
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

A Method for Testing and Validating
Executable Statechart Models

Tom Mens, Alexandre Decan, Nikolaos I. Spanoudakis

Service de Génie Logiciel, Université de Mons, Belgium

Received: date / Revised version: date

Abstract Statecharts constitute an executable language for modelling
event-based reactive systems. The essential complexity of statechart mod-
els solicits the need for advanced model testing and validation techniques.
In this article we propose a method aimed at enhancing statechart design
with a range of techniques that have proven their usefulness to increase the
quality and reliability of source code. The method is accompanied by a pro-
cess that flexibly accommodates testing and validation techniques such as
test-driven development, behaviour-driven development, design by contract,
and property statecharts that check for violations of behavioural properties
during statechart execution. The method is supported by the Sismic tool,
an open source statechart interpreter library in Python, that supports all
the aforementioned techniques. Based on this tooling, we carry out a con-
trolled user study to evaluate the feasibility, usefulness and adequacy of the
proposed techniques for statechart testing and validation.

1 Introduction

Statecharts were introduced nearly three decades ago by David Harel [29,
30] as a visual executable modelling language. From a formal point of view,
they can be considered as an extension of hierarchical finite state machines
with characteristics of both Mealy and Moore automata. Statecharts (some-
times referred to as behavioural state machines) are part of the UML stan-
dard [2] and constitute a popular modelling notation for representing the
executable behaviour of complex reactive event-based systems. They are
frequently used in industry for the development of real-time systems and

Send offprint requests to:

2 Tom Mens et al.

embedded systems [15,44], relying on commercial tools such as IBM Ratio-
nal’s StateMate and Rhapsody, the Mathworks’ Stateflow, itemis’ Yakindu
Statechart Tools, and IAR Systems’ visualSTATE. There are also multiple
open source frameworks defining domain specific languages (DSLs) based on
statecharts, such as the ATOMPM [47] web-based domain-specific modeling
environment with support for model transformation, and the AMOLA [46]
language targeting the multi-agent systems community. Most of these tools
support visualisation, modification and simulation of statecharts, as well
as code generation from statechart models. The more advanced tools also
provide support for model debugging and model verification.

At the level of source code development, a variety of testing techniques
have found widespread use. These include test-driven development (TDD) [5],
behaviour-driven development (BDD) [41], and design by contract (DbC) [39].
Most of these techniques have not been taken up at design level, however, for
increasing the quality and reliability of behavioural software models. In par-
ticular, it is poorly understood how such techniques can be used for testing
and validating executable statechart models. Indeed, designing statecharts
and their interaction with the environment can be quite complex and error-
prone, partly because of the statechart formalism itself, and partly because
of the complex behaviour that these statecharts are modeling [13].

To address this problem, we propose a method aimed to enhance state-
chart design with such techniques. The method comes with dedicated tool-
ing, in the form of Sismic (a recursive acronym for “Sismic Interactive State-
chart Model Interpreter and Checker”), a modular Python library composed
of a statechart interpreter and associated libraries for testing and valida-
tion of executable statecharts based on the techniques of TDD, BDD, DbC,
and property statecharts that allow to monitor for violations of behavioural
properties during statechart execution. The library is provided as an open
source solution, in order to facilitate its extension by other researchers. It
comes with support for importing and exporting statechart models to and
from external statechart visualisation and editing tools.

The remainder of this article is structured as follows. Section 2 explains
and motivates the techniques of TDD, BDD, DbC and runtime monitoring.
Section 3 presents the proposed method and process for statechart design
and testing. Section 4 explains the tooling that we have developed to sup-
port all the techniques supported by the method. Section 5 and Section 6
illustrate how to use the method and its associated tools by means of an
example. Section 7 evaluates the method and tools through a controlled user
study. Section 8 compares our work with other approaches, and Section 9
concludes.

Testing and Validating Statecharts 3

2 Background

2.1 TDD and BDD

Test-Driven Development (TDD) [5] has become accepted for source code
development thanks to the many available frameworks for automated unit
testing. TDD is often accompanied by so-called user stories, representing in-
formal, natural language descriptions of one or more features of the software
system, written from an end user perspective.

The technique of Behaviour-Driven Development (BDD) allows to bridge
the gap between user stories and executable functional tests. BDD extends
TDD with acceptance test or customer test-driven development practices as
found in extreme programming [41,50]. BDD allows users to specify repre-
sentative scenarios and their expected outcomes using Gherkin1, a domain-
specific natural language that has been created specifically to support BDD.
It enables users to describe the intended software behavior without need-
ing to detail how that behavior is or will be implemented. Scenarios and
their outcomes are described as sequences of steps expressed as domain-
specific natural language sentences using Gherkin-specific keywords such as
Given, When, Then, And and But. Developers can then define mapping code
for these steps, in order to enable the automatic execution of each of these
scenarios as executable functional tests. As such, the technical gap between
developers and users is reduced.

User stories and BDD would provide a very good basis for coming up
with relevant functional tests for executable statecharts, assuming that de-
velopers are available to write the necessary mapping code to execute the
scenarios as functional tests over the statechart.

2.2 DbC

Design by Contract (DbC) was introduced more than two decades ago by
Bertrand Meyer and popularised through the object-oriented programming
language Eiffel [39,21]. It is often used to support the interaction and compo-
sition of software components (e.g., methods, functions, classes or packages)
in complex systems based on the interface specifications of these compo-
nents. DbC prescribes that software components should have formal, precise
and verifiable interface specifications, which extend the ordinary definition
of abstract data types with preconditions, postconditions and invariants.
The term contract stresses the obligation of the programmer to respect the
conditions of the code she is using.

The use of DbC has been shown to increase the reliability of executable
code. It has been used with success to enable automated debugging with
AutoFix, a tool that uses contracts to fix faults in general-purpose software
[43]. Other programming languages also provide support for DbC. For Java

1 See http://docs.behat.org/en/v2.5/guides/1.gherkin.html

http://docs.behat.org/en/v2.5/guides/1.gherkin.html

4 Tom Mens et al.

programs for example, DbC is supported by JML, a formal behavioural
interface specification language [36].

OCL, the constraint language that is part of the UML standard, offers
the possibility to specify preconditions, postconditions and invariants on
UML models [1]. It has been used to specify contracts on class diagrams
[8] supported by the USE tool [25], and has recently been extended to sup-
port behavioural models such as protocol state machines [28] and sequence
diagrams [26]. We are not aware, however, of any DbC tool that provides
integrated support for specifying and checking structural properties during
the runtime execution of statecharts.

Just like contracts can be defined on source code components at dif-
ferent levels of granularity, it is useful and desirable to express contracts
at different levels on an executable statechart. Contracts could be defined
on individual states (either basic or composite states) to express how these
states are supposed to interact with other states. Contracts could be ex-
pressed on concurrent regions of a state to specify how these regions are
supposed to synchronise with each other. Finally, contracts could be speci-
fied on transitions to verify that any action executed by a transition satis-
fies some invariants. Once defined, contracts can be monitored continuously
while the statechart is being executed.

2.3 Runtime Verification

Any mechanism for monitoring observable behaviours or properties over an
executing system is considered runtime verification [37]. It is also known
under the names runtime monitoring or dynamic analysis. The technique is
considered lightweight, avoiding the complexity of formal verification tech-
niques by working directly with the actual system (as opposed to a more
abstract formal representation of the system) and analyzing only a limited
number of execution traces. It can be regarded as a testing approach, since
it only checks for violations of properties at runtime, but cannot make any
guarantees that the properties will hold for all possible system runs. Tech-
niques and formalisms to monitor system properties during its execution
include regular expressions, temporal logics, state machines and rule-based
programming [23].

In the context of our work, the system being monitored will be an ex-
ecutable statechart. Drusinsky proposed TLCharts, an extension of state-
charts allowing to specify Temporal Logic assertions and monitor violations
of these assertions at runtime [16,17]. While the usefulness of such logic
formalisms seems without doubt, their usability has been criticised, and dif-
ferent attempts have been made to increase the usability by non-logicians
[18,11,6]. We will therefore explore an alternative approach, using the full
expressive power of statecharts to monitor properties over statecharts.

Testing and Validating Statecharts 5

3 Process

The main contribution of this work is to provide a process with associated
tool support for the phases of statechart design and statechart testing. State-
chart testing enables to validate the design before its integration during the
actual system implementation.

We define our process as a method fragment [12,33] to be used by the
designer in her specific software or systems development projects involving
executable statechart modeling. Method fragments act as reusable method-
ological parts that can be flexibly used as puzzle pieces, allowing to accom-
modate the process to the specificities of any project, in function of the
current needs and available competencies. Since the method fragment we
propose will focus on the design phase only, we assume that a preceding
analysis phase has already been carried out, and that the statechart design
(and associated testing) phase will be typically followed by an implementa-
tion and deployment phase.

Our method fragment is defined using the SPEM 2.0 language for rep-
resenting software methodologies [42] as a series of phases containing tasks
that output work products that are required as input for tasks in later
phases. Fig. 1 provides a high-level view of the different involved phases.
Fig. 2 shows the different work products created, used and modified through-
out these phases.

Analysis Phase Design Phase Testing Phase

Are there any
errors?

More functionality
is needed?

yes
no

yes
no

Fig. 1 SPEM 2.0 activity diagram describing the proposed process.

The method fragment assumes that in the overall software methodology
there is an Analysis Phase that outputs a component diagram defining the
different components of the system, and user stories expressing how the
system should behave. For systems that require user interaction we also
assume that a UI mockup is created during the analysis phase.

Using these work products as input, the statechart Design Phase will
commence. The key work product created during the design phase is the
statechart, a pivotal work product for any statechart-based system design.
The Design Phase is followed by a Testing Phase, providing different types
of test results as output. If any errors or failures are reported in the test
results, the process iterates over the design phase to address these errors. If
all errors have been fixed, a new development iteration can start from the
analysis phase to implement more functionality, if needed. At this point,

6 Tom Mens et al.

sssssssssssssssss

�����sssss�s�����

����s�s�s�s�ss����ss�s�ss����s

sss�s�s��sss

��ss��s�s

s
s
��

s�

ssssssssss

sss�
��ssss�s

ss�s�ss�����sssss

�ss�ss
���ss�s��
s

ssssss�

�sss�s

�s�s�sss

��ss��s�ssssssssssssss s
sssssssssssss

Fig. 2 SPEM 2.0 work products dependencies diagram.

the development team can decide to hook an implementation or integra-
tion phase to continue to develop the product – knowing that the designed
statechart has been validated.

In the next subsections we detail the statechart design and testing phase
in terms of their specific tasks and work products.

3.1 Design Phase

Fig. 3 shows all tasks of the statechart Design Phase. Tasks at the same
horizontal level can take place concurrently. Fig. 4 complements this view
by providing for each task, its input and output work products along with
the role achieving the task.

