Technical University of Crete

School of Electrical and Computer Engineering

Argumentation-Based
Decision Support System for Systems
Deployment:

Case Study in the Ministry of Digital Governance

Diploma Thesis

Author: loannis Michalakis

Supervisor: Michail G. Lagoudakis, Professor, School of ECE, TUC
Member: Antonios Deligiannakis, Professor, School of ECE, TUC
Member: Nikolaos Spanoudakis, Assistant Professor, Department of EE, HMU

Chania, July 2025

IHoAivteyveio Kpitng

Yyoi Hiektporoymv Mnyovikov kot MnNovik®v YTor0y16T®V

"Eva Bacwopévo oty Emyeipnuortoroyio
Yootnuo Yrootpiing ATo@ace®y yio. TNV
Eykotaotaon Xvotnuatov:

Merétn Hlegpintoong oto Yrovpyeio Pnoroxng
Awokvfépynong

Awthopatikn Epyocia

Yvyypoagéag: Iodvvng Muyoddakng
Empiénov: Muyonh I Aayovdakng, Kadnynmc, yxoh HMMY, T1K

Méhog: Avtoviog Aehnyavvakne, Kabnyntrg, Xyoiy HMMY, I1IK
Méhog: NuoAaog Xravovdakng, Exikovpog Kabnyntg, Tunua HM, EAMEITA

Xovid, loviog 2025

Abstract

The increasing complexity of software infrastructure management, particularly in public sec-
tor cloud deployment, necessitates intelligent decision-support mechanisms. Manual ways
for decision making are very complex, results are inconsistent, and most of the times they
waste resources. Automated solutions are crucial for optimizing key factors, including ur-
gency, determining how quickly an application should be deployed along with infrastruc-
ture type, deployment location, resource allocation, and scalability. This diploma thesis in-
troduces a new decision support system that uses argumentation to automate deployment
choices for the Ministry of Digital Governance. The system uses different frameworks to
balance competing needs, rules, and policies, which makes decisions both justified and easy
to understand. The proposed system leverages Gorgias Cloud for reasoning, based on pref-
erences, and Prolog to formally represent arguments. The system also uses Raison Al, which
allows the creation of a complex decision policy, using a no-code symbolic interface to pro-
duce Prolog files. The backend was built using Spring Boot, a Java-based framework, to
manage the entire process, creating both a decision strategy and YAML configuration files
that help automate deployment. The proposed system enables users to define key parame-
ters, such as infrastructure type (on-premise vs. cloud), scalability, resource requirements,
location constraints, and urgency levels. Based on these inputs, the system evaluates trade-
offs and generates optimised, explainable deployment strategies. A key contribution of this
work is its ability to bridge the gap between technical decision-makers and policy stake-
holders, providing a transparent and structured decision rationale. The results show, that
using argumentation-based automation, can really improve the way government organiza-
tions adopt cloud technologies. In the future, the system could be expanded to integrate with
DevOps pipelines, learn rules on its own, and even be used for things beyond just managing
cloud infrastructures.

Keywords: Argumentation Theory, Cloud Deployment Automation, Public Sector IT, Al
Reasoning

Iepiinyn

H dwayeipion vrodopdmv Aoyiopikov kabictator oAoéva Kot o TEPITAOKT, 101ai{TEPE GTOV
dNUOc10 Topa, MG TPOG TiG TEXVOoA0Yieg cloud mov oyetilovtal pe TNV avaTTLEN TANPOPO-
pLoKOV cuotnudtemv. Ot xelpokivnteg néBodol AYnS amopacemy eivol opKeTd TOATAOKEG,
OEV TPOCPEPOLY GLVETELDL KOl GUYVE 001YOUV G€ omatdAn moépwv. o v emilvon avtov
oV TTpoPAnuaToc, ivol avaykaio 1 ¥poN CVTOUATOTOMUEVOV EPYAAEI®V TOV VITOCTNPI-
Couv kpioipeg amopacels, 0TS to TOGO Ypryopa Oa avarntuydel pio epappoyn, To €100g ™G
vrodoung mov Ba ypnotporonBel, 0 TOTOG LAOTOINOMG, Ol ATALTOVUEVOL TOPOL KOt 1) SLVOITO-
™To KMUAK®ONG TOV cuoTiuatos. H mapovoa dumhopatikn epyacio mapovctdlel £va véo
GLGTNUO VTOGTHPLENG OMOPAGEWYV, TO 0TTO0 AEI0TOLEL TV TEXVIKN TNG EMYEPNUATOLOYIOG
Y10l TNV GVTOHOTOTOIN 0T EMAOYDV avATTVENG 6T0 Yovpyeio Pnoaxng Ataxvépynonc. To
ocvotnuo Paciletar oe S10POPETIKA TAAIGIO, DGTE VO EEIGOPPOTEL AVTIKPOVOUEVES AVAYKEC,
KAVOVEG Kol TOMTIKEG, KAOIOTOVTAG TIC AMOPACELS TEKUNPLOUEVEG KOl EDKOAO KOTOVONTES.
Xuvovalel otbpopa epyareia, onwg to Gorgias Cloud yio Aoyikn Baciopévn 6€ TPOTIUIGELS
Kot TV YAdooa Prolog yia tumikn avarapdotaon Aoyikng. T v dnuovpyia g Aoyikng
LE ypNoN EMyEPNUATOV YpnopomomOnke to Raison Al, to onoio emtpémel v mapaywyn
apyeiov oe YAwooa Prolog, yopig yvadon mpoypopoTicHoD, EXTIKEVTPOVOVTIS £TGL GTNV TTO-
Avmlokotnta towv omopdoewv. To backend éxer vAomomBel pe 1o Spring Boot Java-based
framework, yia va dwaryelpiletoar oAdkAnpn v web epappoyn, dnuovpymviog TdGo TV pon
epyaoiag, 660 ko apyeio mapoperponoinong YAML yio tnv avtopatonoinor tng avamtuéng.
O ypfioteg pmopovv va kabopicovy onUAVTIKOLS Tapdyovtes, Omws av Ba ypnoiponom el
vrodopn cloud 1 on-premise, moid Oa givot a1 VTOOOUN, TO EVPOGS TNG OTALTOVUEVNG KAL-
pékmong, ot avaykoaiot Topot kot tov Paduod enciyovtog g avantuéne. To cuona avaidet
OA0VG TOVE TTHOVOVG GLVOVAGHOVE KOl TPOTEIVEL Liol AITOJOTIKOTEPT] CTPATNYIKT, EENYDOVTOGC
TAPAAANAQ LE GOENVELL TIG 0UTiEG TOV EMAOYOV TOV. Mia Bacik] GLVEIGPOPA TOL TPOTEL-
VOLEVOL GUGTHHOTOS EIVAL 1] TKOVOTNTO VO YEPUPADGCEL TO YAGHO HETOED TOV TEYVIKMY VIEV-
BOvov Myng amopace®V Kol TV EVOLAPEPOLEVOV GTPATNYIKAOV ETAIPOV, TOPEXOVTOS L0
Stapavn Kot Sopnuévn Aoyikn Anyng aropdoemv. Ta anoteAéopata deiyvovv OTL 1| LTOMO-
tomoinon pe Bdomn v enyelpnpatoroyio, propel vo PEATIOGEL OVGIACTIKA TOV TPOTO LLE TOV
omoio ot opyaviopoi dnuoctog dtoiknong viobetodv teyvoroyieg cloud. Xto uéAhov, to ov-
omua o uropovce va emektadel, dote va evoopatmdel oe DevOps pipelines, va pobaivet
KOVOVEG OVTOUATO. Kot Vo, BPIoKEL EQAPLOYT O TEPLOYES TEPAV TNG LXEIPIONG VITOSOUDY
cloud.

Aé&Eerc-khednd: Emyeipnuotoroyio, Avtopatoroinon Avantoéng Zvotnudtov 6to NEQOoG,
[TAnpogopiaxd Xvotiuato Anpociov Topéa, ZvAroyiotikn Texvntic Nonpoohvng

Contents

1 Introduction

1.1 Concepll e
[1.2 Thesis Contribution
[[.3 Thesis Outling o o o

2 Literature Review

R.1 Argumentation ou e e e e
R.2 Preference-Based Argumentation|
2.3 Computational Tools for Argumentation
P2.3.1 Prolog as a Foundation for Computational Argumentation
P.3.2 Gorgias Cloud as a Tool for Argumentation-Based Reasoning

P.3.3 Raison: No-Code Symbolic Areumentation-Reasoning Platform

R.4 Technologies for Web Application and Integration
P2.4.1 Technical Backeround: HTTP Methods and JSON Formaf
P.4.2 Spring Boot Framework for Web Service Development

P.5 Dynamic Web Content Thymeleaf Template Engind

2.6 Deployment Technologies: Dockerand Gif

B Methodology and System Design

B.1 System Architecture Overviewo
B.2 System Workflow and Behavioll
B.3 User Interface Design
B.3.1 User-Guided Configuration through Decision Formg
B.3.2 UserInterface Views o o o i
B.4 Back-end Logic and Processing oo oo
B.4.1 UlIData Submission v oo v v i

B.4.2 Dispatching the Gorgias Query via a Swagger-Generated Client

B.4.3 Post-processing of Gorgias Results
B.5 Argumentation Engine Design

4 Implementation

#.1 Technology Stackand Tooly
#.2 Development Environment and Project Setup
42.1 VS Code and Spring BootSetup
4.2.2 Dependency Management: pom.xm]]
4.2.3 Integration of Gorgias Cloud API via Swagger Codegen]

#.2.4 Version Controlwith Gif

#.2.5 Containerization with Dockerl
#.3 Automated Configuration File Generation

10
10
11
12

14
14
15
16
16
17
18
20
20
22
23
24

#.3.1 How the Final Deployment Strategy Is Determined 64

#.3.2 Official Flowchart Connection System Outpu 66

3.3 Sample YAML Templatd v i 67
5 Evaluation And Results 68
5.1 System Usability Scale (SUS) Questionnaird oo v v v v .. 68
5.2 Analysis of Results Using Boxplot Diagramd 69
6 Conclusions and Future Work 72
6.1 Future Work and Enhancements 72
6.2 Final Thoughtd 73

List of Figures

P2.1 Simple argumentation graph for cloud migration decision. Solid arrows in-
dicate support, dashed arrows indicate attacks|
R.2 Visual rule definition in r4/son: Scenarios mapped to options|
2.3 Conflict resolution interface: Choosing the preferred scenario to ensure con
BIStENt TEASONING| . .« .« o o o v v e e e e e e
P.4 Querying a rule-based decision model: Given a set of input facts, the system
evaluates the corresponding rules and returns the derived conclusion]
P.5 Basic REST API Communication Flow
P.6 Layered architecture of a Spring Boot web application, showing main com4
ponents, user flow, database, and integration with external APIs, such as Gor
..................................
B.1 High-level system flow: User input is transformed into Prolog facts, pro
cessed via the Gorgias Cloud Platform, and the output is interpreted intd
human-readable decisions and optionally exported as a YAML file)
B.2 User Interface for Urgency Parameter Selection — aligned with Ministry|
rules for urgency classification
B.3 User Interface output showing the recommended urgency classification|
B.4 Overview of the user workflow for case-based decision support|
B.5 Interface showing applying final selectiond
B.6 Recommended Deployment Strategy: Azure Functions (Premium)
B.7 Technical Reasoning Behind the Deployment Decision
B.8 Urgency step — collecting deployment urgency and organizational context) .
B.9 Infrastructure preferences — selecting appropriate infrastructure model typeg
(e.g., SaaS, PaaS, laaS, Serverless)|
B.10 Location selection — defining regional and compliance requirements for on-
premises or public cloud deployment]
B.11 Resource configuration — prioritizing compute, memory, storage, and latency|
.....................................
B.12 Performance parameters — defining expected traffic volume, spikes, and scald
ability behavior]
B.13 Final decision interface — the user reviews the collected inputs and selects
between appropriate decisiony
B.14 Final selection submission — the user applies the selected deployment con
ficuration. This action triggers the backend processing engine to finalize the
decision logic and prepare for strategy execution)
B.15 System’s final decision output — this view presents the recommended deploy-

ment strategy derived from the user’s structured inputs, supported by reason-
ing and explanation generated by the argumentation engine.

15
19

19
20
22

23

31
32
37
38
38
39
39
44
44
45
45
46

46

47

47

B.16 Scenario modeling using Raison Al 54
B.17 Conflict resolution interface (8/8 resolved) 54
B.18 Projectexecutiontotestlogid. 54
B.19 Scenarios for infrastructurd 55
B.20 Decision matrix for scalability 55
B.21 Scenario and outcome mapping for location policy] 55
B.22 Modular Prolog rule sets hosted and executed in Gorgias Cloud 56
#.1 Enhanced implementation architecture with RESTful requests and responses)

internal Spring Boot logic, and integration with external reasoning and ruld

...................................... 59

4.2

Azure service selection flowchart used by the Ministry of Digital Governancd 65

b.1

Distribution of participant responses for each System Usability Scale (SUS)

fquestion, as shown in boxplot diagrams. Each boxplot displays the median
(red horizontal line), the interquartile range (IQR; box), and potential outliers
(points beyond whiskers). The box represents the middle 50% of responses.
while the whiskers indicate the full range, excluding outliers. This visualiza-
tion enables rapid identification of consensus or disagreement among partic
fipants for each question. Higher medians and tighter boxes indicate greatet
consensus and satisfaction) 69

b5.2

Distribution of calculated SUS scores across all participants| 71

List of Tables

2.1 Common HTTP Methods in RESTful API§

P.2 Common HTTP status codes for RESTful API responsed

B.1 Responsibilities of system componenty

Chapter 1

Introduction

1.1 Concept

Decisions on cloud deployment, in contemporary public sector environments, have grown
increasingly difficult and call for organisations to strike a balance, between technical needs,
operational restrictions, and regulatory compliance. In this context, argumentation-based rea-
soning [|I]] , a methodical approach to logically infer conflicting information, offers a strong
technique for automating and justifying deployment decisions. This thesis, uses computa-
tional argumentation, to enable the automated choice of the best cloud deployment strategy
for hybrid government clouds, containing public sector data systems. This hybrid infrastruc-
ture, allows a dynamic and policy-driven approach to infrastructure provisioning, by com-
bining on-site data centres run under General Secretariat control, with public cloud services,
including Microsoft Azure. Through the use of argumentation, the system guarantees that
deployment decisions are open, understandable, and consistent with government policies,
while so optimising resource use, economy, and security issues.

