYPE_PARALLEL;
 } else if ((subNodesOf(e, m).size() == 2)

 && (existTransitionToSelf((sortSubNodes(subNodesOf(e, m)))

 .get(1), m))) {

 System.out.print("\nFound a behaviour with name: " + e.getName()

 + " found of type: " + ComplexBehaviourHelper.TYPE_FOREVER);

 return ComplexBehaviourHelper.TYPE_FOREVER;

 } else if ((subNodesOf(e, m).size() == 3)

 && (existTransitionToSelf((sortSubNodes(subNodesOf(e, m)))

 .get(1), m))) {

 System.out.print("\nFound a behaviour with name: " + e.getName()

 + " found of type: "

 + ComplexBehaviourHelper.TYPE_ONE_OR_MORE_TIMES);

 return ComplexBehaviourHelper.TYPE_ONE_OR_MORE_TIMES;
 } else if (existConditionInSubNodesOf(e, m)) {

 if (subNodesOf(e, m).size() == 4) {

 System.out.print("\nFound a behaviour with name: "

 + e.getName() + " found of type: "

 + ComplexBehaviourHelper.TYPE_ZERO_OR_MORE_TIMES);

 return ComplexBehaviourHelper.TYPE_ZERO_OR_MORE_TIMES;
 } else {

 System.out.print("\nFound a behaviour with name: "

 + e.getName() + " found of type: "

 + ComplexBehaviourHelper.TYPE_OR);

 return ComplexBehaviourHelper.TYPE_OR;

 }

 } else {

 System.out

 .print("\nFound a behaviour with name: " + e.getName()

 + " found of type: "

 + ComplexBehaviourHelper.TYPE_SEQUENCE);

 return ComplexBehaviourHelper.TYPE_SEQUENCE;

 }

 }

232

 public static String addVariables(Node e, Model m) {
 String result = new String();

 for (Iterator iterator = e.getVariables().iterator(); iterator

 .hasNext();) {

 Variable variable = (Variable) iterator.next();

 if (existVariableInParentNode(variable, e, m)) {

 result = result + "\t\t" + variable.getType() + "Holder "

 + variable.getName() + " = null;";

 } else {

 result = result + "\t\t" + variable.getType() + "Holder "

 + variable.getName() + " = new " + variable.getType()

 + "Holder(this);";

 }

 }

 return result;

 }

 public static String getParams(Node e, Model m) {

 String result = new String();
 for (Iterator iterator = e.getVariables().iterator(); iterator

 .hasNext();) {

 Variable variable = (Variable) iterator.next();

 if (existVariableInParentNode(variable, e, m)) {

 result = result + ", " + variable.getType() + "Holder "

 + variable.getName();

 }

 }

 return result;

 }

 public static String instantiateParams(Node e, Model m) {

 String result = new String();
 for (Iterator iterator = e.getVariables().iterator(); iterator

 .hasNext();) {

 Variable variable = (Variable) iterator.next();

 if (existVariableInParentNode(variable, e, m)) {

 result = result + "\t\t\tthis." + variable.getName() + " = "

 + variable.getName() + ";";

 }

 }

 return result;

 }

 public static String addMessageTemplateVariable(Node e) {
 if (e.getName().startsWith("Receive")) {

 return "protected MessageTemplate mt = null;";

 }

 return "";

 }

 public static String importMessageClasses(Node e) {
 String result = new String();

 if ((e.getName().startsWith("Receive"))

 || (e.getName().startsWith("Send"))) {

 result = result + "\n\timport jade.lang.acl.ACLMessage;";

 }

 if (e.getName().startsWith("Receive")) {

 result = result + "\n\timport jade.lang.acl.MessageTemplate;";

 }

 return result;

 }

 public static String addAction(Node e, Model m) {

 System.out.print("\nadding action for node with name: " + e.getName());

 String result = new String();
 if (e.getName().startsWith("Receive")) {

 for (Iterator<Transition> iterator = m.getTransitions().iterator(); iterator

 .hasNext();) {

 Transition tmp = iterator.next();

 if ((tmp.getSource().getLabel().equalsIgnoreCase(e.getLabel()))

 && (!(tmp.getTarget().getLabel().equalsIgnoreCase(e

 .getLabel())))) {

 Pattern messagePattern = Pattern

 .compile("[a-z]+\\([a-z,]+\\)");

 Matcher messageMatcher = messagePattern

 .matcher(getEventOfExpression(tmp.getTE()));

233

 boolean firstPerformative = true;
 while (messageMatcher.find()) {

 String nextEvent = messageMatcher.group();

 if (firstPerformative) {

 firstPerformative = false;

 result = result

 + "\t\tmt = MessageTemplate.MatchPerformative(ACLMessage."

 + nextEvent.substring(0,

 nextEvent.indexOf("("))

 .toUpperCase() + ");";

 } else {

 result = result

 + "\n\t\tmt =

MessageTemplate.or(mt,MessageTemplate.MatchPerformative(ACLMessage."

 + nextEvent.substring(0,

 nextEvent.indexOf("("))

 .toUpperCase() + "));";

 }

 }

 if (firstPerformative) {

 result = result

 + "\t\t/*insert MessageTemplate code here*/";

 }

 result = result

 + "\n\t\tACLMessage msg = myAgent.receive(mt);"

 + "\n\t\tif (msg != null) {"

 + "\n\t\t//insert message handling code"

 + "\n\t\t\tfinished = true;" + "\n\t\t}else {"

 + "\n\t\t\tblock();" + "\n\t\t}";

 }

 }

 } else if (e.getName().startsWith("Send")) {
 for (Iterator<Transition> iterator = m.getTransitions().iterator(); iterator

 .hasNext();) {

 Transition tmp = iterator.next();

 if ((tmp.getSource().getLabel().equalsIgnoreCase(e.getLabel()))

 && (!(tmp.getTarget().getLabel().equalsIgnoreCase(e

 .getLabel())))) {

 Pattern messagePattern = Pattern

 .compile("[a-z]+\\([a-z,]+\\)");

 Matcher messageMatcher = messagePattern

 .matcher(getEventOfExpression(tmp.getTE()));

 boolean firstPerformative = true;

 result = result + "ACLMessage msg = null;";

 while (messageMatcher.find()) {

 String nextEvent = messageMatcher.group();

 if (firstPerformative) {

 firstPerformative = false;

 result = result

 + "\n\t\tif (/*insert condition*/) {"

 + "\n\t\t\tmsg = new ACLMessage(ACLMessage."

 + nextEvent.substring(0,

 nextEvent.indexOf("("))

 .toUpperCase() + ");" + "\n\t\t}";

 } else {

 result = result

 + "\n\t\telse if (/*insert condition*/) {"

 + "\n\t\t\tmsg = new ACLMessage(ACLMessage."

 + nextEvent.substring(0,

 nextEvent.indexOf("("))

 .toUpperCase() + ");" + "\n\t\t}";

 }

 }

 result = result

 + "\n\t\t//insert message initialization code"

 + "\n\t\tmyAgent.send(msg);"

 + "\n\t\tfinished = true;";

 }

 }

 } else {

 if (e.getActivity() != null) {
 if (e.getActivity().startsWith("/*Java code*/")) {

 result = result + "\n\t\t" + e.getActivity().substring(13)

 + "\n\t\tfinished = true;";

 } else {

 result = result

234

 + "\n\t\t/*"

 + (e.getActivity().equalsIgnoreCase("null") ? "insert behaviour activity

code here"

 : e.getActivity()) + "*/"

 + "\n\t\tfinished = true;";

 }

 } else {

 result = result

 + "\n\t\t/*insert behaviour activity code here*/"

 + "\n\t\tfinished = true;";

 }

 }

 return result;

 }

 public static Node getProtocolParentNode(String performative, Node e,

 Model m) {

 // TO DO define the attributes

 for (Iterator iterator = m.getNodes().iterator(); iterator.hasNext();) {

 Node node = (Node) iterator.next();

 if ((e.getLabel().startsWith(node.getLabel()))

 && (e.getLabel().compareTo(node.getLabel()) != 0)) {

 for (Iterator iterator2 = node.getVariables().iterator(); iterator2

 .hasNext();) {

 Variable variable = (Variable) iterator2.next();

 if (variable.getName().equalsIgnoreCase(performative)) {
 return node;

 }

 }

 }

 }

 return null;

 }

 public static boolean existVariableInParentNode(Variable var, Node e,

 Model m) {

 boolean result = false;

 // TO DO define the attributes

 EList<Node> tmp = m.getNodes();

 for (Iterator iterator = tmp.iterator(); iterator.hasNext();) {

 Node node = (Node) iterator.next();

 if ((e.getLabel().startsWith(node.getLabel()))

 && (e.getLabel().compareTo(node.getLabel()) != 0)) {

 for (Iterator iterator2 = node.getVariables().iterator(); iterator2

 .hasNext();) {

 Variable variable = (Variable) iterator2.next();

 if (variable.getName().equalsIgnoreCase(var.getName())) {

 return true;

 }

 }

 }

 }

 return result;

 }

 public static EList<Node> subNodesOf(Node e, Model m) {

 EList<Node> results = new BasicEList<Node>();
 for (Iterator iterator = m.getNodes().iterator(); iterator.hasNext();) {

 Node node = (Node) iterator.next();

 if ((node.getLabel().startsWith(e.getLabel()))

 && (node.getLabel().length() == e.getLabel().length() + 2)) {

 results.add(node);

 }

 }

 return results;

 }

 public static EList<Node> subBehavioursOf(Node e, Model m) {

 EList<Node> results = new BasicEList<Node>();
 for (Iterator iterator = m.getNodes().iterator(); iterator.hasNext();) {

 Node node = (Node) iterator.next();

 if ((node.getLabel().startsWith(e.getLabel()))

 && (node.getLabel().length() == e.getLabel().length() + 2)

 && (node.getType().equalsIgnoreCase("AND")

 || (node.getType().equalsIgnoreCase("OR")) || (node

 .getType().equalsIgnoreCase("BASIC")))) {

235

 results.add(node);

 }

 }

 return results;

 }

 public static EList<Node> sortSubNodes(EList<Node> list) {
 int n = list.size();

 boolean doMore = true;
 while (doMore) {

 n--;

 doMore = false; // assume this is our last pass over the array

 for (int i = 0; i < n; i++) {
 if (Integer.parseInt(list.get(i).getLabel().substring(

 list.get(i).getLabel().lastIndexOf(".") + 1,

 list.get(i).getLabel().length())) > Integer

 .parseInt(list.get(i + 1).getLabel()

 .substring(

 list.get(i + 1).getLabel().lastIndexOf(

 ".") + 1,

 list.get(i + 1).getLabel().length()))) {

 // exchange elements

 list.move(i, i + 1);

 doMore = true; // after an exchange, must look again

 }

 }

 }

 return list;

 }

 public static String getConditionOfExpression(String expression) {

 // pattern for conditions

 Pattern conditionPattern = Pattern

 .compile("^([\\w\\W&&[^/\\[\\]]]+)?(\\[[\\w\\W&&[^\\[\\]]]+\\])(/[\\w\\W]+)?$");

 Matcher conditionMatcher = conditionPattern.matcher(expression);

 if (conditionMatcher.find()

 && (conditionMatcher.group().length() == expression.length())) {

 StringTokenizer st = new StringTokenizer(expression, "]");

 String condition = st.nextToken();

 condition = condition.substring(condition.indexOf("[") + 1);

 return condition;

 }

 return null;

 }

 public static String getEventOfExpression(String expression) {

 // pattern for events

 Pattern eventPattern = Pattern

 .compile("^[\\w\\W&&[^/\\[\\]]]+(\\[[\\w\\W&&[^\\[\\]]]+\\])?(/[\\w\\W]+)?$");

 Matcher eventMatcher = eventPattern.matcher(expression);

 if (eventMatcher.find()

 && (eventMatcher.group().length() == expression.length())) {

 StringTokenizer st = new StringTokenizer(expression, "[]/");

 return st.nextToken();

 }

 return null;

 }

 public static String getActionOfExpression(String expression) {

 // pattern for actions

 Pattern actionPattern = Pattern

 .compile("^([\\w\\W&&[^/\\[\\]]]+)?(\\[[\\w\\W&&[^\\[\\]]]+\\])?(/[\\w\\W]+)$");

 Matcher actionMatcher = actionPattern.matcher(expression);

 if (actionMatcher.find()

 && (actionMatcher.group().length() == expression.length())) {

 String action = expression

 .substring(expression.lastIndexOf("/") + 1);

 return action;

 }

 return null;

 }

}

236

Annex 6.

The Meetings Management System

Models

Listing 34. The SAG model in XML format (SAGModel.xmi file)

<?xml version="1.0" encoding="ASCII" ?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SAG="http://mi.parisdescartes.fr/ASEME/metamodels/SAG"

xsi:schemaLocation="http://mi.parisdescartes.fr/ASEME/metamodels/SAG
../metamodels/SAG.ecore">

 <SAG:Actor name="PersonalAssistant" my_goal="/1 /2 /3 /4" />

 <SAG:Goal name="RequestNewMeeting" depender="/0" dependee="/5" requirements="A new
meeting needs to be arranged" />

 <SAG:Goal name="RequestChangeMeeting" depender="/0" dependee="/5" requirements="The
meeting date needs to change" />

 <SAG:Goal name="NegotiateMeetingDate" depender="/0" dependee="/5" requirements="The
meeting date must match the preferences of the majority" />

 <SAG:Goal name="LearnUserHabits" depender="/0" requirements="Minimize interaction
with the user by learning his preferences on the meeting dates" />

 <SAG:Actor name="MeetingsManager" />
 <SAG:Actor name="User" my_goal="/7" />

 <SAG:Goal name="ManageMeetings" depender="/6" dependee="/0" />

</xmi:XMI>

Listing 35. The initial SUC model in XML format (SUCModelInitial.xmi file)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:SUC="http://mi.parisdescartes.fr/ASEME/metamodels/SUC">
 <SUC:UseCase name="RequestNewMeeting" interacter="/5 /6" specified_by="A new meeting

needs to be arranged" />
 <SUC:UseCase name="RequestChangeMeeting" interacter="/5 /6" specified_by="The

meeting date needs to change" />
 <SUC:UseCase name="NegotiateMeetingDate" interacter="/5 /6" specified_by="The

meeting date must match the preferences of the majority" />
 <SUC:UseCase name="LearnUserHabits" interacter="/5" specified_by="minimize

interaction with the user by learning his preferences on the meeting dates" />

 <SUC:UseCase name="ManageMeetings" interacter="/7 /5" />

237

 <SUC:Role name="PersonalAssistant" interacts_with="/0 /1 /2 /3 /4" />
 <SUC:Role name="MeetingsManager" interacts_with="/0 /1 /2" />

 <SUC:Role name="User" interacts_with="/4" />

</xmi:XMI>

Listing 36. The refined SUC model in XML format (SUCModelRefined.xmi file)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:SUC="http://mi.parisdescartes.fr/ASEME/metamodels/SUC"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://mi.parisdescartes.fr/ASEME/metamodels/SUC

../metamodels/SUC.ecore">

 <SUC:UseCase name="RequestNewMeeting" interacter="/5 /6" specified_by="A new meeting
needs to be arranged" include="/8 /9" />

 <SUC:UseCase name="RequestChangeMeeting" interacter="/5 /6" specified_by="The
meeting date needs to change" include="/10 /11" />

 <SUC:UseCase name="NegotiateMeetingDate" interacter="/5 /6" specified_by="The
meeting date must match the preferences of the majority" include="/17 /18 /19 /20 /21"

/>

 <SUC:UseCase name="LearnUserHabits" interacter="/5" specified_by="minimize

interaction with the user by learning his preferences on the meeting dates"
include="/12 /13" />

 <SUC:UseCase name="ManageMeetings" interacter="/7 /5" include="/14 /15 /16" />
 <SUC:Role name="PersonalAssistant" interacts_with="/0 /1 /2 /3 /4 /8 /10 /20 /9 /11

/17 /18 /12 /13 /14 /15 /16 /19 /21" />
 <SUC:Role name="MeetingsManager" interacts_with="/0 /1 /2" />

 <SUC:Role name="User" interacts_with="/4" />
 <SUC:UseCase name="SendNewRequest" interacter="/5" specified_by="use the Agent

Platform MPI to send the ACL message" included_by="/0" />
 <SUC:UseCase name="ReceiveNewResults" interacter="/5" specified_by="use the Agent

Platform MPI to receive an ACL message" included_by="/0" />
 <SUC:UseCase name="SendChangeRequest" interacter="/5" specified_by="use the Agent

Platform MPI to send the ACL message" included_by="/1" />
 <SUC:UseCase name="ReceiveChangeResults" interacter="/5" specified_by="use the Agent

Platform MPI to receive an ACL message" included_by="/1" />
 <SUC:UseCase name="LearnUserPreference" interacter="/5" specified_by="use a simple

learning algorithm for the user's preference" included_by="/3" />

 <SUC:UseCase name="UpdateUserPreferences" interacter="/5" specified_by="update the
user preference file on disk" included_by="/3" />

 <SUC:UseCase name="GetUserRequest" interacter="/5" specified_by="the HMI sends a
request" included_by="/4" />

 <SUC:UseCase name="ReadSchedule" interacter="/5" specified_by="read the user's
schedule from the disk" included_by="/4" />

 <SUC:UseCase name="ShowResults" interacter="/5" specified_by="send a response to the
HMI regarding the user's request" included_by="/4" />

 <SUC:UseCase name="ReceiveProposedDate" interacter="/5" specified_by="use the Agent
Platform MPI to receive an ACL message" included_by="/2" />

 <SUC:UseCase name="ReceiveOutcome" interacter="/5" specified_by="use the Agent
Platform MPI to receive an ACL message" included_by="/2" />

 <SUC:UseCase name="UpdateSchedule" interacter="/5" specified_by="update the user
schedule file on disk" included_by="/2" />

 <SUC:UseCase name="SendResults" interacter="/5" specified_by="use the Agent Platform
MPI to send the ACL message" included_by="/2" />

 <SUC:UseCase name="DecideResponse" interacter="/5" specified_by="use a reasoning
technique to decide if the proposed date matches the user's profile" included_by="/2"

/>

</xmi:XMI>

Listing 37. The initial SRM model in XML format (SRMModelInitial.xmi file)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:SRM="http://mi.parisdescartes.fr/ASEME/metamodels/SRM"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://mi.parisdescartes.fr/ASEME/metamodels/SRM
../metamodels/SRM.ecore">

 <SRM:Role activities="/20 /3 /5 /15 /4 /6 /12 /13 /7 /8 /9 /10 /11 /14 /16"
name="PersonalAssistant" capabilities="/17 /18 /19 /21" />

 <SRM:Role name="MeetingsManager" capabilities="/17 /18 /19" />

 <SRM:Role name="User" capabilities="/21" />

238

 <SRM:Activity name="SendNewRequest" functionality="use the Agent Platform MPI to
send the ACL message" />

 <SRM:Activity name="ReceiveNewResults" functionality="use the Agent Platform MPI to
receive an ACL message" />

 <SRM:Activity name="SendChangeRequest" functionality="use the Agent Platform MPI to
send the ACL message" />

 <SRM:Activity name="ReceiveChangeResults" functionality="use the Agent Platform MPI
to receive an ACL message" />

 <SRM:Activity name="LearnUserPreference" functionality="use a simple learning
algorithm for the user's preference" />

 <SRM:Activity name="UpdateUserPreferences" functionality="update the user preference
file on disk" />

 <SRM:Activity name="GetUserRequest" functionality="the HMI sends a request" />
 <SRM:Activity name="ReadSchedule" functionality="read the user's schedule from the

disk" />
 <SRM:Activity name="ShowResults" functionality="send a response to the HMI regarding

the user's request" />
 <SRM:Activity name="ReceiveProposedDate" functionality="use the Agent Platform MPI

to receive an ACL message" />
 <SRM:Activity name="ReceiveOutcome" functionality="use the Agent Platform MPI to

receive an ACL message" />
 <SRM:Activity name="UpdateSchedule" functionality="update the user schedule file on

disk" />
 <SRM:Activity name="SendResults" functionality="use the Agent Platform MPI to send

the ACL message" />

 <SRM:Activity name="DecideResponse" functionality="use a reasoning technique to
decide if the proposed date matches the user's profile" />

 <SRM:Capability name="RequestNewMeeting" activities="/3 /4" />
 <SRM:Capability name="RequestChangeMeeting" activities="/5 /6" />

 <SRM:Capability name="NegotiateMeetingDate" activities="/12 /13 /14 /15 /16" />
 <SRM:Capability name="LearnUserHabits" activities="/7 /8" />

 <SRM:Capability name="ManageMeetings" activities="/9 /10 /11" />

</xmi:XMI>

Listing 38. The refined SRM model in XML format (SRMModelRefined.xmi file)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SRM="http://mi.parisdescartes.fr/ASEME/metamodels/SRM"

xsi:schemaLocation="http://mi.parisdescartes.fr/ASEME/metamodels/SRM
../metamodels/SRM.ecore">

 <SRM:Role xmi:id="_w1b_lVc3Ed6LDYeRFx0dIA" activities="_w1cmpFc3Ed6LDYeRFx0dIA
_w1b_mFc3Ed6LDYeRFx0dIA _w1b_mlc3Ed6LDYeRFx0dIA _w1b_pFc3Ed6LDYeRFx0dIA

_w1b_mVc3Ed6LDYeRFx0dIA _w1b_m1c3Ed6LDYeRFx0dIA _w1b_oVc3Ed6LDYeRFx0dIA
_w1b_olc3Ed6LDYeRFx0dIA _w1b_nFc3Ed6LDYeRFx0dIA _w1b_nVc3Ed6LDYeRFx0dIA

_w1b_nlc3Ed6LDYeRFx0dIA _w1b_n1c3Ed6LDYeRFx0dIA _w1b_oFc3Ed6LDYeRFx0dIA
_w1b_o1c3Ed6LDYeRFx0dIA _w1cmoFc3Ed6LDYeRFx0dIA" protocols="_w1cmqFc3Ed6LDYeRFx0dIA

_w1cmp1c3Ed6LDYeRFx0dIA _w1cmplc3Ed6LDYeRFx0dIA" liveness="personal assistant =

(manage meetings. learn user habits)ω || (negotiate meeting date)ω ↵↵↵↵ manage meetings =

get user request. (read schedule | request change meeting | request new meeting). show

results ↵↵↵↵ learn user habits = learn user preference. update user preferences ↵↵↵↵ request

change meeting = send change request. receive change results ↵↵↵↵ request new meeting =

send new request. receive new results ↵↵↵↵ negotiate meeting date = receive proposed

date. (decide response. send results. receive outcome)+. update schedule ↵↵↵↵"

name="PersonalAssistant" capabilities="_w1cmoVc3Ed6LDYeRFx0dIA _w1cmolc3Ed6LDYeRFx0dIA
_w1cmo1c3Ed6LDYeRFx0dIA _w1cmpVc3Ed6LDYeRFx0dIA" />

 <SRM:Role xmi:id="_w1b_llc3Ed6LDYeRFx0dIA" name="MeetingsManager"
capabilities="_w1cmoVc3Ed6LDYeRFx0dIA _w1cmolc3Ed6LDYeRFx0dIA _w1cmo1c3Ed6LDYeRFx0dIA"

