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Abstract. Gaia is a well-known Agent Oriented Software Engineering (AOSE) 

methodology. The emerging Model-Driven Engineering (MDE) paradigm 

encourages software modelers to automate the transition of one type of software 

model to another and eventually the code generation process. Towards this end 

we define a process for transforming the Gaia roles model liveness formulas to 

statecharts. This achievement on one hand allows the modeler to work on 

detailed agent design and permits, on the other hand, to automatically generate 

an agent’s code using any one of the statecharts-based tools in the market.  

Keywords: Agent Oriented Software Engineering, Statecharts, Gaia 

methodology, Model Driven Engineering 

1 Introduction 

During the last years, there has been a growth of interest in the potential of agent 

technology in the context of software engineering. A new trend in the Agent Oriented 

Software Engineering (AOSE) field is that of converging towards the Model-Driven 

Engineering (MDE) paradigm. Thus, a lot of well known AOSE methodologies 

propose methods and tools for automating models transformations in the meanwhile 

proposing metamodels in the modern ecore [1] or MOF [10] formats. Examples of 

such methodologies are Tropos [13] and Ingenias [3]. The Gaia methodology [19] is a 

popular methodology that, however, does not address the issue of transforming its 

design models to code. Efforts in the past have produced some results, however not in 

the MDE sense, that is without automating the process. 

In this paper we present an automated process for transforming the Gaia roles 

model liveness property to a statechart [5]. The latter is a platform independent model 

(PIM) of the system to be, a result that is compatible with the Object Management 

Group (OMG) Model Driven Architecture (MDA) paradigm [7]. Moreover, the 

produced statechart is defined in a standardized format that can be used for defining 

new model to text transformations for any desired platform. 
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This process delivers several original results. The first result is the formal 

definition of the syntax of a Gaia liveness formula. Then, we define the statecharts [5] 

metamodel based on the ordered rooted tree data structure. Finally, we define a 

recursive transformation algorithm from a liveness formula to a statechart. This paper 

not only provides these theoretical results but also an implementation using the 

Human-Usable Textual Notation (HUTN) specification of OMG  [11] and the Eclipse 

popular Integrated Development Environment (IDE). 

This paper is organized in the following way. In section 2 we present the definition 

of the Gaia liveness formula followed by the formal definition of the statechart and its 

metamodel in section 3. The transformation algorithm and the technologies needed 

for implementing it are presented and discussed in section 4. Finally, section 5 

includes conclusions and future work. 

2 The Gaia Liveness Formula Definition 

 

The Gaia methodology [19] is an attempt to define a general methodology that it is 

specifically tailored to the analysis and design of Multi-Agent Systems (MAS). Gaia 

emphasizes the need for new abstractions in order to model agent-based systems and 

supports both the levels of the individual agent structure and the agent society in the 

MAS development process. MAS, according to Gaia, are viewed as being composed 

of a number of autonomous interactive agents that live in an organized society in 

which each agent plays one or more specific roles. Gaia defines the structure of MAS 

in terms of the role model. The model identifies the roles that agents have to play 

within the MAS and the interaction protocols between the different roles. The Gaia 

methodology is a three phase process and at each phase the modeling of the MAS is 

further refined. These phases are the analysis phase, the architectural design phase 

and, finally, the detailed design phase. 

The objective of the Gaia analysis phase is the identification of the roles and the 

modeling of interactions between the roles found. Roles consist of four attributes: 

responsibilities, permissions, activities and protocols. Responsibilities are the key 

attribute related to a role since they determine the functionality. Responsibilities are 

of two types: liveness properties – the role has to add something good to the system, 

and safety properties – the role must prevent something bad from happening to the 

system. Liveness describes the tasks that an agent must fulfill given certain 

environmental conditions and safety ensures that an acceptable state of affairs is 

maintained during the execution cycle. In order to realize responsibilities, a role has a 

set of permissions. Permissions represent what the role is allowed to do and, in 

particular, which information resources it is allowed to access. The activities are tasks 

that an agent performs without interacting with other agents. Finally, protocols are the 

specific patterns of interaction, e.g. a seller role can support different auction 

protocols. Gaia has operators and templates for representing roles and their attributes 

and also it has schemas that can be used for the representation of interactions between 

the various roles in a system. The operators that can be used for liveness expressions-
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formulas along with their interpretations are presented in Table 1. Note that activities 

are written underlined in liveness formulas. 