The project started with a critical collaborative phase with the Ministry of Digital Gov-
ernance, more especially the Information Systems Department of the General Secretariat of
Information Systems, to guarantee the system addressed real-world requirements. By means
of seminars and dialogues with ministry stakeholders, we discovered important decision-
making elements, affecting public sector IT implementations, such as scalability, security,
compliance, budgetary restrictions, and operational urgency. These pragmatic issues were
then converted into a formal argumentative structure, whereby the definition of formal rules
and the creation of a preference hierarchy, could help to settle disputes. This close coop-
eration guaranteed, that the design of the system was based on real operational needs, and
regulatory reality, hence the produced solution is strong and pertinent for application, in the
Greek public sector.

The “Deployment Choice Automation Using Argumentation” [2] system enables users
to define various parameters across several decision domains. These include:

1. Urgency Details:
Users input critical information, such as the initiating organisation, contract status and
planned start date. These details are pivotal in establishing the urgency level: Normal,
High, or Urgent. It helps to prioritise tasks, and set the deployment timeline efficiently.

2. Infrastructure Requirements:
Users select the type of infrastructure, that best suits their application’s needs. Whether
the goal is to run custom applications, consume ready-made software, or automate

10

specific tasks, the system considers the level of control required over the infrastructure
(full, limited, or none).

3. Deployment Location:
The system collects data on sensitivity and connectivity requirements, enabling it to
decide whether the solution should be deployed in an on-premise data center, or in a
public cloud environment, like Azure. Factors, such as data sensitivity (e.g., personal,
critical, or regulated data) and connectivity to legacy systems, are taken into account.

4. Resource Requirements:
In this case, input is about the computational resources, such as CPU, memory, and
storage. This step ensures that the chosen solution will meet performance demands
under various operational conditions.

5. Scalability and Performance Requirements:
Anticipated load conditions, expected peak times, and scalability needs are specified
to ensure that the deployment can adapt dynamically to varying demand levels.

Once the system collects the required parameters, after each case submission, it integrates
with Gorgias Cloud, where the argumentation process occurs [3][[l]]. The decision logic is
modelled using Prolog rules. These rules are generated and maintained using the Raison Al
platform. They formalise competent factors, that are crucial for making the optimised choice
for each case.

Initially, it determines the most suitable Infrastructure cloud service, selecting from
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS),
or Serverless computing, based on the specific requirements of each public sector deployment
scenario.

Then, it determines the Deployment Location, and recommends either on-premises or
public cloud options.

Another case checks the Urgency timeline. It categorises the requests into three lev-
els: normal, urgent, or high-priority. Urgent priority requests are allocated resources before
others. Normal ones wait their turn.

Scalability is another factor. The system chooses between auto-scaling, which changes
resources as needed, or fixed resources, which always stay the same.

In Resources case, it picks the right hardware, like high-memory servers for data-heavy
apps. Before suggesting the final decision, the system shows up a final step page, where the
users can choose for each case the suggested decisions that match their needs.

At the end, the system creates deployment configuration files, named YAML (stands for
Yet Another Markup Language), ready for DevOps teams to use. This saves time and reduces
errors. By integrating computational argumentation into cloud deployment planning, this
system provides a structured, transparent, and user-centric solution to the complex challenge
of cloud infrastructure selection for the public sector.

1.2 Thesis Contribution

The contribution of this thesis can be summurised as follows:

1. A Comprehensive Multi-Stage Decision Workflow:
By means of a sequential workflow, the system guides consumers through all stages of the
deployment decision-making. Every stage gathers essential information, that influences the

11

final decision starting with defining urgency and agency-specific details, to specify technical
and operational requirements. This approach, ensures, that all relevant factors are considered,
and helps one to holistically assess challenging circumstances.

2. Integration of Argumentation-Based Al for Conflict Resolution in Deployment
Choices:
The system evaluates conflicting deployment requirements, using preference-based argu-
mentation applied via Gorgias Cloud. By means of Raison Al, a set of Prolog rules, gen-
erated and maintained, formalises decision logic, so ensuring that technical constraints, cost
efficiency, urgency, and scalability priorities are correctly balanced. When elements, like se-
curity against cost efficiency, or scalability against resource availability, oppose each other,
the argumentative process lets conflict be resolved. This iterative thinking makes transparent,
flexible, understandable decisions fit for hybrid cloud systems possible.

3. Automated Generation of Deployment Artifacts:
Once the optimised deployment strategy is determined, the system automatically produces
configuration files (e.g., YAML files), that are ready for immediate implementation. This
automation, bridges the gap between high-level decision support and practical deployment,
reducing manual errors, and streamlining the transition from planning to execution in DevOps
(Development Operations) environments.

4.User-Friendly Web Interface for Non-Technical Decision-Makers:
Knowing the different levels of knowledge among public sector players, the system fea-
tures a user-friendly web-based interface, using Thymeleaf (Spring Boot), and RESTful APIs
to communicate with the server. The interface consists of dynamic visuals, real-time in-
put parameter validation, and methodical decision support, to enable users, understand the
justification, behind every deployment recommendation. This design ensures, accessibility
for policy-level decision-makers, as well as IT professionals, therefore encouraging group
decision-making, in challenging cloud migration environments.

5. Real-World Validation in Cloud Environments:
Designed especially for public sector installations, inside a Government Cloud (on-site data
centres), the technology has been assessed using realistic case studies and pilot projects.
These tests expose how well it manages particular difficulties, presented by hybrid infras-
tructures, including balancing public and on-site cloud systems. More transparency, better
choices on deployment, and improved operational efficiency, all point to the real relevance
of our method. This thesis offers a fresh, argumentation-based decision-support system that
automates difficult cloud deployment decisions, in addition to fair, honest recommendations
generally, combining advanced reasoning powers, with a multi-stage decision process.

1.3 Thesis Outline

Each of the six major chapters that make up this thesis, is devoted to a distinct facet of the
research and development process. The background information, context, and theoretical
underpinnings required, to help the reader comprehend are provided in the first two chapters
(Chapters 1 and 2). The system’s design, implementation, and evaluation are covered in
detail in the following chapters, and the final chapter offers a summary of the results and
recommendations, for further research. Below is a more thorough description of the thesis
structure.

12

Chapter 2 — Background

Chapter 2 lays the groundwork for the research, by introducing the principles of argumen-
tation theory and its applications in decision-support systems. This chapter reviews key lit-
erature on cloud deployment strategies, government cloud environments, and the challenges
faced by public sector organisations. An overview of relevant frameworks, such as Gorgias
Cloud, and the role of logic programming (with Prolog and Raison AI) in formalising deci-
sion criteria, is also provided. This background, sets the stage for understanding the advanced
reasoning capabilities, integrated into our system.

Chapter 3 - Methodology and System Design

In Chapter 3, the functional requirements and design specifications of the system, are pre-
sented in detail. This chapter describes the multi-stage decision workflow—from defining
urgency details, infrastructure, location, resource, and scalability requirements, to the final
combined decision and configuration file generation. The key features of each module are
discussed, along with the methods used to capture and process the input parameters. This sec-
tion also outlines how the system integrates with external reasoning engines, such as Gorgias
Cloud, and the role of Prolog rules generated, by Raison Al in refining decisions.

Chapter 4 - Implementation

Chapter 4, mostly addresses the design of the user interface and the whole user experience.
We go into great length on the several points of view that of scalability, infrastructure choice,
location specification, urgency, and resource needs. This chapter emphasises the design ideas,
applied to guarantee the usability and accessibility of the interface, for both technical and
non-technical users. It also covers the customising choices, which let users interact with the
system, depending on their needs and degree of knowledge.

Chapter 5 - Evaluation

It describes the evaluation methodologies used to test the system’s performance, usability,
and effectiveness in real-world hybrid cloud environments. Detailed results from scenario-
based tests and user evaluations are provided, along with an analysis of the strengths and
limitations observed during the evaluation process.

Chapter 6 - Conclusions and Future Work

The final chapter summarizes the key findings and contributions of the thesis. It reflects
on the overall impact of the developed system, in automating complex deployment deci-
sions, and discusses the benefits of using an argumentation-based approach. Additionally,
this chapter outlines the limitations encountered during the research and proposes potential
avenues for future enhancements, such as extending the decision model, incorporating new
technological developments and exploring additional applications in related domains.

13

Chapter 2

Literature Review

This chapter reviews the corpus of recent research relevant to cloud computing, argumenta-
tion frameworks, and decision support systems. One can develop a theoretical foundation,
for the project, by looking at previous research and developments in these areas. This study
examines how argumentation theory has been incorporated into contemporary cloud installa-
tion decision-making processes, and how advancements in technology, have enhanced these
processes. It also covers several models and tools, that have shaped the design, and applica-
tion of automated decision systems historically. Examining present trends and approaches,
helps this literature review to highlight gaps in current systems, that the present project aims
to solve, so setting the scene for the creative elements of the thesis. This analysis, not only
emphasises the importance of the project, in the framework of continuous research, but also
helps to match it, with more general goals of enhancing efficiency, scalability, and user ac-
cessibility in cloud infrastructure decision making.

2.1 Argumentation

Argumentation logic is the multidisciplinary study of logical reasoning [3], as means of reach-
ing conclusions. It covers both formal inference rules and pragmatic procedures, applied in
daily decision making, and explores the approaches of debate, dialogue, and persuasion. Ar-
gument is essentially about building and assessing sets of ideas, that support or contradict a
given point of view. Artificial intelligence [4] finds great use for this field, since it provides
a basis for creating transparent and explainable decision-support systems, able of manag-
ing contradicting information. Applications for this rather new, fast-paced technology range
from basic games to the medical domain [5], network security [6], cognitive assistants [[7]
[8] and business programs [3] [9].

Argumentation in decision-support systems, lets stakeholders formally express goals,
constraints, and requirements as logical statements. These can be handled by automated rea-
soning engines to generate explainable, policy-compliant decisions, particularly in settings
with tight operational or regulatory restrictions, such public sector cloud installations.

Example. To illustrate the concept of argumentation in practice, consider a scenario in the
context of IT system deployment. Suppose a team must decide whether to migrate a pub-
lic sector application to a cloud infrastructure. One argument (4) in favor of migration is:
“Moving to the cloud will improve scalability and reduce operational costs.” However, a
counter-argument (B) is: “Migrating to the cloud could compromise data privacy due to ex-
ternal data storage.” A supporting argument for 4 (47) might state: “The cloud provider

14

offers certified security measures.” On the other hand, a supporting argument for B (B/)
could assert: “Regulatory constraints require sensitive data to remain on-premise.”

This simple example demonstrates how arguments and counter-arguments can be ex-
plicitly stated and assessed, allowing for a transparent and structured approach to complex
decision-making. In formal argumentation theory, such scenarios are often represented as
directed graphs, where nodes denote arguments, and edges indicate attacks, or supports be-
tween them []10]. This graphical structure enables automated systems to systematically eval-
uate which arguments are ultimately accepted, rejected, or remain undecided.

Argumentation thus not only clarify the reasoning process for stakeholders, but also en-
ables automated systems to generate, compare, and explain alternative courses of action.
This transparency is especially valuable in domains where accountability and justification of
decisions are paramount.

The main arguments and their relationships are as follows:
* Al: The cloud provider offers certified security measures (supports A)
* A: Moving to the cloud improves scalability and reduces cost
* B: Migrating to the cloud risks data privacy

* B1: Regulation requires sensitive data to remain on-premise (supports B)

shipports [papape
Al A

supports

Bl

Figure 2.1: Simple argumentation graph for cloud migration decision. Solid arrows indicate
support, dashed arrows indicate attacks.

In the graph, shown in Figure P.1, argument A1 supports A, B1 supports B, and B attacks
A. The structure allows the system to reason about which arguments are ultimately accepted,
based on the strengths of the supports and attacks. An argument is considered “accepted”, if
its supports outweigh the attacks against it, according to the system’s evaluation rules.

2.2 Preference-Based Argumentation

While general argumentation structures help to resolve logical conflict, preference-based ar-
gumentation ranks arguments, based on contextual preferences, so addressing more advanced
forms of conflict. Preferences help a reasoning engine decide, which arguments are most
relevant in a given context, when there are contradicting criteria, such as cost against secu-
rity, or latency against scalability. In fields, like policy-making, and infrastructure choice,
where stakeholder values and trade-offs exist, this approach performs particularly effectively.
Thanks to preference-based models, which provide arguments ordering relations, systems can
pick between conflicting conclusions, in a way, that is consistent with user-defined or policy-
based priorities. A classic example is choosing between a public cloud (for economy) or a

15

service delivered on an on-site server (for data sovereignty). While both decisions have good
reasons, preference rules, based on risk tolerance, cost sensitivity, or laws, like the GDPR,
can help to resolve the conflict.

In formal systems, this is typically modeled by extending Dung’s framework with a set
of preference rules:

If argument A is preferred over B, then A defeats B even if both are valid.

In computational models of reasoning, preference-based argumentation extends the clas-
sical abstract argumentation framework (AAF) by incorporating preferences among argu-
ments. Originally introduced by Dung [10], an argumentation framework is defined as a
pair:

AF = (A, R)
where:
» A s a set of abstract arguments.
* R C A x Ais abinary relation representing attacks between arguments.

In a preference-based argumentation framework (PAF), the structure is extended to:

PAF = (A R,)
where:
» > is a preference relation over A (i.e., @ > b means a is preferred over b).