The following tasks are part of the design phase:

– Define Statechart is undertaken by a Software Engineer. He reads the
user stories (defining the behavior of the system) and the component
diagram and produces the statechart that captures this behavior. This
task is pivotal in the design phase as it unlocks many other tasks.

– In Enrich Statechart with Contracts, the Software Engineer follows a
DbC approach to augment the statechart with contracts composed of
preconditions, postconditions and invariants over states and transitions.

– Define Scenarios is carried out by a Tester. He is in charge of converting
the free text user stories into BDD scenarios.

– In Implement Scenario Steps, a Programmer needs to write the mapping
code from the steps used in scenarios to statechart test primitives. This

Testing and Validating Statecharts 7

sssssssssssssssss sssssss�s�ss���ss sssssss��ss�ssss

�sss��s�s�ss���sss�ss�s�ssss��ss sssssss�ssss�ssss 		s	s	ssss��ss�ssss�ssss

Fig. 3 SPEM activity diagram describing the statechart Design Phase. Black
rectangles indicate fork or join nodes. Figure created using the Eclipse Process
Framework (EPF) Composer, a tool for producing customizable software pro-
cesses.

code will be used during the testing phase to check the scenarios over
the statechart.

– Define Properties is concerned with defining behavioural properties over
the system. It can be desirable to express functional properties of the in-
tended behaviour, for example in terms of the events that are consumed
and sent by a particular component. Such properties can be verified
dynamically during the execution of the component. The Software En-
gineer relies on the component diagram along with the requirements and
her domain knowledge to define these properties.

– Define Unit Tests involves writing unit tests for testing the statechart in
a later phase. It is carried out by a Programmer, since it requires knowl-
edge of the programming language used by the unit testing framework.

3.2 Testing Phase

The statechart Testing Phase relies on the output work products of the
Design Phase to test and validate statecharts using a range of different
techniques: dynamic monitoring of contracts and properties, running unit
tests and scenarios over the statechart. Fig. 5 presents the tasks of this
phase and the details of each task in terms of roles and work products:

8 Tom Mens et al.

rrrrrrrrrrrrrrrrr �rrrrrr�rr�rrrrr� �rrrrrrrrrrr��rrr rrrr��rrrrrr��rrrr

rrr�r�rrrrr�r�

�r�rrr �rrrrrrr�rrrrrr��rrrrr��rr �rrrrrr	rrrr�r�r�
��
r�rrrrr�rrrrrrr

rrr��

�r��rrrrrr

�rrrrr�

	�rrr

rrrrrr�

�rr�rrr�r

rrrrr��rrr�

�r��rrrrrr

�rrrrr�

	�rrr

rrrrrr�

rrrrr��rrr

rrrrr��rrr

	�rrr

rrrrrr�

rrrrr��rrr

	�rrr

rrrrrr�

�r��rrrrrr

�rrrrr�

r�rrrrrr�

rrrrr��rrr

�r��rrrrrr

�rrrrr�

	�rrr

rrrrrr�

	rrrr

�r�r�

r�rrrrrr�

rrrrr��rrr

�r��rrrrrr

�rrrrr�

rrr��r

r��rrrr

�r�r

Fig. 4 SPEM 2.0 activity detail diagram for the design phase. Every task is
connected to input and output work products along with the role of the person
executing the task.

– The task Integrate External Components to Statechart allows the Pro-
grammer to realise interfaces to external components that need to par-
ticipate in the testing process. If there are no external systems or user
interfaces available this task is not needed. Hence, this task can be used
for testing just the validity of the statechart in isolation (by simulating

Testing and Validating Statecharts 9

ttt

�tt�ttt�t�tttt�ttt�ttt�t

��tttttttt�tt ��tt�t�tt�tttt

rrrrrrrrrr
���rrrr�r����rr�r��

�rr�r�r�����r�

�r�r

rr�

r��rr �r��r����
r���

rr�r
�
�

�����

r�rr�r�� �����
����
r����

���r
��

��

�rr�r�r���

��rrrrr

���rr�r
r��

�r����rr�r��

�rr�r�r���

���rr�r
r��

�r����rr�r��

�rr�r�r���

rrr�rr���

�r�r

rr��

�r�r

rr�

���r
��

��

��
r���

�r�����

rrr�rr���

�r�r

rr��

�r�r

rr�

r�rr�r�

�r���

�r����r�

�r�r

r�rr�r��

r���

�r�����

rrr�rr���

�r�r

rr��

�r�r

rr�

����

r���

����

r���

�r�����

Fig. 5 SPEM activity diagrams for the statechart testing phase.

the external system events), or during a later implementation phase with
all external systems connected.

– Manually test through UI can be done by a Tester to manually explore
and validate the functionality of the statechart by means of an external
user interface that has been created for this purpose, and connected to
the statechart.

– Run Scenarios can be done by the Tester, by executing the scenarios
(by means of the provided steps mapping code) with a BDD tool and
analysing the scenarios test results. In more complex cases, this task
may involve selecting which scenarios to execute.

10 Tom Mens et al.

– Run Unit Tests can be done by the Tester, by providing the already
created unit tests to the test runner of a unit testing framework and
analysing the unit test results. In more complex cases, this task may
involve selecting which tests to execute.

It is important to stress that, during the three tasks carried out by the
Tester, all statechart contracts and properties that were specified as part of
the design phase, will be dynamically monitored for violations. Hence, the
test results will also include reports of any such violations.

4 Tooling

The process presented in Section 3 needs to be supported by automated
tools in order to be of any practical use. Such tooling is required, because
designing and testing statecharts can be quite hard due to their complexity
and because there are many subtleties of the statechart formalism. Hence,
it is difficult to formally guarantee conformance of a statechart to its in-
tended requirements. Our method proposes different ways to test and vali-
date statecharts, by using the techniques of unit testing, BDD, and dynamic
monitoring of contracts and properties expressed over statecharts.

To automate and support the proposed method we developed the Sismic
tool. Sismic is a Python library for interpreting and testing statecharts.
Version 0.26 has been used for this article. It is distributed through the
Python Package Index (pypi.python.org/pypi/sismic). Its documenta-
tion can be found on sismic.readthedocs.io. Its source code is avail-
able on github.com/AlexandreDecan/sismic under the open source li-
cence LGPLv3, adhering to the principles of open science and open research.
It allows other researchers to use and extend the tool, and it facilitates in-
tegrating received feedback into newer versions of the tool.

The high-level architecture of Sismic is summarised in Fig. 6. The dif-
ferent code components and work products of this architecture will be pre-
sented in the following subsections. All parts of the architecture included in
the shaded gray box labeled sismic have been developed specifically for the
purpose of statechart simulation, testing and validation. For some of these
activities, Sismic makes use of third-party libraries (e.g. behave for BDD)
or external tools (e.g. PlantUML and ASEME for model visualisation and
editing). Input and output files used by Sismic are shown in yellow note
boxes.

4.1 Importing and exporting statechart models

Internally, Sismic encodes statechart models as objects. Experienced Python
developers may choose to directly create and manipulate statecharts in this
way through the model API that has been provided for this purpose.

pypi.python.org/pypi/sismic
sismic.readthedocs.io
github.com/AlexandreDecan/sismic

Testing and Validating Statecharts 11

Fig. 6 Architectural overview of the Sismic tool framework

In practice however, it is much more comfortable to create statechart
models using either a text-based markup editor or an external visual editor,
and import these models through the I/O API provided for this purpose.
Upon import of a statechart file, the syntactic correctness of the statechart
is checked automatically.

Currently, Sismic allows importing and exporting statechart expressed
using the human-readable YAML markup language, and has experimental
support for importing and exporting statechart diagrams expressed in the
AMOLA language [46] through the ASEME IDE2 statechart editor [48].
Sismic also provides export support to PlantUML3 in order to visualise
statecharts, benefiting from its automatic layout features. This is how we
generated Fig. 13 for example. Other exchange formats can be easily ac-
commodated.

4.2 Statechart interpreter

The core of Sismic is composed of its statechart interpreter. In order to
execute a statechart model, a statechart interpreter must be instantiated.
This interpreter relies on an action code evaluator to execute any action
code contained in the statechart specification. By default, action code and
guards (conditions) are expressed using regular Python code. Other action
languages can be supported if a language interpreter is provided for them.

The statechart interpreter offers a discrete, step-by-step, and fully ob-
servable simulation engine, supporting the UML 2 statechart concepts and

2 aseme.tuc.gr
3 plantuml.com

aseme.tuc.gr
plantuml.com

12 Tom Mens et al.

semantics. By default, the statechart interpreter uses an inner-first/source-
state and run-to-completion semantics (a.k.a. macro-step, super-step or
big step semantics [32,31,20]). Since the UML specification [2] deliber-
ately leaves the order in which transitions are to be executed undefined
we needed to make some implementation choices. The interpreter processes
eventless transitions before transitions containing events, and consumes in-
ternal events before external ones. However, Sismic also provides modular
support for providing other semantics.

Parametrized events are supported as well. Event parameters can be
accessed by the statechart through the attributes of the event variable.
For example, if an event heating set has a parameter power, its value can
be accessed using event.power in action code, guard and contracts of any
transition triggered by heating set.

When simulating statecharts, simulated time (logical time) and wall-
clock time are supported. By default, the statechart interpreter uses simu-
lated time. Several time-related predicates (e.g., after, idle) can be used
in guards, actions and contracts of statecharts.

4.3 Using the API to execute statecharts

Sismic’s statechart interpreter can be used to control statecharts program-
matically. The code fragment of Fig. 7 provides an example of how to do
this, on the basis of a microwave controller statechart that will be used as
running example in Section 5 and Section 6 (see Fig. 13).

1 from s i sm i c . i o import import from yaml
2 from s i sm i c . i n t e r p r e t e r import I n t e r p r e t e r
3
4 s t a t e cha r t = import from yaml (f i l e p a t h=’microwave . yaml ’)
5 i n t e r p r e t e r = In t e r p r e t e r (s t a t e cha r t)
6
7 i n t e r p r e t e r . execute once ()
8 i n t e r p r e t e r . queue (’ door opened ’)
9 i n t e r p r e t e r . execute once ()

10 i n t e r p r e t e r . time += 2
11 i n t e r p r e t e r . execute ()
12
13 print (’ Active s t a t e s : ’ , i n t e r p r e t e r . c on f i gu r a t i on)
14 print (’ Timer value : ’ , i n t e r p r e t e r . context [’ t imer ’])
15 print (’Power value : ’ , i n t e r p r e t e r . context [’ power ’])

Fig. 7 Code fragment of a statechart simulation with Sismic.

After instantiating a statechart interpreter with the statechart specifica-
tion loaded from a YAML file (line 4), the statechart is put in its initial con-
figuration by calling the execute once() method (line 7). The queue(...)

method stores a new door opened event in the interpreter’s event queue
(line 8). Invoking the execute once() method again (line 9) processes the
event and returns a MacroStep instance. As illustrated in Fig. 8, if a macro

Testing and Validating Statecharts 13

step processes a triggered transition, it includes every consecutive stabilisa-
tion step (including all steps needed to enter nested states, or to enter the
configuration of a history state). Line 10 increases the simulated time by
modifying the interpreter’s time variable. Line 11 executes the statechart
as long as a MacroStep is returned by the interpreter. Line 13 displays the
currently active states of the statechart, and lines 14 and 15 display the
values of the statechart’s local variables timer and power.