/>

 <SRM:Role xmi:id="_w1b_l1c3Ed6LDYeRFx0dIA" name="User"

capabilities="_w1cmpVc3Ed6LDYeRFx0dIA" />
 <SRM:Activity xmi:id="_w1b_mFc3Ed6LDYeRFx0dIA" name="SendNewRequest"

functionality="use the Agent Platform MPI to send the ACL message" />
 <SRM:Activity xmi:id="_w1b_mVc3Ed6LDYeRFx0dIA" name="ReceiveNewResults"

functionality="use the Agent Platform MPI to receive an ACL message" />
 <SRM:Activity xmi:id="_w1b_mlc3Ed6LDYeRFx0dIA" name="SendChangeRequest"

functionality="use the Agent Platform MPI to send the ACL message" />
 <SRM:Activity xmi:id="_w1b_m1c3Ed6LDYeRFx0dIA" name="ReceiveChangeResults"

functionality="use the Agent Platform MPI to receive an ACL message" />
 <SRM:Activity xmi:id="_w1b_nFc3Ed6LDYeRFx0dIA" name="LearnUserPreference"

functionality="use a simple learning algorithm for the user's preference" />

239

 <SRM:Activity xmi:id="_w1b_nVc3Ed6LDYeRFx0dIA" name="UpdateUserPreferences"
functionality="update the user preference file on disk" />

 <SRM:Activity xmi:id="_w1b_nlc3Ed6LDYeRFx0dIA" name="GetUserRequest"
functionality="the HMI sends a request" />

 <SRM:Activity xmi:id="_w1b_n1c3Ed6LDYeRFx0dIA" name="ReadSchedule"
functionality="read the user's schedule from the disk" />

 <SRM:Activity xmi:id="_w1b_oFc3Ed6LDYeRFx0dIA" name="ShowResults"
functionality="send a response to the HMI regarding the user's request" />

 <SRM:Activity xmi:id="_w1b_oVc3Ed6LDYeRFx0dIA" name="ReceiveProposedDate"
functionality="use the Agent Platform MPI to receive an ACL message" />

 <SRM:Activity xmi:id="_w1b_olc3Ed6LDYeRFx0dIA" name="ReceiveOutcome"
functionality="use the Agent Platform MPI to receive an ACL message" />

 <SRM:Activity xmi:id="_w1b_o1c3Ed6LDYeRFx0dIA" name="UpdateSchedule"
functionality="update the user schedule file on disk" />

 <SRM:Activity xmi:id="_w1b_pFc3Ed6LDYeRFx0dIA" name="SendResults" functionality="use
the Agent Platform MPI to send the ACL message" />

 <SRM:Activity xmi:id="_w1cmoFc3Ed6LDYeRFx0dIA" name="DecideResponse"
functionality="use a reasoning technique to decide if the proposed date matches the

user's profile" />
 <SRM:Capability xmi:id="_w1cmoVc3Ed6LDYeRFx0dIA" name="RequestNewMeeting"

activities="_w1b_mFc3Ed6LDYeRFx0dIA _w1b_mVc3Ed6LDYeRFx0dIA" />
 <SRM:Capability xmi:id="_w1cmolc3Ed6LDYeRFx0dIA" name="RequestChangeMeeting"

activities="_w1b_mlc3Ed6LDYeRFx0dIA _w1b_m1c3Ed6LDYeRFx0dIA" />
 <SRM:Capability xmi:id="_w1cmo1c3Ed6LDYeRFx0dIA" name="NegotiateMeetingDate"

activities="_w1b_oVc3Ed6LDYeRFx0dIA _w1b_olc3Ed6LDYeRFx0dIA _w1b_o1c3Ed6LDYeRFx0dIA

_w1b_pFc3Ed6LDYeRFx0dIA _w1cmoFc3Ed6LDYeRFx0dIA" />
 <SRM:Capability xmi:id="_w1cmpFc3Ed6LDYeRFx0dIA" name="LearnUserHabits"

activities="_w1b_nFc3Ed6LDYeRFx0dIA _w1b_nVc3Ed6LDYeRFx0dIA" />
 <SRM:Capability xmi:id="_w1cmpVc3Ed6LDYeRFx0dIA" name="ManageMeetings"

activities="_w1b_nlc3Ed6LDYeRFx0dIA _w1b_n1c3Ed6LDYeRFx0dIA _w1b_oFc3Ed6LDYeRFx0dIA"

/>

 <SRM:Protocol xmi:id="_w1cmplc3Ed6LDYeRFx0dIA" name="RequestNewMeeting">
 <participant>PersonalAssistant</participant>

 </SRM:Protocol>
 <SRM:Protocol xmi:id="_w1cmp1c3Ed6LDYeRFx0dIA" name="RequestChangeMeeting">

 <participant>PersonalAssistant</participant>
 </SRM:Protocol>

 <SRM:Protocol xmi:id="_w1cmqFc3Ed6LDYeRFx0dIA" name="NegotiateMeetingDate">
 <participant>PersonalAssistant</participant>

 </SRM:Protocol>

</xmi:XMI>

Listing 39. The intermediate Hutn text model (IAC.hutn file)

@Spec{

 Metamodel "IAC"{

 nsUri: "http://mi.parisdescartes.fr/ASEME/metamodels/IAC"

 }

}

IAC{

 Node "0.2.1.2.2.2.3"{

 type: "OR"

 name:

"_open_group_ReadSchedule_or_RequestChangeMeeting_or_RequestNewMeeting_close_group_"

 label: "0.2.1.2.2.2.3"

 activity: "null"

 }

 Node "0.2.1.2.2.2.2"{

 type: "BASIC"

 name: "GetUserRequest"

 label: "0.2.1.2.2.2.2"

 activity: "null"

 }

 Node "0.2.1.2.2.2.1"{

 type: "START"

 name: "0.2.1.2.2.2.1"

 label: "0.2.1.2.2.2.1"

 activity: "null"

 }

 Node "0.2.1.2.2"{

 type: "OR"

 name: "_open_group_ManageMeetings_sequence_LearnUserHabits_close_group_"

 label: "0.2.1.2.2"

240

 activity: "null"

 }

 Node "0.2.1.2.1"{

 type: "START"

 name: "0.2.1.2.1"

 label: "0.2.1.2.1"

 activity: "null"

 }

 Node "0.2.1.2.2.4"{

 type: "END"

 name: "0.2.1.2.2.4"

 label: "0.2.1.2.2.4"

 activity: "null"

 }

 Node "0.2.2.2.2.5"{

 type: "END"

 name: "0.2.2.2.2.5"

 label: "0.2.2.2.2.5"

 activity: "null"

 }

 Node "0.2.1.2.2.3"{

 type: "OR"

 name: "LearnUserHabits"

 label: "0.2.1.2.2.3"

 activity: "null"

 }

 Node "0.2.2.2.2.4"{

 type: "BASIC"

 name: "UpdateSchedule"

 label: "0.2.2.2.2.4"

 activity: "null"

 }

 Node "0.2.1.2.2.2"{

 type: "OR"

 name: "ManageMeetings"

 label: "0.2.1.2.2.2"

 activity: "null"

 }

 Node "0.2.2.2.2.3"{

 type: "OR"

 name:

"_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group__

one_or_more_times_"

 label: "0.2.2.2.2.3"

 activity: "null"

 }

 Node "0.2.1.2.2.1"{

 type: "START"

 name: "0.2.1.2.2.1"

 label: "0.2.1.2.2.1"

 activity: "null"

 }

 Node "0.2.2.2.2.2"{

 type: "BASIC"

 name: "ReceiveProposedDate"

 label: "0.2.2.2.2.2"

 activity: "null"

 }

 Node "0.2.2.2.2.1"{

 type: "START"

 name: "0.2.2.2.2.1"

 label: "0.2.2.2.2.1"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.6"{

 type: "END"

 name: "0.2.1.2.2.2.3.6"

 label: "0.2.1.2.2.2.3.6"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.5"{

 type: "OR"

 name: "RequestNewMeeting"

 label: "0.2.1.2.2.2.3.5"

 activity: "null"

 }

241

 Node "0.2.1.2.2.2.3.4"{

 type: "OR"

 name: "RequestChangeMeeting"

 label: "0.2.1.2.2.2.3.4"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.3"{

 type: "BASIC"

 name: "ReadSchedule"

 label: "0.2.1.2.2.2.3.3"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.2"{

 type: "CONDITION"

 name: "0.2.1.2.2.2.3.2"

 label: "0.2.1.2.2.2.3.2"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.1"{

 type: "START"

 name: "0.2.1.2.2.2.3.1"

 label: "0.2.1.2.2.2.3.1"

 activity: "null"

 }

 Node "0.2.2.2.2.3.3"{

 type: "END"

 name: "0.2.2.2.2.3.3"

 label: "0.2.2.2.2.3.3"

 activity: "null"

 }

 Node "0.2.2.2.2.3.2"{

 type: "OR"

 name:

"_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group_"

 label: "0.2.2.2.2.3.2"

 activity: "null"

 }

 Node "0.2.2.2.2.3.1"{

 type: "START"

 name: "0.2.2.2.2.3.1"

 label: "0.2.2.2.2.3.1"

 activity: "null"

 }

 Node "0.2.2"{

 type: "OR"

 name: "0.2.2"

 label: "0.2.2"

 activity: "null"

 }

 Node "0.2.1"{

 type: "OR"

 name: "0.2.1"

 label: "0.2.1"

 activity: "null"

 }

 Node "0.2.2.2.2.3.2.5"{

 type: "END"

 name: "0.2.2.2.2.3.2.5"

 label: "0.2.2.2.2.3.2.5"

 activity: "null"

 }

 Node "0.2.2.2.2.3.2.4"{

 type: "BASIC"

 name: "ReceiveOutcome"

 label: "0.2.2.2.2.3.2.4"

 activity: "null"

 }

 Node "0.2.2.2.2.3.2.3"{

 type: "BASIC"

 name: "SendResults"

 label: "0.2.2.2.2.3.2.3"

 activity: "null"

 }

 Node "0.2.2.2.2.3.2.2"{

 type: "BASIC"

 name: "DecideResponse"

242

 label: "0.2.2.2.2.3.2.2"

 activity: "null"

 }

 Node "0"{

 type: "OR"

 name: "PersonalAssistant"

 label: "0"

 activity: "null"

 }

 Node "0.2.2.2.2.3.2.1"{

 type: "START"

 name: "0.2.2.2.2.3.2.1"

 label: "0.2.2.2.2.3.2.1"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.5.4"{

 type: "END"

 name: "0.2.1.2.2.2.3.5.4"

 label: "0.2.1.2.2.2.3.5.4"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.5.3"{

 type: "BASIC"

 name: "ReceiveNewResults"

 label: "0.2.1.2.2.2.3.5.3"

 activity: "null"

 }

 Node "0.2.2.3"{

 type: "END"

 name: "0.2.2.3"

 label: "0.2.2.3"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.5.2"{

 type: "BASIC"

 name: "SendNewRequest"

 label: "0.2.1.2.2.2.3.5.2"

 activity: "null"

 }

 Node "0.2.2.2"{

 type: "OR"

 name: "NegotiateMeetingDate_forever_"

 label: "0.2.2.2"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.5.1"{

 type: "START"

 name: "0.2.1.2.2.2.3.5.1"

 label: "0.2.1.2.2.2.3.5.1"

 activity: "null"

 }

 Node "0.2.2.1"{

 type: "START"

 name: "0.2.2.1"

 label: "0.2.2.1"

 activity: "null"

 }

 Node "0.2.2.2.2"{

 type: "OR"

 name: "NegotiateMeetingDate"

 label: "0.2.2.2.2"

 activity: "null"

 }

 Node "0.2.2.2.1"{

 type: "START"

 name: "0.2.2.2.1"

 label: "0.2.2.2.1"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.4.4"{

 type: "END"

 name: "0.2.1.2.2.2.3.4.4"

 label: "0.2.1.2.2.2.3.4.4"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.4.3"{

243

 type: "BASIC"

 name: "ReceiveChangeResults"

 label: "0.2.1.2.2.2.3.4.3"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.4.2"{

 type: "BASIC"

 name: "SendChangeRequest"

 label: "0.2.1.2.2.2.3.4.2"

 activity: "null"

 }

 Node "0.2.1.3"{

 type: "END"

 name: "0.2.1.3"

 label: "0.2.1.3"

 activity: "null"

 }

 Node "0.2.1.2"{

 type: "OR"

 name: "_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever_"

 label: "0.2.1.2"

 activity: "null"

 }

 Node "0.2.1.2.2.2.3.4.1"{

 type: "START"

 name: "0.2.1.2.2.2.3.4.1"

 label: "0.2.1.2.2.2.3.4.1"

 activity: "null"

 }

 Node "0.2.1.1"{

 type: "START"

 name: "0.2.1.1"

 label: "0.2.1.1"

 activity: "null"

 }

 Node "0.2.1.2.2.3.4"{

 type: "END"

 name: "0.2.1.2.2.3.4"

 label: "0.2.1.2.2.3.4"

 activity: "null"

 }

 Node "0.2.1.2.2.3.3"{

 type: "BASIC"

 name: "UpdateUserPreferences"

 label: "0.2.1.2.2.3.3"

 activity: "null"

 }

 Node "0.3"{

 type: "END"

 name: "0.3"

 label: "0.3"

 activity: "null"

 }

 Node "0.2.1.2.2.3.2"{

 type: "BASIC"

 name: "LearnUserPreference"

 label: "0.2.1.2.2.3.2"

 activity: "null"

 }

 Node "0.2"{

 type: "AND"

 name: "0.2"

 label: "0.2"

 activity: "null"

 }

 Node "0.2.1.2.2.3.1"{

 type: "START"

 name: "0.2.1.2.2.3.1"

 label: "0.2.1.2.2.3.1"

 activity: "null"

 }

 Node "0.1"{

 type: "START"

 name: "0.1"

 label: "0.1"

 activity: "null"

244

 }

 Node "0.2.1.2.2.2.5"{

 type: "END"

 name: "0.2.1.2.2.2.5"

 label: "0.2.1.2.2.2.5"

 activity: "null"

 }

 Node "0.2.1.2.2.2.4"{

 type: "BASIC"

 name: "ShowResults"

 label: "0.2.1.2.2.2.4"

 activity: "null"

 }

 Transition "0.2.2.2.2TO0.2.2.2.2"{

 name: "0.2.2.2.2TO0.2.2.2.2"

 TE: "null"

 source: Node "0.2.2.2.2"
 target: Node "0.2.2.2.2"

 }

 Transition "0.2.2.2TO0.2.2.3"{

 name: "0.2.2.2TO0.2.2.3"

 TE: "null"

 source: Node "0.2.2.2"
 target: Node "0.2.2.3"

 }

 Transition "0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.5"{

 name: "0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.5"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.2"

 target: Node "0.2.1.2.2.2.3.5"

 }

 Transition "0.2.2.2.2.1TO0.2.2.2.2.2"{

 name: "0.2.2.2.2.1TO0.2.2.2.2.2"

 TE: "null"

 source: Node "0.2.2.2.2.1"

 target: Node "0.2.2.2.2.2"

 }

 Transition "0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.4"{

 name: "0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.4"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.2"

 target: Node "0.2.1.2.2.2.3.4"

 }

 Transition "0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.3"{

 name: "0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.3"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.2"

 target: Node "0.2.1.2.2.2.3.3"

 }

 Transition "0.2.1.2.2.3.3TO0.2.1.2.2.3.4"{

 name: "0.2.1.2.2.3.3TO0.2.1.2.2.3.4"

 TE: "null"

 source: Node "0.2.1.2.2.3.3"
 target: Node "0.2.1.2.2.3.4"

 }

 Transition "0.2.1.2.2.1TO0.2.1.2.2.2"{

 name: "0.2.1.2.2.1TO0.2.1.2.2.2"

 TE: "null"

 source: Node "0.2.1.2.2.1"
 target: Node "0.2.1.2.2.2"

 }

 Transition "0.2.1.2.2.3.2TO0.2.1.2.2.3.3"{

 name: "0.2.1.2.2.3.2TO0.2.1.2.2.3.3"

 TE: "null"

 source: Node "0.2.1.2.2.3.2"
 target: Node "0.2.1.2.2.3.3"

 }

 Transition "0.2.1.2.2.3.1TO0.2.1.2.2.3.2"{

 name: "0.2.1.2.2.3.1TO0.2.1.2.2.3.2"

 TE: "null"

 source: Node "0.2.1.2.2.3.1"
 target: Node "0.2.1.2.2.3.2"

 }

 Transition "0.2.2.2.2.3.2.3TO0.2.2.2.2.3.2.4"{

 name: "0.2.2.2.2.3.2.3TO0.2.2.2.2.3.2.4"

 TE: "null"

245

 source: Node "0.2.2.2.2.3.2.3"
 target: Node "0.2.2.2.2.3.2.4"

 }

 Transition "0.2.2.2.2.4TO0.2.2.2.2.5"{

 name: "0.2.2.2.2.4TO0.2.2.2.2.5"

 TE: "null"

 source: Node "0.2.2.2.2.4"
 target: Node "0.2.2.2.2.5"

 }

 Transition "0.2.1.2.2TO0.2.1.2.2"{

 name: "0.2.1.2.2TO0.2.1.2.2"

 TE: "null"

 source: Node "0.2.1.2.2"
 target: Node "0.2.1.2.2"

 }

 Transition "0.2.1.2.2.2.3.5TO0.2.1.2.2.2.3.6"{

 name: "0.2.1.2.2.2.3.5TO0.2.1.2.2.2.3.6"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.5"
 target: Node "0.2.1.2.2.2.3.6"

 }

 Transition "0.2.1.1TO0.2.1.2"{

 name: "0.2.1.1TO0.2.1.2"

 TE: "null"

 source: Node "0.2.1.1"

 target: Node "0.2.1.2"

 }

 Transition "0.2.2.2.2.3.2.1TO0.2.2.2.2.3.2.2"{

 name: "0.2.2.2.2.3.2.1TO0.2.2.2.2.3.2.2"

 TE: "null"

 source: Node "0.2.2.2.2.3.2.1"

 target: Node "0.2.2.2.2.3.2.2"

 }

 Transition "0.1TO0.2"{

 name: "0.1TO0.2"

 TE: "null"

 source: Node "0.1"

 target: Node "0.2"

 }

 Transition "0.2.2.2.1TO0.2.2.2.2"{

 name: "0.2.2.2.1TO0.2.2.2.2"

 TE: "null"

 source: Node "0.2.2.2.1"

 target: Node "0.2.2.2.2"

 }

 Transition "0.2.1.2.2.2.3.3TO0.2.1.2.2.2.3.6"{

 name: "0.2.1.2.2.2.3.3TO0.2.1.2.2.2.3.6"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.3"
 target: Node "0.2.1.2.2.2.3.6"

 }

 Transition "0.2.1.2.2.2.3.5.3TO0.2.1.2.2.2.3.5.4"{

 name: "0.2.1.2.2.2.3.5.3TO0.2.1.2.2.2.3.5.4"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.5.3"
 target: Node "0.2.1.2.2.2.3.5.4"

 }

 Transition "0.2.2.2.2.3TO0.2.2.2.2.4"{

 name: "0.2.2.2.2.3TO0.2.2.2.2.4"

 TE: "null"

 source: Node "0.2.2.2.2.3"
 target: Node "0.2.2.2.2.4"

 }

 Transition "0.2.1.2.2.2.3.4.3TO0.2.1.2.2.2.3.4.4"{

 name: "0.2.1.2.2.2.3.4.3TO0.2.1.2.2.2.3.4.4"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.4.3"
 target: Node "0.2.1.2.2.2.3.4.4"

 }

 Transition "0.2.1.2TO0.2.1.3"{

 name: "0.2.1.2TO0.2.1.3"

 TE: "null"

 source: Node "0.2.1.2"

 target: Node "0.2.1.3"

 }

 Transition "0.2.1.2.2.2.3.5.2TO0.2.1.2.2.2.3.5.3"{

246

 name: "0.2.1.2.2.2.3.5.2TO0.2.1.2.2.2.3.5.3"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.5.2"
 target: Node "0.2.1.2.2.2.3.5.3"

 }

 Transition "0.2.1.2.2.2.3.1TO0.2.1.2.2.2.3.2"{

 name: "0.2.1.2.2.2.3.1TO0.2.1.2.2.2.3.2"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.1"
 target: Node "0.2.1.2.2.2.3.2"

 }

 Transition "0.2.1.2.2.3TO0.2.1.2.2.4"{

 name: "0.2.1.2.2.3TO0.2.1.2.2.4"

 TE: "null"

 source: Node "0.2.1.2.2.3"
 target: Node "0.2.1.2.2.4"

 }

 Transition "0.2.1.2.2.2.3.4.2TO0.2.1.2.2.2.3.4.3"{

 name: "0.2.1.2.2.2.3.4.2TO0.2.1.2.2.2.3.4.3"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.4.2"
 target: Node "0.2.1.2.2.2.3.4.3"

 }

 Transition "0.2.2.2.2.3.2.4TO0.2.2.2.2.3.2.5"{

 name: "0.2.2.2.2.3.2.4TO0.2.2.2.2.3.2.5"

 TE: "null"

 source: Node "0.2.2.2.2.3.2.4"

 target: Node "0.2.2.2.2.3.2.5"

 }

 Transition "0.2.1.2.2.2.3.5.1TO0.2.1.2.2.2.3.5.2"{

 name: "0.2.1.2.2.2.3.5.1TO0.2.1.2.2.2.3.5.2"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.5.1"

 target: Node "0.2.1.2.2.2.3.5.2"

 }

 Transition "0.2.1.2.1TO0.2.1.2.2"{

 name: "0.2.1.2.1TO0.2.1.2.2"

 TE: "null"

 source: Node "0.2.1.2.1"

 target: Node "0.2.1.2.2"

 }

 Transition "0.2.1.2.2.2.4TO0.2.1.2.2.2.5"{

 name: "0.2.1.2.2.2.4TO0.2.1.2.2.2.5"

 TE: "null"

 source: Node "0.2.1.2.2.2.4"

 target: Node "0.2.1.2.2.2.5"

 }

 Transition "0.2.1.2.2.2.3.4.1TO0.2.1.2.2.2.3.4.2"{

 name: "0.2.1.2.2.2.3.4.1TO0.2.1.2.2.2.3.4.2"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.4.1"
 target: Node "0.2.1.2.2.2.3.4.2"

 }

 Transition "0.2.2.1TO0.2.2.2"{

 name: "0.2.2.1TO0.2.2.2"

 TE: "null"

 source: Node "0.2.2.1"
 target: Node "0.2.2.2"

 }

 Transition "0.2.2.2.2.2TO0.2.2.2.2.3"{

 name: "0.2.2.2.2.2TO0.2.2.2.2.3"

 TE: "null"

 source: Node "0.2.2.2.2.2"
 target: Node "0.2.2.2.2.3"

 }

 Transition "0.2.1.2.2.2.3TO0.2.1.2.2.2.4"{

 name: "0.2.1.2.2.2.3TO0.2.1.2.2.2.4"

 TE: "null"

 source: Node "0.2.1.2.2.2.3"
 target: Node "0.2.1.2.2.2.4"

 }

 Transition "0.2.2.2.2.3.2.2TO0.2.2.2.2.3.2.3"{

 name: "0.2.2.2.2.3.2.2TO0.2.2.2.2.3.2.3"

