
Gaia Agents Implementation through Models

Transformation

Nikolaos Spanoudakis
1,2

 and Pavlos Moraitis
2

1Technical University of Crete, Dept of Sciences, University Campus, 73100 Chania, Greece

nikos@science.tuc.gr
2Laboratory of Informatics Paris Descartes (LIPADE), Paris Descartes University,

45 rue des Saints-Pères, 75270 Paris Cedex 06, France

{Nikolaos.Spanoudakis, pavlos}@mi.parisdescartes.fr

Abstract. Gaia is a well-known Agent Oriented Software Engineering (AOSE)

methodology. The emerging Model-Driven Engineering (MDE) paradigm

encourages software modelers to automate the transition of one type of software

model to another and eventually the code generation process. Towards this end

we define a process for transforming the Gaia roles model liveness formulas to

statecharts. This achievement on one hand allows the modeler to work on

detailed agent design and permits, on the other hand, to automatically generate

an agent’s code using any one of the statecharts-based tools in the market.

Keywords: Agent Oriented Software Engineering, Statecharts, Gaia

methodology, Model Driven Engineering

1 Introduction

During the last years, there has been a growth of interest in the potential of agent

technology in the context of software engineering. A new trend in the Agent Oriented

Software Engineering (AOSE) field is that of converging towards the Model-Driven

Engineering (MDE) paradigm. Thus, a lot of well known AOSE methodologies

propose methods and tools for automating models transformations in the meanwhile

proposing metamodels in the modern ecore [1] or MOF [10] formats. Examples of

such methodologies are Tropos [13] and Ingenias [3]. The Gaia methodology [19] is a

popular methodology that, however, does not address the issue of transforming its

design models to code. Efforts in the past have produced some results, however not in

the MDE sense, that is without automating the process.

In this paper we present an automated process for transforming the Gaia roles

model liveness property to a statechart [5]. The latter is a platform independent model

(PIM) of the system to be, a result that is compatible with the Object Management

Group (OMG) Model Driven Architecture (MDA) paradigm [7]. Moreover, the

produced statechart is defined in a standardized format that can be used for defining

new model to text transformations for any desired platform.

2 Nikolaos Spanoudakis and Pavlos Moraitis

This process delivers several original results. The first result is the formal

definition of the syntax of a Gaia liveness formula. Then, we define the statecharts [5]

metamodel based on the ordered rooted tree data structure. Finally, we define a

recursive transformation algorithm from a liveness formula to a statechart. This paper

not only provides these theoretical results but also an implementation using the

Human-Usable Textual Notation (HUTN) specification of OMG [11] and the Eclipse

popular Integrated Development Environment (IDE).

This paper is organized in the following way. In section 2 we present the definition

of the Gaia liveness formula followed by the formal definition of the statechart and its

metamodel in section 3. The transformation algorithm and the technologies needed

for implementing it are presented and discussed in section 4. Finally, section 5

includes conclusions and future work.

2 The Gaia Liveness Formula Definition

The Gaia methodology [19] is an attempt to define a general methodology that it is

specifically tailored to the analysis and design of Multi-Agent Systems (MAS). Gaia

emphasizes the need for new abstractions in order to model agent-based systems and

supports both the levels of the individual agent structure and the agent society in the

MAS development process. MAS, according to Gaia, are viewed as being composed

of a number of autonomous interactive agents that live in an organized society in

which each agent plays one or more specific roles. Gaia defines the structure of MAS

in terms of the role model. The model identifies the roles that agents have to play

within the MAS and the interaction protocols between the different roles. The Gaia

methodology is a three phase process and at each phase the modeling of the MAS is

further refined. These phases are the analysis phase, the architectural design phase

and, finally, the detailed design phase.

The objective of the Gaia analysis phase is the identification of the roles and the

modeling of interactions between the roles found. Roles consist of four attributes:

responsibilities, permissions, activities and protocols. Responsibilities are the key

attribute related to a role since they determine the functionality. Responsibilities are

of two types: liveness properties – the role has to add something good to the system,

and safety properties – the role must prevent something bad from happening to the

system. Liveness describes the tasks that an agent must fulfill given certain

environmental conditions and safety ensures that an acceptable state of affairs is

maintained during the execution cycle. In order to realize responsibilities, a role has a

set of permissions. Permissions represent what the role is allowed to do and, in

particular, which information resources it is allowed to access. The activities are tasks

that an agent performs without interacting with other agents. Finally, protocols are the

specific patterns of interaction, e.g. a seller role can support different auction

protocols. Gaia has operators and templates for representing roles and their attributes

and also it has schemas that can be used for the representation of interactions between

the various roles in a system. The operators that can be used for liveness expressions-

Gaia Agents Implementation through Models Transformation 3

formulas along with their interpretations are presented in Table 1. Note that activities

are written underlined in liveness formulas.