4.4 Runtime monitoring of statecharts

A key feature of Sismic’s statechart interpreter is its built-in support for
monitoring for violation of contracts and undesirable runtime properties. To
this extent, the traditional macro- and micro-step semantics of statechart
execution is augmented with some additional steps. This is illustrated in
Fig. 8, which depicts (a deliberately simplified version of) the semantics
of the statechart interpreter. For ease of readability we use the statechart
notation to illustrate all steps that are followed by the interpreter when a
statechart receives an event that triggers a transition. The “normal” seman-
tics of statechart execution is shown by the yellow states.

The red states (with white font) in Fig. 8 augment the statechart seman-
tics with runtime support for contract monitoring. They indicate where and
when the contract checking (of states and transitions) intervenes to support
DbC. This depends on whether it concerns pre- and postconditions or invari-
ants. State preconditions are checked before the state is entered (i.e., before
executing its entry actions, if present), state postconditions are checked af-
ter the state is exited (i.e., after executing its exit actions, if present), and
state invariants of each active state are checked at the end of each executed
macro step (corresponding to a stable running configuration of the state-
chart). Transition preconditions are checked before processing the transition
(and before executing its optional transition action), transition postcondi-
tions are checked after processing the transition (and after executing the
optional transition action), and transition invariants are checked twice: be-
fore and after processing the transition. Hence, transition invariants can be
considered as syntactic sugar for conditions that are both preconditions and
postconditions.

The statechart interpreter also provides support for monitoring proper-
ties at runtime. To avoid a statechart designer needing to learn a different
(formal) language for expressing such properties, these properties can be
expressed using the full expressive power of the statechart notation itself.
Such properties are therefore referred to as property statecharts. Examples
of such property statecharts are provided in Section 5.2.

Since these properties need to monitor a running statechart, their be-
haviour has to be expressed in terms of the events that are consumed or
sent, or in terms of the states that are entered or exited by the statechart
being monitored. To this extent, the statechart interpreter will raise specific

14 Tom Mens et al.

consume event e
from queue

notify
step started

notify
event consumed

(e)

verify all state invariants notify step ended

Micro Step

select transition(e, source, target)

exit state

execute
exit

action

collect
and queue

raised events

update
active

configuration

verify
state

postconditions

notify
state exited

(state)

process transition

verify transition
preconditions
and invariants

execute
transition

collect
and queue

raised events

verify transition
postconditions
and invariants

notify
transition processed
(e, source, target)

enter state

verify
state

preconditions

execute
entry
action

collect
and queue

raised events

update
active

configuration

notify
state entered

(state)

process queued event

get event
e from
queue

send
event e

notify
event sent

(e)

[queue empty and no other state to enter]

[queue empty]

[other state to exit]

[no other state to exit]

[other state to enter]

[queue not empty and no other state to enter]

[queue not empty]

[not
stable]

[stable]

Fig. 8 Sismic’s macro-step semantics, adding support required for dynamic mon-
itoring of contracts and properties.

meta-events about the execution of the statechart. The blue states in Fig. 8
(e.g., notify event consumed) show which meta-events are created during
statechart execution. Some meta-events exhibit additional parameters: for
example, when a state is entered, meta-event state entered has a parameter
state whose value is the name of the state being entered. Similarly, meta-
event event consumed has a parameter event that corresponds to the event
being consumed.

Meta-events are automatically sent during statechart execution to all
bound property statecharts. To bind a property statechart, it suffices to
provide this property statechart to the bind property statechart method
of an interpreter. These property statecharts monitor for property violations
based on those meta-events, following a “fail fast” approach: a failure will
be reported as soon as the monitored behaviour leads to a final state in one
of the bound property statecharts.

Due to the meta-events being considered and the “fail-fast” approach
adopted by the statechart interpreter for their verification, property state-
charts are mainly intended to check for the presence of undesirable behavior
(safety properties), i.e., properties that can be checked on a (finite) prefix

Testing and Validating Statecharts 15

of a (possibly infinite) execution trace. While it is technically possible to
use property statecharts to express liveness properties (something desirable
eventually happens), this would require additional code for their verification
since liveness properties are not supported “as is” by Sismic.

4.5 Support for unit testing and BDD scenarios

As for any other library, unit tests can be written for Sismic using its API
to manipulate the statechart and hence, the unit tests themselves have to
be expressed in the language supported by that framework (in our case,
Python).

To evaluate BDD scenarios, Sismic provides a command-line interface
(CLI) called sismic-bdd, which takes as input feature files containing sce-
narios expressed in the Gherkin language.

5 Running Example - Statechart Design Phase

To illustrate how Sismic supports the Design Phase of the method proposed
in Section 3.1 we use a microwave oven controller as running example. The
example is inspired by Gomaa [27]. Subsection 5.1 presents the work prod-
ucts (resulting from the Analysis Phase) that will be used as input for the
Design Phase. Each of the remaining subsections correspond to one of the
tasks of the Design Phase.

5.1 Analysis Phase Work Products

Component diagram. We assume that a microwave oven contains different
interacting components controlled by a main Controller component through
event-based communication (Fig. 9). The Controller receives events from the
Door to signal when it is opened or closed, and from a WeightSensor to de-
tect whether a food item is placed in, or removed from the oven. The User
Input component represents the user interface. It contains three subcompo-
nents: a Cooking component providing buttons that trigger events to start
or stop cooking, and a Power and Timer component allowing to increment,
decrement or reset the heating power and cooking time, respectively. The
Controller uses two integer variables power and timer to keep track of the
desired heating power and remaining cooking time. It uses a Display com-
ponent to inform the user, by displaying a character string on the screen.
A Clock component sends a tick event to the Controller every second. The
Controller is able to switch on or off an indicator light controlled by the
Lamp component. It also controls a Heating component (the magnetron de-
vice emitting the microwaves) by setting its power, and turning it on or
off. It instructs the Turntable component to start or stop turning. A Beeper
component can be used to make sound signals by sending it a beep event.

16 Tom Mens et al.

<<component>>
User Input

<<component>>
Door

 door_opened()
 door_closed()

<<component>>
Control ler

-power : integer
-timer : integer

<<component>>
Lamp

 lamp_on()
 lamp_off()

<<component>>
Power

 power_inc()
 power_dec()
 power_reset()

<<component>>
Heating

 heating_on()
 heating_off()
 set(power : integer)

<<component>>
Turntable

 turntable_start()
 turntable_stop()

<<component>>
Timer

 timer_inc()
 timer_dec()
 timer_reset()

<<component>>
Display

 display_clear()
 display_set(s : string)

<<component>>
Cooking

 cooking_start()
 cooking_stop()

<<component>>
WeightSensor

 item_removed()
 item_placed()

<<component>>
Beeper

 beep(d : integer)

<<component>>
Clock

 tick()

Visual Paradigm Standard(Tom Mens(University of Mons))

Fig. 9 Component diagram for a microwave oven. Each component lists the
events it is able to send to a connected component. Some events are parameterised
(e.g., display set(s:string) and beep(d:integer)). The arrows on the component con-
nectors indicate in which direction events are sent. Internal variables used only
by the Controller component are preceded by a - sign.

UI mockup. Fig. 10 presents the design of a very simple user interface
mock-up, illustrating how the user is supposed to manually control the
microwave oven’s components. The panel at the right represents icons and
buttons for the Display, Beeper and User Input components, as well as a
button to simulate the opening of the Door. The left panel shows the status
of the Lamp, Turntable, WeightSensor and Door components. It also contains
a button to close the Door.

Fig. 10 Simple user interface mockup for a microwave oven simulation.

Testing and Validating Statecharts 17

User stories. Any device that is supposed to interact with a user should
have a set of functional requirements representing the intended functionality
from the user point of view. This functionality can be expressed informally in
terms of user stories expressing the intended outcome of typical interaction
of the user with the device. These semi-structured textual user stories are
provided by a domain expert who does not necessarily have experience with
software modelling. A partial example of such a user story for the microwave
oven is presented in Fig. 11.

“As a user, I want to be able to open and close the oven door to place
my food in the oven. I want to be able to adjust the cooking time and
heating power by pressing buttons. I want to use buttons to start and
stop the cooking in order to control when the cooking takes place. I
want the oven lamp to be on while the door is open so that I can see
where to put my food. I also want the lamp to be on during cooking
so that I can monitor the heating proces. Because I do not want to be
exposed to dangerous microwaves, I don’t want any microwaves to be
emitted while the door is open.”

Fig. 11 Example of a user story for a microwave oven.

5.2 Define Properties

Considering the user story of Fig. 11, it is the task of a software engineer
to express and enforce the safety criterion that microwaves should not be
emitted while the oven door is open. It is the Heating component that is in
charge of emitting microwaves. The Controller component implicitly assumes
that, whenever a heating on event is sent, the microwaves start emitting, and
whenever a heating off event is sent, the microwaves stop emitting.

The software engineer can express property statecharts that monitor the
execution of the Controller component for violations of the safety criterion.
The two property statecharts of Fig. 12 encode this expected behaviour.
Their visual representation is automatically generated by the tooling pre-
sented in Section ??. The first property statechart monitors if the oven
stops emitting microwaves while the door is opened. This is ensured by
checking that the heating off event is sent by the Controller sufficiently
rapidly (i.e., before the next tick is consumed). Monitoring that heating off
event is sent by the controller can be done by checking that a meta-event
event sent is received by the property statechart, and that its parameter
event has an attribute name equal to “heating off” (encoded by the guard
[event.event.name == ‘heating off’]). If a tick has been consumed be-
fore heating off is sent by the Controller, the property statechart will go to
its final state, indicating a violation of the property.

18 Tom Mens et al.

Stop emitting microwaves while the door is opened

heating is on while door is opened

heating is onheating is off

event consumed
[event.event.name == 'timer_tick']

event sent
[event.event.name == 'heating_off']

event sent [event.event.name == 'heating_off']

event consumed
[event.event.name == 'door_opened']

event sent [event.event.name == 'heating_on']

Heating does not start if door is opened

door is openeddoor is closed
event sent

[event.event.name == 'heating_on']

event consumed
[event.event.name == 'door_closed']

event consumed
[event.event.name == 'door_opened']

Fig. 12 Two property statecharts expressing the safety criterion that microwaves
should not be emitted while the oven door is open. They monitor the Controller
component for violations during its execution.

The second property statechart of Fig. 12 verifies that heating (i.e.,
emission of microwaves) does not happen while the door is still open. If the
door is open and a heating on event is sent before the door is closed again,
the property statechart will go to its final state.