 TE: "null"

 source: Node "0.2.2.2.2.3.2.2"

 target: Node "0.2.2.2.2.3.2.3"

247

 }

 Transition "0.2.2.2.2.3.2TO0.2.2.2.2.3.3"{

 name: "0.2.2.2.2.3.2TO0.2.2.2.2.3.3"

 TE: "null"

 source: Node "0.2.2.2.2.3.2"
 target: Node "0.2.2.2.2.3.3"

 }

 Transition "0.2.1.2.2.2.2TO0.2.1.2.2.2.3"{

 name: "0.2.1.2.2.2.2TO0.2.1.2.2.2.3"

 TE: "null"

 source: Node "0.2.1.2.2.2.2"
 target: Node "0.2.1.2.2.2.3"

 }

 Transition "0.2.2.2.2.3.2TO0.2.2.2.2.3.2"{

 name: "0.2.2.2.2.3.2TO0.2.2.2.2.3.2"

 TE: "null"

 source: Node "0.2.2.2.2.3.2"
 target: Node "0.2.2.2.2.3.2"

 }

 Transition "0.2.2.2.2.3.1TO0.2.2.2.2.3.2"{

 name: "0.2.2.2.2.3.1TO0.2.2.2.2.3.2"

 TE: "null"

 source: Node "0.2.2.2.2.3.1"
 target: Node "0.2.2.2.2.3.2"

 }

 Transition "0.2.1.2.2.2.1TO0.2.1.2.2.2.2"{

 name: "0.2.1.2.2.2.1TO0.2.1.2.2.2.2"

 TE: "null"

 source: Node "0.2.1.2.2.2.1"

 target: Node "0.2.1.2.2.2.2"

 }

 Transition "0.2.1.2.2.2TO0.2.1.2.2.3"{

 name: "0.2.1.2.2.2TO0.2.1.2.2.3"

 TE: "null"

 source: Node "0.2.1.2.2.2"

 target: Node "0.2.1.2.2.3"

 }

 Transition "0.2.1.2.2.2.3.4TO0.2.1.2.2.2.3.6"{

 name: "0.2.1.2.2.2.3.4TO0.2.1.2.2.2.3.6"

 TE: "null"

 source: Node "0.2.1.2.2.2.3.4"

 target: Node "0.2.1.2.2.2.3.6"

 }

 Transition "0.2TO0.3"{

 name: "0.2TO0.3"

 TE: "null"

 source: Node "0.2"

 target: Node "0.3"

 }

 Model "fr.parisdescartes.mi.meetingsmanagement"{

 name: "fr.parisdescartes.mi.meetingsmanagement"

 nodes: Node "0.2.1.2.2.2.3", Node "0.2.1.2.2.2.2", Node "0.2.1.2.2.2.1", Node

"0.2.1.2.2", Node "0.2.1.2.1", Node "0.2.1.2.2.4", Node "0.2.2.2.2.5", Node
"0.2.1.2.2.3", Node "0.2.2.2.2.4", Node "0.2.1.2.2.2", Node "0.2.2.2.2.3", Node

"0.2.1.2.2.1", Node "0.2.2.2.2.2", Node "0.2.2.2.2.1", Node "0.2.1.2.2.2.3.6", Node
"0.2.1.2.2.2.3.5", Node "0.2.1.2.2.2.3.4", Node "0.2.1.2.2.2.3.3", Node

"0.2.1.2.2.2.3.2", Node "0.2.1.2.2.2.3.1", Node "0.2.2.2.2.3.3", Node "0.2.2.2.2.3.2",
Node "0.2.2.2.2.3.1", Node "0.2.2", Node "0.2.1", Node "0.2.2.2.2.3.2.5", Node

"0.2.2.2.2.3.2.4", Node "0.2.2.2.2.3.2.3", Node "0.2.2.2.2.3.2.2", Node "0", Node
"0.2.2.2.2.3.2.1", Node "0.2.1.2.2.2.3.5.4", Node "0.2.1.2.2.2.3.5.3", Node "0.2.2.3",

Node "0.2.1.2.2.2.3.5.2", Node "0.2.2.2", Node "0.2.1.2.2.2.3.5.1", Node "0.2.2.1",
Node "0.2.2.2.2", Node "0.2.2.2.1", Node "0.2.1.2.2.2.3.4.4", Node

"0.2.1.2.2.2.3.4.3", Node "0.2.1.2.2.2.3.4.2", Node "0.2.1.3", Node "0.2.1.2", Node
"0.2.1.2.2.2.3.4.1", Node "0.2.1.1", Node "0.2.1.2.2.3.4", Node "0.2.1.2.2.3.3", Node

"0.3", Node "0.2.1.2.2.3.2", Node "0.2", Node "0.2.1.2.2.3.1", Node "0.1", Node
"0.2.1.2.2.2.5", Node "0.2.1.2.2.2.4"

 transitions: Transition "0.2.2.2.2TO0.2.2.2.2", Transition "0.2.2.2TO0.2.2.3",
Transition "0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.5", Transition "0.2.2.2.2.1TO0.2.2.2.2.2",

Transition "0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.4", Transition
"0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.3", Transition "0.2.1.2.2.3.3TO0.2.1.2.2.3.4",

Transition "0.2.1.2.2.1TO0.2.1.2.2.2", Transition "0.2.1.2.2.3.2TO0.2.1.2.2.3.3",
Transition "0.2.1.2.2.3.1TO0.2.1.2.2.3.2", Transition

"0.2.2.2.2.3.2.3TO0.2.2.2.2.3.2.4", Transition "0.2.2.2.2.4TO0.2.2.2.2.5", Transition

"0.2.1.2.2TO0.2.1.2.2", Transition "0.2.1.2.2.2.3.5TO0.2.1.2.2.2.3.6", Transition
"0.2.1.1TO0.2.1.2", Transition "0.2.2.2.2.3.2.1TO0.2.2.2.2.3.2.2", Transition

"0.1TO0.2", Transition "0.2.2.2.1TO0.2.2.2.2", Transition

248

"0.2.1.2.2.2.3.3TO0.2.1.2.2.2.3.6", Transition "0.2.1.2.2.2.3.5.3TO0.2.1.2.2.2.3.5.4",

Transition "0.2.2.2.2.3TO0.2.2.2.2.4", Transition
"0.2.1.2.2.2.3.4.3TO0.2.1.2.2.2.3.4.4", Transition "0.2.1.2TO0.2.1.3", Transition

"0.2.1.2.2.2.3.5.2TO0.2.1.2.2.2.3.5.3", Transition "0.2.1.2.2.2.3.1TO0.2.1.2.2.2.3.2",
Transition "0.2.1.2.2.3TO0.2.1.2.2.4", Transition

"0.2.1.2.2.2.3.4.2TO0.2.1.2.2.2.3.4.3", Transition "0.2.2.2.2.3.2.4TO0.2.2.2.2.3.2.5",
Transition "0.2.1.2.2.2.3.5.1TO0.2.1.2.2.2.3.5.2", Transition "0.2.1.2.1TO0.2.1.2.2",

Transition "0.2.1.2.2.2.4TO0.2.1.2.2.2.5", Transition
"0.2.1.2.2.2.3.4.1TO0.2.1.2.2.2.3.4.2", Transition "0.2.2.1TO0.2.2.2", Transition

"0.2.2.2.2.2TO0.2.2.2.2.3", Transition "0.2.1.2.2.2.3TO0.2.1.2.2.2.4", Transition
"0.2.2.2.2.3.2.2TO0.2.2.2.2.3.2.3", Transition "0.2.2.2.2.3.2TO0.2.2.2.2.3.3",

Transition "0.2.1.2.2.2.2TO0.2.1.2.2.2.3", Transition "0.2.2.2.2.3.2TO0.2.2.2.2.3.2",
Transition "0.2.2.2.2.3.1TO0.2.2.2.2.3.2", Transition "0.2.1.2.2.2.1TO0.2.1.2.2.2.2",

Transition "0.2.1.2.2.2TO0.2.1.2.2.3", Transition "0.2.1.2.2.2.3.4TO0.2.1.2.2.2.3.6",
Transition "0.2TO0.3"

 }

}

Listing 40. The initial IAC model in XML format (IACModelInitial.model file)

<?xml version="1.0" encoding="UTF-8" ?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:IAC="http://mi.parisdescartes.fr/ASEME/metamodels/IAC">
 <IAC:Node

name="_open_group_ReadSchedule_or_RequestChangeMeeting_or_RequestNewMeeting_close_grou
p_" type="OR" label="0.2.1.2.2.2.3" activity="null" />

 <IAC:Node name="GetUserRequest" type="BASIC" label="0.2.1.2.2.2.2" activity="null"

/>

 <IAC:Node name="0.2.1.2.2.2.1" type="START" label="0.2.1.2.2.2.1" activity="null" />
 <IAC:Node name="_open_group_ManageMeetings_sequence_LearnUserHabits_close_group_"

type="OR" label="0.2.1.2.2" activity="null" />
 <IAC:Node name="0.2.1.2.1" type="START" label="0.2.1.2.1" activity="null" />

 <IAC:Node name="0.2.1.2.2.4" type="END" label="0.2.1.2.2.4" activity="null" />
 <IAC:Node name="0.2.2.2.2.5" type="END" label="0.2.2.2.2.5" activity="null" />

 <IAC:Node name="LearnUserHabits" type="OR" label="0.2.1.2.2.3" activity="null" />
 <IAC:Node name="UpdateSchedule" type="BASIC" label="0.2.2.2.2.4" activity="null" />

 <IAC:Node name="ManageMeetings" type="OR" label="0.2.1.2.2.2" activity="null" />

 <IAC:Node
name="_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_gr

oup__one_or_more_times_" type="OR" label="0.2.2.2.2.3" activity="null" />
 <IAC:Node name="0.2.1.2.2.1" type="START" label="0.2.1.2.2.1" activity="null" />

 <IAC:Node name="ReceiveProposedDate" type="BASIC" label="0.2.2.2.2.2"
activity="null" />

 <IAC:Node name="0.2.2.2.2.1" type="START" label="0.2.2.2.2.1" activity="null" />
 <IAC:Node name="0.2.1.2.2.2.3.6" type="END" label="0.2.1.2.2.2.3.6" activity="null"

/>

 <IAC:Node name="RequestNewMeeting" type="OR" label="0.2.1.2.2.2.3.5" activity="null"

/>

 <IAC:Node name="RequestChangeMeeting" type="OR" label="0.2.1.2.2.2.3.4"

activity="null" />
 <IAC:Node name="ReadSchedule" type="BASIC" label="0.2.1.2.2.2.3.3" activity="null"

/>

 <IAC:Node name="0.2.1.2.2.2.3.2" type="CONDITION" label="0.2.1.2.2.2.3.2"

activity="null" />
 <IAC:Node name="0.2.1.2.2.2.3.1" type="START" label="0.2.1.2.2.2.3.1"

activity="null" />
 <IAC:Node name="0.2.2.2.2.3.3" type="END" label="0.2.2.2.2.3.3" activity="null" />

 <IAC:Node
name="_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_gr

oup_" type="OR" label="0.2.2.2.2.3.2" activity="null" />
 <IAC:Node name="0.2.2.2.2.3.1" type="START" label="0.2.2.2.2.3.1" activity="null" />

 <IAC:Node name="0.2.2" type="OR" label="0.2.2" activity="null" />

 <IAC:Node name="0.2.1" type="OR" label="0.2.1" activity="null" />
 <IAC:Node name="0.2.2.2.2.3.2.5" type="END" label="0.2.2.2.2.3.2.5" activity="null"

/>

 <IAC:Node name="ReceiveOutcome" type="BASIC" label="0.2.2.2.2.3.2.4" activity="null"

/>

 <IAC:Node name="SendResults" type="BASIC" label="0.2.2.2.2.3.2.3" activity="null" />

 <IAC:Node name="DecideResponse" type="BASIC" label="0.2.2.2.2.3.2.2" activity="null"

/>

 <IAC:Node name="PersonalAssistant" type="OR" label="0" activity="null" />
 <IAC:Node name="0.2.2.2.2.3.2.1" type="START" label="0.2.2.2.2.3.2.1"

activity="null" />

249

 <IAC:Node name="0.2.1.2.2.2.3.5.4" type="END" label="0.2.1.2.2.2.3.5.4"
activity="null" />

 <IAC:Node name="ReceiveNewResults" type="BASIC" label="0.2.1.2.2.2.3.5.3"

activity="null" />
 <IAC:Node name="0.2.2.3" type="END" label="0.2.2.3" activity="null" />

 <IAC:Node name="SendNewRequest" type="BASIC" label="0.2.1.2.2.2.3.5.2"
activity="null" />

 <IAC:Node name="NegotiateMeetingDate_forever_" type="OR" label="0.2.2.2"
activity="null" />

 <IAC:Node name="0.2.1.2.2.2.3.5.1" type="START" label="0.2.1.2.2.2.3.5.1"
activity="null" />

 <IAC:Node name="0.2.2.1" type="START" label="0.2.2.1" activity="null" />
 <IAC:Node name="NegotiateMeetingDate" type="OR" label="0.2.2.2.2" activity="null" />

 <IAC:Node name="0.2.2.2.1" type="START" label="0.2.2.2.1" activity="null" />
 <IAC:Node name="0.2.1.2.2.2.3.4.4" type="END" label="0.2.1.2.2.2.3.4.4"

activity="null" />
 <IAC:Node name="ReceiveChangeResults" type="BASIC" label="0.2.1.2.2.2.3.4.3"

activity="null" />
 <IAC:Node name="SendChangeRequest" type="BASIC" label="0.2.1.2.2.2.3.4.2"

activity="null" />
 <IAC:Node name="0.2.1.3" type="END" label="0.2.1.3" activity="null" />

 <IAC:Node
name="_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever_"

type="OR" label="0.2.1.2" activity="null" />

 <IAC:Node name="0.2.1.2.2.2.3.4.1" type="START" label="0.2.1.2.2.2.3.4.1"
activity="null" />

 <IAC:Node name="0.2.1.1" type="START" label="0.2.1.1" activity="null" />
 <IAC:Node name="0.2.1.2.2.3.4" type="END" label="0.2.1.2.2.3.4" activity="null" />

 <IAC:Node name="UpdateUserPreferences" type="BASIC" label="0.2.1.2.2.3.3"
activity="null" />

 <IAC:Node name="0.3" type="END" label="0.3" activity="null" />
 <IAC:Node name="LearnUserPreference" type="BASIC" label="0.2.1.2.2.3.2"

activity="null" />
 <IAC:Node name="0.2" type="AND" label="0.2" activity="null" />

 <IAC:Node name="0.2.1.2.2.3.1" type="START" label="0.2.1.2.2.3.1" activity="null" />
 <IAC:Node name="0.1" type="START" label="0.1" activity="null" />

 <IAC:Node name="0.2.1.2.2.2.5" type="END" label="0.2.1.2.2.2.5" activity="null" />
 <IAC:Node name="ShowResults" type="BASIC" label="0.2.1.2.2.2.4" activity="null" />

 <IAC:Transition TE="null" source="#/38" target="#/38" name="0.2.2.2.2TO0.2.2.2.2" />
 <IAC:Transition TE="null" source="#/35" target="#/33" name="0.2.2.2TO0.2.2.3" />

 <IAC:Transition TE="null" source="#/18" target="#/15"
name="0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.5" />

 <IAC:Transition TE="null" source="#/13" target="#/12"
name="0.2.2.2.2.1TO0.2.2.2.2.2" />

 <IAC:Transition TE="null" source="#/18" target="#/16"
name="0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.4" />

 <IAC:Transition TE="null" source="#/18" target="#/17"
name="0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.3" />

 <IAC:Transition TE="null" source="#/48" target="#/47"

name="0.2.1.2.2.3.3TO0.2.1.2.2.3.4" />
 <IAC:Transition TE="null" source="#/11" target="#/9" name="0.2.1.2.2.1TO0.2.1.2.2.2"

/>

 <IAC:Transition TE="null" source="#/50" target="#/48"

name="0.2.1.2.2.3.2TO0.2.1.2.2.3.3" />
 <IAC:Transition TE="null" source="#/52" target="#/50"

name="0.2.1.2.2.3.1TO0.2.1.2.2.3.2" />
 <IAC:Transition TE="null" source="#/27" target="#/26"

name="0.2.2.2.2.3.2.3TO0.2.2.2.2.3.2.4" />
 <IAC:Transition TE="null" source="#/8" target="#/6" name="0.2.2.2.2.4TO0.2.2.2.2.5"

/>

 <IAC:Transition TE="null" source="#/3" target="#/3" name="0.2.1.2.2TO0.2.1.2.2" />

 <IAC:Transition TE="null" source="#/15" target="#/14"
name="0.2.1.2.2.2.3.5TO0.2.1.2.2.2.3.6" />

 <IAC:Transition TE="null" source="#/46" target="#/44" name="0.2.1.1TO0.2.1.2" />
 <IAC:Transition TE="null" source="#/30" target="#/28"

name="0.2.2.2.2.3.2.1TO0.2.2.2.2.3.2.2" />
 <IAC:Transition TE="null" source="#/53" target="#/51" name="0.1TO0.2" />

 <IAC:Transition TE="null" source="#/39" target="#/38" name="0.2.2.2.1TO0.2.2.2.2" />
 <IAC:Transition TE="null" source="#/17" target="#/14"

name="0.2.1.2.2.2.3.3TO0.2.1.2.2.2.3.6" />
 <IAC:Transition TE="null" source="#/32" target="#/31"

name="0.2.1.2.2.2.3.5.3TO0.2.1.2.2.2.3.5.4" />

 <IAC:Transition TE="null" source="#/10" target="#/8" name="0.2.2.2.2.3TO0.2.2.2.2.4"

/>

 <IAC:Transition TE="null" source="#/41" target="#/40"

name="0.2.1.2.2.2.3.4.3TO0.2.1.2.2.2.3.4.4" />

250

 <IAC:Transition TE="null" source="#/44" target="#/43" name="0.2.1.2TO0.2.1.3" />
 <IAC:Transition TE="null" source="#/34" target="#/32"

name="0.2.1.2.2.2.3.5.2TO0.2.1.2.2.2.3.5.3" />
 <IAC:Transition TE="null" source="#/19" target="#/18"

name="0.2.1.2.2.2.3.1TO0.2.1.2.2.2.3.2" />
 <IAC:Transition TE="null" source="#/7" target="#/5" name="0.2.1.2.2.3TO0.2.1.2.2.4"

/>

 <IAC:Transition TE="null" source="#/42" target="#/41"

name="0.2.1.2.2.2.3.4.2TO0.2.1.2.2.2.3.4.3" />
 <IAC:Transition TE="null" source="#/26" target="#/25"

name="0.2.2.2.2.3.2.4TO0.2.2.2.2.3.2.5" />
 <IAC:Transition TE="null" source="#/36" target="#/34"

name="0.2.1.2.2.2.3.5.1TO0.2.1.2.2.2.3.5.2" />
 <IAC:Transition TE="null" source="#/4" target="#/3" name="0.2.1.2.1TO0.2.1.2.2" />

 <IAC:Transition TE="null" source="#/55" target="#/54"
name="0.2.1.2.2.2.4TO0.2.1.2.2.2.5" />

 <IAC:Transition TE="null" source="#/45" target="#/42"
name="0.2.1.2.2.2.3.4.1TO0.2.1.2.2.2.3.4.2" />

 <IAC:Transition TE="null" source="#/37" target="#/35" name="0.2.2.1TO0.2.2.2" />
 <IAC:Transition TE="null" source="#/12" target="#/10"

name="0.2.2.2.2.2TO0.2.2.2.2.3" />
 <IAC:Transition TE="null" source="#/0" target="#/55"

name="0.2.1.2.2.2.3TO0.2.1.2.2.2.4" />
 <IAC:Transition TE="null" source="#/28" target="#/27"

name="0.2.2.2.2.3.2.2TO0.2.2.2.2.3.2.3" />

 <IAC:Transition TE="null" source="#/21" target="#/20"
name="0.2.2.2.2.3.2TO0.2.2.2.2.3.3" />

 <IAC:Transition TE="null" source="#/1" target="#/0"
name="0.2.1.2.2.2.2TO0.2.1.2.2.2.3" />

 <IAC:Transition TE="null" source="#/21" target="#/21"
name="0.2.2.2.2.3.2TO0.2.2.2.2.3.2" />

 <IAC:Transition TE="null" source="#/22" target="#/21"
name="0.2.2.2.2.3.1TO0.2.2.2.2.3.2" />

 <IAC:Transition TE="null" source="#/2" target="#/1"
name="0.2.1.2.2.2.1TO0.2.1.2.2.2.2" />

 <IAC:Transition TE="null" source="#/9" target="#/7" name="0.2.1.2.2.2TO0.2.1.2.2.3"

/>

 <IAC:Transition TE="null" source="#/16" target="#/14"
name="0.2.1.2.2.2.3.4TO0.2.1.2.2.2.3.6" />

 <IAC:Transition TE="null" source="#/51" target="#/49" name="0.2TO0.3" />
 <IAC:Model nodes="#/0 #/1 #/2 #/3 #/4 #/5 #/6 #/7 #/8 #/9 #/10 #/11 #/12 #/13 #/14

#/15 #/16 #/17 #/18 #/19 #/20 #/21 #/22 #/23 #/24 #/25 #/26 #/27 #/28 #/29 #/30 #/31
#/32 #/33 #/34 #/35 #/36 #/37 #/38 #/39 #/40 #/41 #/42 #/43 #/44 #/45 #/46 #/47 #/48

#/49 #/50 #/51 #/52 #/53 #/54 #/55" transitions="#/56 #/57 #/58 #/59 #/60 #/61 #/62
#/63 #/64 #/65 #/66 #/67 #/68 #/69 #/70 #/71 #/72 #/73 #/74 #/75 #/76 #/77 #/78 #/79

#/80 #/81 #/82 #/83 #/84 #/85 #/86 #/87 #/88 #/89 #/90 #/91 #/92 #/93 #/94 #/95 #/96
#/97 #/98 #/99" name="fr.parisdescartes.mi.meetingsmanagement" />

</xmi:XMI>

Listing 41. The refined IAC model in XML format (IACModelRefined.model file)

<?xml version="1.0" encoding="UTF-8" ?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:IAC="http://mi.parisdescartes.fr/ASEME/metamodels/IAC">

 <IAC:Model xmi:id="_Phkl7VatEd6xWKSHAXqXJw" nodes="_PhiwsFatEd6xWKSHAXqXJw
_PhiwsVatEd6xWKSHAXqXJw _PhiwslatEd6xWKSHAXqXJw _Phiws1atEd6xWKSHAXqXJw

_PhiwtFatEd6xWKSHAXqXJw _PhiwtVatEd6xWKSHAXqXJw _PhiwtlatEd6xWKSHAXqXJw
_Phiwt1atEd6xWKSHAXqXJw _PhiwuFatEd6xWKSHAXqXJw _PhiwuVatEd6xWKSHAXqXJw

_PhiwulatEd6xWKSHAXqXJw _Phiwu1atEd6xWKSHAXqXJw _PhiwvFatEd6xWKSHAXqXJw
_PhiwvlatEd6xWKSHAXqXJw _Phiwv1atEd6xWKSHAXqXJw _PhiwwFatEd6xWKSHAXqXJw