Table 1. Gaia Operators for Liveness Formulas

Operator Interpretation Operator Interpretation

x||y x and y interleaved x.y x followed by y

x
ω
 x occurs infinitely often [x] x is optional

x* x occurs 0 or more times x|y x or y occurs

x+ x occurs 1 or more times

The Gaia2JADE process [9] used the Gaia models and provided a roadmap for

transforming Gaia liveness formulas to Finite State Machine (FSM) diagrams and

then provided some code generation for JADE implementation. It also proposed some

changes to Gaia such as the incorporation of a functionality table, where the activities

were refined to algorithms, and a way to describe simple protocols. However, it did

not cater for parallelism, and it did not produce the FSM diagrams automatically.

The reader can see a Gaia roles model for a role named “personal assistant” in

Figure 1. This role employs seven activities and seven protocols (activities are

underlined in the Protocols and Activities field). In its liveness formula it describes

the order that these protocols and activities will be executed by this role.

The liveness formula grammar has not been defined formally in the literature, thus

it is defined here using the Extended Backus–Naur Form (EBNF), which is a

metasyntax notation used to express context-free grammars. It is a formal way to

describe computer programming languages and other formal languages. The EBNF

syntax for the liveness formula is presented in the following listing, using the BNF

style followed by Russel and Norvig [16], i.e. terminal symbols are written in bold:

liveness → { formula }

formula → leftHandSide = expression

leftHandSide → string

expression → term

 | parallelExpression

 | orExpression

 | sequentialExpression

parallelExpression → term || term || … || term

orExpression → term | term | … | term

sequentialExpression → term . term . … . term

term → basicTerm

 | (expression)

 | [expression]

 | term*

 | term+

 | termω

 | |termω|number

4 Nikolaos Spanoudakis and Pavlos Moraitis

basicTerm → string

number → digit | digit number

digit → 1 | 2 | 3 | …

string → letter | letter string

letter → a | b | c | …

Role: Personal Assistant

Description: This role interacts with a meetings manager role in order to arrange and

negotiate the user’s meetings and with the user through a human-machine interface

in order to get the user’s requests and show him his schedule.

Protocols and Activities: get user request, read schedule, show results, learn user

preference, update user preferences, send change request, receive change results,

send new request, receive new results, receive proposed date, decide response,

send results, receive outcome, update schedule

Responsibilities:

 Liveness:

 personal assistant = (manage meetings. learn user habits)
ω
 || (negotiate

meeting date)
ω

 manage meetings = get user request. (read schedule | request change meeting

| request new meeting). show results

 learn user habits = learn user preference. update user preferences

 request change meeting = send change request. receive change results

 request new meeting = send new request. receive new results

 negotiate meeting date = receive proposed date. (decide response. send

results. receive outcome)+. update schedule

Fig. 1. The Gaia role model of a personal assistant agent.

The reader should note that the Gaia operators have been enriched with a new

operator, the |x
ω
|
n
, with which we can define an activity that can be concurrently

instantiated and executed more than one times (n times).

Figure 1 shows that the functionality of the personal assistant role is described by

the liveness property. Thus, if the liveness formulas are transformed to a computer

program then a large portion of the agent program is complete. However, this is not

possible as there is a lot of information missing. First of all the functionality behind

each activity is obscure. Then, the variables that will determine, e.g. whether the

optional activities will be executed (i.e. an activity in brackets) are missing. This kind

of information can be inserted in a statechart, thus we decided that in order to provide

a design artifact that could lead to code generation we needed to transform the Gaia

liveness formulas to a statechart [5]. However, before defining this transformation we

needed a formal model for the statechart.

Gaia Agents Implementation through Models Transformation 5

3 The Statechart Definition and Metamodel

Statecharts [5] are used for modeling systems. They are based on an activity-chart that

is a hierarchical data-flow diagram, where the functional capabilities of the system are

captured by activities and the data elements and signals that can flow between them.