Fig. ?? illustrates another property statechart that is unrelated to the
microwave’s satefy criterion. Instead, it serves to check if heating is prop-
erly controlled by the microwave controller, by verifying that the events
heating on and heating off are strictly alternating.

heating_on and heating_off must be strictly alternating

heating is onheating is off

event sent
[event.event.name == 'heating_on']

event sent
[event.event.name == 'heating_off']

event sent [event.event.name == 'heating_off']

event sent [event.event.name == 'heating_on']

Fig. 13 Property statechart verifying the alternating behaviour of heating.

5.3 Define Statechart

It is the task of a software engineer to model executable statecharts whose
event-based behaviour respects the functionality specified by the require-
ments, compatible with the events defined in the component diagram and
the behaviour defined by the user stories.

Testing and Validating Statecharts 19

Microwave controller

controller

entry / power = POWER_DEFAULT; timer = 0
cooking_stop / power = POWER_DEFAULT; timer = 0

inv: not sent('heating_on') or active('cooking mode')
inv: timer >= 0
inv: 0 <= power <= MAXPOWER

door opened

entry / send('lamp_on')
exit / send('lamp_off')

door closed

closed with item

exit / send('display_clear')
timer_inc / timer = timer + 1;

send('display_set', text='TIMER: %d' % timer)
timer_dec / timer = timer - 1;

send('display_set', text='TIMER: %d' % timer)
timer_reset / timer = 0;

send('display_set', text='TIMER: %d' % timer)

program mode

power_reset /
power = POWER_DEFAULT;
send('display_set', text='POWER: %d' % POWER_VALUES[power])

power_inc /
power = power + 1;
send('display_set', text='POWER: %d' % POWER_VALUES[power])

power_dec /
power = power - 1;
send('display_set', text='POWER: %d' % POWER_VALUES[power])

opened with itemopened without item

closed
without

item

cooking mode

entry /
send('heating_set', power=POWER_VALUES[power]);
send('heating_on'); send('lamp_on'); send('turntable_start')

exit /
send('heating_off'); send('lamp_off'); send('turntable_stop')

timer_tick / timer = timer - 1;
send('display_set', text='REMAINING: %d' % timer)

pre: timer > 0
inv: timer >= 0
inv: power == __old__.power
post: received('door_opened') or timer == 0

ready

inv: timer > 0

not ready

item_removed

item_placed

door_closed door_openeddoor_closed door_opened

[timer == 0] /
send('beep', number=3);

send('display_set', text='DONE')

[timer == 0]

[timer > 0]

cooking_start

Fig. 14 Statechart modelling the executable behaviour of the Controller compo-
nent.

20 Tom Mens et al.

Fig. 13 specifies the design of the Controller component as an executable
statechart. The visual representation used in the figure is automatically gen-
erated by the tooling presented in Section 4. The used action language is
Python. The statechart assumes the presence of three variables that repre-
sent the set of possible power values (expressed in Watt) and the default
and maximum power of the microwave oven. They are initialised as follows:

1 POWERVALUES = [300 , 600 , 900 , 1200 , 1500]
2 POWERDEFAULT = 2 # 900 Watts
3 MAXPOWER = 3 # 1200 Watts

The statechart’s behaviour depends on whether the door is opened or
closed, as well as on whether an item has been placed in the oven for heating.
When the door is closed with an item inside the oven, the user can set two
internal variables of the statechart: the cooking timer (through the Timer
component interface) and the requested heating power (in the program mode
state, by using the Power component interface). The user will be informed
of the timer and power values through the Display component. As soon as
a value for the timer has been set, the Controller can start cooking in the
cooking mode state (when event cooking start gets triggered). Every second
(i.e., every time a tick is received from the Clock component), the remaining
time will be decreased until cooking is finished. Cooking can be cancelled
by pushing the stop button through the Cooking component (triggering
the cooking stop event), which will reset the timer. This is achieved by the
internal transition defined on the top-level controller state. Cooking can
be paused by opening the door during cooking (door opened event). After
closing the door (door closed event), cooking can be resumed by pushing the
start button again (cooking start event).

5.4 Enrich Statechart with Contracts

As motivated in Section 2, it is desirable to apply DbC to executable
statecharts, by expressing and checking contracts on states and transitions.
Fig. 13 provides some examples of useful contracts enriching the Controller
statechart. They are defined on the controller state, the ready state and the
cooking mode state respectively.

Keywords pre:, post: and inv: are used to represent preconditions,
postconditions and invariants, respectively. The notation old is used to
refer to the old value of a variable (e.g., old .power). Contracts can rely
on a range of useful predicates. For example, active(state) is used to
check if state is in the active configuration of the statechart, sent(event)
verifies if a particular event has been sent during the current step, and
received(event) verifies if a particular event has been received during
the current step.

The contract on the root state controller imposes several invariants. The
invariant not sent(‘heating on’) or active(‘cooking mode’) asserts
that heating on events can only be sent while residing in the cooking mode

Testing and Validating Statecharts 21

state. This provides an alternative way of partly monitoring the microwave
safety criterion. The other invariants verify the accepted range of values for
the statechart’s local variables timer (that should not have negative values)
and power (whose integer value should range between 0 and some fixed
constant MAXPOWER).

The contract on the ready state expresses an invariant timer > 0. The
contract on the cooking mode state has one precondition that cooking time
should be strictly positive. It also has two invariants: cooking time cannot go
below zero; and power value should not be changed while being in cooking
mode. Finally, it has one postcondition that cooking can only be interrupted
by opening the door or by reaching 0 seconds of remaining cooking time.

These contract specifications can be used to reveal conceptual errors
in the statechart specification by monitoring the statechart’s execution for
contract violations.

5.5 Define Unit Tests

Unit tests provide a straightforward way of testing the intended statechart
behaviour. Python developers can write unit tests for statecharts by relying
on Python’s built-in unittest library (or any other library providing support
for unit testing), combined with Sismic’s API for executing statecharts.
After loading and initialising the Controller statechart, and executing a se-
quence of events, one can check whether the statechart behaves as expected
using the usual assertion methods offered by the unit testing framework
(e.g., assertEqual, assertNotEqual, assertNotIn, . . .). For example, one can
test whether the statechart resides in a particular state, whether it has sent
or received a particular event, and whether its internal variables contain a
specific value.

Fig. 14 illustrates two simple unit tests for the Controller statechart. The
first test of Fig. 14 (lines 12-19) partially verifies the oven’s safety criterion
of not emitting microwaves while the door is open. The second test (lines
21-25) verifies that the internal timer variable increases when timer inc is
received.

Running unit tests in an automated way allows designers to verify if
the statechart respects the intended behaviour, as specified by the require-
ments. Such unit tests can use the full power of a programming language to
express complex tests. However, it assumes statechart designers to be fluent
in the programming language that is used to express the unit tests, and
requires them to know Sismic’s API . This is not necessarily the case, since
domain experts may not have a profound knowledge of the programming
language details of how to specify and run unit tests. Hence, the need to
use both a modelling language (for expressing statecharts) and a program-
ming language (for writing unit tests) introduces an unnecessary technical
gap. It goes against the main principles of software modelling, which aims
at hiding the accidental complexity and technical details of the underlying
programming language.

22 Tom Mens et al.

1 import un i t t e s t
2 from s i sm i c . i o import import from yaml
3 from s i sm i c . i n t e r p r e t e r import I n t e r p r e t e r
4
5 class MicrowaveTests (un i t t e s t . TestCase) :
6 def setUp (s e l f) :
7 with open (’ microwave . yaml ’) as f :
8 sc = import from yaml (f)
9 s e l f . oven = In t e r p r e t e r (sc)

10 s e l f . oven . execute once ()
11
12 def t e s t n o h e a t i n g when doo r i s n o t c l o s e d (s e l f) :
13 s e l f . oven . queue (’ door opened ’ , ’ i t em placed ’ , ’ t ime r i n c ’)
14 s e l f . oven . execute ()
15 s e l f . oven . queue (’ c o ok i n g s t a r t ’)
16 for s tep in i t e r (s e l f . oven . execute once , None) :
17 for event in s tep . s en t ev en t s :
18 s e l f . assertNotEqual (event . name , ’ heat ing on ’)
19 s e l f . a s s e r tNot In (’ cooking mode ’ , s e l f . oven . c on f i gu r a t i on)
20
21 def t e s t i n c r e a s e t im e r (s e l f) :
22 s e l f . oven . queue (’ door opened ’ , i t em placed ’ , ’ doo r c l o s ed ’)
23 s e l f . oven . queue (10 ∗ [’ t ime r i n c ’])
24 s e l f . oven . execute ()
25 s e l f . a s s e r tEqua l (s e l f . oven . context [’ t imer ’] , 10)

Fig. 15 Example of Python unit tests for the Controller statechart.

5.6 Define Scenarios and Implement Scenario Steps

To avoid needing to code tests programmatically, the technique of BDD
allows to bridge the gap between informal user stories (such as the one
shown in Fig. 11) and executable scenarios expressed using the Gherkin
language. This allows the domain expert to express scenarios in a domain-
specific natural language, and only requires the knowledge of a few specific
Gherkin keywords for their writing. Fig. 15 provides a concrete but partial
example of such scenarios.

In order to be able to execute scenarios, a Python developer needs to
write code defining the mapping from the actions and assertions expressed as
natural language sentences in the scenarios (using specific keywords such as
given, when, and or then) to Python code that manipulates the statechart.
Sismic already provides a set of predefined statechart-specific steps that
can be used in scenarios, such as “Given I send event {name}” or “Then
event {name} should be fired”.

While these predefined steps should be sufficient to manipulate the
statechart, it is sometimes more intuitive to use domain-specific steps to
write scenarios. For instance, the domain-specific step “Given I open the

door” corresponds to the action of sending an event door opened to the
statechart. The mapping from this domain-specific step to the action of
sending a door opened event to the statechart could be defined using plain
Python code that accesses Sismic’s interpreter, as illustrated by the follow-
ing code fragment:

Testing and Validating Statecharts 23

Feature : Cooking

Scenar io : S ta r t and stop cooking
Given I open the door
And I p lace an item in the oven
And I c l o s e the door
And I p r e s s i n c r e a s e t imer button 5 times
And I p r e s s i n c r e a s e power button
When I p r e s s s t a r t button
Then heat ing turns on
When I p r e s s stop button
Then heat ing turns o f f

[. . .]

Feature : L ight ing

Scenar io : Lamp i s on when door i s open
When I open the door
Then lamp turns on
When I c l o s e the door
Then lamp turns o f f

Scenar io : Lamp i s on whi le cooking
Given I open the door
And I p lace an item in the oven
And I c l o s e the door
And I p r e s s i n c r e a s e t imer button 5 times
When I p r e s s s t a r t button
Then lamp turns on

[. . .]