This extension allows an argument a to defeat b, if a attacks b and is not less preferred than
b. This mechanism is crucial, when modeling real-world decisions where not all arguments
are equally valid.

2.3 Computational Tools for Argumentation

Argumentation is not just a theoretical idea, but also a useful toolkit accessible for daily ap-
plication. Over the past decade, several frameworks have emerged to support computational
argumentation, including platforms for preference-based reasoning, rule definition, and in-
tegration into web-based infrastructures. This section surveys the most relevant tools in this
domain.

2.3.1 Prolog as a Foundation for Computational Argumentation

Originally designed in first-order logic, Prolog [[L1] is a declarative programming language,
mainly used in symbolic thinking and artificial intelligence projects. Its syntax and infer-
ence rules, fit rather nicely for developing knowledge-based systems, and automated think-
ing engines. Prolog’s logic programming paradigm presents a simple approach to contain
arguments, rules, facts, and inference procedures within the framework of computational ar-
gumentation.

One of Prolog’s main benefits is its built-in support of non-monotonic reasoning, since
it meets the standards of argumentation systems. Several argumentation engines and frame-
works, such as Gorgias [[12] and DeLP [13], are implemented in Prolog or have adopted

16

Prolog-style rule-based logic, as their core. These systems leverage Prolog’s expressiveness,
for defining argument schemes, attack/support relations, and preference handling, thereby
enabling complex forms, of automated reasoning and justification. Prolog’s long-standing
history in Al research, coupled with its flexibility in representing logical constructs, has es-
tablished it as a foundational tool in the development and experimentation of computational
argumentation.

General Overview. Prolog programs are composed of facts, rules, and queries, supporting
the representation of knowledge and automated reasoning through logical inference.

Basic Structure in Prolog Syntax:

% Facts
factl.
fact2.
fact3.

% Rules
optionl :- factl, fact2, fact3.
option2 :- factl, fact2.

% Preference Rule (meta-level, to choose option if both match)
prefer(optionl, option2).

% Query
- X.

This generic example shows how:
* Facts represent base information.
* Rules specify conditions for conclusions.
* Preferences indicate which result is favored, when multiple conclusions are possible.
* A query retrieves the preferred conclusion.

Prolog thus enables both logical inference and preference handling in decision-making sce-
narios.

2.3.2 Gorgias Cloud as a Tool for Argumentation-Based Reasoning

Originally developed from the Prolog logic programming language [3]], Gorgias Cloud is a
web-based computational tool for argumentative based thinking. The system is designed to
provide scenario modelling, execution, and explanation in contexts when explicit preferences
and conflict resolution define decisions. Argumentation policies are encoded using the Pro-
log source files (.pl), which comprise facts, rules, and preference declarations. By use of
modular arrangement, these files enable layered and reusable representations of policy logic,
over several spheres of influence. The platform evaluates the active policy modules, dur-
ing implementation by automatically resolving dependencies between rules and preferences,
therefore generating transparent and well-founded judgements. Apart from web interface,
Gorgias Cloud offers a RESTful API that facilitates the integration with automated processes

17

and outside applications, such those found in bigger decision support systems. By using Pro-
log possibilities of preference-based reasoning, Gorgias Cloud presents a strong framework
for the formalisation, analysis, and justification of complex decision-making procedures.

Modeling Argumentation Rules with Preferences in Gorgias

Rules and more complex preferences in Gorgias Cloud follow the structure:

rule(I1D, Conclusion, Conditions)

rule(ID, prefer(A, B), Conditions)

where A and B are the identifiers of competing rules, and the preference is active, only if the
given conditions are satisfied.

Explanation and Transparency

Gorgias Cloud outputs include both internal logical trace and human-readable justifications.
A typical, generic explanation may read:

"Optionl is supported by the facts fact_a
and fact_b,
and is stronger than the argument for option2
under the same conditions.”

This structured explanation promotes explainable Al (XAI), crucial in public sector decision-
making, where accountability and traceability are required.

Modularity and Transparent Scenario Analysis

A distinguishing strength of Gorgias Cloud, is its ability to deliver clear and transparent ex-
planations, for every decision, tailored to the scenarios and policies encoded in each . p1 file.
By allowing users to manage and switch between distinct policy modules, Gorgias Cloud not
only supports scenario expansion and comparative analysis, but also ensures that each solu-
tion, is fully explainable and traceable to the underlying rules and preferences. This com-
mitment to transparency makes Gorgias Cloud a valuable platform, for rigorous logic-based
decision making, supporting both educational exploration and formal applications, where
justification and accountability are paramount.

2.3.3 Raison: No-Code Symbolic Argumentation-Reasoning Platform

Designed for users without programming knowledge, r4ison is a no-code tool, for symbolic
Al rule development. It allows domain experts, to create structured templates, from which
they can encode policy and decision logic, subsequently compiled into Prolog-compatible
rules. For public managers and policy makers, who might not know logic programming, this
greatly reduces the entrance barrier.

Users can create their own scenarios by modelling, in natural language, the facts and
logical outcomes, ultimately producing their own .pl files. Each scenario consists of one
or more conditions, called elements, combined with possible conclusions, or options. These

18

visual configurations, shown in Figure 2.2, represent logical rules, that define policies in a
structured, explainable way. This kind of framework makes it easy to generate and manage
large sets of rules, even across complex policy spaces.

Furthermore, it is offering a strong interface for conflict resolution. Figure .3 show
how the system automatically detects overlapping or contradicting rules, and lets the user
resolve them, by just choosing the preferred scenario with a click. Once resolved, the system
guarantees consistency across the decision model, and allows users to iterate, refine, and
export their reasoning as Prolog code.

Finally, as illustrated in Figure R.4, r4Ison, enables users to run their configured decision
models in practice. For instance, when applied to the problem of defining timeline urgency,
users input a set of factual data (such as contract status or request type) and execute the
model. The system then, evaluates all relevant rules and visually presents the resulting ur-
gency level(s), through an interactive, user-friendly interface. This seamless integration of
rule definition, conflict resolution, and live querying makes r4ison a powerful tool for rapid
development and deployment of explainable decision support systems.

urgency24022025

= _ ') o M
> Compatible scenarios > Conflict resolution > Decision policy LAN
ADD A MANAGE ADD AN
@ SCENARIO @ ELEMENTS ® QPTION TEETETEILE urgencythigh) Eenoyiurgent)
ol request_type(mog) contract(no) urgentBasedOnDate [l (W
Va agency_category(independentAuthority) contract{no)
urgentBasedOnDate
v agency_category(localGovernment) contract{no)
urgentBasedOnDate
7 request_type(other) O
7 highBasedOnDate O a
Va urgentBasedOnDate W O
7 contract(no) a a
Va request_type(mog) | O
7 agency_category(localGovernment) O O

Figure 2.2: Visual rule definition in r4Zson: Scenarios mapped to options.

urgency24022025

NATURAL
e R i : - - : O e =
Initial scenarios and options > Compatible scenarios > > Decision policy LANGUAGE @

Select a scenario to resolve a conflict ° CONFLICTS SOLVED
agency_category(independentAuthority) contract(no) urgentBasedOnDate
contract(no) agency_category ur OnDate
contract(no) agency_categoryl ur OnDate request_type(other)
agency_categor ity) urgentBasedOnDate request_type(other)

Figure 2.3: Conflict resolution interface: Choosing the preferred scenario to ensure consistent
reasoning.

19

urgency24022025 ATURA
= uner © Jhon: @

Run application

Choose input data

highBasedOnDate contract(no) request_type(other) ad

Mrun
Results
o . o Y e .

Figure 2.4: Querying a rule-based decision model: Given a set of input facts, the system
evaluates the corresponding rules and returns the derived conclusion.

2.4 Technologies for Web Application and Integration

Modern web applications are built using a wide range of technologies designed to make them
more scalable, compatible, and connected. Recent advancements in frameworks, protocols,
and standards have made it much easier for web apps to work smoothly with other online
services. By understanding the key concepts and keeping up with the latest trends in these
technologies, developers can create solutions, that are flexible and strong enough to meet the
ever-changing demands of today’s software environments.

Using a common set of guidelines derived from the HT TP protocol, representational state
transfer APIs, also known as RESTful APIs (Application Programmable Interface), enable
online applications and systems to communication. Through HTTP requests, these APIs
facilitate, the easy access and management of resources, such as data models or computing
services. REST is widely used in modern software and web development, due to its ease
of use, scalability, and compatibility with current web standards. To develop or consume
RESTful APIs, developers often rely on supporting frameworks and tools.

One widely used framework in the Java ecosystem is Spring Boot, which simplifies
the creation of RESTful web services. It provides built-in support for REST controllers,
dependency injection, and data serialization, allowing developers to easily define endpoints,
handle requests, and return structured responses.

Swagger (now part of the OpenAPI initiative) is commonly used to document and test
RESTful APIs. It generates machine-readable specifications, that describe API endpoints,
input parameters, response formats, and authentication methods. Tools, like Swagger Editor
and Swagger UlI, allow both human-readable and interactive API exploration, supporting
rapid development and integration.

2.4.1 Technical Background: HTTP Methods and JSON Format

RESTful APIs communicate using a standard set of HTTP methods, each of which corre-
sponds to a specific type of operation on a resource, as shown in Table P.1.

These methods are used in conjunction with structured request bodies, most often for-
matted in JSON (JavaScript Object Notation). JSON is a lightweight, text-based format for
representing structured data as key-value pairs. It is widely used due to its readability and
compatibility with many programming languages.

20

Table 2.1: Common HTTP Methods in RESTful APIs

Method Description Typical Use Case
GET Retrieve resource Fetch user data

POST Create resource Submit a new form
PUT Update entire resource Update user profile
PATCH Update part of a resource | Change user email
DELETE | Remove resource Delete user account
OPTIONS | Get available methods Check API capabilities

An example JSON payload used in an HTTP request might look like:

{
"user": "agentOO07",
"action": "submit_request",
"parameters": {
"priority": "high",
"document": "report2025.pdf"
}
b

This object includes multiple fields to be interpreted by the server: an identifier, a re-
quested action, and relevant parameters. Such a payload, would typically be sent in a POST
request, to a specified API endpoint. When designing RESTful APISs, it is important to fol-
low best practices, such as consistent naming conventions for endpoints, appropriate use of
HTTP status codes, shown in Table 2.2, stateless communication, and clear error messaging.
These principles, enhance interoperability and ease of use, for both developers and clients
consuming the APIL.

Table 2.2: Common HTTP status codes for RESTful API responses

Code | Name Description

200 | OK The request was successful and a re-
sponse is returned.

201 | Created A new resource has been success-
fully created.

400 | Bad Request The request could not be understood
or was missing required fields.

401 | Unauthorized Authentication is required or has
failed.

404 | Not Found The requested resource could not be
found.

500 | Internal Server Error | The server encountered an unex-
pected condition.

Figure 2.3 illustrates a typical communication flow between a client and a REST API
server. The client sends an HTTP request (such as GET or POST), and the server responds,
often with JSON-formatted data.

21

POST, ...)1
[)

(e.g., Web App) > RE%T API Server}

HTTP Response (JSON da\ta)J

(.

Figure 2.5: Basic REST API Communication Flow

2.4.2 Spring Boot Framework for Web Service Development

Spring Boot is a widely adopted framework, built on top of the Spring ecosystem for develop-
ing production-ready, stand-alone Java applications. It significantly simplifies the process of
building web services and APIs by providing default configurations and embedded servers,
such as Tomcat. Given its lightweight design, extensive community support, and compatibil-
ity with REST and Swagger, Spring Boot is an excellent choice for creating workflow-driven
processes and web applications. It can also be used to develop REST clients that commu-
nicate with external APIs (such as the Gorgias Cloud API), encapsulating reasoning logic
within a modern, maintainable software architecture.

Core Architecture and Features

At its foundation, Spring Boot builds upon the established principles of the Model-View-
Controller (MVC) architectural pattern, effectively separating concerns among request han-
dling, business logic, and data management.

One of the framework’s primary advantages is its auto-configuration capability, which
dynamically configures application components based on detected dependencies. This re-
duces boilerplate code and significantly accelerates the development process. In addition,
Spring Boot streamlines deployment by providing an embedded server, most commonly
Tomcat or Jetty, allowing applications to execute independently, without reliance on exter-
nal servlet containers.

Development within Spring Boot is characterized by an annotation-driven approach. The
use of declarative constructs, such as @Controller, @Service, and @Repository, enables
clear delineation of roles and wiring within the application. This annotation-centric paradigm
not only promotes clarity, but also enhances modularity, reinforcing the principle of separa-
tion of concerns by organizing logic into discrete layers.

Such modular design improves both maintainability and scalability, especially in complex

systems. Furthermore, Spring Boot offers robust integration support, enabling seamless
connectivity with external systems and APIs, and thereby facilitating the development of
sophisticated business workflows.
Figure 2.4 illustrates the typical architecture of a Spring Boot web application. HTTP re-
quests from the user or client are processed by the Controller layer, which delegates business
logic to the Service layer. The Service layer may access persistent data through the Reposi-
tory layer, or call external APIs, such as the Gorgias Cloud API. For web applications with
dynamic content, the Controller can also pass data to the View layer (e.g., Thymeleaf tem-
plates) for rendering HTML responses. This separation of concerns promotes maintainability,
scalability, and clear code organization.

22

User/Client

HTTP Response
HTTP Request
_____ N
View Laykr (Thym]s[I%alf | A L Controller Layer
HTML Templateosc . | @Controller, @RestController
N e o - 4

— | APT call 1External API
ervice Layer, _ _ _ —————=>---" (e.g., Gor-
Q@Service '

gias Cloud)

-

calls]
X

Repository/Data Access Layer
@Repository

IIIIIHHIHHHEEIIIII

Figure 2.6: Layered architecture of a Spring Boot web application, showing main compo-
nents, user flow, database, and integration with external APIs, such as Gorgias Cloud.