The behavioral aspects of these activities (what activity, when and under what

conditions it will be active) are specified in statecharts. The fact that the statechart can

capture together the functional and behavioral aspects of a system is its greatest

advantage, as it completely defines a system. This is not true for a single UML model

as a number of different models need to be combined for a complete description of a

system (e.g. a class diagram together with an activity diagram). Thus, statecharts are

ideal for defining systems in a platform independent manner. We intend to use

statecharts in a specific level of abstraction, that of an agent, in order to model the

interactions between its components (or capabilities). The statechart, therefore,

implements the intra-agent control model (IAC) of an agent.

The authors in [5] present the statechart language adequately but not formally.

Several authors have presented formal models for this language; as such an approach

is needed for developing relevant statecharts-based Computer-Aided Software

Engineering (CASE) tools. For example, David et al. [2] proposed a formal model for

the RHAPSODY tool and Mikk et al. [8] for the STATEMATE tool. The first one has

been used as basis for the definition of our statechart as it is the first intended for

object-oriented language implementation (STATEMATE is for C language

development). These models not only formally describe the elements of the statechart;

they also focus on the execution semantics. However, this issue is out of the scope of

this work. It is assumed that, as long as the language of statecharts is not altered, a

statechart can be executed with any CASE tool.

The formal model that is adopted here-in is a subset of the ones presented in the

literature as there are several features of the statecharts not used herein, such as the

history states (which are also defined differently in these works). After formally

presenting the statechart in the following paragraph, we will provide a metamodel in a

common format such as the Eclipse Modeling Framework (EMF) and also discuss

why this is needed.

3.1 Formal Statechart Definition

An ordered rooted tree is a rooted tree where the children of each internal vertex are

ordered [15]. To produce a total order of the vertices of an ordered rooted tree all the

vertices must be labeled. This is achieved recursively as follows:

1. Label the root with the integer 0. Then label its k children (at level 1) from left to

right with 0.1, 0.2, 0.3, …, 0.k.

2. For each vertex ν at level n with label A, label its kν children, as they are drawn

from left to right, with A.1, A.2, …, A.kν.

Thus, A.1 means that A is the parent of A.1. The definition below for the statechart

is inspired by the definition proposed by David et al. [2].

6 Nikolaos Spanoudakis and Pavlos Moraitis

Definition 1. A statechart is a tuple (L, δ) where:

• L = (S, λ, Var, Name, Activity) is an ordered rooted tree structure representing the

states of the statechart.

─ S⊆�* is the set of all nodes in the tree.

─ λ: S�{AND, OR, BASIC, START, END, CONDITION} is a mapping from the

set of nodes to labels giving the type of each node. For l∈S let AND(l) denote

that λ(l)=AND. Similarly OR(l) denotes that λ(l)=OR and the same holds for all

labels. START and END denote those nodes without activity, which exist so

that execution can start and end inside OR-states. BASIC corresponds to a basic

state. A condition state is denoted as CONDITION. START, END, BASIC and

CONDITION nodes are leaves of L.

─ Var is a mapping from nodes to sets of variables. var(l) stands for the subset of

local variables of a particular node l.

─ Name is a mapping from nodes to their names. name(l) stands for the name of a

particular node l.

─ Activity is a mapping from nodes to their algorithms in text format

implementing the processes of the respective states. activity(l) stands for the

algorithm of a particular state that is represented by node l.

• δ ⊆ S × TE × S is the set of state transitions, where TE is a set of transition

expressions.

The following are also defined according to the definitions of David et al. (2003):

Definition 2. Let l an internal vertex of an ordered rooted tree L. We call sons(l) =

{l.x ∈ S|x ∈ �} the children of l

Definition 3. Let l, k two vertices of an ordered rooted tree L such that ∃x∈�, k.x

= l. Then the vertex k is called parent to l and it is denoted as parent(l)

Definition 4. Let l a vertex of an ordered rooted tree L. Then, the ancestors of l are

defined as ancestors(l) = parent(l) ∪ ancestors(parent(l))

3.2 The Statechart Metamodel

Model driven engineering relies heavily in model transformation [17]. Model

transformation is the process of transforming a model to another model. The

requirements for achieving the transformation are the existence of metamodels of the

models in question and a transformation language in which to write the rules for

transforming the elements of one metamodel to those of another metamodel.