Table 1. Gaia Operators for Liveness Formulas 

Operator Interpretation Operator Interpretation 

x||y x and y interleaved x.y x followed by y 

x
ω
 x occurs infinitely often [x] x is optional 

x* x occurs 0 or more times x|y x or y occurs 

x+ x occurs 1 or more times   

 

The Gaia2JADE process [9] used the Gaia models and provided a roadmap for 

transforming Gaia liveness formulas to Finite State Machine (FSM) diagrams and 

then provided some code generation for JADE implementation. It also proposed some 

changes to Gaia such as the incorporation of a functionality table, where the activities 

were refined to algorithms, and a way to describe simple protocols. However, it did 

not cater for parallelism, and it did not produce the FSM diagrams automatically. 

The reader can see a Gaia roles model for a role named “personal assistant” in 

Figure 1. This role employs seven activities and seven protocols (activities are 

underlined in the Protocols and Activities field). In its liveness formula it describes 

the order that these protocols and activities will be executed by this role.  

The liveness formula grammar has not been defined formally in the literature, thus 

it is defined here using the Extended Backus–Naur Form (EBNF), which is a 

metasyntax notation used to express context-free grammars. It is a formal way to 

describe computer programming languages and other formal languages. The EBNF 

syntax for the liveness formula is presented in the following listing, using the BNF 

style followed by Russel and Norvig [16], i.e. terminal symbols are written in bold:  

liveness        → { formula } 

formula         → leftHandSide = expression 

leftHandSide      → string 

expression       → term 

             | parallelExpression 

             | orExpression 

             | sequentialExpression  

parallelExpression   → term || term || … || term  

orExpression      → term | term | … | term 

sequentialExpression  → term . term . … . term 

term          → basicTerm 

             | (expression)  

             | [expression]  

             | term* 

             | term+ 

             | termω 

             | |termω|number 
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basicTerm        → string 

number         → digit | digit number 

digit          → 1 | 2 | 3 | … 

string          → letter | letter string 

letter         → a | b | c | … 

 

 

Role: Personal Assistant 

Description: This role interacts with a meetings manager role in order to arrange and 

negotiate the user’s meetings and with the user through a human-machine interface 

in order to get the user’s requests and show him his schedule. 

Protocols and Activities: get user request, read schedule, show results, learn user 

preference, update user preferences, send change request, receive change results, 

send new request, receive new results, receive proposed date, decide response, 

send results, receive outcome, update schedule 

Responsibilities: 

 Liveness: 

  personal  assistant = (manage meetings. learn user habits)
ω
 || (negotiate 

meeting date)
ω
 

  manage meetings = get user request. (read schedule | request change meeting 

| request new meeting). show results 

  learn user habits = learn user preference. update user preferences 

  request change meeting = send change request. receive change results 

  request new meeting = send new request. receive new results 

  negotiate meeting date = receive proposed date. (decide response. send 

results. receive outcome)+. update schedule 

 

Fig. 1. The Gaia role model of a personal assistant agent. 

The reader should note that the Gaia operators have been enriched with a new 

operator, the |x
ω
|
n
, with which we can define an activity that can be concurrently 

instantiated and executed more than one times (n times). 

Figure 1 shows that the functionality of the personal assistant role is described by 

the liveness property. Thus, if the liveness formulas are transformed to a computer 

program then a large portion of the agent program is complete. However, this is not 

possible as there is a lot of information missing. First of all the functionality behind 

each activity is obscure. Then, the variables that will determine, e.g. whether the 

optional activities will be executed (i.e. an activity in brackets) are missing. This kind 

of information can be inserted in a statechart, thus we decided that in order to provide 

a design artifact that could lead to code generation we needed to transform the Gaia 

liveness formulas to a statechart [5]. However, before defining this transformation we 

needed a formal model for the statechart. 
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3 The Statechart Definition and Metamodel 

Statecharts [5] are used for modeling systems. They are based on an activity-chart that 

is a hierarchical data-flow diagram, where the functional capabilities of the system are 

captured by activities and the data elements and signals that can flow between them. 

The behavioral aspects of these activities (what activity, when and under what 

conditions it will be active) are specified in statecharts. The fact that the statechart can 

capture together the functional and behavioral aspects of a system is its greatest 

advantage, as it completely defines a system. This is not true for a single UML model 

as a number of different models need to be combined for a complete description of a 

system (e.g. a class diagram together with an activity diagram). Thus, statecharts are 

ideal for defining systems in a platform independent manner. We intend to use 

statecharts in a specific level of abstraction, that of an agent, in order to model the 

interactions between its components (or capabilities). The statechart, therefore, 

implements the intra-agent control model (IAC) of an agent. 