Comparative Analysis

Spring Boot is recognized in the literature as a leading solution for building scalable, main-
tainable web services and microservice architectures in Java [[14], [[15]). Compared to tradi-
tional Java EE development, Spring Boot’s auto-configuration and annotation-driven model
have been shown to significantly reduce boilerplate and accelerate time-to-deployment [[16].

A number of studies and technical reports (e.g., [[17, 18]) emphasize Spring Boot’s suit-
ability for microservices, particularly when paired with Docker or cloud orchestration tools,
such as Kubernetes. Its strong integration with RESTful web services, combined with mature
support for API documentation (e.g., Swagger/OpenAPI), make it a frequent choice in both
enterprise and public sector contexts.

Several comparative analyses [[19] highlight the advantages of Spring Boot over other
frameworks, such as Node.js/Express, Django, or ASP.NET Core, especially in environments
where reliability, security, and JVM compatibility are paramount.

Best practices documented in the literature include strict separation of concerns across
MVC layers, comprehensive unit and integration testing, and use of CI/CD pipelines for
deployment [20]. However, some challenges are noted, such as managing complex configu-
rations in large-scale systems and ensuring optimised resource utilization.

2.5 Dynamic Web Content Thymeleaf Template Engine

Designed for both web and standalone environments, Thymeleaf is a contemporary server-
side Java template engine [21]. It easily interacts with the Spring ecosystem to allow server-
side template processing to produce HTML content dynamically. Though not produced
within a running application, Thymeleaf’s “natural templating” approach lets its templates
remain valid HTML, viewable and editable in browsers or IDEs. This tool simplifies fron-
tend designers’ and backend developers’ working together [22].

23

Thymeleaf often acts as the View layer in Spring Boot applications, compiling View layer
data from controllers, by isolating presentation logic from business and data logic [23], into
structured HTML for client responses. This architectural separation maintains the ideas of
the Model-View-Controller (MVC) paradigm. Thymeleaf gives flexibility for developing
complex, data-driven interfaces, so supporting conditional rendering, iteration, and interna-
tionalisation. Its compatibility with HTMLS and extensible dialect system adds even more
value for current web development [22].

As seen in Figure 2.6 , the combined use of Thymeleaf and Spring Boot promotes rapid
prototyping, maintainability, and efficient form handling, so supporting strong and scalable
web applications.

2.6 Deployment Technologies: Docker and Git

Docker: Containerization for Consistent Deployment

Docker is an open-source platform that provides a robust containerization solution, ensuring
consistent deployment across different environments [24]. By encapsulating the application
and its dependencies within containers, Docker eliminates the “it works on my machine”
problem that often plagues software deployment processes [23].

Capabilities and Benefits

Docker containers package all dependencies, libraries, and configuration files needed for the
application to run, ensuring identical behavior across development, testing, and production
environments.

Unlike traditional virtual machines (VMs), Docker containers share the host OS kernel,
resulting in lightweight deployment units, that consume fewer resources, while maintain-
ing isolation, between applications [26]. This lightweight architecture facilitates horizontal
scaling and enables seamless deployment, across cloud providers and on-premises infrastruc-
ture. Through Docker Compose and container orchestration tools, complex multi-container
deployments can be automated, significantly reducing manual configuration and potential
human errors during the deployment process.

Limitations and Challenges

Although Docker offers significant benefits, there are notable limitations. Security concerns
have been raised, due to the shared kernel architecture, and some performance overhead may
be present in certain scenarios [27]. Additionally, the learning curve associated with container
orchestration and configuration can be a barrier for new users.

Compared to other tools, such as Podman or orchestration platforms like Kubernetes,
Docker stands out for its simplicity and widespread adoption, but larger-scale systems may
require the advanced orchestration features provided by Kubernetes [28].

Docker Command Line Implementation

Docker provides a Command Line Interface (CLI) that enables users to build images, run
containers, and manage application environments directly from the terminal. The following

24

commands, as shown in Code R.1|, demonstrate common Docker CLI usage for essential
container management tasks:

25

Build an image from a Dockerfile
docker build -t my-image:latest

List all local images
docker images

Run a container from an image
docker run -d -p 80:80 my-image:latest

List all running containers
docker ps

Stop a running container
docker stop <container_id>

Remove a container
docker rm <container_id>

Code 2.1: Key Docker Commands for Container Management
Explanation of the Commands:

* docker build -t my-image:latest
Builds a Docker image from the Dockerfile in the current directory.
The -t flag assigns the image the tag my-image: latest.

* docker images
Lists all Docker images stored locally on the system.

* docker run -d -p 80:80 my-image:latest
Starts a new container from the my-image:latest image.
The -d flag runs the container in detached (background) mode.
The -p 80:80 option maps port 80 of the host to port 80 of the container.

* docker ps
Displays all currently running containers.

* docker stop <container_id>
Stops a running container specified by its container ID.

* docker rm <container id>
Removes a stopped container from the system.

In summary, Docker’s CLI, combined with its comprehensive ecosystem, provides pre-
cise control over container configurations and enables automated deployment procedures,
making it a popular choice for consistent and reproducible software deployment.

Git: Version Control and Collaborative Development

Git is a widely used distributed version control system, designed to manage source code
changes efficiently, supporting collaborative development and ensuring code integrity [29] [30].
Its distributed architecture, allows multiple contributors to work on different features simul-
taneously, enhancing project scalability and reliability [31]].

26

Capabilities and Benefits

Git’s distributed design, enables team members to work concurrently on separate branches,
without interference, significantly accelerating the development cycle, while maintaining
high code quality. Through branch-based workflows, development efforts can be isolated
and systematically merged after review, ensuring that only tested and approved code reaches
production. Additionally, Git’s comprehensive history tracking provides a complete audit
trail, facilitating quick identification of issues and rapid rollback to stable versions when
necessary.

Limitations and Considerations

Despite its strengths, Git has a learning curve for new users, especially regarding branch
management and conflict resolution [31]]. Alternative version control systems, such as Sub-
version and Mercurial, are available, but Git is preferred in most modern projects due to its
flexibility and robust. ecosystem [30].

Git Command Line Workflow

The Git Command Line Interface (CLI) equips developers with versatile tools to manage code
versions, collaborate with teams, and streamline the software development lifecycle. Below,
in Code are some essential Git commands for effective version control are shown:

27

Create a new feature branch for development
git checkout -b feature/new-feature

Commit changes with a descriptive message

git commit -m "Describe the implemented changes"
Push local changes to a remote repository

git push origin feature/new-feature

Switch to the main branch
git checkout main

Merge feature branch changes into the main branch
git merge feature/new-feature

Code 2.2: Common Git Commands for Workflow

Explanation of the Commands:

* git checkout -b feature/new-feature
Creates and switches to a new branch named feature/new-feature, supporting iso-
lated feature development.

* git commit -m "Describe the implemented changes"
Records changes to the repository with a descriptive commit message, aiding in trace-
ability.

* git push origin feature/new-feature
Uploads the local branch to the remote repository, facilitating collaboration.

* git checkout main
Switches to the main branch for merging or deployment.

* git merge feature/new-feature
Integrates changes from the feature branch into the main branch, combining new work
with the production codebase.

In summary, Git’s distributed model, powerful branching, and reliable history tracking

have made it the industry standard for modern version control and collaborative software
development.

28

Chapter 3

Methodology and System Design

Successful Public Sector deployment of cloud-based systems, depends on both methodolog-
ical and technological innovation. This chapter presents the method and system architecture
developed, to automate decision-making on deployment for the Ministry of Digital Gover-
nance. Based on a thorough requirement analysis, the approach transforms complex opera-
tional parameters, including security limitations, performance criteria, and resource allo-
cation, into a disciplined process of decision-making. Developed in close coordination with
ministry stakeholders, these requirements go beyond mere guidelines, to provide the struc-
tural foundation of all system design procedures followed.

Whether it relates to memory use, regulatory compliance, or predicted computing load,
every parameter is investigated for its impact on system behaviour, scalability, and compli-
ance with government rules. Our method sees needs as dynamic, interactive variables within
a living deployment ecology, rather than as fixed checklists. This lens guarantees, that every
deployment considers the priorities and constraints of the real world by including perfor-
mance, resource, and security needs into a complete decision model.

A fundamental part of the approach, is turning these challenging specifications into ma-
nipulable ’system facts” via programming. By consuming and analysing unprocessed user
data via a structured interface, a special middleware layer, included into Java Spring Boot,
enables this modification. The user interface of the system, shown in Figure .4, acts as a link
between technical backend and human decision-makers. Whether a user’s choice indicates
budgetary priorities, data sensitivity, or scalability needs, it is immediately encoded as a logi-
cal, objective data point. This process, blends the naturally subjective aspect of policy-driven
decision-making, with the objectivity required for automated reasoning.

Prolog facts upon form submission, dynamically parse and reformulate user inputs, hence
creating a seamless path from interface to inference engine. Communication with the Gorgias
Cloud platform, is based on these logical realities, where advanced frameworks for reasoning
evaluate and balance opposing needs. Thanks to its connection with Gorgias Cloud, the
system can travel complex, often contradicting decision domains and produce technically
sound, clearly understandable recommendations.

The system also leverages Raison Al to refine rule sets and enhance decision-paths. By
using no-code symbolic thinking, Raison Al guarantees, that the decision engine will remain
relevant, as needs evolve and so enhances the comprehensiveness and adaptability of the logic
model. This multi-layered architecture, which combines middleware data processing, user-
centric interfaces, logic programming and middleware data processing, represents a rigorous
and quite practical approach.

Ultimately, this methodological approach guarantees that exact, practical deployment

29

plans fairly represent high-level user needs. Combining domain knowledge, formal logic,
and automated reasoning generates a solution that facilitates scalable, efficient, and transpar-
ent cloud adoption, inside the specific framework of the Greek public sector.

3.1

System Architecture Overview

This section provides, a detailed architectural overview of the decision support system, de-
signed for cloud deployment. The system architecture is designed to convert user inputs into
actionable decisions using a combination of YAML file generation, Prolog fact conversion,
and query execution, through the Gorgias Cloud Platform. The process flow depicted in the
block diagram of Figure B.1| illustrates the sequential steps taken from receiving user input to
delivering final decision outputs.

Process Description:

1.

User’s Input: Initially, users provide input through a web interface. This input typi-
cally consists of specific parameters related to cloud deployment needs, such as scala-
bility, budget, data sensitivity, and infrastructure control.

Converting Input to Prolog Facts: The input data, is then processed to transform it
into a format, that can be understood by the decision-making engine, Prolog facts. This
transformation is crucial, as it ensures that the inputs are correctly interpreted by the
underlying logic of the decision system.

. Query Execution: Once the data is converted into Prolog facts, queries are formu-

lated and executed on the Gorgias Cloud Platform. This platform uses a sophisticated
argumentation, to evaluate the facts against predefined rules and scenarios.

. Results: The outcome of the queries, which are the reasoned decisions, are then fetched

from the Gorgias Cloud Platform. These results, determine the most suitable cloud
deployment strategies, based on the initial user inputs and the logical deductions per-
formed by the system.

. Converting Non-Human Explanation to Readable Decision: In the final step, the

system converts the technical outputs from the Gorgias Cloud into human-readable
decisions. This conversion is essential for end-users to understand the reasoning behind
each suggested deployment strategy.

Optional YAML File Generation: Once results are available and interpreted, there is
an option for users to generate a YAML file. This file provides a structured represen-
tation of the decisions, facilitating further analysis or integration with other systems.

30

[Generate YAML File]
\ User’s Input

Convert Ma- \
chine Explanation Convert Input to
to Human- Prolog Facts

Readable Decision

Queries

Y

Gorgias Cloud Platform]

Figure 3.1: High-level system flow: User input is transformed into Prolog facts, processed
via the Gorgias Cloud Platform, and the output is interpreted into human-readable decisions
and optionally exported as a YAML file.

3.2 System Workflow and Behavior

To clarify the workflow depicted in Figure B.1], we provide a complete example that demon-
strates, the transformation and representation at each stage, from the initial user input, to the
final YAML file.

1. User Input The process begins with a user-friendly web form, designed to capture es-
sential parameters from public sector stakeholders. These inputs, guide the system, in deter-
mining the urgency level of the deployment timeline. An example of this form is shown in

Figure B.2.
+ Agency Category: Other
* Contract with Contractor: No
* Planned Start Date: mm-dd-yyyy

For demonstration purposes, we focus on the first web form, rather than all five forms
that correspond to the system’s core parameter categories. By combining three key fields,
the system automatically infers an urgency level and prioritizes requests accordingly. Each
parameter contributes its own assessment of urgency and the system resolves potential con-
flicts.

These parameters were defined in consultation with the supervising authority, the Min-
istry of Digital Governance, and serve as critical inputs to the urgency classification process.
Notably, if the request originates from the Ministry of Digital Governance itself, it is au-
tomatically assigned the highest urgency level due to its institutional priority. In contrast,
requests from other agencies are evaluated based on additional factors.

31

Specifically, the combination of agency type, contractual obligations, and the proximity
of the planned start date, determines how time-sensitive the request is. This logic is grounded
in formal policy rules set by the Ministry.

* If the request concerns an Integrated Information System of the Ministry and is of
immediate priority, it is classified as Urgent and is executed within 3 days.

* If the request must be implemented immediately due to existing contracts and strict
schedules, it is marked as High and is fulfilled within 10 days.

« Ifthe request does not involve a strict timeline, it is labeled as Normal and is processed
within 2 months.

Which organization is submitting this request?

Ministry of Digital Governance

Central government entity responsible for digital transformation

-
m

Other Public Sector Entity

Local government, independent authority, or other public organization

Does your agency have an existing contract requiring immediate deployment?

&
Yes

There is an existing contract that requires timely deployment

Figure 3.2: User Interface for Urgency Parameter Selection — aligned with Ministry rules
for urgency classification

Some input fields, such as the Planned Start Date, require additional pre-processing,
before they can be translated into logical facts. For this reason, we implemented a supporting
Java routine, shown in Code , inside our Back-end framework, that computes the differ-
ence between today’s date and the planned start date, and classifies the result into urgency
levels, based on the date. The output is used to generate a corresponding Prolog fact:

32

import java.util.Date;
import java.util.concurrent.TimeUnit;

/% %

* Computes an urgency category from the temporal distance (in
days)

* between a planned start date and the current date.