_PhiwwVatEd6xWKSHAXqXJw _PhiwwlatEd6xWKSHAXqXJw _Phiww1atEd6xWKSHAXqXJw

_PhiwxFatEd6xWKSHAXqXJw _PhiwxVatEd6xWKSHAXqXJw _PhjXwFatEd6xWKSHAXqXJw
_PhjXwVatEd6xWKSHAXqXJw _PhjXwlatEd6xWKSHAXqXJw _PhjXw1atEd6xWKSHAXqXJw

_PhjXxFatEd6xWKSHAXqXJw _PhjXxVatEd6xWKSHAXqXJw _PhjXxlatEd6xWKSHAXqXJw
_PhjXx1atEd6xWKSHAXqXJw _PhjXyFatEd6xWKSHAXqXJw _PhjXyVatEd6xWKSHAXqXJw

_PhjXylatEd6xWKSHAXqXJw _PhjXy1atEd6xWKSHAXqXJw _PhjXzFatEd6xWKSHAXqXJw
_PhjXzVatEd6xWKSHAXqXJw _PhjXzlatEd6xWKSHAXqXJw _PhjXz1atEd6xWKSHAXqXJw

_PhjX0FatEd6xWKSHAXqXJw _PhjX0VatEd6xWKSHAXqXJw _PhjX0latEd6xWKSHAXqXJw
_PhjX01atEd6xWKSHAXqXJw _PhjX1FatEd6xWKSHAXqXJw _PhjX1VatEd6xWKSHAXqXJw

_PhjX1latEd6xWKSHAXqXJw _PhjX11atEd6xWKSHAXqXJw _PhjX2FatEd6xWKSHAXqXJw
_PhjX2VatEd6xWKSHAXqXJw _PhjX2latEd6xWKSHAXqXJw _PhjX21atEd6xWKSHAXqXJw

_PhjX3FatEd6xWKSHAXqXJw _PhjX3VatEd6xWKSHAXqXJw _PhjX3latEd6xWKSHAXqXJw
_PhjX31atEd6xWKSHAXqXJw _PhjX4FatEd6xWKSHAXqXJw _PhjX4VatEd6xWKSHAXqXJw

_PhjX4latEd6xWKSHAXqXJw" transitions="_Phj-0FatEd6xWKSHAXqXJw _Phj-0VatEd6xWKSHAXqXJw

251

_Phj-0latEd6xWKSHAXqXJw _Phj-01atEd6xWKSHAXqXJw _Phj-1FatEd6xWKSHAXqXJw _Phj-

1VatEd6xWKSHAXqXJw _Phj-1latEd6xWKSHAXqXJw _Phj-11atEd6xWKSHAXqXJw _Phj-
2FatEd6xWKSHAXqXJw _Phj-2VatEd6xWKSHAXqXJw _Phj-2latEd6xWKSHAXqXJw _Phj-

21atEd6xWKSHAXqXJw _Phj-3FatEd6xWKSHAXqXJw _Phj-3VatEd6xWKSHAXqXJw _Phj-
3latEd6xWKSHAXqXJw _Phj-31atEd6xWKSHAXqXJw _Phj-4FatEd6xWKSHAXqXJw _Phj-

4VatEd6xWKSHAXqXJw _Phj-4latEd6xWKSHAXqXJw _Phj-41atEd6xWKSHAXqXJw _Phj-
5FatEd6xWKSHAXqXJw _Phj-5VatEd6xWKSHAXqXJw _Phj-5latEd6xWKSHAXqXJw _Phj-

51atEd6xWKSHAXqXJw _Phj-6FatEd6xWKSHAXqXJw _Phj-6VatEd6xWKSHAXqXJw _Phj-
6latEd6xWKSHAXqXJw _Phj-61atEd6xWKSHAXqXJw _Phj-7FatEd6xWKSHAXqXJw _Phj-

7VatEd6xWKSHAXqXJw _Phj-7latEd6xWKSHAXqXJw _Phkl4FatEd6xWKSHAXqXJw
_Phkl4VatEd6xWKSHAXqXJw _Phkl4latEd6xWKSHAXqXJw _Phkl41atEd6xWKSHAXqXJw

_Phkl5FatEd6xWKSHAXqXJw _Phkl5VatEd6xWKSHAXqXJw _Phkl5latEd6xWKSHAXqXJw
_Phkl51atEd6xWKSHAXqXJw _Phkl6FatEd6xWKSHAXqXJw _Phkl6VatEd6xWKSHAXqXJw

_Phkl6latEd6xWKSHAXqXJw _Phkl61atEd6xWKSHAXqXJw _Phkl7FatEd6xWKSHAXqXJw"
name="fr.parisdescartes.mi.meetingsmanagement" variables="_PhiwvVatEd6xWKSHAXqXJw

proposeVar informVar acceptVar rejectVar" />
 <IAC:Node xmi:id="_PhiwsFatEd6xWKSHAXqXJw"

name="_open_group_ReadSchedule_or_RequestChangeMeeting_or_RequestNewMeeting_close_grou
p_" type="OR" label="0.2.1.2.2.2.3" activity="null" />

 <IAC:Node xmi:id="_PhiwsVatEd6xWKSHAXqXJw" name="GetUserRequest" type="BASIC"
label="0.2.1.2.2.2.2" activity="the HMI sends a request" />

 <IAC:Node xmi:id="_PhiwslatEd6xWKSHAXqXJw" name="0.2.1.2.2.2.1" type="START"
label="0.2.1.2.2.2.1" activity="null" />

 <IAC:Node xmi:id="_Phiws1atEd6xWKSHAXqXJw"

name="_open_group_ManageMeetings_sequence_LearnUserHabits_close_group_" type="OR"
label="0.2.1.2.2" activity="null" />

 <IAC:Node xmi:id="_PhiwtFatEd6xWKSHAXqXJw" name="0.2.1.2.1" type="START"
label="0.2.1.2.1" activity="null" />

 <IAC:Node xmi:id="_PhiwtVatEd6xWKSHAXqXJw" name="0.2.1.2.2.4" type="END"
label="0.2.1.2.2.4" activity="null" />

 <IAC:Node xmi:id="_PhiwtlatEd6xWKSHAXqXJw" name="0.2.2.2.2.5" type="END"
label="0.2.2.2.2.5" activity="null" />

 <IAC:Node xmi:id="_Phiwt1atEd6xWKSHAXqXJw" name="LearnUserHabits" type="OR"
label="0.2.1.2.2.3" activity="null" />

 <IAC:Node xmi:id="_PhiwuFatEd6xWKSHAXqXJw" name="UpdateSchedule" type="BASIC"
label="0.2.2.2.2.4" activity="update the user schedule file on disk"

variables="_PhiwvVatEd6xWKSHAXqXJw informVar" />
 <IAC:Node xmi:id="_PhiwuVatEd6xWKSHAXqXJw" name="ManageMeetings" type="OR"

label="0.2.1.2.2.2" activity="null" />
 <IAC:Node xmi:id="_PhiwulatEd6xWKSHAXqXJw"

name="_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_gr
oup__one_or_more_times_" type="OR" label="0.2.2.2.2.3" activity="null"

variables="_PhiwvVatEd6xWKSHAXqXJw acceptVar informVar proposeVar rejectVar" />
 <IAC:Node xmi:id="_Phiwu1atEd6xWKSHAXqXJw" name="0.2.1.2.2.1" type="START"

label="0.2.1.2.2.1" activity="null" />
 <IAC:Node xmi:id="_PhiwvFatEd6xWKSHAXqXJw" name="ReceiveProposedDate" type="BASIC"

label="0.2.2.2.2.2" activity="null" variables="_PhiwvVatEd6xWKSHAXqXJw proposeVar" />
 <IAC:Variable xmi:id="_PhiwvVatEd6xWKSHAXqXJw" name="e" type="Meeting" />

 <IAC:Variable xmi:id="proposeVar" name="propose" type="ACLMessage" />

 <IAC:Variable xmi:id="informVar" name="inform" type="ACLMessage" />
 <IAC:Variable xmi:id="acceptVar" name="accept" type="ACLMessage" />

 <IAC:Variable xmi:id="rejectVar" name="reject" type="ACLMessage" />
 <IAC:Node xmi:id="_PhiwvlatEd6xWKSHAXqXJw" name="0.2.2.2.2.1" type="START"

label="0.2.2.2.2.1" activity="null" />
 <IAC:Node xmi:id="_Phiwv1atEd6xWKSHAXqXJw" name="0.2.1.2.2.2.3.6" type="END"

label="0.2.1.2.2.2.3.6" activity="null" />
 <IAC:Node xmi:id="_PhiwwFatEd6xWKSHAXqXJw" name="RequestNewMeeting" type="OR"

label="0.2.1.2.2.2.3.5" activity="null" />
 <IAC:Node xmi:id="_PhiwwVatEd6xWKSHAXqXJw" name="RequestChangeMeeting" type="OR"

label="0.2.1.2.2.2.3.4" activity="null" />
 <IAC:Node xmi:id="_PhiwwlatEd6xWKSHAXqXJw" name="ReadSchedule" type="BASIC"

label="0.2.1.2.2.2.3.3" activity="read the user's schedule from the disk" />
 <IAC:Node xmi:id="_Phiww1atEd6xWKSHAXqXJw" name="0.2.1.2.2.2.3.2" type="CONDITION"

label="0.2.1.2.2.2.3.2" activity="null" />
 <IAC:Node xmi:id="_PhiwxFatEd6xWKSHAXqXJw" name="0.2.1.2.2.2.3.1" type="START"

label="0.2.1.2.2.2.3.1" activity="null" />
 <IAC:Node xmi:id="_PhiwxVatEd6xWKSHAXqXJw" name="0.2.2.2.2.3.3" type="END"

label="0.2.2.2.2.3.3" activity="null" />
 <IAC:Node xmi:id="_PhjXwFatEd6xWKSHAXqXJw"

name="_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_gr
oup_" type="OR" label="0.2.2.2.2.3.2" activity="null"

variables="_PhiwvVatEd6xWKSHAXqXJw acceptVar informVar proposeVar rejectVar" />

 <IAC:Node xmi:id="_PhjXwVatEd6xWKSHAXqXJw" name="0.2.2.2.2.3.1" type="START"

label="0.2.2.2.2.3.1" activity="null" />

252

 <IAC:Node xmi:id="_PhjXwlatEd6xWKSHAXqXJw"
name="NegotiateMeetingDate_forever__parallel_" type="OR" label="0.2.2" activity="null"

variables="_PhiwvVatEd6xWKSHAXqXJw" />

 <IAC:Node xmi:id="_PhjXw1atEd6xWKSHAXqXJw"
name="_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever__parall

el_" type="OR" label="0.2.1" activity="null" />
 <IAC:Node xmi:id="_PhjXxFatEd6xWKSHAXqXJw" name="0.2.2.2.2.3.2.5" type="END"

label="0.2.2.2.2.3.2.5" activity="null" />
 <IAC:Node xmi:id="_PhjXxVatEd6xWKSHAXqXJw" name="ReceiveOutcome" type="BASIC"

label="0.2.2.2.2.3.2.4" activity="null" variables="_PhiwvVatEd6xWKSHAXqXJw informVar
proposeVar" />

 <IAC:Node xmi:id="_PhjXxlatEd6xWKSHAXqXJw" name="SendResults" type="BASIC"
label="0.2.2.2.2.3.2.3" activity="null" variables="_PhiwvVatEd6xWKSHAXqXJw acceptVar

rejectVar" />
 <IAC:Node xmi:id="_PhjXx1atEd6xWKSHAXqXJw" name="DecideResponse" type="BASIC"

label="0.2.2.2.2.3.2.2" activity="use a reasoning technique to decide if the proposed
date matches the user's profile" variables="_PhiwvVatEd6xWKSHAXqXJw proposeVar" />

 <IAC:Node xmi:id="_PhjXyFatEd6xWKSHAXqXJw" name="PersonalAssistant" type="OR"
label="0" activity="null" />

 <IAC:Node xmi:id="_PhjXyVatEd6xWKSHAXqXJw" name="0.2.2.2.2.3.2.1" type="START"
label="0.2.2.2.2.3.2.1" activity="null" />

 <IAC:Node xmi:id="_PhjXylatEd6xWKSHAXqXJw" name="0.2.1.2.2.2.3.5.4" type="END"
label="0.2.1.2.2.2.3.5.4" activity="null" />

 <IAC:Node xmi:id="_PhjXy1atEd6xWKSHAXqXJw" name="ReceiveNewResults" type="BASIC"

label="0.2.1.2.2.2.3.5.3" activity="null" />
 <IAC:Node xmi:id="_PhjXzFatEd6xWKSHAXqXJw" name="0.2.2.3" type="END" label="0.2.2.3"

activity="null" />
 <IAC:Node xmi:id="_PhjXzVatEd6xWKSHAXqXJw" name="SendNewRequest" type="BASIC"

label="0.2.1.2.2.2.3.5.2" activity="null" />
 <IAC:Node xmi:id="_PhjXzlatEd6xWKSHAXqXJw" name="NegotiateMeetingDate_forever_"

type="OR" label="0.2.2.2" activity="null" variables="_PhiwvVatEd6xWKSHAXqXJw" />
 <IAC:Node xmi:id="_PhjXz1atEd6xWKSHAXqXJw" name="0.2.1.2.2.2.3.5.1" type="START"

label="0.2.1.2.2.2.3.5.1" activity="null" />
 <IAC:Node xmi:id="_PhjX0FatEd6xWKSHAXqXJw" name="0.2.2.1" type="START"

label="0.2.2.1" activity="null" />
 <IAC:Node xmi:id="_PhjX0VatEd6xWKSHAXqXJw" name="NegotiateMeetingDate" type="OR"

label="0.2.2.2.2" activity="null" variables="_PhiwvVatEd6xWKSHAXqXJw acceptVar
informVar proposeVar rejectVar" />

 <IAC:Node xmi:id="_PhjX0latEd6xWKSHAXqXJw" name="0.2.2.2.1" type="START"
label="0.2.2.2.1" activity="null" />

 <IAC:Node xmi:id="_PhjX01atEd6xWKSHAXqXJw" name="0.2.1.2.2.2.3.4.4" type="END"
label="0.2.1.2.2.2.3.4.4" activity="null" />

 <IAC:Node xmi:id="_PhjX1FatEd6xWKSHAXqXJw" name="ReceiveChangeResults" type="BASIC"
label="0.2.1.2.2.2.3.4.3" activity="null" />

 <IAC:Node xmi:id="_PhjX1VatEd6xWKSHAXqXJw" name="SendChangeRequest" type="BASIC"
label="0.2.1.2.2.2.3.4.2" activity="null" />

 <IAC:Node xmi:id="_PhjX1latEd6xWKSHAXqXJw" name="0.2.1.3" type="END" label="0.2.1.3"
activity="null" />

 <IAC:Node xmi:id="_PhjX11atEd6xWKSHAXqXJw"

name="_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever_"
type="OR" label="0.2.1.2" activity="null" />

 <IAC:Node xmi:id="_PhjX2FatEd6xWKSHAXqXJw" name="0.2.1.2.2.2.3.4.1" type="START"
label="0.2.1.2.2.2.3.4.1" activity="null" />

 <IAC:Node xmi:id="_PhjX2VatEd6xWKSHAXqXJw" name="0.2.1.1" type="START"
label="0.2.1.1" activity="null" />

 <IAC:Node xmi:id="_PhjX2latEd6xWKSHAXqXJw" name="0.2.1.2.2.3.4" type="END"
label="0.2.1.2.2.3.4" activity="null" />

 <IAC:Node xmi:id="_PhjX21atEd6xWKSHAXqXJw" name="UpdateUserPreferences" type="BASIC"
label="0.2.1.2.2.3.3" activity="update the user preference file on disk" />

 <IAC:Node xmi:id="_PhjX3FatEd6xWKSHAXqXJw" name="0.3" type="END" label="0.3"
activity="null" />

 <IAC:Node xmi:id="_PhjX3VatEd6xWKSHAXqXJw" name="LearnUserPreference" type="BASIC"
label="0.2.1.2.2.3.2" activity="use a simple learning algorithm for the user's

preference" />
 <IAC:Node xmi:id="_PhjX3latEd6xWKSHAXqXJw"

name="_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever__parall
el_NegotiateMeetingDate_forever_" type="AND" label="0.2" activity="null"

variables="_PhiwvVatEd6xWKSHAXqXJw" />
 <IAC:Node xmi:id="_PhjX31atEd6xWKSHAXqXJw" name="0.2.1.2.2.3.1" type="START"

label="0.2.1.2.2.3.1" activity="null" />
 <IAC:Node xmi:id="_PhjX4FatEd6xWKSHAXqXJw" name="0.1" type="START" label="0.1"

activity="null" />

 <IAC:Node xmi:id="_PhjX4VatEd6xWKSHAXqXJw" name="0.2.1.2.2.2.5" type="END"

label="0.2.1.2.2.2.5" activity="null" />

253

 <IAC:Node xmi:id="_PhjX4latEd6xWKSHAXqXJw" name="ShowResults" type="BASIC"
label="0.2.1.2.2.2.4" activity="send a response to the HMI regarding the user's

request" />

 <IAC:Transition xmi:id="_Phj-0FatEd6xWKSHAXqXJw" TE="null"
source="_PhjX0VatEd6xWKSHAXqXJw" target="_PhjX0VatEd6xWKSHAXqXJw"

name="0.2.2.2.2TO0.2.2.2.2" />
 <IAC:Transition xmi:id="_Phj-0VatEd6xWKSHAXqXJw" TE="null"

source="_PhjXzlatEd6xWKSHAXqXJw" target="_PhjXzFatEd6xWKSHAXqXJw"
name="0.2.2.2TO0.2.2.3" />

 <IAC:Transition xmi:id="_Phj-0latEd6xWKSHAXqXJw" TE="null"
source="_Phiww1atEd6xWKSHAXqXJw" target="_PhiwwFatEd6xWKSHAXqXJw"

name="0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.5" />
 <IAC:Transition xmi:id="_Phj-01atEd6xWKSHAXqXJw" TE="null"

source="_PhiwvlatEd6xWKSHAXqXJw" target="_PhiwvFatEd6xWKSHAXqXJw"
name="0.2.2.2.2.1TO0.2.2.2.2.2" />

 <IAC:Transition xmi:id="_Phj-1FatEd6xWKSHAXqXJw" TE="null"
source="_Phiww1atEd6xWKSHAXqXJw" target="_PhiwwVatEd6xWKSHAXqXJw"

name="0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.4" />
 <IAC:Transition xmi:id="_Phj-1VatEd6xWKSHAXqXJw" TE="null"

source="_Phiww1atEd6xWKSHAXqXJw" target="_PhiwwlatEd6xWKSHAXqXJw"
name="0.2.1.2.2.2.3.2TO0.2.1.2.2.2.3.3" />

 <IAC:Transition xmi:id="_Phj-1latEd6xWKSHAXqXJw" TE="null"
source="_PhjX21atEd6xWKSHAXqXJw" target="_PhjX2latEd6xWKSHAXqXJw"

name="0.2.1.2.2.3.3TO0.2.1.2.2.3.4" />

 <IAC:Transition xmi:id="_Phj-11atEd6xWKSHAXqXJw" TE="null"
source="_Phiwu1atEd6xWKSHAXqXJw" target="_PhiwuVatEd6xWKSHAXqXJw"

name="0.2.1.2.2.1TO0.2.1.2.2.2" />
 <IAC:Transition xmi:id="_Phj-2FatEd6xWKSHAXqXJw" TE="null"

source="_PhjX3VatEd6xWKSHAXqXJw" target="_PhjX21atEd6xWKSHAXqXJw"
name="0.2.1.2.2.3.2TO0.2.1.2.2.3.3" />

 <IAC:Transition xmi:id="_Phj-2VatEd6xWKSHAXqXJw" TE="null"
source="_PhjX31atEd6xWKSHAXqXJw" target="_PhjX3VatEd6xWKSHAXqXJw"

name="0.2.1.2.2.3.1TO0.2.1.2.2.3.2" />
 <IAC:Transition xmi:id="_Phj-2latEd6xWKSHAXqXJw" TE="accept(p,m,e) or reject(p,m,e)"

source="_PhjXxlatEd6xWKSHAXqXJw" target="_PhjXxVatEd6xWKSHAXqXJw"
name="0.2.2.2.2.3.2.3TO0.2.2.2.2.3.2.4" />

 <IAC:Transition xmi:id="_Phj-21atEd6xWKSHAXqXJw" TE="null"
source="_PhiwuFatEd6xWKSHAXqXJw" target="_PhiwtlatEd6xWKSHAXqXJw"

name="0.2.2.2.2.4TO0.2.2.2.2.5" />
 <IAC:Transition xmi:id="_Phj-3FatEd6xWKSHAXqXJw" TE="null"

source="_Phiws1atEd6xWKSHAXqXJw" target="_Phiws1atEd6xWKSHAXqXJw"
name="0.2.1.2.2TO0.2.1.2.2" />

 <IAC:Transition xmi:id="_Phj-3VatEd6xWKSHAXqXJw" TE="null"
source="_PhiwwFatEd6xWKSHAXqXJw" target="_Phiwv1atEd6xWKSHAXqXJw"

name="0.2.1.2.2.2.3.5TO0.2.1.2.2.2.3.6" />
 <IAC:Transition xmi:id="_Phj-3latEd6xWKSHAXqXJw" TE="null"

source="_PhjX2VatEd6xWKSHAXqXJw" target="_PhjX11atEd6xWKSHAXqXJw"
name="0.2.1.1TO0.2.1.2" />

 <IAC:Transition xmi:id="_Phj-31atEd6xWKSHAXqXJw" TE="null"

source="_PhjXyVatEd6xWKSHAXqXJw" target="_PhjXx1atEd6xWKSHAXqXJw"
name="0.2.2.2.2.3.2.1TO0.2.2.2.2.3.2.2" />

 <IAC:Transition xmi:id="_Phj-4FatEd6xWKSHAXqXJw" TE="null"
source="_PhjX4FatEd6xWKSHAXqXJw" target="_PhjX3latEd6xWKSHAXqXJw" name="0.1TO0.2" />

 <IAC:Transition xmi:id="_Phj-4VatEd6xWKSHAXqXJw" TE="null"
source="_PhjX0latEd6xWKSHAXqXJw" target="_PhjX0VatEd6xWKSHAXqXJw"

name="0.2.2.2.1TO0.2.2.2.2" />
 <IAC:Transition xmi:id="_Phj-4latEd6xWKSHAXqXJw" TE="null"

source="_PhiwwlatEd6xWKSHAXqXJw" target="_Phiwv1atEd6xWKSHAXqXJw"
name="0.2.1.2.2.2.3.3TO0.2.1.2.2.2.3.6" />

 <IAC:Transition xmi:id="_Phj-41atEd6xWKSHAXqXJw" TE="null"
source="_PhjXy1atEd6xWKSHAXqXJw" target="_PhjXylatEd6xWKSHAXqXJw"

name="0.2.1.2.2.2.3.5.3TO0.2.1.2.2.2.3.5.4" />
 <IAC:Transition xmi:id="_Phj-5FatEd6xWKSHAXqXJw" TE="null"

source="_PhiwulatEd6xWKSHAXqXJw" target="_PhiwuFatEd6xWKSHAXqXJw"
name="0.2.2.2.2.3TO0.2.2.2.2.4" />