The authors in [5] present the statechart language adequately but not formally. 

Several authors have presented formal models for this language; as such an approach 

is needed for developing relevant statecharts-based Computer-Aided Software 

Engineering (CASE) tools. For example, David et al. [2] proposed a formal model for 

the RHAPSODY tool and Mikk et al. [8] for the STATEMATE tool. The first one has 

been used as basis for the definition of our statechart as it is the first intended for 

object-oriented language implementation (STATEMATE is for C language 

development). These models not only formally describe the elements of the statechart; 

they also focus on the execution semantics. However, this issue is out of the scope of 

this work. It is assumed that, as long as the language of statecharts is not altered, a 

statechart can be executed with any CASE tool. 

The formal model that is adopted here-in is a subset of the ones presented in the 

literature as there are several features of the statecharts not used herein, such as the 

history states (which are also defined differently in these works). After formally 

presenting the statechart in the following paragraph, we will provide a metamodel in a 

common format such as the Eclipse Modeling Framework (EMF) and also discuss 

why this is needed. 

3.1 Formal Statechart Definition 

An ordered rooted tree is a rooted tree where the children of each internal vertex are 

ordered [15]. To produce a total order of the vertices of an ordered rooted tree all the 

vertices must be labeled. This is achieved recursively as follows: 

1. Label the root with the integer 0. Then label its k children (at level 1) from left to 

right with 0.1, 0.2, 0.3, …, 0.k.  

2. For each vertex ν at level n with label A, label its kν children, as they are drawn 

from left to right, with A.1, A.2, …, A.kν. 

Thus, A.1 means that A is the parent of A.1. The definition below for the statechart 

is inspired by the definition proposed by David et al. [2]. 
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Definition 1. A statechart is a tuple (L, δ) where: 

• L = (S, λ, Var, Name, Activity) is an ordered rooted tree structure representing the 

states of the statechart. 

─ S⊆�* is the set of all nodes in the tree. 

─ λ: S�{AND, OR, BASIC, START, END, CONDITION} is a mapping from the 

set of nodes to labels giving the type of each node. For l∈S let AND(l) denote 

that λ(l)=AND. Similarly OR(l) denotes that λ(l)=OR and the same holds for all 

labels. START and END denote those nodes without activity, which exist so 

that execution can start and end inside OR-states. BASIC corresponds to a basic 

state. A condition state is denoted as CONDITION. START, END, BASIC and 

CONDITION nodes are leaves of L. 

─ Var is a mapping from nodes to sets of variables. var(l) stands for the subset of 

local variables of a particular node l. 

─ Name is a mapping from nodes to their names. name(l) stands for the name of a 

particular node l. 

─ Activity is a mapping from nodes to their algorithms in text format 

implementing the processes of the respective states. activity(l) stands for the 

algorithm of a particular state that is represented by node l. 

• δ ⊆ S × TE × S is the set of state transitions, where TE is a set of transition 

expressions. 

The following are also defined according to the definitions of David et al. (2003): 

 

Definition 2. Let l an internal vertex of an ordered rooted tree L. We call sons(l) = 

{l.x ∈ S|x ∈ �} the children of l 

 

Definition 3. Let l, k two vertices of an ordered rooted tree L such that ∃x∈�, k.x 

= l. Then the vertex k is called parent to l and it is denoted as parent(l) 

 

Definition 4. Let l a vertex of an ordered rooted tree L. Then, the ancestors of l are 

defined as ancestors(l) = parent(l) ∪ ancestors(parent(l)) 

 

3.2 The Statechart Metamodel 

Model driven engineering relies heavily in model transformation [17]. Model 

transformation is the process of transforming a model to another model. The 

requirements for achieving the transformation are the existence of metamodels of the 

models in question and a transformation language in which to write the rules for 

transforming the elements of one metamodel to those of another metamodel. 

In the software engineering domain a model is an abstraction of a software system 

(or part of it) and a metamodel is another abstraction, defining the properties of the 

model itself. Thus, like a computer program conforms to the grammar of the 
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programming language in which it is written, a model conforms to its metamodel (or 

its reference model). However, even a metamodel is itself a model. In the context of 

model engineering there is yet another level of abstraction, the metametamodel, which 

is defined as a model that conforms to itself [6]. 

A transformation that is used for transforming a textual representation to a 

graphical model is called a Text to Model (T2M) transformation. The textual 

representation must adhere to a language syntax definition usually using BNF. A 

liveness formula proposes such a kind of syntax. The graphical model must have a 

metamodel. Then, a transformation of the text to a graphical model can be defined. 