*

* @param plannedStart the date entered by the user

* @param now the moment at which the calculation s
performed

* Q@return one of "URGENT", "HIGH", or "NORMAL"

x/

private static String calculateUrgency(final Date plannedStart,
final Date now) {
final long millisBetween = plannedStart.getTime() - now.
getTime () ;
final long daysBetween = TimeUnit.DAYS.convert(
millisBetween, TimeUnit.MILLISECONDS) ;

if (daysBetween <= 3) {
return "urgentBasedOnDate";
} else if (daysBetween <= 10) {
return "highBasedOnDate";
}

return "normalBasedOnDate";

}

Code 3.1: Computation of an urgency class based on the time interval between the
planned start date and the evaluation moment.

 Dates within the next 3 days are marked as urgentBasedOnDate.
* Dates between 3 and 10 days ahead are marked as highBasedOnDate.

 Dates more than 10 days away are marked as normalBasedOnDate.
2. Conversion to Prolog Facts The system uses a Java-based preprocessing layer to trans-
form user-submitted form data into structured Prolog facts, which are then passed to the

reasoning engine for evaluation. A sample of Java code, that performs this conversion can
be found in Code B.2.

33

try {
// Add agency category fact
String request = form.getRequest();
if (request != null && !request.isEmpty()) {
facts.add("request (" + request.toLowerCase() + ")");

¥

// Add contract with contractor fact
String contract = form.getContract();
if (contract_with_contractor != null && !
contract_with_contractor.isEmpty ()) {
facts.add("contract_with contractor (" +
contract_with_contractor.toLowerCase() + ")");

// Add highBasedOnDate fact
String highBasedOnDate = form.getHighBasedOnDate () ;

if (highBasedOnDate != null && 'highBasedOnDate.isEmpty()) {
facts.add("highBasedOnDate (" + highBasedOnDate.toLowerCase
O+ "
3

Code 3.2: Java code snippet for transforming form data into Prolog-style facts

Fact Generation Output

This transformation, derives valid Prolog facts, directly from the user input. Gorgias
Cloud receives these facts, for further evaluation:

request (other) .
contract with contractor(no).
highBasedOnDate.

Once the facts are generated, they are passed to the reasoning engine, which operates
on the Gorgias Cloud infrastructure. Specifically, the system consults the appropriate . pl°
(Prolog) file that encapsulates the policy rules defined for this case. These files have been
created through Raison Al platform.

In this context, the engine infers the appropriate urgency classification, based on the input
parameters. The result is returned in a structured format and can take one of the following
values: Urgent, High, or Normal, depending on factors, such as planned start date, agency
category, and contractual constraints.

3. Query to Gorgias Cloud Platform Along with these facts, the system generates a query
for each case and sends it to the Gorgias Cloud Platform for reasoning. A typical query, for
this case, might look like the one in Code B.3:

gorgiasQuery.setQuery ("urgency (X)");

Code 3.3: Setting a logic query string in the Gorgias request object.

34

4. Reasoned Decision (Results) The Gorgias Cloud Platform applies the policy rules to
the input facts and query to infer a result. While one might expect the reasoning engine to
simply return a direct value, such as

X = high

the actual output from the Gorgias Cloud Platform is considerably more detailed and com-
prehensive. Instead of a plain label, the system generates a structured response object that
encapsulates not only the computed result, but also a detailed explanation of the underly-
ing reasoning process. As shown in Code B.4, the returned object includes multiple fields:
an explicit indication of success, an array of rule identifiers contributing to the result, and,
crucially, a human-readable explanation that details the logical chain leading to the final de-
cision. This explanation clarifies, for example, why a particular urgency level was selected,
by referencing both supporting and competing arguments, along with the specific facts that
tipped the balance. The system thus provides full transparency into its reasoning, enabling
traceability and accountability in deployment recommendations, a feature essential for Public
Sector automation and compliance.

5. Converting “Non-Human” Explanation to Readable Decision To make it more ac-
cessible and understandable, the system transforms the ordered, "non-human” or better tech-
nical output, from the Gorgias Cloud reasoning engine into an explanation understandable to
users. The raw query result contains internal rule references, variable bindings, and tough to
directly grasp logic chains. Gorgias Cloud provides a so-called human explanation, however
non-technical decision-makers could not be able to access this output right away, since it is
still essentially technical in character. Extra layer of processing is done, to reformulate these
technical explanations, into messages accessible to policy makers and end users, unfamiliar
with logic programming. This process, is crucial to ensure that the recommendations of the
system are not only visible and clear, but also really relevant to Public Sector environments,
where users’ technical competency could vary significantly.
For instance, the result in Code .4 is returned from the reasoning engine:

35

Query Result: class GorgiasQueryResult {

hasError: false

hasResult: true

result: [class QueryResult {
explanation: [c3, p7, r8]
explanationRulesHeadWithoutVariables: [p7, c3, r8]
explanationStr: [c3,p7,r8]
humanExplanation: 'Application Level Explanation

The statement "urgency(high)" is supported by:
- "request_type(other)"

This reason is:
- Stronger than the reason of:
"request_type(other)" supporting "urgency(normal)"
when :
"request_type(other)"
and
"highBasedOnDate"

Variables: {X = high}
]

Code 3.4: Query result from the reasoning engine

This structured output is automatically parsed and reformulated into an explanatory mes-
sage intended for end users and decision-makers. For the example above, the translated ex-
planation becomes:

High Priority: Accelerated deployment required within 10 days. Prompt re-
source allocation recommended. Standard procedures should be followed with
expedited processing.

In addition, the system provides a rationale:

Why this choice: High priority is stronger than Normal priority, and is supported
by the fact that the request is from another ministry or organization, combined
with the short time frame until deployment.

This approach enables traceable, explainable Al (XAI) by bridging formal logic and
policy-based inference with intuitive summaries, enhancing both trust and accountability
in automated decision-making processes. An example of the corresponding user interface
output is shown in Figure 3.3

6. Finalizing Decisions and Applying Selections Once all five decision cases, illustrated
in Figure B.4, have been processed, the system recommends appropriate options, based on
the parameters provided for each case. At this stage, the user is empowered to make a final
selection from the computed results, in order to finalize the deployment strategy and generate
the corresponding configuration file.

36

1

High Priority: Accelerated deployment
required within 10 days. Prompt resource
allocation recommended. Standard
procedures should be followed with
expedited processing.

T HIGH

© WHY THIS CHOICE?

« The request is from another ministry or organization.

= The deployment date is approaching soon, indicating a high
priority.

= High priority is stronger than Normal priority, also supported by the
fact that the request is from another ministry or organization,
because the deployment date is approaching soon.

Figure 3.3: User Interface output showing the recommended urgency classification

After reviewing the available choices, as shown in Figure B.3, the user clicks Apply
Selections to confirm the chosen deployment strategy. This action prepares the system to
generate the corresponding YAML configuration file.

37

Set Urgency Level

Specify the urgency level and agency
details for your deployment

= Choose Infrastructure

Select the infrastructure requirements
that best match your deployment

@ Select Data Location

Define the data type classification
and required cloud environment

requirements. needs. location.
- Define Urgency - Define Infrastructure - Define Location
Status: | B Status: | B Status: | B

L]

. 2 . s 0/5
{5 Define Resources |~ Plan Scalability @ Final Decision i
Determine the CPU, memory, and Define your scalability requirements to Review and analyze all your selections
storage requirements for your handle peak loads and traffic patterns. before finalizing your deployment
deployment. strategy.

- Define Resources —> Define Scalability

[B8 View Final Decision }

Status: | B status: | B

Figure 3.4: Overview of the user workflow for case-based decision support.

¥ Locauon:

On-Premise: Deploying infrastructure within a private data center, offering full control over hardware, security, and
O compliance.

Azure: A public cloud platform providing scalable and managed computing resources, ideal for flexible and high-availability
® deployments.

[] Selections have been applied successfully!

B Apply Selections

@ Ready to View Your Recommended Strategy?

Your requirements have been analyzed! Click the button below to view your recommended deployment s

[Selections have been applied successfully!
corresponding YAML configuration file. = PP .

Figure 3.5: Interface showing applying final selections

7. Recommended Strategy and YAML File Generation This recommendation includes
the selected deployment strategy, technical reasoning for the choice, and a YAML configu-
ration file, tailored to the user’s specific requirements.

In the example illustrated in Figure B.6, the system recommends Azure Functions (Pre-
mium). This strategy, offers enhanced serverless computing, with dedicated resources, VNet
integration, and pre-warmed instances, ideal for performance, and critical event processing.

The recommendation is justified by technical reasoning, that takes into account the user’s
performance, latency, and disaster recovery requirements. As shown in Figure 3.7, the system
identifies serverless computing, low latency needs, and high disaster recovery expectations,
as the key decision factors.

Finally, the user is given the option to export the recommendation as a YAML configu-
ration file. This file captures the decision outcome in a structured format and can be used for
deployment automation or documentation purposes. An example YAML file for the recom-
mended Azure Functions deployment is shown in Code B.5.:

38

& Recommended Deployment Strategy

Azure Functions (Premium): Enhanced serverless compute with dedicated resources, VNet
integration, and pre-warmed instances for performance-critical event processing

@ This recommendation is based on your specific requirements for availability, performance, budget, and technical constraints.

W Key Features of This Deployment Strategy

e Multi-region deployment E Comprehensive backup strategy
c Automated failover capability a Optimized performance
. High availability architecture I~ Business continuity support

Figure 3.6: Recommended Deployment Strategy: Azure Functions (Premium)

#b Decision Reasoning

Why This Strategy Was Chosen

Our analysis of your requirements led to this recommendation based on the following key factors:

@ Technical Reasoning

@ serverless Computing: Allows code execution without managing underlying infrastructure.
@ Low Latency Required: Applications requiring minimal processing and response delays.

@ High Disaster Recovery: Comprehensive backup, replication, and failover capabilities for critical workloads.

Figure 3.7: Technical Reasoning Behind the Deployment Decision

39

Use case: Event-driven applications requiring consistent
performance, VNet integration, and longer ezxzecution times

apiVersion: 2023-01-01
kind: AzureDeployment
metadata:
name: premium-functions
description: Azure Functions Premium deployment
for high-performance event processing
tags:
environment: production
workloadType: serverless-premium
costCenter: IT-Applications

parameters:
location:

type: string

defaultValue: westeurope

allowedValues:
- westeurope
- northeurope
- eastus
- westus2

description: Azure region for resource deployment

functionAppName:
type: string
defaultValue: func-premium
description: Name of the function app (must be globally
unique)

Code 3.5: Example Configuration File Structure (YAML)

40

This example demonstrates how the system moves from logical reasoning and policy
evaluation to a concrete, executable configuration, completing the end-to-end decision-making
workflow.

3.3 User Interface Design

The structural and functional design of the system components, produced for this system, is
covered in this part. The modular implementation of data processing, user interaction, and
decision logic, underlines their support of the choice of deployment strategy. The mecha-
nisms by which users input guided forms, how these inputs are handled, and how decisions
are derived depending on predefined criteria are covered in the next subsections.

3.3.1 User-Guided Configuration through Decision Forms

This section presents the User Interface (Ul) and the process management logic. The system
is structured around five distinct forms, each corresponding to a critical decision-making
category: urgency, infrastructure, location, resources, and scalability. Each form is designed
to collect targeted information, relevant to its respective domain, thereby enabling structured,
data-driven decisions. By isolating these categories, the Ul ensures a transparent, modular,
and traceable workflow, allowing users to engage with each aspect of the deployment strategy,
independently and systematically. Furthermore, the Ul is implemented using Thymeleaf and
HTML, enabling dynamic form rendering, real-time validation, and seamless interaction with
backend services.

* Urgency: The urgency input, allows the system to determine, the appropriate deploy-
ment timeline. Based on user responses, such as the initiating organization, contract
status, and preferred deployment date, the urgency level is categorized as:

— Urgent: Deployment required within 3 days.
— High: Deployment required within 10 days.
— Normal: Deployment acceptable in more than 10 days.

This classification directly influences the scheduling and prioritization of technical and
operational resources.

* Infrastructure: The user is prompted, to specify infrastructure preferences, which
guide the decision between various cloud service models:

— Software as a Service (SaaS) — minimal configuration, fast deployment, limited
control.

— Platform as a Service (PaaS) — some configurability, balanced control and au-
tomation.

— Infrastructure as a Service (laaS) — full control of VMs or containers.

— Serverless — event-driven, highly abstracted infrastructure for elastic workloads.

This decision determines the level of control, customization, and setup complexity the
user is prepared to manage.

41

» Location: Deployment location is selected based on regulatory, compliance, or latency
requirements. Options typically include:

— On-Premises: For sensitive data or controlled environments.

— Public Cloud: For broader scalability and global availability.
The choice informs security models and data residency considerations.

* Resources: In this section, users identify, the dominant performance requirements of
the application. Prioritization may include:

— High CPU processing (e.g., compute-intensive tasks)
— Memory optimization (e.g., in-memory caching)

— Storage capacity (e.g., data warehousing or backups)
These inputs help allocate virtual resources optimised during deployment planning.

» Scalability: Scalability needs are specified, based on anticipated traffic patterns and
elasticity:

— Fixed Allocation: Suitable for predictable, stable workloads.
— Auto-scaling: Necessary for applications with variable or bursty traffic.

This input impacts both cost modeling and performance guarantees.

* Review and Final Decision: After all inputs are gathered, a summarized review is pre-
sented to the user. The system uses internal reasoning to generate multiple deployment
configurations, each justified by the answers provided. This enhances transparency, al-
lowing users to make an informed final decision with full contextual feedback.