 <IAC:Transition xmi:id="_Phj-5VatEd6xWKSHAXqXJw" TE="null"
source="_PhjX1FatEd6xWKSHAXqXJw" target="_PhjX01atEd6xWKSHAXqXJw"

name="0.2.1.2.2.2.3.4.3TO0.2.1.2.2.2.3.4.4" />
 <IAC:Transition xmi:id="_Phj-5latEd6xWKSHAXqXJw" TE="null"

source="_PhjX11atEd6xWKSHAXqXJw" target="_PhjX1latEd6xWKSHAXqXJw"
name="0.2.1.2TO0.2.1.3" />

 <IAC:Transition xmi:id="_Phj-51atEd6xWKSHAXqXJw" TE="null"

source="_PhjXzVatEd6xWKSHAXqXJw" target="_PhjXy1atEd6xWKSHAXqXJw"

name="0.2.1.2.2.2.3.5.2TO0.2.1.2.2.2.3.5.3" />

254

 <IAC:Transition xmi:id="_Phj-6FatEd6xWKSHAXqXJw" TE="null"
source="_PhiwxFatEd6xWKSHAXqXJw" target="_Phiww1atEd6xWKSHAXqXJw"

name="0.2.1.2.2.2.3.1TO0.2.1.2.2.2.3.2" />

 <IAC:Transition xmi:id="_Phj-6VatEd6xWKSHAXqXJw" TE="null"
source="_Phiwt1atEd6xWKSHAXqXJw" target="_PhiwtVatEd6xWKSHAXqXJw"

name="0.2.1.2.2.3TO0.2.1.2.2.4" />
 <IAC:Transition xmi:id="_Phj-6latEd6xWKSHAXqXJw" TE="null"

source="_PhjX1VatEd6xWKSHAXqXJw" target="_PhjX1FatEd6xWKSHAXqXJw"
name="0.2.1.2.2.2.3.4.2TO0.2.1.2.2.2.3.4.3" />

 <IAC:Transition xmi:id="_Phj-61atEd6xWKSHAXqXJw" TE="propose(m,p,e) or
inform(m,p,e)" source="_PhjXxVatEd6xWKSHAXqXJw" target="_PhjXxFatEd6xWKSHAXqXJw"

name="0.2.2.2.2.3.2.4TO0.2.2.2.2.3.2.5" />
 <IAC:Transition xmi:id="_Phj-7FatEd6xWKSHAXqXJw" TE="null"

source="_PhjXz1atEd6xWKSHAXqXJw" target="_PhjXzVatEd6xWKSHAXqXJw"
name="0.2.1.2.2.2.3.5.1TO0.2.1.2.2.2.3.5.2" />

 <IAC:Transition xmi:id="_Phj-7VatEd6xWKSHAXqXJw" TE="null"
source="_PhiwtFatEd6xWKSHAXqXJw" target="_Phiws1atEd6xWKSHAXqXJw"

name="0.2.1.2.1TO0.2.1.2.2" />
 <IAC:Transition xmi:id="_Phj-7latEd6xWKSHAXqXJw" TE="null"

source="_PhjX4latEd6xWKSHAXqXJw" target="_PhjX4VatEd6xWKSHAXqXJw"
name="0.2.1.2.2.2.4TO0.2.1.2.2.2.5" />

 <IAC:Transition xmi:id="_Phkl4FatEd6xWKSHAXqXJw" TE="null"
source="_PhjX2FatEd6xWKSHAXqXJw" target="_PhjX1VatEd6xWKSHAXqXJw"

name="0.2.1.2.2.2.3.4.1TO0.2.1.2.2.2.3.4.2" />

 <IAC:Transition xmi:id="_Phkl4VatEd6xWKSHAXqXJw" TE="null"
source="_PhjX0FatEd6xWKSHAXqXJw" target="_PhjXzlatEd6xWKSHAXqXJw"

name="0.2.2.1TO0.2.2.2" />
 <IAC:Transition xmi:id="_Phkl4latEd6xWKSHAXqXJw" TE="propose(m,p,e)"

source="_PhiwvFatEd6xWKSHAXqXJw" target="_PhiwulatEd6xWKSHAXqXJw"
name="0.2.2.2.2.2TO0.2.2.2.2.3" />

 <IAC:Transition xmi:id="_Phkl41atEd6xWKSHAXqXJw" TE="null"
source="_PhiwsFatEd6xWKSHAXqXJw" target="_PhjX4latEd6xWKSHAXqXJw"

name="0.2.1.2.2.2.3TO0.2.1.2.2.2.4" />
 <IAC:Transition xmi:id="_Phkl5FatEd6xWKSHAXqXJw" TE="null"

source="_PhjXx1atEd6xWKSHAXqXJw" target="_PhjXxlatEd6xWKSHAXqXJw"
name="0.2.2.2.2.3.2.2TO0.2.2.2.2.3.2.3" />

 <IAC:Transition xmi:id="_Phkl5VatEd6xWKSHAXqXJw"
TE="inform(m,p,e)/e.isArranged=true" source="_PhjXwFatEd6xWKSHAXqXJw"

target="_PhiwxVatEd6xWKSHAXqXJw" name="0.2.2.2.2.3.2TO0.2.2.2.2.3.3" />
 <IAC:Transition xmi:id="_Phkl5latEd6xWKSHAXqXJw" TE="null"

source="_PhiwsVatEd6xWKSHAXqXJw" target="_PhiwsFatEd6xWKSHAXqXJw"
name="0.2.1.2.2.2.2TO0.2.1.2.2.2.3" />

 <IAC:Transition xmi:id="_Phkl51atEd6xWKSHAXqXJw" TE="propose(m,p,e)"
source="_PhjXwFatEd6xWKSHAXqXJw" target="_PhjXwFatEd6xWKSHAXqXJw"

name="0.2.2.2.2.3.2TO0.2.2.2.2.3.2" />
 <IAC:Transition xmi:id="_Phkl6FatEd6xWKSHAXqXJw" TE="null"

source="_PhjXwVatEd6xWKSHAXqXJw" target="_PhjXwFatEd6xWKSHAXqXJw"
name="0.2.2.2.2.3.1TO0.2.2.2.2.3.2" />

 <IAC:Transition xmi:id="_Phkl6VatEd6xWKSHAXqXJw" TE="null"

source="_PhiwslatEd6xWKSHAXqXJw" target="_PhiwsVatEd6xWKSHAXqXJw"
name="0.2.1.2.2.2.1TO0.2.1.2.2.2.2" />

 <IAC:Transition xmi:id="_Phkl6latEd6xWKSHAXqXJw" TE="null"
source="_PhiwuVatEd6xWKSHAXqXJw" target="_Phiwt1atEd6xWKSHAXqXJw"

name="0.2.1.2.2.2TO0.2.1.2.2.3" />
 <IAC:Transition xmi:id="_Phkl61atEd6xWKSHAXqXJw" TE="null"

source="_PhiwwVatEd6xWKSHAXqXJw" target="_Phiwv1atEd6xWKSHAXqXJw"
name="0.2.1.2.2.2.3.4TO0.2.1.2.2.2.3.6" />

 <IAC:Transition xmi:id="_Phkl7FatEd6xWKSHAXqXJw" TE="null"
source="_PhjX3latEd6xWKSHAXqXJw" target="_PhjX3FatEd6xWKSHAXqXJw" name="0.2TO0.3" />

 </xmi:XMI>

The automatically generated Java files for the JADE platform

Listing 42. The generated file PersonalAssistantAgent.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

public class PersonalAssistantAgent extends Agent {

 public void setup() {

 //add behaviour

255

 addBehaviour(new

_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever__parallel_Neg

otiateMeetingDate_forever_Behaviour(

 this));

 }

 protected void takeDown() {

 doDelete();

 }

}

Listing 43. The generated file _open_group_DecideResponse_sequence_

SendResults_sequence_ReceiveOutcome_close_group__one_or_more_times_

Behaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.Behaviour;
import jade.core.behaviours.SimpleBehaviour;

public class

_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group__o

ne_or_more_times_Behaviour

 extends

 SimpleBehaviour {

 MeetingHolder e = null;

 ACLMessageHolder accept = null;
 ACLMessageHolder inform = null;

 ACLMessageHolder propose = null;
 ACLMessageHolder reject = null;

 protected boolean finished;

 Behaviour simpleOneOrMoreTimesBehaviour = null;

 public

_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group__o

ne_or_more_times_Behaviour(

 Agent a, MeetingHolder e, ACLMessageHolder accept,

 ACLMessageHolder inform, ACLMessageHolder propose,

 ACLMessageHolder reject) {

 super(a);
 this.e = e;

 this.accept = accept;
 this.inform = inform;

 this.propose = propose;
 this.reject = reject;

 finished = false;
 simpleOneOrMoreTimesBehaviour = new

_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group_Be

haviour(

 this.myAgent, e, accept, inform, propose, reject);

 myAgent.addBehaviour(simpleOneOrMoreTimesBehaviour);

 }

 public void action() {
 if (simpleOneOrMoreTimesBehaviour.done()) {

 if (propose(m, p, e)) {

 simpleOneOrMoreTimesBehaviour = new

_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group_Be

haviour(

 this.myAgent, e, accept, inform, propose, reject);

 myAgent.addBehaviour(simpleOneOrMoreTimesBehaviour);

 } else

 finished = true;

 }

 }

 public boolean done() {
 return finished;

 }

}

256

Listing 44. The generated file _open_group_DecideResponse_sequence_

SendResults_sequence_ReceiveOutcome_close_group_Behaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SequentialBehaviour;

public class

_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group_Be

haviour

 extends

 SequentialBehaviour {

 MeetingHolder e = null;

 ACLMessageHolder accept = null;
 ACLMessageHolder inform = null;

 ACLMessageHolder propose = null;
 ACLMessageHolder reject = null;

 public

_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group_Be

haviour(

 Agent a, MeetingHolder e, ACLMessageHolder accept,

 ACLMessageHolder inform, ACLMessageHolder propose,

 ACLMessageHolder reject) {

 super(a);

 this.e = e;
 this.accept = accept;

 this.inform = inform;
 this.propose = propose;

 this.reject = reject;

 addSubBehaviour(new DecideResponseBehaviour(this.myAgent, e, propose));

 addSubBehaviour(new SendResultsBehaviour(this.myAgent, e, accept,

 reject));

 addSubBehaviour(new ReceiveOutcomeBehaviour(this.myAgent, e, inform,

 propose));

 }

}

Listing 45. The generated file _open_group_ManageMeetings_sequence_

LearnUserHabits_close_group__forever__parallel_Behaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SequentialBehaviour;

public class

_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever__parallel_Beh

aviour

 extends

 SequentialBehaviour {

 public

_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever__parallel_Beh

aviour(

 Agent a) {

 super(a);

 addSubBehaviour(new

_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever_Behaviour(

 this.myAgent));

 }

}

257

Listing 46. The generated file _open_group_ManageMeetings_sequence_

LearnUserHabits_close_group__forever__parallel_NegotiateMeetingDate_forever

_Behaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.ParallelBehaviour;

import jade.core.behaviours.ThreadedBehaviourFactory;

public class

_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever__parallel_Neg

otiateMeetingDate_forever_Behaviour

 extends

 ParallelBehaviour {

 ThreadedBehaviourFactory tbf = null;
 MeetingHolder e = new MeetingHolder(this);

 public

_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever__parallel_Neg

otiateMeetingDate_forever_Behaviour(

 Agent a) {

 super(a, ParallelBehaviour.WHEN_ALL);

 tbf = new ThreadedBehaviourFactory();

 myAgent.addBehaviour(tbf

 .wrap(new NegotiateMeetingDate_forever__parallel_Behaviour(
 this.myAgent, e)));

 myAgent

 .addBehaviour(tbf

 .wrap(new

_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever__parallel_Beh

aviour(

 this.myAgent)));

 }

}

Listing 47. The generated file _open_group_ManageMeetings_sequence_

LearnUserHabits_close_group__forever_Behaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.Behaviour;
import jade.core.behaviours.CyclicBehaviour;

public class

_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever_Behaviour

 extends

 CyclicBehaviour {

 Behaviour foreverBehaviour = null;

 public

_open_group_ManageMeetings_sequence_LearnUserHabits_close_group__forever_Behaviour(

 Agent a) {

 super(a);

 foreverBehaviour = new

_open_group_ManageMeetings_sequence_LearnUserHabits_close_group_Behaviour(

 this.myAgent);

 myAgent.addBehaviour(foreverBehaviour);

 }

 public void action() {

 if (foreverBehaviour.done()) {

258

 foreverBehaviour = new

_open_group_ManageMeetings_sequence_LearnUserHabits_close_group_Behaviour(

 this.myAgent);

 myAgent.addBehaviour(foreverBehaviour);

 }

 }

}

Listing 48. The generated file _open_group_ManageMeetings_sequence_

LearnUserHabits_close_group_Behaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SequentialBehaviour;

public class _open_group_ManageMeetings_sequence_LearnUserHabits_close_group_Behaviour
 extends

 SequentialBehaviour {

 public _open_group_ManageMeetings_sequence_LearnUserHabits_close_group_Behaviour(

 Agent a) {

 super(a);

 addSubBehaviour(new ManageMeetingsBehaviour(this.myAgent));
 addSubBehaviour(new LearnUserHabitsBehaviour(this.myAgent));

 }

}

Listing 49. The generated file _open_group_ReadSchedule_or_

RequestChangeMeeting_or_RequestNewMeeting_close_group_Behaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SequentialBehaviour;

public class

_open_group_ReadSchedule_or_RequestChangeMeeting_or_RequestNewMeeting_close_group_Beha

viour

 extends

 SequentialBehaviour {

 public

_open_group_ReadSchedule_or_RequestChangeMeeting_or_RequestNewMeeting_close_group_Beha

viour(Agent a) {

 super(a);

 if (/*insert condition*/)
 addSubBehaviour(new RequestChangeMeetingBehaviour(this.myAgent));

 else if(/*insert condition*/)
 addSubBehaviour(new ReadScheduleBehaviour(this.myAgent));

 else
 addSubBehaviour(new RequestNewMeetingBehaviour(this.myAgent));

 }

}

Listing 50. The generated file ACLMessageHolder.java

package fr.parisdescartes.mi.meetingsmanagement;
import jade.core.behaviours.Behaviour;

import jade.lang.acl.ACLMessage;

public class ACLMessageHolder {
 ACLMessage aCLMessage = null;

 Behaviour owner;

259

 public ACLMessageHolder(Behaviour owner) {

 super();
 this.owner = owner;

 }

 public ACLMessage getACLMessage() {
 return aCLMessage;

 }

 public void setACLMessage(ACLMessage aCLMessage) {
 this.aCLMessage = aCLMessage;

 }

 public Behaviour getOwner() {
 return owner;

 }

}

Listing 51. The generated file DecideResponseBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.SimpleBehaviour;

public class DecideResponseBehaviour extends SimpleBehaviour {

 MeetingHolder e = null;

 ACLMessageHolder propose = null;

 boolean finished = false;

 public DecideResponseBehaviour(Agent a, MeetingHolder e,

 ACLMessageHolder propose) {

 super(a);
 this.e = e;

 this.propose = propose;

 }

 public void action() {

 /*use a reasoning technique to decide if the proposed date matches the user's

profile*/

 finished = true;

 }

 public boolean done() {

 return finished;

 }

}

Listing 52. The generated file GetUserRequestBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.SimpleBehaviour;

public class GetUserRequestBehaviour extends SimpleBehaviour {

 boolean finished = false;

 public GetUserRequestBehaviour(Agent a) {

 super(a);

 }

 public void action() {

260

 /*the HMI sends a request*/

 finished = true;

 }

 public boolean done() {
 return finished;

 }

}

Listing 53. The generated file LearnUserHabitsBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SequentialBehaviour;

public class LearnUserHabitsBehaviour extends SequentialBehaviour {

 public LearnUserHabitsBehaviour(Agent a) {
 super(a);

 addSubBehaviour(new LearnUserPreferenceBehaviour(this.myAgent));

 addSubBehaviour(new UpdateUserPreferencesBehaviour(this.myAgent));

 }

}

Listing 54. The generated file LearnUserPreferenceBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.SimpleBehaviour;

public class LearnUserPreferenceBehaviour extends SimpleBehaviour {

 boolean finished = false;

 public LearnUserPreferenceBehaviour(Agent a) {

 super(a);

 }

 public void action() {

 /*use a simple learning algorithm for the user's preference*/

 finished = true;

 }

 public boolean done() {

 return finished;

 }

}

Listing 55. The generated file ManageMeetingsBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SequentialBehaviour;

public class ManageMeetingsBehaviour extends SequentialBehaviour {

 public ManageMeetingsBehaviour(Agent a) {

 super(a);

261

 addSubBehaviour(new GetUserRequestBehaviour(this.myAgent));
 addSubBehaviour(new

_open_group_ReadSchedule_or_RequestChangeMeeting_or_RequestNewMeeting_close_group_Beha

viour(

 this.myAgent));
 addSubBehaviour(new ShowResultsBehaviour(this.myAgent));

 }

}

Listing 56. The generated file

NegotiateMeetingDate_forever__parallel_Behaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SequentialBehaviour;

public class NegotiateMeetingDate_forever__parallel_Behaviour
 extends

 SequentialBehaviour {

 MeetingHolder e = null;

 public NegotiateMeetingDate_forever__parallel_Behaviour(Agent a,

 MeetingHolder e) {

 super(a);
 this.e = e;

 addSubBehaviour(new NegotiateMeetingDate_forever_Behaviour(

 this.myAgent, e));

 }

}

Listing 57. The generated file NegotiateMeetingDate_forever_Behaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.Behaviour;

import jade.core.behaviours.CyclicBehaviour;

public class NegotiateMeetingDate_forever_Behaviour extends CyclicBehaviour {

 MeetingHolder e = null;
 Behaviour foreverBehaviour = null;

 public NegotiateMeetingDate_forever_Behaviour(Agent a, MeetingHolder e) {
 super(a);

 this.e = e;
 foreverBehaviour = new NegotiateMeetingDateBehaviour(this.myAgent, e);

 myAgent.addBehaviour(foreverBehaviour);

 }

 public void action() {
 if (foreverBehaviour.done()) {

 foreverBehaviour = new NegotiateMeetingDateBehaviour(this.myAgent,

 e);

 myAgent.addBehaviour(foreverBehaviour);

 }

 }

}

Listing 58. The generated file NegotiateMeetingDateBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

262

import jade.core.Agent;
import jade.core.behaviours.SequentialBehaviour;

public class NegotiateMeetingDateBehaviour extends SequentialBehaviour {

 MeetingHolder e = null;

 ACLMessageHolder accept = new ACLMessageHolder(this);
 ACLMessageHolder inform = new ACLMessageHolder(this);

 ACLMessageHolder propose = new ACLMessageHolder(this);
 ACLMessageHolder reject = new ACLMessageHolder(this);

 public NegotiateMeetingDateBehaviour(Agent a, MeetingHolder e) {

 super(a);
 this.e = e;

 addSubBehaviour(new ReceiveProposedDateBehaviour(this.myAgent, e,

 propose));

 addSubBehaviour(new

_open_group_DecideResponse_sequence_SendResults_sequence_ReceiveOutcome_close_group__o

ne_or_more_times_Behaviour(

 this.myAgent, e, accept, inform, propose, reject));
 addSubBehaviour(new UpdateScheduleBehaviour(this.myAgent, e, inform));

 }

}

Listing 59. The generated file ReadScheduleBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SimpleBehaviour;

public class ReadScheduleBehaviour extends SimpleBehaviour {

 boolean finished = false;

 public ReadScheduleBehaviour(Agent a) {

 super(a);

 }

 public void action() {

 /*read the user's schedule from the disk*/

 finished = true;

 }

 public boolean done() {
 return finished;

 }

}

Listing 60. The generated file ReceiveChangeResultsBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SimpleBehaviour;

import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;

public class ReceiveChangeResultsBehaviour extends SimpleBehaviour {

 protected MessageTemplate mt = null;

 boolean finished = false;

 public ReceiveChangeResultsBehaviour(Agent a) {

 super(a);

263

 }

 public void action() {

 /*insert MessageTemplate code here*/

 ACLMessage msg = myAgent.receive(mt);

 if (msg != null) {

 //insert message handling code

 finished = true;
 } else {

 block();

 }

 }

 public boolean done() {
 return finished;

 }

}

Listing 61. The generated file ReceiveNewResultsBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SimpleBehaviour;

import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;

public class ReceiveNewResultsBehaviour extends SimpleBehaviour {

 protected MessageTemplate mt = null;

 boolean finished = false;

 public ReceiveNewResultsBehaviour(Agent a) {
 super(a);

 }

 public void action() {

 /*insert MessageTemplate code here*/

 ACLMessage msg = myAgent.receive(mt);

 if (msg != null) {

 //insert message handling code

 finished = true;

 } else {

 block();

 }

 }

 public boolean done() {

 return finished;

 }

}

Listing 62. The generated file ReceiveOutcomeBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.SimpleBehaviour;

import jade.lang.acl.ACLMessage;

import jade.lang.acl.MessageTemplate;

public class ReceiveOutcomeBehaviour extends SimpleBehaviour {

 MeetingHolder e = null;

 ACLMessageHolder inform = null;

264

 ACLMessageHolder propose = null;
 protected MessageTemplate mt = null;

 boolean finished = false;

 public ReceiveOutcomeBehaviour(Agent a, MeetingHolder e,

 ACLMessageHolder inform, ACLMessageHolder propose) {

 super(a);
 this.e = e;

 this.inform = inform;
 this.propose = propose;

 }

 public void action() {

 mt = MessageTemplate.MatchPerformative(ACLMessage.PROPOSE);

 mt = MessageTemplate.or(mt, MessageTemplate

 .MatchPerformative(ACLMessage.INFORM));

 ACLMessage msg = myAgent.receive(mt);

 if (msg != null) {

 //insert message handling code

 finished = true;

 } else {

 block();

 }

 }

 public boolean done() {
 return finished;

 }

}

Listing 63. The generated file ReceiveProposedDateBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.SimpleBehaviour;

import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;

public class ReceiveProposedDateBehaviour extends SimpleBehaviour {

 MeetingHolder e = null;

 ACLMessageHolder propose = null;
 protected MessageTemplate mt = null;

 boolean finished = false;

 public ReceiveProposedDateBehaviour(Agent a, MeetingHolder e,

 ACLMessageHolder propose) {

 super(a);
 this.e = e;

 this.propose = propose;

 }

 public void action() {

 mt = MessageTemplate.MatchPerformative(ACLMessage.PROPOSE);

 ACLMessage msg = myAgent.receive(mt);

 if (msg != null) {

 //insert message handling code

 finished = true;

 } else {

 block();

 }

 }

 public boolean done() {

 return finished;

 }

}

265

Listing 64. The generated file RequestChangeMeetingBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.SequentialBehaviour;

public class RequestChangeMeetingBehaviour extends SequentialBehaviour {

 public RequestChangeMeetingBehaviour(Agent a) {
 super(a);

 addSubBehaviour(new SendChangeRequestBehaviour(this.myAgent));

 addSubBehaviour(new ReceiveChangeResultsBehaviour(this.myAgent));