In the heart of the model transformation procedure is the Eclipse Modeling 

Framework (EMF, [1]). EMF unifies Java, XML, and UML technologies, allowing 

the modeler to switch between them as they provide the same information in a 

different representation. Regardless of which one is used to define it, an EMF model 

is the common high-level representation that "glues" them all together. 

Ecore [1] is EMF’s model of a model (metamodel). It functions as a 

metametamodel and it is used for constructing metamodels. It defines that a model is 

composed of instances of the EClass type, which can have attributes (instances of the 

EAttribute type) or reference other EClass instances (through the EReference type). 

Finally, EAttributes can be of various EDataType instances (such are integers, strings, 

real numbers, etc). Figure 2 shows the ecore metamodel in detail. 

 

 

Fig. 2. The Ecore metamodel (Budinsky et al., 2003). 

A similar technology, the Meta-Object Facility (MOF), is an OMG standard [10] 

for representing metamodels and manipulating them. There are a number of essential 

concepts used in MOF modeling. A Package is used to encapsulate a collection of 

related Classes and Associations. Packages can also contain simple type definitions. 

Classes exist in the commonly-used sense of the word, describing an object and its 

properties. These properties are represented through Attributes and References, which 

can be inherited using a multiple-inheritance system. Attributes have a name and a 

type. This includes a range of types from basic types such as integers, strings, and 

booleans to more complex types such as enumerations, and through to structured 

types. In addition, attributes have both upper and lower limits on the number of times 

that they can appear within a class instance. An Association is used to represent a 
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relationship between instances of two classes, each of which plays a role within the 

association. Associations can have the additional property of containment; an 

association represents a containment relationship if one of the participant classes does 

not exist outside the scope of the other. A Class participating in an association can 

also contain a Reference to the association. A reference appears much like an 

attribute, but reflects the set of class instances that participate in the Association with 

the containing class instance. 

MOF is older than EMF and it influenced its design. MOF was initially designed 

primarily for use with the Common Object Request Broker Architecture (CORBA). 

CORBA is an architecture that enables programs, called objects, to communicate with 

one another regardless of what programming language they were written in or what 

operating system they're running on. 

EMF, on the other hand, is a product of the Eclipse project, an open source project 

and was intended as a low-cost tool to obtain the benefits of formal modeling and 

Java code generation. As a consequence, one could say that EMF took a bottom-up 

approach whereas MOF took a top-down approach [4].  

However, the EMF meta-model is simpler than the MOF meta-model in terms of 

its concepts, properties and containment structure, thus, the mapping of EMF’s 

concepts into MOF’s concepts is relatively straightforward and is mostly 1-to-1 

translations. EMF is used today by a large open source community becoming a de 

facto standard in MDE. Moreover, third parties define MDE tools based on EMF 

technology, like the openArchitectureWare (oAW) platform for model-driven 

software development. For all these reasons it was decided that the EMF technology 

would be used. 

The statechart metamodel (see Figure 3) contains nodes and transitions according 

to Definition 1. The metamodel defines a Model concept that has nodes, transitions 

and variables EReferences. Note that it also has a name EAttribute. The latter is used 

to define the namespace of the statechart. The namespace should follow the Java or 

C# modern package namespace format (see a sample namespace for the meetings 

management system in the next section with the transformations). 

The nodes contain the following attributes (followed by the relevant concept name 

in the statechart definition): 

• name (Name). The name of the node, 

• type (λ). The type of the node (one of AND, OR, BASIC, START, END), 

• label (label). The node’s label, and 

• activity (Activity). The activity related to the node. 

Nodes also refer to variables. The Variable EClass has the attributes name and type 

(e.g. the variable with name “count” has type “integer”). Finally the transitions have 

four attributes: 

• name, usually in the form <source node label>TO<target node label> 

• TE, the transition expression 

• source, the source node label, and, 

• target, the target node label. 
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Fig. 3. The statechart metamodel. 

4 The Liveness2Statechart Transformation 

The Liveness2Statechart transformation is achieved by using the “Gaia operators 

transformation templates” (shown in Table 2) for transforming the process part of the 

agent interaction protocol model to a statechart. Table 2 has three columns. The first 

depicts a Gaia formula with a certain operator. The second shows how to draw the 

statechart relevant to this operator using the common statechart graphic language. The 

third shows how the same Gaia formula is transformed to the statechart representation 

defined in this paper (as a tree branch). 