42

Navigation Workflow Diagram

e

{ Step 1: Urgency Input }

{Step 2: Infrastructure Selection}

{Step 3: Deployment Location}

{Step 4: Resource Requirements}

{Step 5: Scalability Input}

{Review and Apply Selections}

{Recommended Strategy Displayed}

{YAML Configuration File Generated}

43

This structured and modular approach, not only guides the user intuitively through the
configuration process, but also ensures accurate and complete data collection for system de-
ployment and optimization.

3.3.2 User Interface Views

Figures B.8-B.13, illustrate the user interface design, for each step of the process management
workflow. Each figure presents, a dedicated configuration form developed with Thymeleaf,
aimed at simplifying the input process and aligning each response with a specific deployment
decision logic.

Which organization is submitting this request?

Ministry of Digital Governance

Central government entity responsible for digital transformation

-
iy

Other Public Sector Entity

Local government, independent authority, or other public organization

Does your agency have an existing contract requiring immediate deployment?

B
Yes

There is an existing contract that requires timely deployment

Figure 3.8: Urgency step — collecting deployment urgency and organizational context.

@] o0——

Start Urgency Infrastructure Location Resources Scalability Review

= Infrastructure Requirements

What is your primary objective?

By Full Control & Customization

Best for VMs and containerized workloads that require complete control over the infrastructure and software
stack.

== Minimal Setup

Ideal for Saa$ solutions with no infrastructure management needs, focusing on using ready-made software.

% Event-Driven Computing

Optimized for serverless architectures that run code in response to events without managing infrastructure

Figure 3.9: Infrastructure preferences — selecting appropriate infrastructure model types (e.g.,
SaaS, PaaS, laaS, Serverless).

44

£ What type of data will this system handle?

Personal Data (e.g., user accounts, customer details) v

Selecting "Critical" may require additional security measures.
¥ Does this system need to connect to A.A.D.E. infrastructure?

¥ Yes, this system requires an A.A.D.E. connection

AADE. infrastructure is used for tax and financial system integration.

= What is the budget allocation for this project?

Low Budget (Cost efficiency, shared resources) v

@ Expected latency performance?

Strict (Low Latency, real-time response) v

¥ Scalability Requirements?

Figure 3.10: Location selection — defining regional and compliance requirements for on-
premises or public cloud deployment.

Resource Priorities

= What does your application prioritize?

Compute-Intensive

High CPU & RAM for fast processing, ideal for computation-heavy applications

Storage-Intensive

Large storage capacity with lower CPU/RAM requirements, ideal for data-heavy applications

@ What is the performance requirement for data access?

Low Latency

Fast response time for real-time applications and interactive services

i High Throughput

Batch processing, analytics, and high-volume data transfer capabilities

Figure 3.11: Resource configuration — prioritizing compute, memory, storage, and latency
needs.

45

l~ Performance Parameters

282 What is the expected average workload or user traffic for your application?

Low Traffic

Minirmal user base or workload, suitable for internal applications or early-stage projects

@ Medium Traffic
Moderate user base or workload, common for business applications and established services

High Traffic

Heavy user base or workload, for consumer-facing applications or high-throughput systems

|= How frequently does your application experience spikes in workload or traffic?

Rarely

Infrequent spikes in traffic or workload, predictable usage patterns

Figure 3.12: Performance parameters — defining expected traffic volume, spikes, and scala-
bility behavior.

‘= Deployment Decisions Summary

= Infrastructure:

O Serverless (Azure Functions, etc.)

O Platform As A Service

|~ Scalability & Performance:

® Fixed Allocation: Suitable for predictable workloads with static resource limits.

Auto-selected }

A Urgency:

Auto-selected
Normal Priority: Regular deployment timeline. Standard resource allocation appropriate. All normal procedures and quuulus; =

@ checks to be followed without modification.

Figure 3.13: Final decision interface — the user reviews the collected inputs and selects be-
tween appropriate decisions

46

¥ Locauon:

On-Premise: Deploying infrastructure within a private data center, offering full control over hardware, security, and
O compliance.

Azure: A public cloud platform providing scalable and managed computing resources, ideal for flexible and high-availability
® deployments.

[] Selections have been applied successfully!

B Apply Selections

@ Ready to View Your Recommended Strategy?

Your requirements have been analyzed! Click the button below to view your recommended deployment s

[Selections have been applied successfully!
corresponding YAML configuration file. = PP .

Figure 3.14: Final selection submission — the user applies the selected deployment configu-
ration. This action triggers the backend processing engine to finalize the decision logic and
prepare for strategy execution.

& Recommended Deployment Strategy

Azure Functions (Premium): Enhanced serverless compute with dedicated resources, VNet
integration, and pre-warmed instances for performance-critical event processing

@ This recommendation is based on your specific requirements for availability, performance, budget, and technical constraints.

W Key Features of This Deployment Strategy

e Multi-region deployment E Comprehensive backup strategy
S Automated failover capability ﬂ Optimized performance
' High availability architecture I~ Business continuity support

Figure 3.15: System’s final decision output — this view presents the recommended deploy-
ment strategy derived from the user’s structured inputs, supported by reasoning and explana-
tion generated by the argumentation engine.

47

Following the system’s recommendation, users are granted access, to download a pre-
generated YAML configuration file. This file, encapsulates, the selected deployment param-
eters, in an infrastructure-as-code format, enabling seamless provisioning and integration
with modern DevOps pipelines.

3.4 Back-end Logic and Processing

Coordinating the data transformation and reasoning process, depends on the back-end of the
system. It acts as a middle, between the user-interface and the Gorgias Cloud thinking engine.

Developed with Spring Boot Framework, the back-end service evaluates and organises
the data, into logical facts following user interface organised inputs. These dynamically com-
bined elements, fit the required syntax of the Prolog-based argumentation engine. Based on
the situation, being handled, e.g., urgency, infrastructure, scalability, an appropriate Prolog
query (e.g., urgency (X)) is built and sent over a RESTful API to the pertinent Gorgias Cloud
project, together with the produced facts.

The Gorgias engine, compares the facts to the policy guidelines, stated in its hosted .pl
file asynchronously processing every query. Usually in a structured JSON format, the re-
sponse consists of both the conclusion of the inference (e.g., X = high) and a traceable jus-
tification of the reasoning route.

After receipt, the answer is broken out by the back end, which then maps the relevant
conclusions to human-readable explanations. These outputs are then returned back to the
front end, where they are displayed as clear summaries and useful recommendations, as seen
in Figure B.3. Table summarizes the main logical components of the back-end system
and their respective roles in the data processing pipeline.

Component Role

Input Processor Handles user inputs from forms and converts them into struc-
tured data

Fact Generator Transforms structured input into logical facts suitable for rea-

soning (e.g., Prolog-style)

Query Dispatcher Sends POST requests to the reasoning engine with both facts
and relevant queries

Response Handler Receives responses and interprets the output from the reasoning
engine

Explanation Mapper | Maps raw reasoning results into user-friendly explanations and
highlights important justifications

Table 3.1: Responsibilities of system components

3.4.1 UI Data Submission

Once a user completes the web-based decision form, the input is submitted via a POST request
to the /workflow/process-urgency endpoint, in the case of urgency, using a Thymeleaf-
annotated HTML form (see Code B.6). Upon receipt, the Spring Boot backend stores the
structured values in an embedded H2 database, enabling auditing and future traceability.
Immediately after persistence, the system initiates the logic processing pipeline. The
stored values are programmatically transformed into Prolog-style facts relevant to the deci-
sion domain (as shown already in Code B.2). These facts, along with the appropriate logic

48

queries (e.g., the urgency classification query in Code B.3), are dispatched to the Gorgias
Cloud reasoning engine for evaluation.

This modular flow ensures a clean separation between data collection, fact generation,
and logical reasoning, supporting all five use case scenarios with consistency and reusability.

<form th:action="@{/workflow/process-urgency}" th:object="${form}"
method="post">

<!-- Organtzation Selection -—->
<div class="form-group">
<label>Which organization is submitting this request?</
label>

<label class="custom-radio-card" for="opsRequest">
<input type="radio" th:field="*{requestTypel}" id="
opsRequest" name="requestType" value="ops"
onclick="selectCard(this)">
<div class="custom-radio-icon">
<i class="fas fa-building"></i>
</div>
<div class="custom-radio-content">
<div class="custom-radio-title">Ministry of Digital
Governance</div>
<p class="custom-radio-description">0ther Public
Sector or Entity</p>
</div>
</label>
</div>
</form>

Code 3.6: User POST form request to initiate urgency classification

3.4.2 Dispatching the Gorgias Query via a Swagger-Generated Client

Derived from the Gorgias Cloud OpenAPI description, we use a statically typed Java client to
control the way the system generates and sends HTTP requests to the Gorgias Cloud. Built on
officially specified OpenAPI 2.0 (Swagger) schema supplied by the service, this client was
created using the Swagger Codegen tooling. Together with a range of highly-typed request
and response classes, such as Gorgias Query and Gorgias Query Result, the generated mod-
ule was integrated into the Spring Boot application and gives a specific controller interface
for launching reasoning queries. This strategy offers multiple benefits. First, it guarantees
type safety, by using produced Java classes to enforce HTTP request and response payload
structure at build time. Second, by abstracting low-level issues, including JSON serialisa-
tion, deseralisation, and error handling, it drastically reduces boilerplate code. At last, it
makes maintainability feasible, since the client might be generated from an updated Ope-
nAPI specification, therefore allowing perfect integration of any forthcoming improvements
to the Gorgias Cloud API.

Code B.7 shows the core method that prepares a Gorgias query and sends it to the remote
engine. The method collects logical facts from the current form, configures the rule file(s) to
be used during evaluation, and dispatches a POST request to the /GorgiasQuery endpoint.

49

public List<ParsedResult> executeGorgiasQueryForUrgency (
WorkflowForm form, HttpSession session) {

GorgiasQuery gorgiasQuery = new GorgiasQuery();
setupGorgiasFiles (gorgiasQuery); // Specify the rulebase

List<String> facts = collectFacts(form);
if (facts.isEmpty()) {
return Collections.emptyList();

3

gorgiasQuery.setFacts(facts);
gorgiasQuery.setResultSize (5) ;
gorgiasQuery.setQuery ("urgency (X)");

return performQuery(gorgiasQuery); // Uses generated API

Code 3.7: Submitting facts and a query to Gorgias Cloud via Swagger-generated client

The API call returns a GorgiasQueryResult, which includes metadata flags and a list of
query results. Each result contains a set of variable bindings, rule justifications, and a natural-
language explanation.

This mechanism decouples the reasoning backend from the application logic, while pre-
serving transparency, extensibility, and testability across use cases.

3.4.3 Post-processing of Gorgias Results

The interface with Gorgias Cloud returns a JSON structure (GorgiasQueryResult) contain-
ing:

* Solution — eg. the final urgency level (normal, high, urgent);
» Supporting Facts — the set of facts supporting the decision.

However, this format is not immediately understandable to non-technical users. To present
both the urgency level and the underlying justification in a clear and human-friendly way,
we implemented a post-processing layer in Java that:

1. decodes the raw result,

2. maps technical fact identifiers to natural language descriptions (e.g., request_type (
other) — “The request is from another ministry or organization”),

3. produces a list of ParsedResult items ready for Ul display.

50

/*% Converts GorgiasQQueryResult to human-readable form. */
public List<ParsedResult> parseGorgiasQueryResult (
GorgiasQueryResult gorgiasQueryResult) {

Map<String, String> factMappings = new HashMap<>();
populateMappings (factMappings) ;

return gorgiasQueryResult.acceptedFacts().stream()
.map (fact -> new ParsedResult(
mapPriority (
gorgiasQueryResult.classification()),
factMappings.getOrDefault (fact, fact)))
.toList () ;

Code 3.8: Extracting and transforming the Gorgias result

/*% Creates a dtictionary from technical IDs to descriptions. */
public void populateMappings(Map<String, String> factMappings) {

factMappings.put("request_type (ops)",
"The request is from the Ministry of Digital Governance.");

factMappings.put("request_type (other)",
"The request is from another ministry or organization.");

// ...more mappings can be added as needed

Code 3.9: Mapping internal fact IDs to human-friendly labels

Function mapPriority. This helper method converts the raw classification string (e.g., "
high") into a display-friendly version, such as “High Priority”, ready for UI output.

Example Output
The resulting list appears in the Ul as follows:

High Priority
L— The request is from another Ministry or organization.
L— There is no current contract with any external contractor..

In this way, the final user receives a clear urgency classification (Normal / High / Urgent),
with natural language justifying the decision.

Similar architecture, allows the post-processing layer to be applied to the final suggested
deployment plan. For instance, internal result identifiers, like azure_vm map user-friendly
names, like "Deploy on Microsoft Azure — Virtual Machine”. This guarantees that the ur-
gency categorisation and the proposed technological solution are presented in a way that non-
technical stakeholders can grasp, therefore preserving the main purpose of explainability and
transparency of the system.

51

3.5 Argumentation Engine Design

Following the transformation of user input into logical facts, the system proceeds, to execute
the argumentation rules, that drive the decision-making process. These rules were modeled
using Raison Al, which translates input scenarios into formal Prolog .pl files, capturing
complex policy logic in a structured and maintainable format. The rule files are hosted on
Gorgias Cloud, which is integrated into the system proposed in this thesis via its API for
remote execution. Upon receiving the input facts, Gorgias Cloud evaluates them against the
defined logic, applies preference-based reasoning to resolve conflicts and returns transparent,
explainable conclusions, that inform the final deployment recommendations.

Demonstration of Argumentation Logic: Urgency Case

To illustrate, the structure of policy reasoning, implemented in the argumentation engine, a
subset of the decision rules, encoded in Prolog is presented in Code B.10. Each Prolog .pl
file consists of two main components: a set of logical rules that define the decision logic, and
a set of facts that represent the specific input conditions.

For the reasoning engine, to produce a valid and context-aware conclusion, both elements
must be present, rules to guide the logic and facts to represent the user input scenario. In
addition, a prompt (i.e., a query) must be submitted, to instruct the engine on what to evaluate.
These rules, in the case of urgency, determine the appropriate urgency level and establish
preferences between alternative outcomes, based on context-specific criteria, such as agency
type, contractor involvement, and timing constraints.