 }

}

RequestNewMeetingBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.SequentialBehaviour;

public class RequestNewMeetingBehaviour extends SequentialBehaviour {

 public RequestNewMeetingBehaviour(Agent a) {

 super(a);

 addSubBehaviour(new SendNewRequestBehaviour(this.myAgent));
 addSubBehaviour(new ReceiveNewResultsBehaviour(this.myAgent));

 }

}

Listing 65. The generated file RequestNewMeetingBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SequentialBehaviour;

public class RequestNewMeetingBehaviour extends SequentialBehaviour {

 public RequestNewMeetingBehaviour(Agent a) {

 super(a);

 addSubBehaviour(new SendNewRequestBehaviour(this.myAgent));
 addSubBehaviour(new ReceiveNewResultsBehaviour(this.myAgent));

 }

}

Listing 66. The generated file SendChangeRequestBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SimpleBehaviour;

import jade.lang.acl.ACLMessage;

public class SendChangeRequestBehaviour extends SimpleBehaviour {

 boolean finished = false;

 public SendChangeRequestBehaviour(Agent a) {
 super(a);

 }

266

 public void action() {

 ACLMessage msg = null;

 //insert message initialization code

 myAgent.send(msg);

 finished = true;

 }

 public boolean done() {
 return finished;

 }

}

Listing 67. The generated file SendNewRequestBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SimpleBehaviour;

import jade.lang.acl.ACLMessage;

public class SendNewRequestBehaviour extends SimpleBehaviour {

 boolean finished = false;

 public SendNewRequestBehaviour(Agent a) {
 super(a);

 }

 public void action() {

 ACLMessage msg = null;

 //insert message initialization code

 myAgent.send(msg);

 finished = true;

 }

 public boolean done() {

 return finished;

 }

}

Listing 68. The generated file SendResultsBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.SimpleBehaviour;

import jade.lang.acl.ACLMessage;

public class SendResultsBehaviour extends SimpleBehaviour {

 MeetingHolder e = null;

 ACLMessageHolder accept = null;
 ACLMessageHolder reject = null;

 boolean finished = false;

 public SendResultsBehaviour(Agent a, MeetingHolder e,

 ACLMessageHolder accept, ACLMessageHolder reject) {

 super(a);

 this.e = e;
 this.accept = accept;

 this.reject = reject;

 }

 public void action(){

267

 ACLMessage msg = null;
 if (/*insert condition*/) {

 msg = new ACLMessage(ACLMessage.ACCEPT);

 }

 else if (/*insert condition*/) {
 msg = new ACLMessage(ACLMessage.REJECT);

 }

 //insert message initialization code

 myAgent.send(msg);

 finished = true;

 }

 public boolean done() {

 return finished;

 }

}

Listing 69. The generated file ShowResultsBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.SimpleBehaviour;

public class ShowResultsBehaviour extends SimpleBehaviour {

 boolean finished = false;

 public ShowResultsBehaviour(Agent a) {

 super(a);

 }

 public void action() {

 /*send a response to the HMI regarding the user's request*/

 finished = true;

 }

 public boolean done() {

 return finished;

 }

}

Listing 70. The generated file UpdateScheduleBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;
import jade.core.behaviours.SimpleBehaviour;

public class UpdateScheduleBehaviour extends SimpleBehaviour {

 MeetingHolder e = null;

 ACLMessageHolder inform = null;

 boolean finished = false;

 public UpdateScheduleBehaviour(Agent a, MeetingHolder e,

 ACLMessageHolder inform) {

 super(a);
 this.e = e;

 this.inform = inform;

 }

 public void action() {

 /*update the user schedule file on disk*/

 finished = true;

 }

268

 public boolean done() {

 return finished;

 }

}

Listing 71. The generated file UpdateUserPreferencesBehaviour.java

package fr.parisdescartes.mi.meetingsmanagement;

import jade.core.Agent;

import jade.core.behaviours.SimpleBehaviour;

public class UpdateUserPreferencesBehaviour extends SimpleBehaviour {

 boolean finished = false;

 public UpdateUserPreferencesBehaviour(Agent a) {

 super(a);

 }

 public void action() {

 /*update the user preference file on disk*/

 finished = true;

 }

 public boolean done() {
 return finished;

 }

}

269

Annex 7.

Automatically Generated Java Code

Using the Rhapsody CASE Tool for

the MARKET-MINER Project

/***

 Rhapsody : 7.4

 Login : user

 Component : DefaultComponent

 Configuration : DefaultConfig

 Model Element : Product_Pricing_Agent

//! Generated Date : Tue, 14, Apr 2009

 File Path : DefaultComponent/DefaultConfig/eu/singularlogic/MARKET-

MINER/Product_Pricing_Agent.java

***/

package eu.singularlogic.MARKET-MINER;

//## auto_generated

import java.util.*;

//## auto_generated

import com.telelogic.rhapsody.oxf.*;

//## auto_generated

import com.telelogic.rhapsody.animcom.*;

//## auto_generated

import com.telelogic.rhapsody.oxfinst.*;

//## auto_generated

import com.telelogic.rhapsody.animation.*;

//## auto_generated

import com.telelogic.rhapsody.oxf.states.*;

//## auto_generated

import com.telelogic.rhapsody.oxf.timeouts.*;

//## auto_generated

import com.telelogic.rhapsody.animcom.animMessages.*;

//## attribute firmStrategy

import eu.singularlogic.MARKET-MINER.ontology.FirmStrategy;

//--

// eu/singularlogic/MARKET-MINER/Product_Pricing_Agent.java

//--

270

//## package eu::singularlogic::MARKET-MINER

//## class Product_Pricing_Agent

public class Product_Pricing_Agent implements RiJStateConcept, Animated {

 public Reactive reactive; //## ignore

 protected FirmStrategy firmStrategy = null; //## attribute firmStrategy

 protected int pricingInterval = 86400000; //## attribute pricingInterval

 protected int productTypes = null; //## attribute productTypes

 protected java.util.Hashtable products = null; //## attribute products

 protected boolean userClosedGUI = false; //## attribute userClosedGUI

 //#[ignore

 public static final int RiJNonState=0;
 public static final int ProductPricingAgent=1;

 public static final int OptionalForeverGetMarketInformation=2;
 public static final int state_23=3;

 public static final int ForeverGetMarketInformation=4;

 public static final int GetMarketInformation=5;
 public static final int UpdateFacts=6;

 public static final int state_28=7;
 public static final int GetWeatherInformation=8;

 public static final int GetLocalInformation=9;
 public static final int GetCompetitionInformation=10;

 public static final int ForeverInteractWithUser=11;
 public static final int InteractWithUser=12;

 public static final int state_18=13;
 public static final int PresentInformationToTheUserOrUpdateFirmPolicy=14;

 public static final int UpdateFirmPolicy=15;
 public static final int state_21=16;

 public static final int PresentInformationToTheUser=17;
 public static final int ForeverDecideOnPricingPolicy=18;

 public static final int DecideOnPricingPolicy=19;
 public static final int WaitForNewPeriod=20;

 public static final int state_15=21;
 public static final int GetProductsInformation=22;

 public static final int FixPrices=23;
 public static final int DeterminePricingPolicy=24;

 //#]

 protected int rootState_subState; //## ignore

 protected int rootState_active; //## ignore

 protected int OptionalForeverGetMarketInformation_subState; //## ignore

 protected int OptionalForeverGetMarketInformation_active; //## ignore

 protected int ForeverGetMarketInformation_subState; //## ignore

 protected int GetMarketInformation_subState; //## ignore

 protected int ForeverInteractWithUser_subState; //## ignore

 protected int ForeverInteractWithUser_active; //## ignore

 protected int InteractWithUser_subState; //## ignore

 protected int PresentInformationToTheUserOrUpdateFirmPolicy_subState; //##

ignore

 protected int ForeverDecideOnPricingPolicy_subState; //## ignore

 protected int ForeverDecideOnPricingPolicy_active; //## ignore

 protected int DecideOnPricingPolicy_subState; //## ignore

 //#[ignore

 // Instrumentation attributes (Animation)

 private Animate animate;

271

 public static AnimClass animClassProduct_Pricing_Agent = new

AnimClass("eu.singularlogic.MARKET-MINER.Product_Pricing_Agent",false);

 //#]

 //## statechart_method

 public RiJThread getThread() {

 return reactive.getThread();

 }

 //## statechart_method

 public void schedTimeout(long delay, long tmID, RiJStateReactive reactive) {

 getThread().schedTimeout(delay, tmID, reactive);

 }

 //## statechart_method

 public void unschedTimeout(long tmID, RiJStateReactive reactive) {

 getThread().unschedTimeout(tmID, reactive);

 }

 //## statechart_method

 public boolean isIn(int state) {
 return reactive.isIn(state);

 }

 //## statechart_method

 public boolean isCompleted(int state) {
 return reactive.isCompleted(state);

 }

 //## statechart_method

 public RiJEventConsumer getEventConsumer() {

 return (RiJEventConsumer)reactive;

 }

 //## statechart_method

 public void gen(RiJEvent event) {

 reactive._gen(event);

 }

 //## statechart_method

 public void queueEvent(RiJEvent event) {

 reactive.queueEvent(event);

 }

 //## statechart_method

 public int takeEvent(RiJEvent event) {

 return reactive.takeEvent(event);

 }

 // Constructors

 //## auto_generated

 public Product_Pricing_Agent(RiJThread p_thread) {
 try {

animInstance().notifyConstructorEntered(animClassProduct_Pricing_Agent.getUserClass(),

 new ArgData[] {

 });

 reactive = new Reactive(p_thread);

 }

 finally {

 animInstance().notifyMethodExit();

 }

 }

 //## auto_generated

 public FirmStrategy getFirmStrategy() {
 return firmStrategy;

 }

 //## auto_generated

 public void setFirmStrategy(FirmStrategy p_firmStrategy) {

272

 firmStrategy = p_firmStrategy;

 }

 //## auto_generated

 public int getPricingInterval() {
 return pricingInterval;

 }

 //## auto_generated

 public void setPricingInterval(int p_pricingInterval) {

 pricingInterval = p_pricingInterval;

 }

 //## auto_generated

 public int getProductTypes() {
 return productTypes;

 }

 //## auto_generated

 public void setProductTypes(int p_productTypes) {

 productTypes = p_productTypes;

 }

 //## auto_generated

 public java.util.Hashtable getProducts() {

 return products;

 }

 //## auto_generated

 public void setProducts(java.util.Hashtable p_products) {

 products = p_products;

 }

 //## auto_generated

 public boolean getUserClosedGUI() {

 return userClosedGUI;

 }

 //## auto_generated

 public void setUserClosedGUI(boolean p_userClosedGUI) {

 userClosedGUI = p_userClosedGUI;

 }

 //## auto_generated

 public boolean startBehavior() {

 boolean done = false;

 done = reactive.startBehavior();

 return done;

 }

 //## ignore

 public class Reactive extends RiJStateReactive implements AnimatedReactive {

 // Default constructor

 public Reactive() {
 this(RiJMainThread.instance());

 }

 // Constructors

 public Reactive(RiJThread p_thread) {

 super(p_thread);

 initStatechart();

 }

 //## statechart_method

 public boolean isIn(int state) {

 if(DecideOnPricingPolicy_subState == state)

 {

 return true;

 }

 if(ForeverDecideOnPricingPolicy == state)

 {

 return isIn(ProductPricingAgent);

 }

273

 if(ForeverDecideOnPricingPolicy_subState == state)

 {

 return true;

 }

 if(PresentInformationToTheUserOrUpdateFirmPolicy_subState == state)

 {

 return true;

 }

 if(InteractWithUser_subState == state)

 {

 return true;

 }

 if(ForeverInteractWithUser == state)

 {

 return isIn(ProductPricingAgent);

 }

 if(ForeverInteractWithUser_subState == state)

 {

 return true;

 }

 if(GetMarketInformation_subState == state)

 {

 return true;

 }

 if(ForeverGetMarketInformation_subState == state)

 {

 return true;

 }

 if(OptionalForeverGetMarketInformation == state)

 {

 return isIn(ProductPricingAgent);

 }

 if(OptionalForeverGetMarketInformation_subState == state)

 {

 return true;

 }

 if(rootState_subState == state)

 {

 return true;

 }

 return false;

 }

 //## statechart_method

 public boolean isCompleted(int state) {

 if(DecideOnPricingPolicy == state)

 {

 return (isIn(state_15));

 }

 if(PresentInformationToTheUserOrUpdateFirmPolicy == state)

 {

 return (isIn(state_21));

 }

 if(InteractWithUser == state)

 {

 return (isIn(state_18));

 }

 if(GetMarketInformation == state)

 {

 return (isIn(state_28));

 }

 if(OptionalForeverGetMarketInformation == state)

 {

 return (isIn(state_23));

 }

 if(ProductPricingAgent == state)

 {

 if(isCompleted(OptionalForeverGetMarketInformation) == false)

 {

 return false;

 }

 return true;

 }

 return true;

 }

274

 //## statechart_method

 public void rootState_add(AnimStates animStates) {

 animStates.add("ROOT");

 if(rootState_subState == ProductPricingAgent)

 {

 ProductPricingAgent_add(animStates);

 }

 }

 //## statechart_method

 public void rootState_entDef() {

 {

 rootState_enter();

 rootStateEntDef();

 }

 }

 //## statechart_method

 public int rootState_dispatchEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 if(rootState_active == ProductPricingAgent)

 {

 res = ProductPricingAgent_dispatchEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void ProductPricingAgent_add(AnimStates animStates) {

 animStates.add("ROOT.ProductPricingAgent");

 OptionalForeverGetMarketInformation_add(animStates);

 ForeverDecideOnPricingPolicy_add(animStates);

 ForeverInteractWithUser_add(animStates);

 }

 //## statechart_method

 public int ProductPricingAgent_dispatchEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 if(OptionalForeverGetMarketInformation_dispatchEvent(id) >= 0)

 {

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 if(!isIn(ProductPricingAgent))

 {

 return res;

 }

 }

 if(ForeverDecideOnPricingPolicy_dispatchEvent(id) >= 0)

 {

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 if(!isIn(ProductPricingAgent))

 {

 return res;

 }

 }

 if(ForeverInteractWithUser_dispatchEvent(id) >= 0)

 {

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 if(!isIn(ProductPricingAgent))

 {

 return res;

 }

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = ProductPricingAgent_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void OptionalForeverGetMarketInformation_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.OptionalForeverGetMarketInformation");

 switch (OptionalForeverGetMarketInformation_subState) {
 case ForeverGetMarketInformation:

 {

275

 ForeverGetMarketInformation_add(animStates);

 break;

 }

 case state_23:

 {

 state_23_add(animStates);

 break;

 }

 default:
 break;

 }

 }

 //## statechart_method

 public int OptionalForeverGetMarketInformation_dispatchEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 switch (OptionalForeverGetMarketInformation_active) {
 case GetWeatherInformation:

 {

 res = GetWeatherInformation_takeEvent(id);

 break;

 }

 case GetLocalInformation:

 {

 res = GetLocalInformation_takeEvent(id);

 break;

 }

 case GetCompetitionInformation:

 {

 res = GetCompetitionInformation_takeEvent(id);

 break;

 }

 case state_28:

 {

 res = state_28_takeEvent(id);

 break;

 }

 case UpdateFacts:

 {

 res = UpdateFacts_takeEvent(id);

 break;

 }

 case state_23:

 {

 res = state_23_takeEvent(id);

 break;

 }

 default:

 break;

 }

 return res;

 }

 //## statechart_method

 public void state_23_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.OptionalForeverGetMarketInformation.state_23"

);

 }

 //## statechart_method

 public void ForeverGetMarketInformation_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.OptionalForeverGetMarketInformation.ForeverGe

tMarketInformation");

 if(ForeverGetMarketInformation_subState == GetMarketInformation)

 {

 GetMarketInformation_add(animStates);

 }

 }

 //## statechart_method

 public void GetMarketInformation_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.OptionalForeverGetMarketInformation.ForeverGe

tMarketInformation.GetMarketInformation");

276

 switch (GetMarketInformation_subState) {
 case GetWeatherInformation:

 {

 GetWeatherInformation_add(animStates);

 break;

 }

 case GetLocalInformation:

 {

 GetLocalInformation_add(animStates);

 break;

 }

 case GetCompetitionInformation:

 {

 GetCompetitionInformation_add(animStates);

 break;

 }

 case state_28:

 {

 state_28_add(animStates);

 break;

 }

 case UpdateFacts:

 {

 UpdateFacts_add(animStates);

 break;

 }

 default:

 break;

 }

 }

 //## statechart_method

 public void UpdateFacts_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.OptionalForeverGetMarketInformation.ForeverGe

tMarketInformation.GetMarketInformation.UpdateFacts");

 }

 //## statechart_method

 public void state_28_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.OptionalForeverGetMarketInformation.ForeverGe

tMarketInformation.GetMarketInformation.state_28");

 }

 //## statechart_method

 public void GetWeatherInformation_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.OptionalForeverGetMarketInformation.ForeverGe

tMarketInformation.GetMarketInformation.GetWeatherInformation");

 }

 //## statechart_method

 public void GetLocalInformation_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.OptionalForeverGetMarketInformation.ForeverGe

tMarketInformation.GetMarketInformation.GetLocalInformation");

 }

 //## statechart_method

 public void GetCompetitionInformation_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.OptionalForeverGetMarketInformation.ForeverGe

tMarketInformation.GetMarketInformation.GetCompetitionInformation");

 }

 //## statechart_method

 public void ForeverInteractWithUser_add(AnimStates animStates) {

 animStates.add("ROOT.ProductPricingAgent.ForeverInteractWithUser");

 if(ForeverInteractWithUser_subState == InteractWithUser)

 {

 InteractWithUser_add(animStates);

 }

 }

 //## statechart_method

277

 public int ForeverInteractWithUser_dispatchEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 switch (ForeverInteractWithUser_active) {
 case PresentInformationToTheUser:

 {

 res = PresentInformationToTheUser_takeEvent(id);

 break;

 }

 case UpdateFirmPolicy:

 {

 res = UpdateFirmPolicy_takeEvent(id);

 break;

 }

 case state_21:

 {

 res = state_21_takeEvent(id);

 break;

 }

 case state_18:

 {

 res = state_18_takeEvent(id);

 break;

 }

 default:

 break;

 }

 return res;

 }

 //## statechart_method

 public void InteractWithUser_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.ForeverInteractWithUser.InteractWithUser");

 switch (InteractWithUser_subState) {
 case PresentInformationToTheUserOrUpdateFirmPolicy:

 {

 PresentInformationToTheUserOrUpdateFirmPolicy_add(animStates);

 break;

 }

 case state_18:

 {

 state_18_add(animStates);

 break;

 }

 default:

 break;

 }

 }

 //## statechart_method

 public void state_18_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.ForeverInteractWithUser.InteractWithUser.stat

e_18");

 }

 //## statechart_method

 public void PresentInformationToTheUserOrUpdateFirmPolicy_add(AnimStates

animStates) {

animStates.add("ROOT.ProductPricingAgent.ForeverInteractWithUser.InteractWithUser.Pres

entInformationToTheUserOrUpdateFirmPolicy");

 switch (PresentInformationToTheUserOrUpdateFirmPolicy_subState) {
 case PresentInformationToTheUser:

 {

 PresentInformationToTheUser_add(animStates);

 break;

 }

 case UpdateFirmPolicy:

 {

 UpdateFirmPolicy_add(animStates);

 break;

 }

 case state_21:

 {

 state_21_add(animStates);

278

 break;

 }

 default:
 break;

 }

 }

 //## statechart_method

 public void UpdateFirmPolicy_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.ForeverInteractWithUser.InteractWithUser.Pres

entInformationToTheUserOrUpdateFirmPolicy.UpdateFirmPolicy");

 }

 //## statechart_method

 public void state_21_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.ForeverInteractWithUser.InteractWithUser.Pres

entInformationToTheUserOrUpdateFirmPolicy.state_21");

 }

 //## statechart_method

 public void PresentInformationToTheUser_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.ForeverInteractWithUser.InteractWithUser.Pres

entInformationToTheUserOrUpdateFirmPolicy.PresentInformationToTheUser");

 }

 //## statechart_method

 public void ForeverDecideOnPricingPolicy_add(AnimStates animStates) {

 animStates.add("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolicy");

 if(ForeverDecideOnPricingPolicy_subState == DecideOnPricingPolicy)

 {

 DecideOnPricingPolicy_add(animStates);

 }

 }

 //## statechart_method

 public int ForeverDecideOnPricingPolicy_dispatchEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 switch (ForeverDecideOnPricingPolicy_active) {

 case WaitForNewPeriod:

 {

 res = WaitForNewPeriod_takeEvent(id);

 break;

 }

 case GetProductsInformation:

 {

 res = GetProductsInformation_takeEvent(id);

 break;

 }

 case DeterminePricingPolicy:

 {

 res = DeterminePricingPolicy_takeEvent(id);

 break;

 }

 case FixPrices:

 {

 res = FixPrices_takeEvent(id);

 break;

 }

 case state_15:

 {

 res = state_15_takeEvent(id);

 break;

 }

 default:
 break;

 }

 return res;

 }

 //## statechart_method

 public void DecideOnPricingPolicy_add(AnimStates animStates) {

279

animStates.add("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolicy.DecideOnPricingP

olicy");

 switch (DecideOnPricingPolicy_subState) {

 case WaitForNewPeriod:

 {

 WaitForNewPeriod_add(animStates);

 break;

 }

 case GetProductsInformation:

 {

 GetProductsInformation_add(animStates);

 break;

 }

 case DeterminePricingPolicy:

 {

 DeterminePricingPolicy_add(animStates);

 break;

 }

 case FixPrices:

 {

 FixPrices_add(animStates);

 break;

 }

 case state_15:

 {

 state_15_add(animStates);

 break;

 }

 default:
 break;

 }

 }

 //## statechart_method

 public void WaitForNewPeriod_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolicy.DecideOnPricingP

olicy.WaitForNewPeriod");

 }

 //## statechart_method

 public void state_15_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolicy.DecideOnPricingP

olicy.state_15");

 }

 //## statechart_method

 public void GetProductsInformation_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolicy.DecideOnPricingP

olicy.GetProductsInformation");

 }

 //## statechart_method

 public void FixPrices_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolicy.DecideOnPricingP

olicy.FixPrices");

 }

 //## statechart_method

 public void DeterminePricingPolicy_add(AnimStates animStates) {

animStates.add("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolicy.DecideOnPricingP

olicy.DeterminePricingPolicy");

 }

 //## auto_generated

 protected void initStatechart() {

 rootState_subState = RiJNonState;

 rootState_active = RiJNonState;

 OptionalForeverGetMarketInformation_subState = RiJNonState;

 OptionalForeverGetMarketInformation_active = RiJNonState;

 ForeverGetMarketInformation_subState = RiJNonState;

280

 GetMarketInformation_subState = RiJNonState;

 ForeverInteractWithUser_subState = RiJNonState;

 ForeverInteractWithUser_active = RiJNonState;

 InteractWithUser_subState = RiJNonState;

 PresentInformationToTheUserOrUpdateFirmPolicy_subState = RiJNonState;

 ForeverDecideOnPricingPolicy_subState = RiJNonState;

 ForeverDecideOnPricingPolicy_active = RiJNonState;

 DecideOnPricingPolicy_subState = RiJNonState;