The tree branch representation (in Table 2) uses grey arrows to connect a father 

node to its sons. On the top left of each node the label of the node is shown. The root 

node of each branch is supposed to have a label L and the other nodes are labeled 

accordingly. The type of each node is written centered in the middle of the node. 

Finally, the name of each node is centered in the bottom of each node. The reader 

should note that the nodes for the x or y variables of the Gaia formula do not have a 

node type. This is because it is possible that they are basic or non-basic nodes. If they 

are basic then the node’s type is set to BASIC, otherwise another branch is added with 

this node as the root and as the reader can notice all templates set the type of the root 

of the branch.  

Table 2. Templates of extended Gaia operators (Op.) for Statechart generation 

Op. Template Tree Branch 

x | y 
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Op. Template Tree Branch 

x* 

 

 

x
ω
 

 

 

x . y  

 
 

x+ 

 

 

[x] 

 

 

|x
ω
|
n
 

Sx

Sy

Sx

Sx

� n instances  
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Op. Template Tree Branch 

x || y  

Sx

Sy

Sx

Sy

 

 

A designer can use the Gaia transformation templates to manually transform the 

liveness formula to a statechart. Alternatively, he can use an implementation of the 

following recursive algorithm for building the statechart automatically (three dots 

represent omitted code for space reasons): 

Program transform(liveness) 

 Var root = 0 

 S = S ∪ {root} 

 Name(root) = liveness->formula1->leftHandSide 

 createStatechart(formula1->expression, root) 

End Program 

 

Procedure createStatechart(expression, father) 

 Var terms = 0 

 For each termi in expression 

  terms = terms + 1 

 End For 

 If terms > 1 Then 

  If expression is sequentialExpression Then 

   λ(father) = OR 

   S = S ∪ {father.1} 

   λ(father.1) = START 

   Var k=2 

   For Each termi in expression 

    S= S ∪ {father.k} 

    Name(father.k) = termi 

    δ = δ ∪ {(father.(k-1), {}, father.k)} 

    k = k + 1 

   End For 

   S = S ∪ {father.k} 

   δ = δ ∪ {(father.(k-1), {}, father.k)} 
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   λ(father.k) = END 

  Else If expression is orExpression 

   ... 

  Else If expression is parallelExpression 

   ... 

  End If  

 For Each termi in expression 

  If termi is basicTerm Then 

   handleBasicTerm(termi, getNode(father, termi) 

  Else 

   If termi is of type ‘(‘term’)’ Then 

    createStatechart(term, getNode(father, termi)) 

   Else If (termi is of type ‘[‘term’]’) or (termi is 

of type term’*’) Then 

   ... 

   Else If (termi is of type term’
ω’) or (termi is of 

type term’+’) Then 

   ... 

   Else If termi is of type ‘|’term’
ω|n’ Then 

   ... 

   End If 

  End If 

 End For 

End function 

 

Function getNode(father, term) 

 QueuedList queue 

 queue.addLast(father) 

 Do While queue.notEmpty() 

  elementi = queue.getFirst() 

  If Name(elementi) = term Then Return elementi Else 

   For each sonj in sons(elementi) 

    queue.addLast(sonj) 

   End For 

  End If 

 End do 

End function 

 

Function handleBasicTerm(term, node) 

 Var isBasic = true 

 For each formulai in liveness 

  If (formulai->leftHandSide = term) Then 

   createStatechart(formulai->expression, node) 

   isBasic = false 

  End If 
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 End For 

 If isBasic Then λ(node) = BASIC 

End function 

The program “transform” sets the root label equal to zero and its name equal to the 

left hand side of the first liveness formula. Then it calls the “createStatechart” 

procedure that takes two arguments. An expression, as it is defined in the Gaia 

liveness grammar, and a node (its label) under which it will build the tree. 

The “createStatechart” procedure firstly checks whether the expression is a 

parallelExpression, an orExpression or a sequentialExpression and adds the relevant 

tree branch. Then, the procedure examines each term in the expression. A special 

function, the “handleBasicTerm” searches the formulas to find whether the term is a 

basicTerm or it appears in the left hand side of a following formula, which in this case 

needs to be expanded with the relevant tree branch. This is done by calling again the 

“createStatechart” procedure (recursively). Another function is used for this purpose, 

the “getNode”. It searches (breadth first search) the tree branch below a node (the 

father) for the descendant with a specific name and returns its label. This is needed 

because the term’s name is available but in order to add a tree branch the node’s label 

is needed as a parameter for the “createStatechart” procedure call. If the examined 

term of the expression is a non-basic term then again the relevant tree branch is added 

to the statechart. 