Feature : Sa fe ty Cr i t e r i on

Background : Put food and prepare f o r cooking
Given I open the door
And I p lace an item in the oven
And I c l o s e the door
And I p r e s s i n c r e a s e t imer button 5 times

Scenar io : No heat ing when door i s not c l o s ed
Given I open the door
When I p r e s s s t a r t button
Then heat ing does not turn on

Scenar io : Opening door i n t e r r up t s heat ing
Given I p r e s s s t a r t button
And 3 seconds e lapsed
When I open the door
Then heat ing turns o f f

[. . .]

Fig. 16 Scenarios (expressed in Gherkin language) describing part of the in-
tended functionality of a microwave oven.

24 Tom Mens et al.

1 from behave import given
2
3 @given (’ I open the door ’)
4 def open the door (context) :
5 return context . i n t e r p r e t e r . queue (’ door opened ’)

Alternatively, this domain-specific step can be implemented more easily
as an alias of predefined step “Given I send event door opened”. To do
so, Sismic’s API provides two convenient helpers to map new steps to pre-
defined ones, namely map action and map assertion. Using these helpers,
one can easily implement the domain-specific steps of Fig. 15, as illustrated
by the following code fragment:

1 from s i sm i c . bdd import map action , map asser t ion
2
3 map action (’ I open the door ’ ,
4 ’ I send event door opened ’)
5 map action (’ I p lace an item in the oven ’ ,
6 ’ I send event i t em placed ’)
7 . . .
8 map asser t ion (’ Heating turns on ’ ,
9 ’ Event heat ing on i s f i r e d ’)

10 map asser t ion (’ Heating does not turn on ’ ,
11 ’ Event heat ing on i s not f i r e d ’)

6 Running Example - Statechart Testing Phase

This section revisits our running example to explain how the Statechart Test-
ing Phase (presented in Section 3.2) can be carried out in a semi-automated
way based on the Sismic tool presented in Section 4. Each of the following
subsections correspond to one of the tasks of the Statechart Testing Phase,
summarised in the use case diagram of Fig. 16.

Sismic

test statechart design

monitor properties

monitor contracts

run scenarios

run unit tests

manually test through UI

Tester

include

include

Fig. 17 Use case diagram summarising the tasks of the Statechart Testing Phase.

As shown in Fig. 16 there are three complementary ways of testing state-
charts: through an external UI, by running unit tests, or by running sce-
narios. Independently of which of these techniques is being used (preferably

Testing and Validating Statecharts 25

all of them), the statechart interpreter will also continuously monitor for
violation of contracts and property statecharts.

6.1 Monitor contracts

Sismic’s statechart interpreter supports run-time monitoring of contract vi-
olations. Unless if explicitly instructed to disable contract checking, the in-
terpreter monitors all contract conditions during statechart execution. This
implies that contracts are monitored by default when running unit tests or
BDD scenarios. Contracts are specified directly as part of the statechart
description (as illustrated in Fig. 13). Contracts can be specified using the
action language supported by the action code evaluator (Python by de-
fault), and can use a range of useful predicates. If a contract is violated, a
PreconditionError, PostconditionError or InvariantError is raised.

6.2 Monitor properties

Sismic’s statechart interpreter provides built-in support for verifying prop-
erty statecharts such as the ones of Fig. 12 and Fig. ??. To monitor prop-
erty statecharts at runtime, it suffices to bind them to the interpreter using
its bind property statechart method. Property statecharts are automatically
monitored by the sismic-bdd command-line interface if they are provided
using the --properties parameter.

During the execution of the statechart, the interpreter will monitor
for property violations by checking if the property statechart arrives in
a final state. As soon as this happens, the interpreter raises a Property-

StatechartError. It is up to the statechart designer to decide how to cope
with this violation (e.g., by executing appropriate exception handling code).

6.3 Run unit tests

Running unit tests that make use of Sismic’s API, such as those shown in
Fig. 14, is straightforward. Developers can use their favorite unit testing
framework to run the unit tests. For example, one could use Python’s built-
in unittest library in the usual way, as illustrated in Fig. 17.

$ python −m un i t t e s t te s t s microwave . py

Ran 2 t e s t s in 0 .089 s
OK

Fig. 18 Result of running the unit tests on the Controller statechart.

26 Tom Mens et al.

6.4 Manually test through UI

An intuitive way of validating the behaviour of a statechart design is by
exploring its behaviour by means of a simply GUI (such as the one of Fig. 18)
that directly interacts with its associated statechart. To achieve this, one
needs to bind the statechart interpreter to the event handler of the GUI,
and to instruct specific UI actions (such as pressing a button) to send events
to the statechart interpreter or vice versa. The GUI shown in Fig. 18 has
been implemented using Python’s tkinter library. We refer the interested
reader to Sismic’s online documentation for more details on how to integrate
statecharts with external Python code.

Fig. 19 GUI for interacting with the Controller statechart (implemented in
Python with tkinter).

Exploring the executable statechart behaviour through this GUI will
allow a tester to manually discover conceptual errors. For example, trying
to decrease the timer too much (by means of the timer - button) will result
in a violation of the invariant timer >= 0 on state controller because the
action associated to event timer dec in state closed with item decreases the
value of timer (that was initialised to 0 by the entry action of controller)
to −1. As a consequence, the interpreter raises an InvariantError, whose
output is presented in Fig. 19.

This contract violation corresponds to a typical out of range error. It
can be solved easily by adding a guard [timer > 0] to the event-action pair
timer dec / timer = timer - 1 defined on state closed with item in Fig. 13. The
guard will prevent timer from being decreased if its value is already 0. In a
similar way, guards should be added to the events power inc and power dec
defined on state program mode to avoid violations of invariant 0 <= power
<= MAXPOWER.

Testing and Validating Statecharts 27

s i sm i c . except i ons . Invar i antEr ro r : Invar i antEr ro r
Object : CompoundState (’ c o n t r o l l e r ’)
Asse r t i on : t imer >= 0
Conf igurat ion : [’ c o n t r o l l e r ’ , ’ door c losed ’ , ’ c l o s ed with item ’ ,

’ program mode ’ , ’ not ready ’]
Step : Step@0 (

Event (’ t imer dec ’) ,
[Trans i t i on (’ c o n t r o l l e r ’ , None , event=’ t imer dec ’)] , > [] , < [])

Context :
− POWERVALUES = [300 , 600 , 900 , 1200 , 1500]
− POWERDEFAULT = 2
− MAXPOWER = 3
− power = 2
− t imer = −1

Fig. 20 Example output produced upon violation of a statechart contract.

6.5 Run scenarios

Assume that the scenarios of Fig. 15 are stored in .feature files, and that
a mapping file steps.py has been defined containing the code required to
map the natural language sentences of these scenarios to Python code that
manipulates the statechart. The sismic-bdd command-line interface can
then consecutively run each scenario contained in each feature file on the
statechart (stored in file microwave.yaml). The result of the execution will
be a summary of all executed scenarios and encountered errors (if any), as
shown in Fig. 20.

$ s i smic−bdd microwave . yaml
−−f e a t u r e s cooking . f e a tu r e l i g h t i n g . f e a tu r e s a t e f y . f e a tu r e
−−s t ep s s t ep s . py

Feature : Cooking

Scenar io : S ta r t and stop cooking
Given I open the door
. . .
When I p r e s s stop button

Asse r t i on Fa i l ed : Invar i antEr ro r
Object : Bas i cState (’ cooking mode ’)
Asse r t i on : power == o l d . power
. . .

. . .

Fa i l i n g s c ena r i o s :
cooking . f e a tu r e : 3 Star t and stop cooking

2 f e a t u r e s passed , 1 f a i l e d , 0 skipped
5 s c ena r i o s passed , 1 f a i l e d , 0 skipped
28 s t ep s passed , 1 f a i l e d , 1 skipped , 0 undef ined
Took 0m0.130 s

Fig. 21 Result of running the BDD scenarios on the Controller statechart.

The “Start and stop cooking” scenario (see Fig. 15) causes a violation
of a contract during the execution of the step “When I press stop button”.

28 Tom Mens et al.

Indeed, the cooking stop event that is sent to the statechart when this step
is executed triggers the internal transition of the root state controller. The
execution of the action power = POWER DEFAULT of the transition results in
a modification of the value of the internal variable power, and thus in a
violation of the invariant power == old .power specified for the cooking
mode state.

It is up to the Software Engineer to decide to either forbid resetting
the power variable, or to weaken the state invariant of cooking mode to
allow changing the power variable when a cooking stop event is received,
e.g., power == old .power or received(‘cooking stop’).

7 Evaluation

To evaluate the proposed method and the usefulness and usability of the
proposed techniques for validating and testing statecharts, we conducted a
controlled user study using the Sismic tool presented in Section 4.

7.1 Experimental Setup

The aim of the study was to evaluate:

– The usefulness of three of the proposed techniques for testing and val-
idating statecharts, namely BDD, DbC, and dynamic monitoring for
violations of property statecharts. We did not evaluate the unit testing
technique, because we do not consider it as a new contribution and we
did not expect all participants to have sufficient programming experience
in Python unit test frameworks.

– The usability of the proposed implementation of the techniques in the
Sismic tool.

Thirteen persons between 22 and 34 years old were selected to take part
in the study based on convenience sampling. All participants were already
familiar with the statechart formalism and all had a higher education degree
(3 master students, 6 PhD students, and 4 postdoc researchers).

Each participant was handed out a questionnaire containing the in-
structions for the experiment. For reproducibility purposes, the full ques-
tionnaire and set of answers of each participant can be found on https:

//github.com/ecos-umons/sismic-validation.
After responding to a set of preliminary questions, participants were re-

quired to install Sismic on their machines. No particular installation prob-
lems were encountered. The actual experiment started from a simplified
version of the microwave oven, for which the participants were first asked
to understand and test its behaviour. Next they were asked to extend this
functionality in a test-driven way, using the method, techniques and tools
presented in this paper. To help in this activity, participants were provided
with the following information at the outset of the experiment:

https://github.com/ecos-umons/sismic-validation
https://github.com/ecos-umons/sismic-validation

Testing and Validating Statecharts 29

– A simplified version of the GUI of Fig. 18 to simulate the oven’s be-
haviour.

– A textual description (YAML file) and visual rendering (similar to Fig. 21)
of the statechart of the oven controller.

– An explanation of how the GUI interaction (e.g. button presses) has
been mapped to statechart events.

– Executable BDD scenarios (expressed in Gherkin) for the oven’s be-
haviour.

– Steps files (in Python) expressing the mapping of the scenarios to in-
structions for the statechart interpreter.

– An example of a property statechart.

controller
entry: timer = 0

door opened

door closed
timer_inc / timer = timer + 1
timer_dec / timer = timer - 1
timer_reset / timer = 0

cooking mode
entry / send('heating_on')
timer_tick / timer = timer - 1

program mode

[timer == 0] /
send('heating_off');

send('beep', number=3)
cooking_start
[timer > 0]

door_opened door_closed

Fig. 22 Statechart of a simplified microwave oven controller.