 }

 //## statechart_method

 public int FixPricesTakeNull() {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 animInstance().notifyTransitionStarted("6");

 FixPrices_exit();

 state_15_entDef();

 animInstance().notifyTransitionEnded("6");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 return res;

 }

 //## statechart_method

 public void WaitForNewPeriod_entDef() {

 WaitForNewPeriod_enter();

 }

 //## statechart_method

 public void DecideOnPricingPolicyEnter() {

 }

 //## statechart_method

 public void ForeverInteractWithUser_exit() {
 if(ForeverInteractWithUser_subState == InteractWithUser)

 {

 InteractWithUser_exit();

 }

 ForeverInteractWithUser_subState = RiJNonState;

 ForeverInteractWithUserExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverInteractWithUser");

 }

 //## statechart_method

 public void GetCompetitionInformationEnter() {

 }

 //## statechart_method

 public void GetLocalInformation_entDef() {

 GetLocalInformation_enter();

 }

 //## statechart_method

 public void GetProductsInformationEnter() {

 //#[state

ROOT.ProductPricingAgent.ForeverDecideOnPricingPolicy.DecideOnPricingPolicy.GetProduct

sInformation.(Entry)

 //connect to web service

 //#]

 }

 //## statechart_method

 public int PresentInformationToTheUserOrUpdateFirmPolicyTakeNull() {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 if(isCompleted(PresentInformationToTheUserOrUpdateFirmPolicy))

 {

 //## transition 10

 if(userClosedGUI==true)

 {

 animInstance().notifyTransitionStarted("10");

 PresentInformationToTheUserOrUpdateFirmPolicy_exit();

 state_18_entDef();

 animInstance().notifyTransitionEnded("10");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 }

 else

 {

281

 //## transition 11

 if(userClosedGUI==false)

 {

 animInstance().notifyTransitionStarted("11");

PresentInformationToTheUserOrUpdateFirmPolicy_exit();

PresentInformationToTheUserOrUpdateFirmPolicy_entDef();

 animInstance().notifyTransitionEnded("11");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 }

 }

 }

 return res;

 }

 //## statechart_method

 public int InteractWithUserTakeNull() {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 //## transition 8

 if(isCompleted(InteractWithUser))

 {

 animInstance().notifyTransitionStarted("8");

 InteractWithUser_exit();

 InteractWithUser_entDef();

 animInstance().notifyTransitionEnded("8");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 }

 return res;

 }

 //## statechart_method

 public void ForeverGetMarketInformation_exit() {

 popNullConfig();

 if(ForeverGetMarketInformation_subState == GetMarketInformation)

 {

 GetMarketInformation_exit();

 }

 ForeverGetMarketInformation_subState = RiJNonState;

 ForeverGetMarketInformationExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.OptionalForeverGetMarketInf

ormation.ForeverGetMarketInformation");

 }

 //## statechart_method

 public void OptionalForeverGetMarketInformationExit() {

 }

 //## statechart_method

 public void DeterminePricingPolicyExit() {

 }

 //## statechart_method

 public void ForeverDecideOnPricingPolicy_exit() {
 if(ForeverDecideOnPricingPolicy_subState == DecideOnPricingPolicy)

 {

 DecideOnPricingPolicy_exit();

 }

 ForeverDecideOnPricingPolicy_subState = RiJNonState;

 ForeverDecideOnPricingPolicyExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolic

y");

 }

 //## statechart_method

 public void state_21_entDef() {

 state_21_enter();

 }

 //## statechart_method

 public void state_18Enter() {

 }

 //## statechart_method

282

 public int GetWeatherInformationTakeNull() {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 animInstance().notifyTransitionStarted("23");

 GetWeatherInformation_exit();

 GetLocalInformation_entDef();

 animInstance().notifyTransitionEnded("23");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 return res;

 }

 //## statechart_method

 public void UpdateFacts_entDef() {

 UpdateFacts_enter();

 }

 //## statechart_method

 public int state_23_takeEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 res = OptionalForeverGetMarketInformation_takeEvent(id);

 return res;

 }

 //## statechart_method

 public void ProductPricingAgentEnter() {

 }

 //## statechart_method

 public void DeterminePricingPolicyEnter() {

 }

 //## statechart_method

 public int state_15_takeEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 res = DecideOnPricingPolicy_takeEvent(id);

 return res;

 }

 //## statechart_method

 public int WaitForNewPeriod_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = WaitForNewPeriodTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = DecideOnPricingPolicy_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void DecideOnPricingPolicy_exit() {

 popNullConfig();

 switch (DecideOnPricingPolicy_subState) {

 case WaitForNewPeriod:

 {

 WaitForNewPeriod_exit();

 break;

 }

 case GetProductsInformation:

 {

 GetProductsInformation_exit();

 break;

 }

 case DeterminePricingPolicy:

 {

 DeterminePricingPolicy_exit();

 break;

 }

 case FixPrices:

 {

 FixPrices_exit();

 break;

 }

283

 case state_15:

 {

 state_15_exit();

 break;

 }

 default:

 break;

 }

 DecideOnPricingPolicy_subState = RiJNonState;

 DecideOnPricingPolicyExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolic

y.DecideOnPricingPolicy");

 }

 //## statechart_method

 public void DecideOnPricingPolicy_entDef() {

 DecideOnPricingPolicy_enter();

 animInstance().notifyTransitionStarted("2");

 WaitForNewPeriod_entDef();

 animInstance().notifyTransitionEnded("2");

 }

 //## statechart_method

 public void PresentInformationToTheUserEnter() {

 }

 //## statechart_method

 public int state_18_takeEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 res = InteractWithUser_takeEvent(id);

 return res;

 }

 //## statechart_method

 public void GetCompetitionInformation_exit() {

 popNullConfig();

 GetCompetitionInformationExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.OptionalForeverGetMarketInf

ormation.ForeverGetMarketInformation.GetMarketInformation.GetCompetitionInformation");

 }

 //## statechart_method

 public int GetLocalInformationTakeNull() {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 animInstance().notifyTransitionStarted("24");

 GetLocalInformation_exit();

 GetCompetitionInformation_entDef();

 animInstance().notifyTransitionEnded("24");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 return res;

 }

 //## statechart_method

 public void state_28Enter() {

 }

 //## statechart_method

 public void UpdateFactsEnter() {

 }

 //## statechart_method

 public int ForeverGetMarketInformationTakeNull() {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 animInstance().notifyTransitionStarted("20");

 ForeverGetMarketInformation_exit();

 state_23_entDef();

 animInstance().notifyTransitionEnded("20");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 return res;

 }

 //## statechart_method

 public int ProductPricingAgent_takeEvent(short id) {

284

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 return res;

 }

 //## statechart_method

 public void GetProductsInformation_exit() {

 popNullConfig();

 GetProductsInformationExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolic

y.DecideOnPricingPolicy.GetProductsInformation");

 }

 //## statechart_method

 public void state_15_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverDecideOnPricingPoli

cy.DecideOnPricingPolicy.state_15");

 DecideOnPricingPolicy_subState = state_15;

 ForeverDecideOnPricingPolicy_active = state_15;

 state_15Enter();

 }

 //## statechart_method

 public void DecideOnPricingPolicy_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverDecideOnPricingPoli

cy.DecideOnPricingPolicy");

 pushNullConfig();

 ForeverDecideOnPricingPolicy_subState = DecideOnPricingPolicy;

 DecideOnPricingPolicyEnter();

 }

 //## statechart_method

 public void UpdateFirmPolicyExit() {

 }

 //## statechart_method

 public int GetWeatherInformation_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = GetWeatherInformationTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = GetMarketInformation_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void FixPricesEnter() {

 }

 //## statechart_method

 public void state_15Enter() {

 }

 //## statechart_method

 public void WaitForNewPeriodEnter() {

 //#[state

ROOT.ProductPricingAgent.ForeverDecideOnPricingPolicy.DecideOnPricingPolicy.WaitForNew

Period.(Entry)

 //Wait for a time equal to the TIME_PERIOD variable

 //#]

 }

 //## statechart_method

 public void DecideOnPricingPolicyExit() {

 }

 //## statechart_method

 public int UpdateFirmPolicy_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

285

 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = UpdateFirmPolicyTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = PresentInformationToTheUserOrUpdateFirmPolicy_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void state_18_exit() {

 state_18Exit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverInteractWithUser.Int

eractWithUser.state_18");

 }

 //## statechart_method

 public void GetLocalInformationExit() {

 }

 //## statechart_method

 public void GetLocalInformation_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.OptionalForeverGetMarketIn

formation.ForeverGetMarketInformation.GetMarketInformation.GetLocalInformation");

 pushNullConfig();

 GetMarketInformation_subState = GetLocalInformation;

 OptionalForeverGetMarketInformation_active = GetLocalInformation;

 GetLocalInformationEnter();

 }

 //## statechart_method

 public void GetMarketInformation_entDef() {

 GetMarketInformation_enter();

 animInstance().notifyTransitionStarted("22");

 GetWeatherInformation_entDef();

 animInstance().notifyTransitionEnded("22");

 }

 //## statechart_method

 public int OptionalForeverGetMarketInformation_takeEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 return res;

 }

 //## statechart_method

 public void ProductPricingAgent_exit() {

 OptionalForeverGetMarketInformation_exit();

 ForeverDecideOnPricingPolicy_exit();

 ForeverInteractWithUser_exit();

 ProductPricingAgentExit();

 animInstance().notifyStateExited("ROOT.ProductPricingAgent");

 }

 //## statechart_method

 public void DeterminePricingPolicy_exit() {

 popNullConfig();

 DeterminePricingPolicyExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolic

y.DecideOnPricingPolicy.DeterminePricingPolicy");

 }

 //## statechart_method

 public int FixPrices_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = FixPricesTakeNull();

 }

286

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = DecideOnPricingPolicy_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void WaitForNewPeriodExit() {

 }

 //## statechart_method

 public void PresentInformationToTheUser_exit() {

 popNullConfig();

 PresentInformationToTheUserExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverInteractWithUser.Int

eractWithUser.PresentInformationToTheUserOrUpdateFirmPolicy.PresentInformationToTheUse

r");

 }

 //## statechart_method

 public void state_21Exit() {

 }

 //## statechart_method

 public void state_18_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverInteractWithUser.In

teractWithUser.state_18");

 InteractWithUser_subState = state_18;

 ForeverInteractWithUser_active = state_18;

 state_18Enter();

 }

 //## statechart_method

 public void state_28_exit() {

 state_28Exit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.OptionalForeverGetMarketInf

ormation.ForeverGetMarketInformation.GetMarketInformation.state_28");

 }

 //## statechart_method

 public int UpdateFacts_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = UpdateFactsTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = GetMarketInformation_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void UpdateFacts_exit() {

 popNullConfig();

 UpdateFactsExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.OptionalForeverGetMarketInf

ormation.ForeverGetMarketInformation.GetMarketInformation.UpdateFacts");

 }

 //## statechart_method

 public void UpdateFacts_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.OptionalForeverGetMarketIn

formation.ForeverGetMarketInformation.GetMarketInformation.UpdateFacts");

 pushNullConfig();

 GetMarketInformation_subState = UpdateFacts;

 OptionalForeverGetMarketInformation_active = UpdateFacts;

 UpdateFactsEnter();

287

 }

 //## statechart_method

 public void GetMarketInformationExit() {

 }

 //## statechart_method

 public void GetMarketInformationEnter() {

 }

 //## statechart_method

 public int rootState_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 return res;

 }

 //## statechart_method

 public void PresentInformationToTheUserExit() {

 }

 //## statechart_method

 public void PresentInformationToTheUser_entDef() {

 PresentInformationToTheUser_enter();

 }

 //## statechart_method

 public void state_21_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverInteractWithUser.In

teractWithUser.PresentInformationToTheUserOrUpdateFirmPolicy.state_21");

 PresentInformationToTheUserOrUpdateFirmPolicy_subState = state_21;

 ForeverInteractWithUser_active = state_21;

 state_21Enter();

 }

 //## statechart_method

 public void UpdateFirmPolicy_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverInteractWithUser.In

teractWithUser.PresentInformationToTheUserOrUpdateFirmPolicy.UpdateFirmPolicy");

 pushNullConfig();

 PresentInformationToTheUserOrUpdateFirmPolicy_subState = UpdateFirmPolicy;

 ForeverInteractWithUser_active = UpdateFirmPolicy;

 UpdateFirmPolicyEnter();

 }

 //## statechart_method

 public void ForeverInteractWithUserExit() {

 }

 //## statechart_method

 public void ForeverInteractWithUser_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverInteractWithUser");

 ForeverInteractWithUserEnter();

 }

 //## statechart_method

 public void GetMarketInformation_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.OptionalForeverGetMarketIn

formation.ForeverGetMarketInformation.GetMarketInformation");

 ForeverGetMarketInformation_subState = GetMarketInformation;

 GetMarketInformationEnter();

 }

 //## statechart_method

 public void ForeverGetMarketInformation_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.OptionalForeverGetMarketIn

formation.ForeverGetMarketInformation");

 pushNullConfig();

 OptionalForeverGetMarketInformation_subState =

ForeverGetMarketInformation;

 ForeverGetMarketInformationEnter();

 }

288

 //## statechart_method

 public void OptionalForeverGetMarketInformationEnter() {

 }

 //## statechart_method

 public void ProductPricingAgent_entDef() {

 ProductPricingAgent_enter();

 OptionalForeverGetMarketInformation_entDef();

 ForeverDecideOnPricingPolicy_entDef();

 ForeverInteractWithUser_entDef();

 }

 //## statechart_method

 public void DeterminePricingPolicy_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverDecideOnPricingPoli

cy.DecideOnPricingPolicy.DeterminePricingPolicy");

 pushNullConfig();

 DecideOnPricingPolicy_subState = DeterminePricingPolicy;

 ForeverDecideOnPricingPolicy_active = DeterminePricingPolicy;

 DeterminePricingPolicyEnter();

 }

 //## statechart_method

 public void FixPrices_exit() {

 popNullConfig();

 FixPricesExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolic

y.DecideOnPricingPolicy.FixPrices");

 }

 //## statechart_method

 public void FixPricesExit() {

 }

 //## statechart_method

 public void GetProductsInformation_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverDecideOnPricingPoli

cy.DecideOnPricingPolicy.GetProductsInformation");

 pushNullConfig();

 DecideOnPricingPolicy_subState = GetProductsInformation;

 ForeverDecideOnPricingPolicy_active = GetProductsInformation;

 GetProductsInformationEnter();

 }

 //## statechart_method

 public void GetProductsInformation_entDef() {

 GetProductsInformation_enter();

 }

 //## statechart_method

 public void state_15_exit() {

 state_15Exit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolic

y.DecideOnPricingPolicy.state_15");

 }

 //## statechart_method

 public void WaitForNewPeriod_exit() {

 popNullConfig();

 WaitForNewPeriodExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverDecideOnPricingPolic

y.DecideOnPricingPolicy.WaitForNewPeriod");

 }

 //## statechart_method

 public void ForeverDecideOnPricingPolicy_entDef() {

 ForeverDecideOnPricingPolicy_enter();

 ForeverDecideOnPricingPolicyEntDef();

 }

289

 //## statechart_method

 public void InteractWithUser_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverInteractWithUser.In

teractWithUser");

 pushNullConfig();

 ForeverInteractWithUser_subState = InteractWithUser;

 InteractWithUserEnter();

 }

 //## statechart_method

 public void GetWeatherInformationEnter() {

 }

 //## statechart_method

 public int state_28_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 res = GetMarketInformation_takeEvent(id);

 return res;

 }

 //## statechart_method

 public int UpdateFactsTakeNull() {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 animInstance().notifyTransitionStarted("26");

 UpdateFacts_exit();

 state_28_entDef();

 animInstance().notifyTransitionEnded("26");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 return res;

 }

 //## statechart_method

 public void ForeverGetMarketInformationExit() {

 }

 //## statechart_method

 public void state_23Exit() {

 }

 //## statechart_method

 public void state_23Enter() {

 }

 //## statechart_method

 public void rootState_enter() {

 animInstance().notifyStateEntered("ROOT");

 rootStateEnter();

 }

 //## statechart_method

 public void rootStateEnter() {

 }

 //## statechart_method

 public int DeterminePricingPolicyTakeNull() {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 animInstance().notifyTransitionStarted("5");

 DeterminePricingPolicy_exit();

 FixPrices_entDef();

 animInstance().notifyTransitionEnded("5");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 return res;

 }

 //## statechart_method

 public void FixPrices_entDef() {

 FixPrices_enter();

 }

 //## statechart_method

 public void WaitForNewPeriod_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverDecideOnPricingPoli

cy.DecideOnPricingPolicy.WaitForNewPeriod");

 pushNullConfig();

290

 DecideOnPricingPolicy_subState = WaitForNewPeriod;

 ForeverDecideOnPricingPolicy_active = WaitForNewPeriod;

 WaitForNewPeriodEnter();

 }

 //## statechart_method

 public int ForeverDecideOnPricingPolicy_takeEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 return res;

 }

 //## statechart_method

 public void UpdateFirmPolicyEnter() {

 }

 //## statechart_method

 public int GetCompetitionInformation_takeEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = GetCompetitionInformationTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = GetMarketInformation_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public int GetLocalInformation_takeEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = GetLocalInformationTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = GetMarketInformation_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void GetMarketInformation_exit() {

 switch (GetMarketInformation_subState) {

 case GetWeatherInformation:

 {

 GetWeatherInformation_exit();

 break;

 }

 case GetLocalInformation:

 {

 GetLocalInformation_exit();

 break;

 }

 case GetCompetitionInformation:

 {

 GetCompetitionInformation_exit();

 break;

 }

 case state_28:

 {

 state_28_exit();

 break;

 }

 case UpdateFacts:

 {

 UpdateFacts_exit();

 break;

 }

 default:
 break;

 }

291

 GetMarketInformation_subState = RiJNonState;

 GetMarketInformationExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.OptionalForeverGetMarketInf

ormation.ForeverGetMarketInformation.GetMarketInformation");

 }

 //## statechart_method

 public void state_23_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.OptionalForeverGetMarketIn

formation.state_23");

 OptionalForeverGetMarketInformation_subState = state_23;

 OptionalForeverGetMarketInformation_active = state_23;

 state_23Enter();

 }

 //## statechart_method

 public void ForeverDecideOnPricingPolicy_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverDecideOnPricingPoli

cy");

 ForeverDecideOnPricingPolicyEnter();

 }

 //## statechart_method

 public void state_21Enter() {

 }

 //## statechart_method

 public int PresentInformationToTheUserOrUpdateFirmPolicy_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = PresentInformationToTheUserOrUpdateFirmPolicyTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = InteractWithUser_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void PresentInformationToTheUserOrUpdateFirmPolicy_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverInteractWithUser.In

teractWithUser.PresentInformationToTheUserOrUpdateFirmPolicy");

 pushNullConfig();

 InteractWithUser_subState = PresentInformationToTheUserOrUpdateFirmPolicy;

 PresentInformationToTheUserOrUpdateFirmPolicyEnter();

 }

 //## statechart_method

 public void PresentInformationToTheUserOrUpdateFirmPolicyEnter() {

 }

 //## statechart_method

 public void ForeverInteractWithUserEntDef() {

 animInstance().notifyTransitionStarted("7");

 InteractWithUser_entDef();

 animInstance().notifyTransitionEnded("7");

 }

 //## statechart_method

 public void GetCompetitionInformation_entDef() {

 GetCompetitionInformation_enter();

 }

 //## statechart_method

 public void GetWeatherInformationExit() {

 }

 //## statechart_method

 public void GetWeatherInformation_entDef() {

292

 GetWeatherInformation_enter();

 }

 //## statechart_method

 public int ForeverGetMarketInformation_takeEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = ForeverGetMarketInformationTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = OptionalForeverGetMarketInformation_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void OptionalForeverGetMarketInformation_exit() {

 switch (OptionalForeverGetMarketInformation_subState) {
 case ForeverGetMarketInformation:

 {

 ForeverGetMarketInformation_exit();

 break;

 }

 case state_23:

 {

 state_23_exit();

 break;

 }

 default:
 break;

 }

 OptionalForeverGetMarketInformation_subState = RiJNonState;

 OptionalForeverGetMarketInformationExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.OptionalForeverGetMarketInf

ormation");

 }

 //## statechart_method

 public void ProductPricingAgent_enter() {

 animInstance().notifyStateEntered("ROOT.ProductPricingAgent");

 rootState_subState = ProductPricingAgent;

 rootState_active = ProductPricingAgent;

 ProductPricingAgentEnter();

 }

 //## statechart_method

 public void state_15Exit() {

 }

 //## statechart_method

 public int DecideOnPricingPolicyTakeNull() {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 //## transition 1

 if(isCompleted(DecideOnPricingPolicy))

 {

 animInstance().notifyTransitionStarted("1");

 DecideOnPricingPolicy_exit();

 DecideOnPricingPolicy_entDef();

 animInstance().notifyTransitionEnded("1");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 }

 return res;

 }

 //## statechart_method

 public void InteractWithUserEnter() {

 }

 //## statechart_method

 public void InteractWithUserEntDef() {

 animInstance().notifyTransitionStarted("9");

 PresentInformationToTheUserOrUpdateFirmPolicy_entDef();

293

 animInstance().notifyTransitionEnded("9");

 }

 //## statechart_method

 public void GetCompetitionInformation_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.OptionalForeverGetMarketIn

formation.ForeverGetMarketInformation.GetMarketInformation.GetCompetitionInformation")

;

 pushNullConfig();

 GetMarketInformation_subState = GetCompetitionInformation;

 OptionalForeverGetMarketInformation_active = GetCompetitionInformation;

 GetCompetitionInformationEnter();

 }

 //## statechart_method

 public void GetWeatherInformation_exit() {

 popNullConfig();

 GetWeatherInformationExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.OptionalForeverGetMarketInf

ormation.ForeverGetMarketInformation.GetMarketInformation.GetWeatherInformation");

 }

 //## statechart_method

 public void state_28_entDef() {

 state_28_enter();

 }

 //## statechart_method

 public void ForeverGetMarketInformation_entDef() {

 ForeverGetMarketInformation_enter();

 animInstance().notifyTransitionStarted("21");

 GetMarketInformation_entDef();

 animInstance().notifyTransitionEnded("21");

 }

 //## statechart_method

 public void state_23_exit() {

 state_23Exit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.OptionalForeverGetMarketInf

ormation.state_23");

 }

 //## statechart_method

 public void OptionalForeverGetMarketInformation_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.OptionalForeverGetMarketIn

formation");

 OptionalForeverGetMarketInformationEnter();

 }

 //## statechart_method

 public void rootState_exit() {

 if(rootState_subState == ProductPricingAgent)

 {

 ProductPricingAgent_exit();

 }

 rootState_subState = RiJNonState;

 rootStateExit();

 animInstance().notifyStateExited("ROOT");

 }

 //## statechart_method

 public void rootStateEntDef() {

 ProductPricingAgent_entDef();

 }

 //## statechart_method

 public int GetProductsInformationTakeNull() {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 animInstance().notifyTransitionStarted("4");

 GetProductsInformation_exit();

 DeterminePricingPolicy_entDef();

294

 animInstance().notifyTransitionEnded("4");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 return res;

 }

 //## statechart_method

 public void UpdateFirmPolicy_exit() {

 popNullConfig();

 UpdateFirmPolicyExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverInteractWithUser.Int

eractWithUser.PresentInformationToTheUserOrUpdateFirmPolicy.UpdateFirmPolicy");

 }

 //## statechart_method

 public void GetCompetitionInformationExit() {

 }

 //## statechart_method

 public void GetLocalInformationEnter() {

 }

 //## statechart_method

 public void GetWeatherInformation_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.OptionalForeverGetMarketIn

formation.ForeverGetMarketInformation.GetMarketInformation.GetWeatherInformation");

 pushNullConfig();

 GetMarketInformation_subState = GetWeatherInformation;

 OptionalForeverGetMarketInformation_active = GetWeatherInformation;

 GetWeatherInformationEnter();

 }

 //## statechart_method

 public void state_28_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.OptionalForeverGetMarketIn

formation.ForeverGetMarketInformation.GetMarketInformation.state_28");

 GetMarketInformation_subState = state_28;

 OptionalForeverGetMarketInformation_active = state_28;

 state_28Enter();

 }

 //## statechart_method

 public void ProductPricingAgentExit() {

 }

 //## statechart_method

 public int GetProductsInformation_takeEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = GetProductsInformationTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = DecideOnPricingPolicy_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void state_15_entDef() {

 state_15_enter();

 }

 //## statechart_method

 public void ForeverDecideOnPricingPolicyEntDef() {

 animInstance().notifyTransitionStarted("0");

 DecideOnPricingPolicy_entDef();

 animInstance().notifyTransitionEnded("0");

 }

 //## statechart_method

 public int PresentInformationToTheUserTakeNull() {

295

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 animInstance().notifyTransitionStarted("15");

 PresentInformationToTheUser_exit();

 state_21_entDef();

 animInstance().notifyTransitionEnded("15");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 return res;

 }

 //## statechart_method

 public void PresentInformationToTheUser_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverInteractWithUser.In

teractWithUser.PresentInformationToTheUserOrUpdateFirmPolicy.PresentInformationToTheUs

er");

 pushNullConfig();

 PresentInformationToTheUserOrUpdateFirmPolicy_subState =

PresentInformationToTheUser;

 ForeverInteractWithUser_active = PresentInformationToTheUser;

 PresentInformationToTheUserEnter();

 }

 //## statechart_method

 public int state_21_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 res = PresentInformationToTheUserOrUpdateFirmPolicy_takeEvent(id);

 return res;

 }

 //## statechart_method

 public void state_21_exit() {

 state_21Exit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverInteractWithUser.Int

eractWithUser.PresentInformationToTheUserOrUpdateFirmPolicy.state_21");

 }

 //## statechart_method

 public void UpdateFirmPolicy_entDef() {

 UpdateFirmPolicy_enter();

 }

 //## statechart_method

 public void PresentInformationToTheUserOrUpdateFirmPolicy_exit() {

 popNullConfig();

 switch (PresentInformationToTheUserOrUpdateFirmPolicy_subState) {
 case PresentInformationToTheUser:

 {

 PresentInformationToTheUser_exit();

 break;

 }

 case UpdateFirmPolicy:

 {

 UpdateFirmPolicy_exit();

 break;

 }

 case state_21:

 {

 state_21_exit();

 break;

 }

 default:

 break;

 }

 PresentInformationToTheUserOrUpdateFirmPolicy_subState = RiJNonState;

 PresentInformationToTheUserOrUpdateFirmPolicyExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverInteractWithUser.Int

eractWithUser.PresentInformationToTheUserOrUpdateFirmPolicy");

 }

 //## statechart_method

 public void PresentInformationToTheUserOrUpdateFirmPolicy_entDef() {

 PresentInformationToTheUserOrUpdateFirmPolicy_enter();

 if(TRUE)

296

 {

 animInstance().notifyTransitionStarted("12");

 animInstance().notifyTransitionStarted("14");

 UpdateFirmPolicy_entDef();

 animInstance().notifyTransitionEnded("14");

 animInstance().notifyTransitionEnded("12");

 }

 }

 //## statechart_method

 public void state_28Exit() {

 }

 //## statechart_method

 public void OptionalForeverGetMarketInformation_entDef() {

 OptionalForeverGetMarketInformation_enter();

 OptionalForeverGetMarketInformationEntDef();

 }

 //## statechart_method

 public void DeterminePricingPolicy_entDef() {

 DeterminePricingPolicy_enter();

 }

 //## statechart_method

 public int WaitForNewPeriodTakeNull() {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 animInstance().notifyTransitionStarted("3");

 WaitForNewPeriod_exit();

 GetProductsInformation_entDef();

 animInstance().notifyTransitionEnded("3");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 return res;

 }

 //## statechart_method

 public int DecideOnPricingPolicy_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = DecideOnPricingPolicyTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = ForeverDecideOnPricingPolicy_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void ForeverDecideOnPricingPolicyExit() {

 }

 //## statechart_method

 public int UpdateFirmPolicyTakeNull() {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 animInstance().notifyTransitionStarted("16");

 UpdateFirmPolicy_exit();

 state_21_entDef();

 animInstance().notifyTransitionEnded("16");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 return res;

 }

 //## statechart_method

 public void PresentInformationToTheUserOrUpdateFirmPolicyExit() {

 }

 //## statechart_method

 public void state_18Exit() {

 }

 //## statechart_method

 public void state_18_entDef() {

 state_18_enter();

297

 }

 //## statechart_method

 public void InteractWithUser_exit() {

 popNullConfig();

 switch (InteractWithUser_subState) {

 case PresentInformationToTheUserOrUpdateFirmPolicy:

 {

 PresentInformationToTheUserOrUpdateFirmPolicy_exit();

 break;

 }

 case state_18:

 {

 state_18_exit();

 break;

 }

 default:
 break;

 }

 InteractWithUser_subState = RiJNonState;

 InteractWithUserExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.ForeverInteractWithUser.Int

eractWithUser");

 }

 //## statechart_method

 public void InteractWithUser_entDef() {

 InteractWithUser_enter();

 InteractWithUserEntDef();

 }

 //## statechart_method

 public int ForeverInteractWithUser_takeEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 return res;

 }

 //## statechart_method

 public void ForeverInteractWithUserEnter() {

 }

 //## statechart_method

 public void ForeverInteractWithUser_entDef() {

 ForeverInteractWithUser_enter();

 ForeverInteractWithUserEntDef();

 }

 //## statechart_method

 public void UpdateFactsExit() {

 }

 //## statechart_method

 public void rootStateExit() {

 }

 //## statechart_method

 public int DeterminePricingPolicy_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = DeterminePricingPolicyTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = DecideOnPricingPolicy_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void FixPrices_enter() {

animInstance().notifyStateEntered("ROOT.ProductPricingAgent.ForeverDecideOnPricingPoli

cy.DecideOnPricingPolicy.FixPrices");

298

 pushNullConfig();

 DecideOnPricingPolicy_subState = FixPrices;

 ForeverDecideOnPricingPolicy_active = FixPrices;

 FixPricesEnter();

 }

 //## statechart_method

 public int InteractWithUser_takeEvent(short id) {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = InteractWithUserTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = ForeverInteractWithUser_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public void InteractWithUserExit() {

 }

 //## statechart_method

 public int GetCompetitionInformationTakeNull() {

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 animInstance().notifyTransitionStarted("25");

 GetCompetitionInformation_exit();

 UpdateFacts_entDef();

 animInstance().notifyTransitionEnded("25");

 res = RiJStateReactive.TAKE_EVENT_COMPLETE;

 return res;

 }

 //## statechart_method

 public void GetLocalInformation_exit() {

 popNullConfig();

 GetLocalInformationExit();

animInstance().notifyStateExited("ROOT.ProductPricingAgent.OptionalForeverGetMarketInf

ormation.ForeverGetMarketInformation.GetMarketInformation.GetLocalInformation");

 }

 //## statechart_method

 public void ForeverGetMarketInformationEnter() {

 }

 //## statechart_method

 public void state_23_entDef() {

 state_23_enter();

 }

 //## statechart_method

 public void OptionalForeverGetMarketInformationEntDef() {

 if(TRUE)

 {

 animInstance().notifyTransitionStarted("17");

 animInstance().notifyTransitionStarted("19");

 state_23_entDef();

 animInstance().notifyTransitionEnded("19");

 animInstance().notifyTransitionEnded("17");

 }

 }

 //## statechart_method

 public void GetProductsInformationExit() {

 }

 //## statechart_method

 public void ForeverDecideOnPricingPolicyEnter() {

 }

 //## statechart_method

 public int PresentInformationToTheUser_takeEvent(short id) {

299

 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;
 if(event.isTypeOf(RiJEvent.NULL_EVENT_ID))

 {

 res = PresentInformationToTheUserTakeNull();

 }

 if(res == RiJStateReactive.TAKE_EVENT_NOT_CONSUMED)

 {

 res = PresentInformationToTheUserOrUpdateFirmPolicy_takeEvent(id);

 }

 return res;

 }

 //## statechart_method

 public int GetMarketInformation_takeEvent(short id) {
 int res = RiJStateReactive.TAKE_EVENT_NOT_CONSUMED;

 res = ForeverGetMarketInformation_takeEvent(id);

 return res;

 }

 /** methods added just for design level debugging instrumentation */

 public boolean startBehavior() {

 try {

 animInstance().notifyBehavioralMethodEntered("startBehavior",

 new ArgData[] {

 });

 return super.startBehavior();

 }

 finally {

 animInstance().notifyMethodExit();

 }

 }

 public int takeEvent(RiJEvent event) {

 try {

 //animInstance().notifyTakeEvent(new AnimEvent(event));

 animInstance().notifyBehavioralMethodEntered("takeEvent",

 new ArgData[] { new ArgData(RiJEvent.class, "event",

event.toString())

 });

 return super.takeEvent(event);

 }

 finally {

 animInstance().notifyMethodExit();

 }

 }

 /** see com.telelogic.rhapsody.animation.AnimatedReactive interface */

 public AnimInstance animInstance() {

 return Product_Pricing_Agent.this.animInstance();

 }

 }

 //#[ignore

 /** see com.telelogic.rhapsody.animation.Animated interface */

 public AnimClass getAnimClass() {

 return animClassProduct_Pricing_Agent;

 }

 /** see com.telelogic.rhapsody.animation.Animated interface */

 public Object getFieldValue(java.lang.reflect.Field f, Object userInstance) {

 Object obj = null;
 try {

 obj = f.get(userInstance);

 } catch(Exception e) {

 System.err.println("Exception: getting Field value: " + e);

 e.printStackTrace();

 }

 return obj;

 }

 /** see com.telelogic.rhapsody.animation.Animated interface */

 public AnimInstance animInstance() {
 if (animate == null)

 animate = new Animate();
 return animate;

 }

 /** see com.telelogic.rhapsody.animation.Animated interface */

 public void addAttributes(AnimAttributes msg) {

300

 msg.add("userClosedGUI", userClosedGUI);

 msg.add("firmStrategy", firmStrategy);

 msg.add("products", products);

 msg.add("productTypes", productTypes);

 msg.add("pricingInterval", pricingInterval);

 }

 /** see com.telelogic.rhapsody.animation.Animated interface */

 public void addRelations(AnimRelations msg) {

 }

 /** An inner class added as instrumentation for animation */

 public class Animate extends AnimInstance {

 public Animate() {
 super(Product_Pricing_Agent.this);

 }

 public void addAttributes(AnimAttributes msg) {

 Product_Pricing_Agent.this.addAttributes(msg);

 }

 public void addRelations(AnimRelations msg) {
 Product_Pricing_Agent.this.addRelations(msg);

 }

 public void addStates(AnimStates msg) {
 if ((reactive != null) && (reactive.isTerminated() == false))

 reactive.rootState_add(msg);

 }

 }

 //#]

}

/***

 File Path : DefaultComponent/DefaultConfig/eu/singularlogic/MARKET-

MINER/Product_Pricing_Agent.java

***/

301

Annex 8.

The Micro Saint Configuration for

ASK-IT Project Simulation

Table 7. Micro Saint Entity Attributes

Name Type InitialValue Notes IsArray

Arrive double 0.0

FALSE

hasBeenProcessed boolean FALSE

FALSE

Performative string 0

FALSE

Sender string 0

FALSE

SimpleService boolean FALSE

FALSE

Table 8. Micro Saint Variables

Name Type IsArray ArrayDimensions

CPMapRequestMessagesTags int[] TRUE 1000

CPPOIsRequestMessagesTags int[] TRUE 1000

CPRouteRequestMessagesTags int[] TRUE 1000

CPUs int FALSE

TimeSystem double FALSE

Table 9. Micro Saint Scenario Events

Name Code StartTime

ScenarioEvent1
CPUs = 2;
Entity.Tag=1;

0

ScenarioEvent2 Model.Halt(); 1800000

302

Micro Saint Task Network

Table 10. Micro Saint Release Conditions and Effects

Name ID Release Condition BeginEffect EndEffect
Personal
Assistant

47

PA Receive
Response

47_1 return true; TimeSystem = Clock-Entity.Arrive;

PA Send
Request

47_2 return true; Entity.Sender="PA";
Entity.Performative="Request";
double x;
x=Model.Random();
if (x >= .9){
Entity.SimpleService=true;
}
else{
Entity.SimpleService=false;
}
Entity.Arrive = Clock;

Broker Agent 50
BR Receive
Request

50_1 return CPUs>=1; CPUs-=1; CPUs+=1;

BR Send
Message

50_11 return CPUs>=1; CPUs-=1; CPUs+=1;

BR Receive
Message

50_12 return CPUs>=1; CPUs--; CPUs++;

BR Match 50_2 return CPUs>=1; CPUs-=1; CPUs+=1;
BR Invoke
DM Service

50_3 return CPUs>=1; CPUs-=1; CPUs+=1;
Entity.Performative="Inform";
if (Entity.Sender.CompareTo("PA")==0){
Entity.hasBeenProcessed=true;
}

BR Send
Request

50_4 return CPUs>=1; CPUs-=1; CPUs+=1;
Entity.Performative="Request";
Entity.Sender = "BR";

BR Receive
Response

50_5 return CPUs>=1; CPUs-=1; CPUs+=1;

BR Send
Response

50_6 return CPUs>=1; CPUs-=1; CPUs+=1;
Entity.Sender = "BR";

Provider
Agent

51

CP Receive
Request

51_1 return CPUs>=1; CPUs-=1; CPUs+=1;

CP Send
Route
Request

51_10 return CPUs>=1; CPUs-=1; CPUs+=1;
Entity.Performative="Request";
Entity.Sender = "CP";
for (int i = 0 ; i <
CPRouteRequestMessagesTags.Length ; i++) {
if (CPRouteRequestMessagesTags[i]==0){
CPRouteRequestMessagesTags[i]=Entity.Tag;
break;
}
}

CP Receive
Route
Response

51_11 return CPUs>=1; CPUs-=1; CPUs+=1;

CP Sort
Routes

51_12 return CPUs>=1; CPUs-=1; CPUs+=1;

CP Send
Message

51_15 return CPUs>=1; CPUs-=1; CPUs+=1;

CP Receive
Message

51_16 return CPUs>=1; CPUs-=1; CPUs+=1;

CP Decide
POI Types

51_2 return CPUs>=1; CPUs-=1; CPUs+=1;

CP Decide
Route Type

51_3 return CPUs>=1; CPUs-=1; CPUs+=1;

303

Name ID Release Condition BeginEffect EndEffect
CP Send POI
Request

51_4 return CPUs>=1; CPUs-=1; CPUs+=1;
Entity.Performative="Request";
Entity.Sender = "CP";
for (int i = 0 ; i <
CPPOIsRequestMessagesTags.Length ; i++) {
if (CPPOIsRequestMessagesTags[i]==0){
CPPOIsRequestMessagesTags[i]=Entity.Tag;
break;
}
}

CP Receive
POI
Response

51_5 return CPUs>=1; CPUs-=1; CPUs+=1;

CP Decide
POIs

51_6 return CPUs>=1; CPUs-=1; CPUs+=1;

CP Send Map
Request

51_7 return CPUs>=1; CPUs-=1; CPUs+=1;
Entity.Performative="Request";
Entity.Sender = "CP";
for (int i = 0 ; i <
CPMapRequestMessagesTags.Length ; i++) {
if (CPMapRequestMessagesTags[i]==0){
CPMapRequestMessagesTags[i]=Entity.Tag;
break;
}
}

CP Receive
Map
Response

51_8 return CPUs>=1; CPUs-=1; CPUs+=1;

CP Send
Response

51_9 return CPUs>=1; CPUs-=1; CPUs+=1;
Entity.Performative="Inform";
Entity.Sender = "CP";
Entity.hasBeenProcessed=true;

start 52 return true; Entity.Arrive
= Clock;

Entity.Tag++;

Table 11. Micro Saint Tasks Timing

Name ID Distribution DS1 DS2 DS3

Personal Assistant 47
PA Receive Response 47_1 Normal return 24.0; return 63.0; return 0.0;

PA Send Request 47_2 Normal return 0.0; return 0.0; return 0.0;
Broker Agent 50

BR Receive Request 50_1 Normal return 24.0; return 63.0; return 0.0;
BR Send Message 50_11 Normal return 2.0; return 2.0; return 0.0;

BR Receive Message 50_12 Gamma return 2.0; return 2.0; return 0.0;
BR Match 50_2 Normal return 254.0; return 112.0; return 0.0;

BR Invoke DM Service 50_3 Normal return 2639.0; return 1113.0; return 0.0;
BR Send Request 50_4 Normal return 7.0; return 6.0; return 0.0;

BR Receive Response 50_5 Normal return 24.0; return 63.0; return 0.0;
BR Send Response 50_6 Normal return 7.0; return 6.0; return 0.0;

Provider Agent 51
CP Receive Request 51_1 Normal return 24.0; return 63.0; return 0.0;

CP Send Route Request 51_10 Normal return 7.0; return 6.0; return 0.0;
CP Receive Route Response 51_11 Normal return 24.0; return 63.0; return 0.0;

CP Sort Routes 51_12 Normal return 127.0; return 56.0; return 0.0;
CP Send Message 51_15 Normal return 0.0; return 0.0; return 0.0;

CP Receive Message 51_16 Normal return 0.0; return 0.0; return 0.0;
CP Decide POI Types 51_2 Normal return 127.0; return 56.0; return 0.0;

CP Decide Route Type 51_3 Normal return 127.0; return 56.0; return 0.0;
CP Send POI Request 51_4 Normal return 7.0; return 6.0; return 0.0;

CP Receive POI Response 51_5 Normal return 24.0; return 63.0; return 0.0;
CP Decide POIs 51_6 Normal return 127.0; return 56.0; return 0.0;

CP Send Map Request 51_7 Normal return 7.0; return 6.0; return 0.0;
CP Receive Map Response 51_8 Normal return 24.0; return 63.0; return 0.0;

CP Send Response 51_9 Normal return 7.0; return 6.0; return 0.0;
start 52 Exponential return 30000.0; return 0.0; return 0.0;

304

Table 12. Micro Saint Path Decision

Name ID Paths Decision
Type

Path 1 Path 2

Personal
Assistant

47

PA Receive
Response

47_1

PA Send
Request

47_2

Broker
Agent

50

BR Receive
Request

50_1 50_2

BR Send
Message

50_11 Tactical if (Entity.hasBeenProcessed == true){
 return true;
}
else {
 return false;
}

if (Entity.hasBeenProcessed == false) {
 return true;
}
else {
 return false;
}

BR Receive
Message

50_12 50_1,
50_5

Tactical if (((Entity.Sender.CompareTo("CP")==0)
&&(Entity.Performative.CompareTo(
"Request") == 0))
||(Entity.Sender.CompareTo("PA")==0)) {
 return true;
}
else {
 return false;
}

if ((Entity.Sender.CompareTo("CP")==0)
&&(Entity.Performative.CompareTo(
"Request") != 0)) {
 return true;
}
else {
 return false;
}

BR Match 50_2 50_3,
50_4

Tactical if (Entity.Sender.CompareTo("CP")==0){
 return true;
}
else{
 if (Entity.SimpleService==true){
 return true;
 }
 else{
 return false;
 }
}

if (Entity.Sender.CompareTo("CP")==0){
 return false;
}
else{
 if (Entity.SimpleService==false){
 return true;
 }
 else{
 return false;
 }
}

BR Invoke
DM Service

50_3 50_6

BR Send
Request

50_4 50_11

BR Receive
Response

50_5 50_6

BR Send
Response

50_6 50_11

Provider
Agent

51

CP Receive
Request

51_1 51_2,
51_3

Probabilistic return .5; return .5;

CP Send
Route
Request

51_10 51_15

CP Receive
Route
Response

51_11 51_12

CP Sort
Routes

51_12 51_9

CP Send
Message

51_15

305

Name ID Paths Decision
Type

Path 1 Path 2

CP Receive
Message

51_16 51_1,
51_5,
51_11,
51_8

Tactical if (Entity.Performative.CompareTo(
"Request") == 0) {
 return true;
}
else {
 return false;
}

if (Entity.Performative.CompareTo(
"Request") != 0){
 bool found = false;
 for (int i = 0 ; i <
CPPOIsRequestMessagesTags.Length ;
i++) {
 if
(CPPOIsRequestMessagesTags[i]==0) {
 break;
 }
 if (CPPOIsRequestMessagesTags[i] ==
Entity.Tag){
 found = true;
 }
 if (found==true){
CPPOIsRequestMessagesTags[i] =
CPPOIsRequestMessagesTags[i+1];
 }
 }
 if (found==true) {
 return true;
 } else {
 return false;
 }
} else {
 return false;
}

CP Decide
POI Types

51_2 51_4

CP Decide
Route Type

51_3 51_10

CP Send
POI
Request

51_4 51_15

CP Receive
POI
Response

51_5 51_6

CP Decide
POIs

51_6 51_7

CP Send
Map
Request

51_7 51_15

CP Receive
Map
Response

51_8 51_9

CP Send
Response

51_9 51_15

start 52 52

Continuing for the task “CP Receive Message” (51_16) that has two more paths:

Name ID Paths Decision
Type

Path 3 Path 4

CP Receive
Message

51_16 51_1,
51_5,
51_11,
51_8

Tactical if (Entity.Performative.CompareTo(
"Request") != 0){
 bool found = false;
 for (int i = 0 ; i <
CPRouteRequestMessagesTags.Length ;
i++) {
 if
(CPRouteRequestMessagesTags[i]==0) {
 break;
 }
 if (CPRouteRequestMessagesTags[i] ==
Entity.Tag){
 found = true;
 }
 if (found==true){
CPRouteRequestMessagesTags[i] =
CPRouteRequestMessagesTags[i+1];
 }
 }
 if (found==true) {
 return true;
 } else {
 return false;
 }
} else {
 return false;
}

if (Entity.Performative.CompareTo(
"Request") != 0){
 bool found = false;
 for (int i = 0 ; i <
CPMapRequestMessagesTags.Length ;
i++) {
 if (CPMapRequestMessagesTags[i]==0)
{
 break;
 }
 if (CPMapRequestMessagesTags[i] ==
Entity.Tag){
 found = true;
 }
 if (found==true){
CPMapRequestMessagesTags[i] =
CPMapRequestMessagesTags[i+1];
 }
 }
 if (found==true) {
 return true;
 } else {
 return false;
 }
} else {
 return false;
}