In the software engineering domain a model is an abstraction of a software system

(or part of it) and a metamodel is another abstraction, defining the properties of the

model itself. Thus, like a computer program conforms to the grammar of the

Gaia Agents Implementation through Models Transformation 7

programming language in which it is written, a model conforms to its metamodel (or

its reference model). However, even a metamodel is itself a model. In the context of

model engineering there is yet another level of abstraction, the metametamodel, which

is defined as a model that conforms to itself [6].

A transformation that is used for transforming a textual representation to a

graphical model is called a Text to Model (T2M) transformation. The textual

representation must adhere to a language syntax definition usually using BNF. A

liveness formula proposes such a kind of syntax. The graphical model must have a

metamodel. Then, a transformation of the text to a graphical model can be defined.

In the heart of the model transformation procedure is the Eclipse Modeling

Framework (EMF, [1]). EMF unifies Java, XML, and UML technologies, allowing

the modeler to switch between them as they provide the same information in a

different representation. Regardless of which one is used to define it, an EMF model

is the common high-level representation that "glues" them all together.

Ecore [1] is EMF’s model of a model (metamodel). It functions as a

metametamodel and it is used for constructing metamodels. It defines that a model is

composed of instances of the EClass type, which can have attributes (instances of the

EAttribute type) or reference other EClass instances (through the EReference type).

Finally, EAttributes can be of various EDataType instances (such are integers, strings,

real numbers, etc). Figure 2 shows the ecore metamodel in detail.

Fig. 2. The Ecore metamodel (Budinsky et al., 2003).

A similar technology, the Meta-Object Facility (MOF), is an OMG standard [10]

for representing metamodels and manipulating them. There are a number of essential

concepts used in MOF modeling. A Package is used to encapsulate a collection of

related Classes and Associations. Packages can also contain simple type definitions.

Classes exist in the commonly-used sense of the word, describing an object and its

properties. These properties are represented through Attributes and References, which

can be inherited using a multiple-inheritance system. Attributes have a name and a

type. This includes a range of types from basic types such as integers, strings, and

booleans to more complex types such as enumerations, and through to structured

types. In addition, attributes have both upper and lower limits on the number of times

that they can appear within a class instance. An Association is used to represent a

8 Nikolaos Spanoudakis and Pavlos Moraitis

relationship between instances of two classes, each of which plays a role within the

association. Associations can have the additional property of containment; an

association represents a containment relationship if one of the participant classes does

not exist outside the scope of the other. A Class participating in an association can

also contain a Reference to the association. A reference appears much like an

attribute, but reflects the set of class instances that participate in the Association with

the containing class instance.

MOF is older than EMF and it influenced its design. MOF was initially designed

primarily for use with the Common Object Request Broker Architecture (CORBA).

CORBA is an architecture that enables programs, called objects, to communicate with

one another regardless of what programming language they were written in or what

operating system they're running on.

EMF, on the other hand, is a product of the Eclipse project, an open source project

and was intended as a low-cost tool to obtain the benefits of formal modeling and

Java code generation. As a consequence, one could say that EMF took a bottom-up

approach whereas MOF took a top-down approach [4].

However, the EMF meta-model is simpler than the MOF meta-model in terms of

its concepts, properties and containment structure, thus, the mapping of EMF’s

concepts into MOF’s concepts is relatively straightforward and is mostly 1-to-1

translations. EMF is used today by a large open source community becoming a de

facto standard in MDE. Moreover, third parties define MDE tools based on EMF

technology, like the openArchitectureWare (oAW) platform for model-driven

software development. For all these reasons it was decided that the EMF technology

would be used.

The statechart metamodel (see Figure 3) contains nodes and transitions according

to Definition 1. The metamodel defines a Model concept that has nodes, transitions

and variables EReferences. Note that it also has a name EAttribute. The latter is used

to define the namespace of the statechart. The namespace should follow the Java or

C# modern package namespace format (see a sample namespace for the meetings

management system in the next section with the transformations).

The nodes contain the following attributes (followed by the relevant concept name

in the statechart definition):

• name (Name). The name of the node,

• type (λ). The type of the node (one of AND, OR, BASIC, START, END),

• label (label). The node’s label, and

• activity (Activity). The activity related to the node.