The experiment was composed of 9 successive tasks (T1 to T9). As il-
lustrated in the rightmost boxplot of Fig. 22, the total experiment took
between 58 and 338 minutes (median value of 162), depending on the par-
ticipant. With a few exceptions, the tasks increased in complexity, reflected
by an increasing time required to carry them out.

T1 T2 T3 T4 T5 T6 T7 T8 T9
0

50

100

D
ur

at
io

n
(in

 m
in

ut
es

)

Total
0

100

200

300

Fig. 23 Boxplots showing the duration of each task (blue) and in total (green).

30 Tom Mens et al.

Tasks T1 to T4 were devised to get acquainted with the provided example
and files. During these tasks the participants were expected to play the role
of a Tester who has not been involved in the statechart design but is required
to test and validate the statechart. The tasks were the following:

T1 corresponds to task Manually test through UI of the Testing Phase of
the proposed process. Participants were asked to get familiar with the
provided GUI, and to use it to discover possible problems in the oven
behaviour.

T2 is a preparatory task to make the participants familiar with the Gherkin
language and the provided scenarios.

T3 corresponds to task Run Scenarios of the Testing Phase of the pro-
posed process. Participants were expected to play the role of a Tester
who is unfamiliar with the statechart design but is required to test the
statechart behaviour on the basis of the provided scenarios.

T4 is a preparatory task to make the participants familiar with the textual
and visual notation of the provided statechart.

Tasks T5 to T9 were designed to give the participants hands-on experi-
ence with the proposed techniques. This time, the participants play the role
of a Software Engineer. The tasks were the following:

T5 aims at applying a full iteration over the statechart design and testing
phase, focusing on the DbC technique. The participant finds herself at
the position where new requirements need to be added to an existing
(and previously tested) statechart. She starts by carrying out the task
Enrich Statechart with Contracts to ensure that the timer value should
never be negative and never exceed one hour. Next, the participant ap-
plies the Manually test through UI task to detect errors in the statechart
design. Based on these errors she carries out the task Define statechart to
make the statechart behaviour compatible with the added contract. The
participant iterates until she is confident that the statechart is correctly
defined.

T6 aims at applying another iteration over the statechart design and test-
ing phase, focusing this time on the BDD technique. The participant is
asked to add lamp functionality to the oven behaviour. To do so, she
firsts carries out tasks Define Scenarios and Run Scenarios over the
statechart. Based on the scenario test results, she carries out the task
Define statechart to make the statechart behaviour compatible with the
new scenarios. The participant iterates until she is confident that the
statechart is correctly defined.

T7 provides more scenarios regarding lamp functionality to the participant.
The participant needs to follow a similar process as in the previous task
until she is confident that the statechart is correctly defined.

T8 aims at applying a full iteration over the statechart design and testing
phase, focusing on the technique of property statecharts. First, partic-
ipants are given the first property statechart depicted in Fig. 12 and
iterate over the tasks Define statechart, Manually test through UI and

Testing and Validating Statecharts 31

Monitor properties until they are confident that the statechart does not
violate this property. Next, they are expected to carry out task Define
properties to define the second property statechart of Fig. 12 and to
iterate until they are confident that the statechart under test does not
violate this property.

T9 aims at adding weight sensor functionality to the microwave oven, using
all provided testing techniques. The participants have to define and run
new scenarios for this functionality, and ensure that all existing contracts
and properties remain satisfied while adding this new functionality. To
do so, they use the Manually test through UI and Run Scenarios tasks,
with both implicitly rely on Monitor properties and Monitor contracts.

At the end of each task, participants were asked to respond to a series of
questions, some following a Likert rating scale, and others being open-ended
in order to allow us to receive more detailed feedback. The questions aimed
at assessing the usefulness and usability of the three proposed statechart
testing and validation techniques. We present the analysis results of each
technique separately below. We summarise the responses to each Likert-
scale question in figures (e.g., Fig. 23) that combine a bar chart with a
boxplot showing the minimum, first quartile, median, third quartile, and
maximum values. In addition, a red vertical dashed line shows the mean
value.

7.2 Evaluation of BDD

At the outset of the experiment, most participants indicated that they were
either unaware of BDD, or that they were knowledgeable about the tech-
nique but never used it before (Fig. 23). During the experiment, the partic-
ipants were asked to run existing BDD scenarios, as well as to provide and
test more scenarios while extending the statechart with more functionality.
At the end of the experiment, at least 9 out of 13 participants responded
that they were either very or extremely likely to use the BDD technique
for the purpose of supporting statechart creation (9 participants), verifica-
tion (9 participants) and modification (11 participants), respectively.

Fig. 24 shows that, after having read BDD scenarios for the provided
example, most participants found them to be very or extremely easy to
understand, and easy or very easy to specify themselves. Fig. 25 (left)
shows that participants were very or extremely confident that the oven
controller satisfied the provided scenarios. After executing the scenarios
with sismic-bdd their confidence increased even more, on average (Fig. 25
right).

Overall, participants were very positive about the BDD approach. For
example, one participant found them “useful for defining high-level tests,
even non-programmers (eg. the client) can write them.” Another partici-
pant answered that “it is really user-friendly as there is no need to learn
some specific language and we can just read the scenarios like user stories.”

32 Tom Mens et al.

I don’t know what this is
I know it but never used it

I use it occasionally
I use it regularly

0

3

6

9

12

Not at all
Slightly

Moderately
Very

Extremely

0

3

6

9

12

Fig. 24 Participant familiarity with BDD before the experiment (left), and like-
lihood of using BDD during modification of existing statecharts after the experi-
ment (right).

Not at all
Slightly

Moderately
Very

Extremely

0

3

6

9

12

Very difficult
Difficult

Easy
Very easy

0

3

6

9

12

Fig. 25 Understandability (left) and ease of specification (right) of BDD scenar-
ios.

Not at all
Slightly

Moderately
Very

Extremely

0

3

6

9

12

Much lower
Lower

About the same
Higher

Much higher

0

3

6

9

12

Fig. 26 Confidence in the specified BDD scenarios before their execution (left)
and increase of confidence after their execution (right).

Related to the expressiveness, one participant believed the natural specifi-
cation language to be “suitable enough to describe most of the possible sce-
narios.” Finally, one participant responded that “even for ‘easy’ changes
in the statecharts, related scenarios helped me to validate the correctness of
my work.”

From the negative side, some participants complained about the ver-
bosity, lack of scalability and lack of exhaustiveness. For example, one par-
ticipant found it “hard to be exhaustive while specifying tests.” Another one
asked “Does it scale up to complexity with more complex use cases?” A
third one answered that “Using human-readable functional scenarios is too

Testing and Validating Statecharts 33

verbose. The real behaviour of the scenario is hidden behind the peculiarities
of the ‘human readable’ language used.”

7.3 Evaluation of DbC for statechart monitoring

At the outset of the experiment, most participants were knowledgeable
about DbC, but only 3 participants had actually used it (Fig. 26 left).
During the experiment, participants were asked to add new contracts to
an existing statechart, to monitor the statechart behaviour with these con-
tracts, and to modify the contracts while extending the statechart with new
functionality. At the end of the experiment, at least 9 out of 13 participants
responded that they were either very or extremely likely to use DbC
for the purpose of creating (10 participants), verifying (10 participants) or
modifying (9 participants) statecharts respectively.

I don’t know what this is
I know it but never used it

I use it occasionally
I use it regularly

0

3

6

9

12

Not at all
Slightly

Moderately
Very

Extremely

0

3

6

9

12

Fig. 27 Participant familiarity with DbC before the experiment (left), and likeli-
hood of using DbC during modification of existing statecharts after the experiment
(right).

Fig. 27 shows that most partipicants were very or extremely convinced
about the usefulness of contract specification and monitoring during state-
chart design, and they found the implementation as provided by Sismic to
be convenient or very convenient.

Not at all
Slightly

Moderately
Very

Extremely

0

3

6

9

12

Very inconvenient
Inconvenient

Convenient
Very convenient

0

3

6

9

12

Fig. 28 Usefulness of statechart contracts (left), and convenience of their imple-
mentation in Sismic (right).

34 Tom Mens et al.

7.4 Evaluation of Property Statecharts

We did not ask participants about previous familiarity with the technique
of property statecharts, as this technique was newly proposed for Sismic.
During the experiment, the participants were asked to check the statechart
for property violations on the basis of a property statechart that was pro-
vided to them. They were also asked to add and monitor another property
statechart representing a different property.

Very difficult
Difficult

Easy
Very easy

0

3

6

9

12

Very difficult
Difficult

Easy
Very easy

0

3

6

9

12

Fig. 29 Understandability (left) and ease of designing property statecharts
(right).

Fig. 28 shows that most participants (10) found property statecharts to
be easy or very easy to understand. On average, participants found it less
easy to write property statecharts themselves. 5 out of 13 participants even
found this difficult or very difficult. At the end of the experiment, most
participants found property statecharts to be very useful or better (Fig. 29,
left). Despite their perceived difficulty, 8 out of 13 participants responded
that they were very likely to use it in the future for modifying existing
statecharts.

Not at all
Slightly

Moderately
Very

Extremely

0

3

6

9

12

Not at all
Slightly

Moderately
Very

Extremely

0

3

6

9

12

Fig. 30 Usefulness of property statecharts (left) and likelihood of using property
statecharts during modification of existing statecharts (right).

Testing and Validating Statecharts 35

7.5 Discussion

The controlled user study ended with an appreciation of the usefulness of
each evaluated technique for testing and validating statecharts, and the ease
of use of its implementation in Sismic. The received responses provide ini-
tial evidence that BDD scenarios and runtime monitoring of contracts and
property statecharts are all beneficial during statechart design. Most partic-
ipants indicated that they were (very) likely to use each of these techniques
in the future for the purpose of creating new statecharts, or for verifying or
modifying existing ones.

It is worthwhile to note that the large majority of the participants had
never used BDD or DbC before participating in the study. Most of them
also did not have a formal methods background. Despite this, they did not
have a big problem in applying the proposed approaches for the purpose of
statechart testing.

The complementarity of the statechart testing and validation techniques
was highlighted by the participants in their responses. On the one hand, the
ability of runtime monitoring of contracts and property statecharts were
appreciated by one participant “because it can capture several paths”: the
properties and assertions that are expressed by property statecharts and
contracts are verified at runtime, regardless of the followed execution path.
Nevertheless, as indicated by another participant, it “requires a large num-
ber of tests to be useful”. On the other hand, a participant found BDD
scenarios to be “suitable enough to describe most of the possible scenarios”,
but agreed that it is “hard to be exhaustive while specifying tests”. Indeed,
BDD scenarios only test one execution path at a time, and being exhaus-
tive would require a very large, even infinite number of scenarios. A similar
remark could be made about the expressiveness of statechart contracts. Be-
cause they are defined on individual states, it is not possible to use them
to express behavioural properties or invariants that involve visiting multi-
ple states. Another limitation in expressiveness is caused by the absence
of some kind of “memory”, preventing contracts to express the temporal-
ity or causality required for some properties. Contracts should therefore
be considered as a complementary technique to the mechanism of property
statecharts. This discussion reveals the need of providing and combining a
range of different and complementary techniques for testing and validating
statecharts, as proposed by our method and associated tooling.