After applying the transformation algorithm, the statechart (or intra-agent control 

model) depicted in Figure 4 is created for the personal assistant liveness property 

presented in Figure 1. The reader can see the “negotiate meeting date” OR state 

(representing the execution of an interaction protocol) executed in parallel with the 

other agent capabilities. 

For automating the transformation procedure we needed to implement this 

algorithm and produce statecharts adhering to the statechart metamodel. This is a 

T2M transformation. In order to do this we used a Java program for transforming the 

liveness property to a standardized textual representation. The latter could be 

automatically transformed to a statechart model based on Eclipse and EMF 

technology as it is described below. 

Rose et al. [14] described an implementation of the Human-Usable Textual 

Notation (HUTN) specification of OMG [11] using Epsilon, a suite of tools for MDE 

for Eclipse. OMG created HUTN aiming to offer three main benefits to MDE: 

─  a generic specification that can provide a concrete HUTN language for any 

model, which is described by a metamodel 

─  the HUTN languages to be fully automated both for production and parsing 

─  the HUTN languages to conform to human-usability criteria 

The Epsilon platform is an implementation of HUTN, which automates the 

transformation process by eliminating the need for a grammar specification by auto 

defining it accepting as input the relevant EMF metamodel (i.e. the one shown in 

Figure 3). This is the main reason for choosing HUTN. In Figure 5, the eclipse project 

for the realization of the Liveness2Statechart transformation is presented. It is a 

simple Java project where the HUTN nature has been turned on (by right-clicking on 
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the project icon on the Package explorer). The input for this transformation is the Gaia 

roles model liveness property in text format, adhering to the grammar presented in §2. 

 

 

Fig. 4. The automatically generated statechart for the personal assistant agent.  

The presented transformation algorithm has been implemented in the java 

language. It transforms the liveness formula of an SRM role to a HUTN file. The 

usage of the HUTN technology also helped a lot in debugging the algorithm as the 

output was in human-readable format. The modeler just has to execute the 

“Liveness2HUTN.java” file in order to create the HUTN representation of the 

statechart model (shown in Figure 5). Then, simply by right-clicking to the HUTN file 

the modeler can generate the statechart model. An extract of this model where the 

XML elements representing the HUTN representation part visible in Figure 5 is the: 

<?xml version="1.0" encoding="UTF-8" ?>  

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg. 

org/XMI" xmlns:IAC="http://mi.parisdescartes.fr/ASEME/ 

metamodels/IAC"> 

<IAC:Node name="open_group_ReadSchedule_or_Request 

ChangeMeeting_or_RequestNewMeeting_close_group" type= 

"OR" label="0.2.1.2.2.2.3" activity="null" />  

<IAC:Node name="GetUserRequest" type="BASIC" 

label="0.2.1.2.2.2.2" activity="null" />  

... 
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Thus, the statechart model has now been initialized with the information available 

in the Gaia roles model and it can be refined in the design phase using, e.g., the 

Sample Reflective Ecore Model Editor of Eclipse.  

 

 

Fig. 5. The Eclipse project for T2M transformation. 

5 Conclusion 

This paper showed how engineers, who use the Gaia methodology for modeling their 

agent-based systems, can implement their agents through the use of statecharts. The 

later allow to define the interactions between the different modules (or capabilities) of 

an agent (i.e. his intra-agent control) in a sufficient detail that can lead to 

implementation. A statechart is a platform independent model (PIM) of the system 

under development, as statecharts can be implemented using a number of existing 

programming languages and CASE tools. The statechart is automatically produced by 

the Gaia liveness property (a set of liveness formulas), which describes the behavior 

of an agent. This transformation is not a straightforward process and it is achieved 

through the following original results: 

• Definition of a grammar for representing a liveness model. 

• Formal definition of a statechart for agent-oriented development. 

• Conception of a recursive algorithm for transforming the Gaia liveness property to 

a statechart. The modeler can make the transformation either manually (using the 

Gaia transformation templates) or automatically using the popular Eclipse IDE. 

The manual transformation is also a valuable result as a developer can transform 

the liveness property to a statechart using any existing CASE tool. The Rhapsody tool 

[5] has been successfully used for implementing the MARKET-MINER agent, a real 

world system [18]. We are currently working in automating the code generation 

process (model to text – M2T) for a popular agent platform, the Java Agent 

Development Framework (JADE). 
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