Nodes also refer to variables. The Variable EClass has the attributes name and type

(e.g. the variable with name “count” has type “integer”). Finally the transitions have

four attributes:

• name, usually in the form <source node label>TO<target node label>

• TE, the transition expression

• source, the source node label, and,

• target, the target node label.

Gaia Agents Implementation through Models Transformation 9

Fig. 3. The statechart metamodel.

4 The Liveness2Statechart Transformation

The Liveness2Statechart transformation is achieved by using the “Gaia operators

transformation templates” (shown in Table 2) for transforming the process part of the

agent interaction protocol model to a statechart. Table 2 has three columns. The first

depicts a Gaia formula with a certain operator. The second shows how to draw the

statechart relevant to this operator using the common statechart graphic language. The

third shows how the same Gaia formula is transformed to the statechart representation

defined in this paper (as a tree branch).

The tree branch representation (in Table 2) uses grey arrows to connect a father

node to its sons. On the top left of each node the label of the node is shown. The root

node of each branch is supposed to have a label L and the other nodes are labeled

accordingly. The type of each node is written centered in the middle of the node.

Finally, the name of each node is centered in the bottom of each node. The reader

should note that the nodes for the x or y variables of the Gaia formula do not have a

node type. This is because it is possible that they are basic or non-basic nodes. If they

are basic then the node’s type is set to BASIC, otherwise another branch is added with

this node as the root and as the reader can notice all templates set the type of the root

of the branch.

Table 2. Templates of extended Gaia operators (Op.) for Statechart generation

Op. Template Tree Branch

x | y

10 Nikolaos Spanoudakis and Pavlos Moraitis

Op. Template Tree Branch

x*

x
ω

x . y

x+

[x]

|x
ω
|
n

Sx

Sy

Sx

Sx

� n instances

Gaia Agents Implementation through Models Transformation 11

Op. Template Tree Branch

x || y

Sx

Sy

Sx

Sy

A designer can use the Gaia transformation templates to manually transform the

liveness formula to a statechart. Alternatively, he can use an implementation of the

following recursive algorithm for building the statechart automatically (three dots

represent omitted code for space reasons):

Program transform(liveness)

 Var root = 0

 S = S ∪ {root}

 Name(root) = liveness->formula1->leftHandSide

 createStatechart(formula1->expression, root)

End Program

Procedure createStatechart(expression, father)

 Var terms = 0

 For each termi in expression

 terms = terms + 1

 End For

 If terms > 1 Then

 If expression is sequentialExpression Then

 λ(father) = OR

 S = S ∪ {father.1}

 λ(father.1) = START

 Var k=2

 For Each termi in expression

 S= S ∪ {father.k}

 Name(father.k) = termi

 δ = δ ∪ {(father.(k-1), {}, father.k)}

 k = k + 1

 End For

 S = S ∪ {father.k}

 δ = δ ∪ {(father.(k-1), {}, father.k)}

12 Nikolaos Spanoudakis and Pavlos Moraitis

 λ(father.k) = END

 Else If expression is orExpression

 ...

 Else If expression is parallelExpression

 ...

 End If

 For Each termi in expression

 If termi is basicTerm Then

 handleBasicTerm(termi, getNode(father, termi)

 Else

 If termi is of type ‘(‘term’)’ Then

 createStatechart(term, getNode(father, termi))

 Else If (termi is of type ‘[‘term’]’) or (termi is

of type term’*’) Then

 ...

 Else If (termi is of type term’
ω’) or (termi is of

type term’+’) Then

 ...

 Else If termi is of type ‘|’term’
ω|n’ Then

 ...

 End If

 End If

 End For

End function

Function getNode(father, term)

 QueuedList queue

 queue.addLast(father)

 Do While queue.notEmpty()

 elementi = queue.getFirst()

 If Name(elementi) = term Then Return elementi Else

 For each sonj in sons(elementi)

 queue.addLast(sonj)

 End For

 End If

 End do

End function

Function handleBasicTerm(term, node)

 Var isBasic = true

 For each formulai in liveness

 If (formulai->leftHandSide = term) Then

 createStatechart(formulai->expression, node)

 isBasic = false

 End If

Gaia Agents Implementation through Models Transformation 13

 End For

 If isBasic Then λ(node) = BASIC

End function

The program “transform” sets the root label equal to zero and its name equal to the

left hand side of the first liveness formula. Then it calls the “createStatechart”

procedure that takes two arguments. An expression, as it is defined in the Gaia

liveness grammar, and a node (its label) under which it will build the tree.