The implementation of Sismic that was used for the experiment did
not yet provide any means for visualising statecharts. Being aware of this
possible limitation, we assessed its effect on the ease of reading, designing
and modifying statecharts. Fig. 30 and Fig. 31 reveal a slight tendency of
participants preferring a visual over a textual representation. One of the
participants commented that “generally speaking the choice would depend
on the person using it” and we “see benefit in providing both (or rather,
not removing the textual option given the availability of a visual editor)”.
We have taken into account this valuable remark, and provided support for

36 Tom Mens et al.

visualising statecharts using PlantUML, and editing statecharts graphically
using the ASEME IDE.

Not at all
Slightly

Moderately
Very

Extremely

0

3

6

9

12

Not at all
Slightly

Moderately
Very

Extremely

0

3

6

9

12

Fig. 31 Readability of a visual (left) or textual (right) statechart representation.

Very difficult
Difficult

Easy
Very easy

0

3

6

9

12

Very difficult
Difficult

Easy
Very easy

0

3

6

9

12

Fig. 32 Ease of designing a statechart using a visual (left) or textual (right)
representation.

7.6 Threats

The controlled study suffers from several threats to validity. Therefore, the
findings should merely be used as anecdotal evidence of the usefulness of
the proposed process and techniques.

As a first threat to validity, the number of participants was fairly low,
making it difficult to generalise the findings. Secondly, the selection of the
participants based on convenience sampling introduced an inevitable bias:
all participants were either students or researchers. The educational back-
ground of the participants may have played a role in the evaluation, and
practitioners or company employees involved in statechart design might have
another opinion.

In order to use the proposed method and Sismic tooling, a certain
amount of programming experience is desirable, due to the fact that Sismic
is a library as opposed to a full-fledged visual modeling environment. All
selected participants had some amount of programming practice in Python

Testing and Validating Statecharts 37

(ranging between less than 1 year and more than 5 years), and their self-
assessed proficiency with Python ranged from poor to good.

Another threat relates to the complexity of the tasks that the partici-
pants were asked to carry out. Given the limited amount of available time,
the examples and tasks provided to them were relatively simple. Hence, we
cannot generalise the findings to more realistic designs that are likely to be
more complex.

Because of the fairly low number of participants, our study did not
include a control group. As a consequence, we cannot make any claims on
how the proposed techniques compare to other techniques (or using none
at al) for statechart testing and validation. In follow-up work, we plan to
evaluate the actual impact of using the proposed techniques and tools on the
quality of statechart designs, as well as on the productivity of the designers
and testers.

8 Related Work

Related tools. Many tools exist for specifying executable statecharts and
generating code from them (e.g., StateMate, Rhapsody, Stateflow, Yakindu,
visualSTATE, and many more). Most of these tools are commercial, and of-
fer a complete modelling environment. Sismic differs from this in two ways.
First of all, it is provided as a library to facilitate its use as part of other ap-
plications. Secondly, it is provided as a fully documented and modular open
source research prototype, so that it can be used freely as a platform for
carrying out research experiments. While many tools (or plugins for them)
provide support for test-driven design, we are not aware of any tool provid-
ing the combination of testing techniques provided by Sismic. Within the
open source realm, two tools are nevertheless worthwhile mentioning. Pa-
pyrus (www.eclipse.org/papyrus/), combined with Moka, is an integrated
modelling environment in Eclipse supporting simulation and execution of
UML models. It does not provide built-in support for statechart testing as
in Sismic, but plug-ins could be developed to achieve this. AutoFOCUS 3
(af3.fortiss.org) is an integrated open source modelling tool that sup-
ports requirements analysis, simulation and testing of models, formal model
checking and verification, architectural design and optimisation of software
and hardware components, and design space exploration [3]. While being
very complete, it is different from Sismic in that the behavioural models
are expressed as finite state automata rather than full-fledged hierarchical
statecharts.

Unit testing of statechart models. Dietrich et al. [14] applied unit testing
to UML statecharts, and implemented it in a model simulation tool called
Syntony. Test cases were defined using UML sequence diagrams, provid-
ing scenarios that are verified over the statechart under test. The Yakindu
statechart tool for Java (www.statechart.org) also provides support for

www.eclipse.org/papyrus/
af3.fortiss.org
www.statechart.org

38 Tom Mens et al.

unit testing using SCUnit, a framework that supports writing tests over
statecharts, and running these tests with the JUnit testing framework.

BDD for statechart modelling. We found very little related work on the
use of BDD at a modelling level. Lazar et al. [35] proposed bUML, a tool
to combine BDD with model-driven development based on a specific UML
profile, and compliant with the fUML action language. While the authors
propose a visual UML syntax for expressing BDD scenarios, they only apply
it to planning and monitoring of project progress, rather than using it for
testing behavioural models like UML statecharts, as is the case in Sismic.

DbC for statechart modelling. At the level of UML models, DbC has
mainly be used for class diagrams. Cabot [8] used the UMLtoCSP tool
to transform such contracts into a constraint satisfaction problem, that is
fed to a constraint solver. Gogolla implemented support for validating such
contracts through the USE tool [25]. This tool has been extended with con-
tract support for protocol state machines [28] and sequence diagrams [26].
Cariou et al. [9] applied contracts at the metamodel level to verify at run-
time whether the statechart execution semantics is respected. Cimatti et al.
[10] used component contracts to specify the behaviour of interacting com-
ponents, and combined this with a temporal logic framework to formally
verify the contracts using the OCRA tool and the NuSMV symbolic model
checker. It has a plugin for the AutoFOCUS3 and the CHESS modelling
tool.

Recently, the technique of smart contracts has emerged as a way to spec-
ify programs that enforce the application of rules to govern transactions [13],
to safeguard contractual clauses [34], and to define quality of service (QoS)
characteristics (e.g., performance, availability, security) [7]. For example,
smart contracts have been proposed for supporting cryptocurrency proto-
cols [13,34], as well as executable Service Level Agreements (SLAs) for the
smart grid [7]. The proposed mechanism of property statecharts can be used
as a way to realise smart contracts. As an example, assume that there is
an agent A that signs a Service Level Agreement (SLA) with agent B. The
SLA dictates that whenever A receives a request from B, then A must reply
within 1 hour. The statecharts in Fig. 32 depict the behaviour of agent A and
the property statechart monitoring the agent’s SLA. The agent receives re-
quests and if they are made by affiliates it processes them and subsequently
responds. The property statechart monitoring the agent’s SLA with agent
B starts in the waiting state. If a request from agent B is received by agent
A and more than one hour passes before a response has been issued to B
then the contract is terminated (fails).

Automatic generation of tests and contracts. Ernst et al. [19] proposed to
automate the generation of contracts over programs, and to detect possible
inconsistencies or incompleteness in the specified contracts. To this extent,

Testing and Validating Statecharts 39

Agent A Behaviour

entry / request = null

respond

entry / send_reply(request, response)

wait for request
process request

entry / response = process(request)

message_sent
/ request = null

message_received
[event.sender.isAffiliated()]
/ request = event.message

(a) Statechart representing the behaviour of agent A

SLA with Agent B

waiting

received message

event consumed
[event.event.name == 'message_received'
and event.event.sender.name == 'B']

event consumed
[event.event.name == 'message_sent'
and 'B' in event.event.recipients
and not after(3600)]

[after(3600)]

(b) Property statechart monitoring the SLA with another agent B.

Fig. 33 Example of statecharts for smart contracts between two communicating
agents A and B. The models have been edited using the ASEME IDE statechart
editor.

he developed the Daikon tool that automatically detects likely invariants
from dynamic program executions. In a similar vein, Meyer [40] proposed
to deduce automated tests from contract specifications. This reduces the
burden of needing to write many tests manually, and facilitates checking
correctness of a system. It would be beneficial to apply the same idea to
generate statechart tests both from the contracts and the behavioural prop-
erties defined over the statechart and its components, especially in combi-
nation with the use of mutation testing to increase the quality of an existing
test suite [22,49], and concolic testing (a combination of concrete and sym-
bolic execution) to generate new test cases to achieve higher coverage [45].

Formal verification and runtime verification. Approaches based on formal
verification and model checking allow to verify properties (e.g., related to
reachability, liveness, fairness and safety) over the system under study (in
our case, a statechart model) [4]. Such techniques often rely on a model
checker tool, and need to cope with problems related to space explosion.
Formalisms based on temporal logics allow to specify properties qualified in

40 Tom Mens et al.

terms of time, and rely on a model checker to verify such properties. For
example, Gnesi et al. [24] presented JACK, a model checker that verifies cor-
rectness properties over UML statecharts. These properties are expressed
in a variant of branching time temporal logic, and a labeled transition sys-
tem (derived from the statechart) is checked against these requirements.
Another family of verification approaches is the one based on some variant
of finite automata (a.k.a. finite state machines or FSMs). This includes la-
beled transition systems, timed automata, hybrid automata, and counter
automata. They have the advantage of being more similar to the statechart
language (since they are also based on states and transitions), hence re-
ducing the mental gap to express properties in these formalisms. Among
many others, the LTSA tool, based on labeled transition systems, has been
proposed to analyse the behaviour of concurrent systems [38]. While their
usefulness seems without doubt, their usability has been criticised, and dif-
ferent attempts have been made to increase the usability by non-logicians
[18,11,6].

Runtime verification is based on similar techniques (including regular
expressions, temporal logics, state machines and rule-based programming
[23]), but aims at monitoring observable behaviours or properties over an
executing system. Runtime verification checks for violation of properties at
runtime, at the expense of providing less coverage than formal verification
approaches [37]. While numerous approaches have used state machines or re-
lated mechanisms to monitor the execution of programs, much less research
has focused on monitoring of executable statechart models. Drusinsky [16,
17] proposed to monitor violations of temporal logic assertions aver state-
charts at runtime. The notion of property statecharts explored in this article
is different, in that it offers the full expressive power of statecharts to moni-
tor properties over statecharts. Because arbitrary Python code can be used
(e.g., in transition actions), property statecharts are Turing complete. Nev-
ertheless, due to the “fail-fast” approach adopted by Sismic’s interpreter
for their verification, property statecharts are mainly intended to check for
the presence of undesirable behaviour (safety properties), i.e., properties
that can be checked on a (finite) prefix of a (possibly infinite) execution
trace. While it is technically possible to use property statecharts to express
liveliness properties (something desirable eventually happens), this would
require additional support for their verification.

9 Conclusion

This article presented a new method for testing and validating executable
statecharts. The method is supported by Sismic, an open source research
prototype tool that we developed specifically for this purpose. The Sismic
method enhances traditional statechart design with a range of techniques
that have already proven their usefulness for source code development. All
of these techniques can be combined easily to test and validate statechart
designs.