:- dynamic contract_with_contractor/1,
highbasedondate/0, normalbasedondate/O,
request_type/1l, urgentbasedondate/O0.

rule(dl, urgency(high), [I) :-
request_type (ops),
contract_with contractor (no),
highbasedondate.

rule(d2, prefer(dl, r1), []1) :-
request_type (ops),
contract _with_contractor(no),
highbasedondate.

rule(rl, urgency(urgent), []) :-
request_type (ops) .

rule(r9, urgency(normal), []) :-
contract_with_contractor (no).

complement (urgency (high), urgency(normal)).
complement (urgency (high), urgency(urgent)).

Code 3.10: Sample Argumentation Rules in Prolog

52

We used the Raison Al interface, which offers a simple graphical environment for sce-
nario description, rule creation, and conflict resolution, to help us model and build these
argumentation rules. Important phases in the configuration process, such as scenario de-
velopment, option modelling, conflict resolution, and runtime query execution, are shown
in Figures B.16-B.21. Still exporting accurate .pl files for the reasoning engine, this tool
enables users visually design complex decision structures, without hand Prolog coding. Its

visual transparency guarantees accuracy and usability even for experts in domains other than
formal logic.

53

urgency24022025 ATURA
@ NATURAL @

Initial scenarios and options > Compatible scenarios > Conflict resolution > Decision policy LANGUAGE
ADD A MANAGE ADD AN
@ SCENARIO @ ELEMENTS @ OPTION ol urgency(high) urgency(urgent)
7 request_type(mog) B OnDate O O
Va agency_categor ity)
urgentBasedOnDate
Va agency_category
urgentBasedOnDate
7 request type(other) O
’ highBasedOnDate | O
Vs urgentBasedOnDate D D
7 contract(no) a O
7z request_type(mog) O (]
7 agency_category(localGovernment) O O
Figure 3.16: Scenario modeling using Raison Al
— urgency24022025 & NATURAL ® 1
- Initial scenarios and options > Compatible scenarios > Conflict resolution > Decision policy LANGDAGE
Select a scenario to resolve a conflict 8/8 CONFLICTS SOLVED
agency_categor ity) i OnDate

contract(no) agency_category(localGovernment) urgentBasedOnDate

contract(no) agency_categ ul lOnDate request_type(other)

agency_categor ity) OnDate request t)

Figure 3.17: Conflict resolution interface (8/8 resolved)

e s urgency24022025 & Py @
" Run application LANGUAGE

Choose input data

~Data

OnDate request_type(other) o

BJrun

Results

0 . o . e -

Figure 3.18: Project execution to test logic

54

©}

ADD AN

ADD A MANAGE
@ @ QPTION

SCENARIO ELEMENTS

N @S & 8 & & &

S,

consumeReadySoftware noControl

custom_integrations.
low_budget
high_budget data_sensitivity
runCustomApps fullControl
eventDrivenFunctions

noControl

consumeReadySoftware high_budget

consumeReadySoftware limitedControl

custom_integrations

Figure 3.19: Scenarios for infrastructure

ADD AN

ADD A MANAGE
@ @ OPTION

SCENARIO ELEMENTS

7

(€]

expectedLoad(high)

expectedLoad(low)

expectedLoad(medium)

costSensitivity(thigh)

costSensitivity(low)

responseTime(medium)

responseTime(high)

peakTimes(frequently)

peakTimes(always)

expectedLoad(low) costSensitivity(low)

Figure 3.20: Decision matrix for scalability

ADD AN

ADD A MANAGE
@ @ OPTION

SCENARIO ELEMENTS

nonpersonal

personal

critical

tax

medical

nonpersonal onPremise high_budget

medium_scalability high_disaster_needs general

high_disaster_needs general high_scalability

flexible_latency

azure personal

DNDDENDE
DEDDDDDEE

O

propose_location(azure)

8 0000

<

[< < B < I < IR < B < |

[R |

NDDDDDNDE
DDDSSKNDE

auto_scallng

< T < T < I < TR < T < IO < I < |

propose_location{onPremise)

a

< I < I < I <

O

Figure 3.21: Scenario and outcome mapping for location policy

55

Preference rules, are especially important for resolving conflicts, when multiple rules
apply simultaneously.

Rule Set Size

The Gorgias Cloud maintains an extensible and scalable set of rules, which can vary depend-
ing on the scenario complexity. For our system, we developed a total of six distinct reasoning
projects, using Raison Al, each exported as a separate .pl file. These files are hosted and
executed remotely, through the Gorgias Cloud platform via API integration.

Each .pl file corresponds to a specific decision-making dimension, including five case-
specific modules, Urgency, Infrastructure, Location, Resources, and Scalability, as well as
one additional module, for the Final Decision. Each file contains approximately 80-100 logi-
cal rules, capturing the full range of policy scenarios, relevant to that dimension. Exception is
the final decision, .pl (100-200 rules), which evaluates all the previous decisions, including
user produced facts.

The final decision module, synthesizes the outputs of the five individual cases, enabling
the system, to generate context-aware and preference-driven deployment recommendations.
This modular rule architecture, supports both granular policy evaluation and holistic strategy
formulation.

Urgency
(40 rules)

Infrastructure Location
(112 rules) (103 rules)
T Final Deci- —
sion Logic
167 rules
Resources — () T Scalability
(94 rules) (63 rules)

Figure 3.22: Modular Prolog rule sets hosted and executed in Gorgias Cloud

56

Chapter 4

Implementation

This chapter addresses, the technical setup of the development environment and the techni-
cal execution of the cloud deployment decision support system. The development approach
took advantage of several modern technologies and frameworks in order to assure modular-
ity, scalability, and maintainability. Visual Studio Code (VS Code) provided efficient code
navigation, debugging, and Git integration, therefore serving as the main integrated program-
ming environment (IDE). The back-end was developed using the Spring Boot framework,
which gave a solid basis for building RESTful services and controlling logic orchestration.
An embedded H2 database was used to provide user-submitted data and intermediate states
lightweight, in-memory storage throughout the development and testing phases. To enable
integration with the Gorgias Cloud platform, the API documentation, was investigated and
tested using Swagger Editor. This guaranteed correct formatting and organisation of the log-
ical searches and answers. These components interacted to provide a harmonic surroundings
that enabled the application of the system covered in this chapter.

4.1 Technology Stack and Tools

To build the cloud deployment decision support system, a carefully selected set of tools and
technologies was utilised, each chosen for its compatibility, performance, and ease of in-
tegration. Figure provides an overview of the system’s development environment and
technology layers.

* VS Code: Used as the primary Integrated Development Environment (IDE), offering
efficient navigation, plugin support for Java and Spring Boot, REST API testing, and
seamless Git integration for version control.

+ Git: Employed for source code version control and collaboration, enabling structured
branching, tracking of changes, and integration with GitHub for remote repository
management.

» Spring Boot: Formed the core of the back-end application, supporting RESTful API
design, modular service development, and dynamic fact generation for logical infer-
ence.

* Maven: Used for dependency management, and reproducible configuration across
development and production environments.

57

H2 Database: Provided an in-memory relational data store used during development
for storing user submissions, state transitions, and audit records.

Thymeleaf + HTML/CSS: Enabled dynamic front-end rendering of decision forms
and configuration views, closely coupled with Spring controller logic.

Swagger Editor: Utilized for interacting with and validating the Gorgias Cloud REST-
ful API, ensuring that logic queries were correctly formed and executed.

Docker: Used to containerize the application for deployment testing, offering consis-
tency across environments and simplifying dependency setup and portability.

Gorgias Cloud + Raison AI: Served as the external logic engine and rule modeling
environment. Raison Al facilitated rule creation via graphical modeling, while Gorgias
Cloud evaluated the exported . pl files against submitted facts.

58

6S

LWeb Browser (HTML Forms)

HTTP Response (View + Result) { | HTTP POST (JSON)
Spring Boot Controller
(REST API)
Internal Method Call
Service Layer EST API RequeSt API CommunicatddTTP POST — Gorgias Q SON) Gorgias Cloud
(Fact Generator + Query Manager) (REST to Gorgias) HTTP Response (Deciéion) (Query Execution)
A
JDBC Write API Test Call E T .pl Rules Upload
H2 Database | SwaggerEditor | ' RaisonAl |
(Local Storage) l (API Testing) 1 l (Rule Authoring) 1

Figure 4.1: Enhanced implementation architecture with RESTful requests and responses, internal Spring Boot logic, and integration with external
reasoning and rule tools.

4.2 Development Environment and Project Setup

To implement the deployment recommendation system, a lightweight and modular develop-
ment environment was chosen to maximize flexibility and automation. The core technolo-
gies include Visual Studio Code as the development IDE, Spring Boot for the application
framework, and Maven for build management. The project is structured using a RESTful
service-oriented architecture, with integrated reasoning capabilities via the Gorgias Cloud
APL.

4.2.1 VS Code and Spring Boot Setup

The project was developed using Visual Studio Code (VS Code), which provides robust
Java support through extensions, such as Spring Boot Tools, Debugger for Java, and
Lombok Annotations. The VS Code environment supports integrated terminal access, Git
operations, and real-time Maven build status.

Project scaffolding was bootstrapped using the Spring Initializr service, with the fol-
lowing base configuration:

* Language: Java 17
* Build Tool: Maven
* Dependencies:

— spring-boot-starter-web

— spring-boot-starter-thymeleaf
— spring-boot-starter-data-jpa
— com.h2database:h2

— swagger-codegen-maven-plugin

4.2.2 Dependency Management: pom.xml

The pom.xml file manages all build and runtime dependencies, allowing for reproducible
builds and smooth integration. Code displays a snippet of the configuration for Swagger
and H2.

60

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

<dependency>
<groupId>com.h2database</groupld>
<artifactId>h2</artifactId>
<scope>runtime</scope>
</dependency>

<dependency>
<groupld>io.swagger</groupld>
<artifactId>swagger-codegen</artifactId>
<version>3.0.23</version>

</dependency>

Code 4.1: Sample dependencies in pom.xml

The Swagger dependency enables automatic generation of client-side Java code to in-
teract with the Gorgias Cloud REST API. This simplifies query construction and ensures
endpoint compatibility.

4.2.3 Integration of Gorgias Cloud API via Swagger Codegen

To enable structured and type-safe interaction with the Gorgias Cloud reasoning service, a
Java client was generated directly from its OpenAPI (Swagger) specification. Rather than
consuming a precompiled client library, the swagger-codegen-maven-plugin was used to
generate Java source code, based on the official gorgias-swagger. json file provided by
Gorgias.

This OpenAPI specification formally describes the available endpoints, including /Gorgi-

asQuery, as well as their expected input and output structures. This ensures that the client

code is schema-compliant and aligned with the API contract.
The plugin was configured in the project’s pom. xml file as shown in Code §.2:

61

<plugin>
<groupld>io.swagger.codegen.v3</groupId>
<artifactId>swagger-codegen-maven-plugin</artifactId>
<version>3.0.23</version>
<executions>
<execution>
<id>generate-gorgias-client</id>
<goals>
<goal>generate</goal>
</goals>
<configuration>
<inputSpec>${project.basedir}/src/main/resources/gorgias-
swagger . json</inputSpec>
<language>java</language>
<output>${project.build.directory}/generated-sources/
swagger</output>
<apiPackage>com.myapp.gorgias.api</apiPackage>
<modelPackage>com.myapp.gorgias.model</modelPackage>
</configuration>
</execution>
</executions>
</plugin>

Code 4.2: Swagger Codegen plugin in pom.xml

The client classes were generated by running:
mvn swagger-codegen:generate

This command produced Java code that was imported directly into the project. The gen-
erated classes, such as API controllers and data models, are then used within service layers
to construct and send requests to Gorgias Cloud and to process the reasoning results in a
structured way.

A representative API usage pattern involves invoking the /GorgiasQuery endpoint,
which receives a logical query and returns a reasoned response, as shown in Code 4.3

POST /GorgiasQuery
Content-Type: application/json

{
"facts": ["request_type(other)", "highBasedOnDate"],
"query": "urgency (X)",
"resultSize": 1

Code 4.3: Example API Call Body

The Java application, constructs this payload, using the generated model classes, invokes
the API using the client stub, and extracts the response, typically including the decision, an
explanation, and any variable bindings.

62

Note: There is no external JAR or precompiled library labeled "Gorgias API client.” The
integration is entirely achieved through Swagger-based code generation, making the interac-
tion with the reasoning service consistent, maintainable, and aligned with schema definitions.

4.2.4 Version Control with Git

Git was used as the primary version control system to manage source code, track development

history, and support collaboration workflows. The project followed a structured branching

strategy to distinguish between stable releases, development work, and experimental features.
The repository structure included:

* main/ — stable production-ready commits
* dev/ — main development branch
» feature/{name} — dedicated branches for isolated modules or improvements

Development was staged across 12 tagged versions, named sequentially from michala-
kis-v1 tomichalakis-v12. These tags reflected major milestones or iterations of the sys-
tem, such as Ul overhauls, logic integration, and external API connectivity.

The Git commands in Code H.4 were frequently used to manage the repository:

Create a new feature branch
git checkout -b feature/urgency-module

Stage and commit changes with a structured message
git add
git commit -m "feat(api): add urgency classifier query logic"

Push the branch to the remote Tepository
git push origin feature/urgency-module

Rename a branch for wverstioning
git branch -m michalakis-v12

Code 4.4: Typical Git commands used during development

The repository was hosted privately on GitHub, supporting collaboration through pull
requests, code reviews, and issue tracking. Although CI/CD was not fully configured, the
project structure supports future integration via GitHub Actions or Jenkins pipelines.

4.2.5 Containerization with Docker

Docker was utilized to containerize the application environment, enabling consistent execu-
tion across different machines and deployment targets. The primary objective was to package
the Spring Boot application and its dependencies (including the H2 database and external API
communication) into a portable and reproducible container image.