The “createStatechart” procedure firstly checks whether the expression is a

parallelExpression, an orExpression or a sequentialExpression and adds the relevant

tree branch. Then, the procedure examines each term in the expression. A special

function, the “handleBasicTerm” searches the formulas to find whether the term is a

basicTerm or it appears in the left hand side of a following formula, which in this case

needs to be expanded with the relevant tree branch. This is done by calling again the

“createStatechart” procedure (recursively). Another function is used for this purpose,

the “getNode”. It searches (breadth first search) the tree branch below a node (the

father) for the descendant with a specific name and returns its label. This is needed

because the term’s name is available but in order to add a tree branch the node’s label

is needed as a parameter for the “createStatechart” procedure call. If the examined

term of the expression is a non-basic term then again the relevant tree branch is added

to the statechart.

After applying the transformation algorithm, the statechart (or intra-agent control

model) depicted in Figure 4 is created for the personal assistant liveness property

presented in Figure 1. The reader can see the “negotiate meeting date” OR state

(representing the execution of an interaction protocol) executed in parallel with the

other agent capabilities.

For automating the transformation procedure we needed to implement this

algorithm and produce statecharts adhering to the statechart metamodel. This is a

T2M transformation. In order to do this we used a Java program for transforming the

liveness property to a standardized textual representation. The latter could be

automatically transformed to a statechart model based on Eclipse and EMF

technology as it is described below.

Rose et al. [14] described an implementation of the Human-Usable Textual

Notation (HUTN) specification of OMG [11] using Epsilon, a suite of tools for MDE

for Eclipse. OMG created HUTN aiming to offer three main benefits to MDE:

─ a generic specification that can provide a concrete HUTN language for any

model, which is described by a metamodel

─ the HUTN languages to be fully automated both for production and parsing

─ the HUTN languages to conform to human-usability criteria

The Epsilon platform is an implementation of HUTN, which automates the

transformation process by eliminating the need for a grammar specification by auto

defining it accepting as input the relevant EMF metamodel (i.e. the one shown in

Figure 3). This is the main reason for choosing HUTN. In Figure 5, the eclipse project

for the realization of the Liveness2Statechart transformation is presented. It is a

simple Java project where the HUTN nature has been turned on (by right-clicking on

14 Nikolaos Spanoudakis and Pavlos Moraitis

the project icon on the Package explorer). The input for this transformation is the Gaia

roles model liveness property in text format, adhering to the grammar presented in §2.

Fig. 4. The automatically generated statechart for the personal assistant agent.

The presented transformation algorithm has been implemented in the java

language. It transforms the liveness formula of an SRM role to a HUTN file. The

usage of the HUTN technology also helped a lot in debugging the algorithm as the

output was in human-readable format. The modeler just has to execute the

“Liveness2HUTN.java” file in order to create the HUTN representation of the

statechart model (shown in Figure 5). Then, simply by right-clicking to the HUTN file

the modeler can generate the statechart model. An extract of this model where the

XML elements representing the HUTN representation part visible in Figure 5 is the:

<?xml version="1.0" encoding="UTF-8" ?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.

org/XMI" xmlns:IAC="http://mi.parisdescartes.fr/ASEME/

metamodels/IAC">

<IAC:Node name="open_group_ReadSchedule_or_Request

ChangeMeeting_or_RequestNewMeeting_close_group" type=

"OR" label="0.2.1.2.2.2.3" activity="null" />

<IAC:Node name="GetUserRequest" type="BASIC"

label="0.2.1.2.2.2.2" activity="null" />

...

Gaia Agents Implementation through Models Transformation 15

Thus, the statechart model has now been initialized with the information available

in the Gaia roles model and it can be refined in the design phase using, e.g., the

Sample Reflective Ecore Model Editor of Eclipse.

Fig. 5. The Eclipse project for T2M transformation.