Testing and Validating Statecharts 41

A straightforward way of testing statecharts relies on writing unit tests,
but this introduces an unnecessary technical gap of needing to write these
tests in an underlying programming language. The technique of Behaviour-
Driven Development (BDD) overcomes this limitation by allowing to specify
scenarios of desired functional behaviour in a semi-formal natural language,
and to use these scenarios as executable functional tests over the statechart.
This approach has the advantage of only needing a minimum amount of
mapping code.

We also provided two techniques for runtime verification of statecharts.
The first one consists of applying the principle of Design by Contract (DbC)
at the level of statecharts, allowing to specify preconditions, postcondi-
tions and invariants on states and transitions, and monitoring violations
these contracts during statechart execution. The second technique consists
of specifying behavioural properties as statecharts themselves, allowing the
statechart under test to be monitored at runtime for violations of these
properties.

We evaluated the proposed method, and more in particular the use-
fulness and usability of the proposed techniques through a controlled user
study conducted with thirteen participants. All techniques were considered
to be useful and complementary. Participants reported that they were likely
to use each of the proposed techniques for creating new statecharts, or for
verifying or modifying existing ones. Participants also indicated that the
implementation of the techniques in Sismic was easy to use.

Acknowledgments

We express our gratitude to Jordi Cabot, Simon Van Mierlo, Gauvain Dev-
illez and Mathieu Goeminne, and several anonymous reviewers for providing
comments on earlier versions of this article.

References

1. Object Management Group. Object Constraint Language (OCL). Version 2.4,
Feb. 2014.

2. Object Management Group. Unified Modeling Language (UML), Superstruc-
ture. Version 2.5, Mar. 2015.

3. V. Aravantinos, S. Voss, S. Teufl, F. Hölzl, and B. Schätz. AutoFOCUS 3:
Tooling concepts for seamless, model-based development of embedded sys-
tems. In Int’l Workshop on Model-based Architecting of Cyber-physical and
Embedded Systems and Int’l Workshop on UML Consistency Rules, volume
1508 of CEUR Workshop Proceedings, pages 19–26. CEUR-WS.org, 2015.

4. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
5. K. Beck. Test-Driven Development by Example. Addison-Wesley, 2002.
6. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh.

The temporal logic sugar. In Int’l Conf. Computer Aided Verification (CAV),
pages 363–367. Springer, 2001.

42 Tom Mens et al.

7. C. Bunse, S. Klingert, and T. Schulze. Greenslas: Supporting energy-efficiency
through contracts. In International Workshop on Energy Efficient Data Cen-
ters, pages 54–68. Springer, 2012.

8. J. Cabot, R. Clarisó, and D. Riera. On the verification of UML/OCL class
diagrams using constraint programming. J. Systems and Software, 93:1 – 23,
2014.

9. E. Cariou, C. Ballagny, A. Feugas, and F. Barbier. Contracts for model
execution verification. In European Conf. Modelling Foundations and Appli-
cations (ECMFA), volume 6698 of Lect. Notes in Computer Science, pages
3–18. Springer, 2011.

10. A. Cimatti and S. Tonetta. Contracts-refinement proof system for component-
based embedded systems. Science of Computer Programming, 97:333–348,
2015.

11. J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. A language framework
for expressing checkable properties of dynamic software. In Int’l SPIN Model
Checking and Software Verification Workshop, volume 1885 of Lect. Notes in
Computer Science, pages 205–223. Springer, 2000.

12. M. Cossentino, S. Gaglio, A. Garro, and V. Seidita. Method fragments for
agent design methodologies: from standardisation to research. International
Journal of Agent-Oriented Software Engineering, 1(1):91–121, 2007.

13. K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi. Step by step
towards creating a safe smart contract: Lessons and insights from a cryp-
tocurrency lab. In International Conference on Financial Cryptography and
Data Security, pages 79–94. Springer, 2016.

14. I. Dietrich, F. Dressler, W. Dulz, and R. German. Validating UML simula-
tion models with model-level unit tests. In Int’l Conf. Simulation Tools and
Techniques (SIMUTools), 2010.

15. B. P. Douglas. Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns. Addison-Wesley, 1999.

16. D. Drusinsky. Semantics and runtime monitoring of TLCharts: Statechart
automata with temporal logic conditioned transitions. Electronic Notes in
Theoretical Computer Science, 113:3 – 21, 2005. Proceedings of the Fourth
Workshop on Runtime Verification (RV 2004).

17. D. Drusinsky. Modeling and Verification Using UML Statecharts. Elsevier
Science, 2006.

18. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifi-
cations for finite-state verification. In Int’l Conf. Software Engineering, pages
411–420. ACM , 1999.

19. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1-3):35–45, 2007.

20. S. Esmaeilsabzali, N. A. Day, J. M. Atlee, and J. Niu. Deconstructing
the semantics of big-step modelling languages. Requirements Engineering,
15(2):235–265, 2010.

21. H. Estler, C. A. Furia, M. Nordio, M. Piccioni, and B. Meyer. Contracts in
practice. In Int’l Symp. Formal Methods (FM), volume 8442 of Lect. Notes
in Computer Science, pages 230–246. Springer, 2014.

22. S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C. Masiero. Mutation
testing applied to validate specifications based on statecharts. In Int’l Symp.
Software Reliability Engineering (ISSRE), pages 210–219. IEEE Computer
Society, 1999.

Testing and Validating Statecharts 43

23. Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification.
Engineering Dependable Software Systems, 34:141–175, 2013.

24. S. Gnesi, D. Latella, and M. Massink. Model checking UML statechart di-
agrams using JACK. In Int’l Symp. High-Assurance Systems Engineering
(HASE), pages 46–55. IEEE Computer Society, 1999.

25. M. Gogolla, F. Büttner, and M. Richters. USE: A UML-based specification
environment for validating UML and OCL. Science of Computer Program-
ming, 69(1-3):27–34, 2007.

26. M. Gogolla, L. Hamann, F. Hilken, and M. Sedlmeier. Modeling behavior
with interaction diagrams in a UML and OCL tool. In Behavior Modeling
- Foundations and Applications, BM-FA 2009-2014, Revised Selected Papers,
volume 6368 of Lect. Notes in Computer Science, pages 31–58. Springer, 2015.

27. H. Gomaa. Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison Wesley, 2004.

28. L. Hamann, O. Hofrichter, and M. Gogolla. On integrating structure and
behavior modeling with OCL. In Int’l Conf. Model Driven Engineering Lan-
guages and Systems, volume 7590 of Lect. Notes in Computer Science, pages
235–251. Springer, 2012.

29. D. Harel. On visual formalisms. Comm. ACM, 31(5):514–530, 1988.

30. D. Harel and E. Gery. Executable object modeling with statecharts. IEEE
Computer, 30(7):31–42, July 1997.

31. D. Harel and H. Kugler. The Rhapsody Semantics of Statecharts (or, On the
Executable Core of the UML), volume LNCS 3147. Springer, 2004.

32. D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM
Trans. Softw. Eng. Methodol., 5(4):293–333, Oct. 1996.

33. B. Henderson-Sellers and J. Ralyté. Situational method engineering: state-of-
the-art review. Journal of Universal Computer Science, 16(3):424–478, 2010.

34. F. Idelberger, G. Governatori, R. Riveret, and G. Sartor. Evaluation of logic-
based smart contracts for blockchain systems. In International Symposium
on Rules and Rule Markup Languages for the Semantic Web, pages 167–183.
Springer, 2016.

35. I. Lazar, S. Motogna, and B. Parv. Behaviour-driven development of founda-
tional UML components. Electronic Notes in Theoretical Computer Science,
264(1):91 – 105, 2010. Int’l Workshop on Formal Engineering approaches to
Software Components and Architectures (FESCA).

36. G. T. Leavens and Y. Cheon. Design by Contract with JML. Technical report,
Iowa State University, 2006.

37. M. Leucker and C. Schallhart. A brief account of runtime verification. The
Journal of Logic and Algebraic Programming, 78(5):293 – 303, 2009. The 1st
Workshop on Formal Languages and Analysis of Contract-Oriented Software
(FLACOS’07).

38. J. Magee. Behavioral analysis of software architectures using LTSA. In Int’l
Conf. Software Engineering, pages 634–637. ACM, 1999.

39. B. Meyer. Applying ”design by contract”. IEEE Computer, 25(10):40–51,
1992.

40. B. Meyer. Contract-driven development. In Int’l Conf. Fundamental Ap-
proaches to Software Engineering (FASE), volume 4422 of Lect. Notes in
Computer Science, page 11. Springer, 2007.

41. D. North. Behavior modification: The evolution of behavior-driven develop-
ment. Better Software, 2006.

44 Tom Mens et al.

42. OMG. Software and Systems Process Engineering Meta-Model Specification.
Version 2.0. Technical Report OMG Document Number: formal/2008-04-01,
Object Management Group, 2008.

43. Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller. Automated
fixing of programs with contracts. IEEE Trans. Soft. Eng., 40(5):427–449,
2014.

44. M. Samek. Practical UML Statecharts in C/C++: Event-Driven Programming
for Embedded Systems. CRC Press, second edition, 2008.

45. K. Sen. Concolic testing. In Int’l Conf. Automated Software Engineering,
pages 571–572. ACM, 2007.

46. N. Spanoudakis and P. Moraitis. The Agent Modeling Language (AMOLA).
In D. Dochev, M. Pistore, and P. Traverso, editors, Artificial Intelligence:
Methodology, Systems, and Applications, volume 5253 of Lecture Notes in
Computer Science, pages 32–44. Springer Berlin Heidelberg, 2008.

47. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and
H. Ergin. AToMPM: A web-based modeling environment. In Joint Proceedings
of MODELS’13 Invited Talks, Demonstration Session, Poster Session, and
ACM Student Research Competition, volume 1115. CEUR Workshop Proc-
cedings, 2013.

48. A. Topalidou-Kyniazopoulou, N. I. Spanoudakis, and M. G. Lagoudakis. A
CASE Tool for Robot Behavior Development. In X. Chen, P. Stone, L. E.
Sucar, and T. Zant, editors, RoboCup 2012: Robot Soccer World Cup XVI,
volume 7500 of Lecture Notes in Computer Science, pages 225–236. Springer
Berlin Heidelberg, 2013.

49. M. Trakhtenbrot. New mutations for evaluation of specification and imple-
mentation levels of adequacy in testing of statecharts models. In Testing:
Academic and Industrial Conference Practice and Research Techniques (MU-
TATION), pages 151–160, Sept. 2007.

50. M. Wynne and A. Hellesoy. The Cucumber Book: Behaviour-Driven Develop-
ment for Testers and Developers. Pragmatic Bookshelf, 2012.

	Introduction
	Background
	Process
	Tooling
	Running Example - Statechart Design Phase
	Running Example - Statechart Testing Phase
	Evaluation
	Related Work
	Conclusion