5 Conclusion

This paper showed how engineers, who use the Gaia methodology for modeling their

agent-based systems, can implement their agents through the use of statecharts. The

later allow to define the interactions between the different modules (or capabilities) of

an agent (i.e. his intra-agent control) in a sufficient detail that can lead to

implementation. A statechart is a platform independent model (PIM) of the system

under development, as statecharts can be implemented using a number of existing

programming languages and CASE tools. The statechart is automatically produced by

the Gaia liveness property (a set of liveness formulas), which describes the behavior

of an agent. This transformation is not a straightforward process and it is achieved

through the following original results:

• Definition of a grammar for representing a liveness model.

• Formal definition of a statechart for agent-oriented development.

• Conception of a recursive algorithm for transforming the Gaia liveness property to

a statechart. The modeler can make the transformation either manually (using the

Gaia transformation templates) or automatically using the popular Eclipse IDE.

The manual transformation is also a valuable result as a developer can transform

the liveness property to a statechart using any existing CASE tool. The Rhapsody tool

[5] has been successfully used for implementing the MARKET-MINER agent, a real

world system [18]. We are currently working in automating the code generation

process (model to text – M2T) for a popular agent platform, the Java Agent

Development Framework (JADE).

16 Nikolaos Spanoudakis and Pavlos Moraitis

References

1. Budinsky, F., Steinberg, D., Ellersick, R., Merks, E., Brodsky, S.A., Grose, T.J.: Eclipse

Modeling Framework. Addison Wesley (2003)

2. David, A., Deneux, J., d'Orso, J. : A Formal Semantics for UML Statecharts. Technical

Report 2003-010, Uppsala University (2003)

3. García-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model Transformations for

Improving Multi-agent Systems Development in INGENIAS. In: 10th International

Workshop on Agent-Oriented Software Engineering (AOSE'09), Budapest Hungary (2009)

4. Gerber, A., Raymond, K.: MOF to EMF: there and back again. In: Proceedings of the 2003

OOPSLA workshop on eclipse technology eXchange (eclipse '03), pp. 60--64. ACM Press,

New York (2003)

5. Harel, D., Kugler, H.: The RHAPSODY Semantics of Statecharts (Or on the Executable

Core of the UML). In: Integration of Software Specification Techniques for Applications in

Engineering. LNCS, vol. 3147, pp. 325—354. Springer, Heidelberg (2004)

6. Jouault, F., Bézivin, J.: KM3: A DSL for Metamodel Specification. In: Formal Methods for

Open Object-Based Distributed Systems (FMOODS 2006). LNCS, vol. 4037, pp. 171--185.

Springer, Heidelberg (2006)

7. Kleppe, A., Warmer, S., Bast, W.: MDA Explained. The Model Driven Architecture:

Practice and Promise. Addison-Wesley (2003)

8. Mikk, E., Lakhnech, Y., Petersohn, C., Siegel, M.: On formal semantics of Statecharts as

supported by STATEMATE. In: Proceedings of the second BCS-FACS Northern Formal

Methods Workshop. Springer-Verlag (1997)

9. Moraitis, P., Spanoudakis, N.: The Gaia2JADE Process for Multi-Agent Systems

Development. J. Appl. Artif. Intell. 20(2-4), 251--273 (2006)

10. Object Management Group: Meta Object Facility (MOF) Core Specification (2001)

11. Object Management Group: Human-Usable Textual Notation V1.0 (2004)

12. openArchitectureWare (oAW), http://www.openarchitectureware.org/

13. Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Modeling. In:

Agent-Oriented Software Engineering VI. LNCS, vol. 3950, pp. 167--178. Springer (2006)

14. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: Constructing models with the Human-

Usable Textual Notation. In: 11th International Conference on Model Driven Engineering

Languages and Systems (MoDELS). LNCS, vol. 5301, pp. 249--263. Springer (2008)

15. Rosen H.K. Discreet Mathematics and its Applications. Forth edition, McGraw Hill (1999)

16. Russel, S., Norvig, P.: Artificial Intelligence a Modern Approach. Second Edition, Prentice

Hall (2003)

17. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-Driven

Software Development. IEEE Softw. 20(5), 42--45 (2003)

18. Spanoudakis N., Moraitis, P.: Automated Product Pricing Using Argumentation. In:

Proceedings of the 5th IFIP Conference on Artificial Intelligence Applications &

Innovations (AIAI 2009). Springer (2009)

19. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the Gaia

Methodology. ACM T. Softw. Eng. Meth. 12(3), 317--370 (2003)