A custom Dockerfile was defined in the project root, shown in Code 4.3

After building the Spring Boot application, the Docker image was created using the com-
mands in Code §.6

63

Base image with JDK 17
FROM openjdk:17-jdk-slim

Add application JAR file
COPY target/michalakis-v12.jar app.jar

Expose default port
EXPOSE 8080

Command to run the app
ENTRYPOINT [5)]

Code 4.5: Sample Dockerfile used for Spring Boot containerization

Build the <image
docker build -t michalakis-app:vi12

Run the container on port 8080
docker run -p 8080:8080 michalakis-app:v12

Push the tmage to Docker Hub (for cloud deployment)

docker tag michalakis-app:v12 <your-dockerhub-username>/michalakis-
app:vil2

docker push <your-dockerhub-username>/michalakis-app:v12

Code 4.6: Docker build and run commands

This setup made it easy to test the system locally in a clean environment, deploy it to
a virtual server, and later integrate it into cloud environments as needed. By pushing the
Docker image to Docker Hub, deployment to services, such as Render.com, was simplified,
allowing the application to be launched directly from the cloud-hosted container image.

Docker also helped simulate realistic deployment conditions for communicating with the
Gorgias Cloud API, as it ensured consistent runtime environments, even when switching
between machines or network configurations.

4.3 Automated Configuration File Generation

To support the suggested deployment strategies, aligned with the Ministry of Digital Gover-
nance’s decision framework, the system automatically generates YAML configuration files,
tailored to Microsoft Azure Products.

Figure 4.2 (adapted from [32]]) illustrates the official flowchart employed by the Ministry
to guide service selection in Microsoft Azure (e.g., VM, Functions, AKS), based on factors
like control, workload type, containerization capability, and orchestration preference.

4.3.1 How the Final Deployment Strategy Is Determined

The final deployment strategy is determined through a rule-based reasoning mechanism, con-
sistent with the logic applied in all other stages of the system. This mechanism combines

64

Choose a candidate service

Use the following flowchart to select a candidate compute service.

Start
Do you requira
l full control?
4—Migrate—’—ﬂuild new—s Yes——— n m:m:w
Ne ypc
workload?
E} Azure
loud optimized b Yes * Batch
=
No . .
l Using Spring Boot apps?
. . Azure
Lift and shift Yes N - = Spring
Apps
i Mo Event-driven workload with
. .Can_l';:g short-lived processes?
containeriz - Azure
. Yes e Functions
Yes o~
Azure App
No No 4 té Service
COTS App that can't Need full-fleged
| be containerized? orchestration? Azure
\ N No N Container
¥ ! " Instances
—Yea
No Yes m:;edag Familiar with Service Fabric
£ - or older .NET Framework
sarvica? Azure
1'-" Service
[Fabric

.—‘res—b? Yes :
= n No

g o e

é l Using Red Hat Openshift Azure Red Hat

No
Bs— 0 shift
Azure App AzureSpring Virtual v O [AP:S]
Service Apps Machine
1 No Need Access to
Kubemnetes API -.; Azure
Yes » Kubernetes
¥:::":‘ Kubernetes Opanshift on DD service (AKS)
AzureVm o0 Azure VM Azure VM
% Azure
No » 1 Container
‘o—"| Apps

Your own orchestration implemantation
on Azure Virtual Machines

Figure 4.2: Azure service selection flowchart used by the Ministry of Digital Governance

65

prior case-based decisions with user-defined inputs to identify the most suitable deployment
path. A predefined rule file is used, which encodes the outcomes of previous cases alongside
user-selected parameters gathered during the workflow process.

The following code snippet in Code [.7 is a representative rule derived from a combina-
tion of system-inferred decisions and user preferences:

rule (p59 (azure_high_performance_compute),
prefer(r13_1(azure_high_performance_compute),
r1_56(azure_vm_high_performance)),
[high_performance_compute]) .

Code 4.7: Example Preference Rule with Case-Based and User-Defined Criteria

In this example, the system prefers the azure_high _performance_compute configura-
tion over the more general azure_vm_high performance, when the user explicitly requests
high-performance computing capabilities. This preference reflects both the user’s current in-
put and strategic choices, derived from prior deployment cases.

As another example, consider a scenario in which the user specifies high memory” as a
primary requirement. If past cases indicate that, serverless architectures, offer better elasticity
and cost-efficiency, under similar constraints, the system satisfies a rule that favors memory-
optimized Azure Functions, as shown in Code §.§

rule (p63(azure_function_memory_optimized),
prefer(r17_2(azure_function_memory_optimized),
r3_3(azure_vm_memory_optimized)),
[high_memory]) .

Code 4.8: Memory-Optimized Serverless Preference

This dynamic and adaptive approach, ensures that deployment recommendations are both
context-aware and informed by accumulated experience, thereby enabling intelligent automa-
tion in complex cloud environments.

4.3.2 Official Flowchart Connection System Output

We reproduce the official Azure service, choosing flowchart using a logic-based decision
approach (see Figure §.2). After evaluating main user inputs and each case decision, such
as the type of application (e.g., Serverless and Urgency timeline), it selects the best Azure
service category.

If the user wishes total control over the virtualised environment, the system proposes In-
frastructure as a Service (IaaS), most specifically Azure Virtual Machines. Typically, using
Azure App Services or Azure Spring Apps, the system selects Platform as a Service (PaasS)
for standard web apps lacking container functionality. Program driven events with brief runs
call for Serverless computing using Azure Functions. When the workload is containerizable,
the system recommends either container-oriented solution, Azure Container Instances (ACI)
or Azure Kubernetes Service (AKS). At last, depending on the use case, the system may
also offer Software as a Service (SaaS) alternatives for users that value low-management
overhead and turn-key deployment.

Once the suitable category has been chosen, the system links this option to a pre-defined
Azure deployment artifact, usually a templated YAML file. These models are made to fit
every Azure service path, thereby enabling automation and consistency in keeping with
Infrastructure-as- Code (IaC) best standards.

66

4.3.3 Sample YAML Template

As a proof of concept, a sample template for an Azure Function App (Premium) deployment
is shown in Code H.9. Different branches in the flowchart trigger different templates (e.g.,
VM, AKS, Spring Apps).

apiVersion: 2023-01-01
kind: AzureDeployment
metadata:

name: premium-functions

description: -Highperformance Azure Functions (Premium plan)
parameters:
functionAppName:

type: string
default: func-premium
location:
type: string
default: westeurope
functions:
- name: ${functionAppName}
plan: Premium
runtime: java
vnetIntegration: true
preWarmedInstances: 2
tags:
environment: production
workloadType: serverless-premium

Code 4.9: Sample Azure Configuration File Generated

Though Azure services are the main objective of the system, its templating method is
made to be somewhat flexible. Along with serverless designs using Azure Functions, it may
create deployment configurations for on-site virtual machines, such as those controlled us-
ing VMware Tanzu and container orchestration systems, like AKS, Tanzu, or OpenShift.
Likewise, classic PaaS choices, including App Service and Azure Spring Apps are also sup-
ported. Every one of these setups depends on the same underlying logic-to-template mapping
to guarantee that every decision path exactly matches a ready-to-deploy YAML file.

Summary

In conclusion, by bridging formalized user inputs, the Ministry’s deployment flowchart, and
code-generated YAML templates, our system automates the final step of the deployment life-
cycle. The generated configuration files are immediately usable in IaC pipelines or DevOps
tools, reducing manual effort, configuration errors, and deployment time.

67

Chapter 5

Evaluation And Results

To evaluate our System, a survey was conducted using a questionnaire based on the System
Usability Scale (SUS). The questionnaire included 10 questions assessing various aspects of
the application’s usability, with responses on a 5-point Likert scale (1: Strongly Disagree to
5: Strongly Agree). The survey participants represented diverse professional backgrounds,
providing a comprehensive evaluation across different user groups.

5.1 System Usability Scale (SUS) Questionnaire

The following 10 questions comprised the System Usability Scale (SUS) questionnaire, each
rated on a 5-point Likert scale (1: Strongly Disagree, 5: Strongly Agree):

—

. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. 1think that I would need the support of a technical person to be able to use this system.
5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. Ineeded to learn a lot of things before I could get going with this system.

Note: According to the standard SUS methodology, odd-numbered items (Q1, O3, 05, Q7,
09) are positively worded, while even-numbered items (Q2, Q4, Q6, O8, Q10) are negatively
worded. The interpretation of responses is adjusted accordingly.

68

Participant Demographics

The evaluation involved seventeen (17) participants from various professional sectors:
* 29.4% (5/17) worked in the public sector
* 41.2% (7/17) were employees of software companies
* 17.6% (3/17) were freelancers in IT
* 11.8% (2/17) did not specify their occupation

This diverse sample allowed us to gather insights from different perspectives, including vary-
ing levels of technical expertise and industry experience.

5.2 Analysis of Results Using Boxplot Diagrams

Distribution of Survey Responses for Each SUS Question

50 (e} o
o
g
2as)
] A
81 A
o 40 'y o} —
&a A
I
35}
(]
g
[*)]
8 3.0f o o o
a
>
(e
S 251 o
=] A
(%]
L 20t —— o o] vy
[A
w
c
S 15
@
Q
o

1.0 [o] o

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Ql0

SUS Question

Figure 5.1: Distribution of participant responses for each System Usability Scale (SUS) ques-
tion, as shown in boxplot diagrams. Each boxplot displays the median (red horizontal line),
the interquartile range (IQR; box), and potential outliers (points beyond whiskers). The box
represents the middle 50% of responses, while the whiskers indicate the full range, excluding
outliers. This visualization enables rapid identification of consensus or disagreement among
participants for each question. Higher medians and tighter boxes indicate greater consensus
and satisfaction.

Interpretation of Boxplot Results

The boxplots (Figure B.1)) reveal several key patterns in participant responses:

* Questions with Positive Wording (higher score = more positive evaluation): Q1, Q3,

Q5, Q7, Q9.

69

— Most participants responded positively to these questions, indicating that the sys-
tem is generally perceived as easy to use and well integrated. The median scores
for these items were close to 1 or 2, suggesting a high level of satisfaction in these
areas.

* Questions with Negative Wording (lower score = more positive evaluation): Q2, Q4,

Q6, Q8, Q10.

— The responses to negatively phrased questions are generally high (4 or 5), indi-
cating that users did not perceive the system as complex, inconsistent, or difficult
to learn. This further supports the conclusion that the system is user-friendly.

Connection of SUS Questions to Evaluation Themes

Based on the content and intent of each SUS question, the responses were grouped into dis-
tinct evaluation themes, which reflect common usability dimensions. The analysis of the
questionnaire responses allowed us to group SUS questions into specific themes, providing
deeper insight into participant perceptions. The connection between SUS questions and eval-
uation themes is as follows:

* Ease of Use:
— Q3 (ease of use), Q7 (quick learnability), Q8 (not cumbersome)
* Consistency and Integration:
— QS5 (integration), Q6 (consistency)
* User Confidence:
— Q9 (confidence), Q4 (minimal need for support)
* Usage Intention:

— Q1 (frequent use), Q2 (not unnecessarily complex), Q10 (minimal learning re-
quired)

This explicit mapping clarifies how the evaluation themes emerged directly from the par-
ticipants’ responses, ensuring alignment between quantitative data and qualitative interpre-
tations.

System Usability Scale (SUS) Score Calculation and Interpretation

To quantify the overall usability of the application, we calculated the System Usability Scale
(SUS) score for each participant based on their responses to the 10 SUS questions. Each ques-
tion was scored according to the standard SUS methodology: for positively-worded questions
(odd-numbered), the score is the response minus 1; for negatively-worded questions (even-
numbered), the score is 5 minus the response. The total for each participant is then multiplied
by 2.5, yielding a final SUS score ranging from 0 to 100 where higher numbers indicate better
SUS score.

Results: The mean SUS score among all 17 participants was 74.6 (SD = 9.8),with indi-
vidual scores ranging from 57.5 to 90.0. This mean is substantially higher than the industry

70

benchmark for average usability, which is set at 68. The distribution of SUS scores is shown

in Figure 5.2.

Boxplot of SUS Scores
90t

85

(o]
o
T

~
w
T
>

SUS Score (0-100)

~
o
T

65|

60

SUS Score

Figure 5.2: Distribution of calculated SUS scores across all participants.

According to standard benchmarks, SUS scores above 70 are considered “good” and
scores above 85 indicate “excellent” usability. The mean SUS score of 74.6 suggests that
users found the system to be generally usable and above average compared to typical appli-
cations. This indicates that, while the system meets a good standard of usability, there is still
some room for improvement in the user experience. The distribution also shows variability
among participants, with individual scores ranging from 57.5 to 90.0; a few users rated the
system as excellent, while others provided lower scores, reflecting differing user experiences.

Note on the Discrepancy: Although qualitative feedback indicates generally positive
usability impressions, some variability in SUS scores suggests that a subset of users faced
specific barriers or confusions that affected their experience. Identifying these precise issues
should be prioritized in future refinements to further improve overall usability.

Overall, the results highlight key areas for further development and refinement, to im-
prove the overall usability and user satisfaction with the application.

Practical Implications

The decision support system, offers significant benefits for organizations, seeking to opti-
mize their cloud infrastructure deployment strategies. It reduces the complexities, involved
in understanding and selecting among various deployment options, which is particularly ben-
eficial for entities without in-depth technical knowledge of cloud architectures. However, the
system’s effectiveness is on the continuous updating and maintenance of its decision logic
and integration capabilities to adapt to evolving cloud technologies and market conditions.

71

Chapter 6

Conclusions and Future Work

This thesis presented the design and implementation of a decision support system, aimed at
optimizing cloud deployment strategies, through an advanced argumentation-based model.
By leveraging contemporary web technologies, specifically the Gorgias Cloud and Raison
Al, the project not only addressed the intricacies of complex decision-making processes, but
also prioritized accessibility for both technical and non-technical stakeholders. The system
features a comprehensive parameterization interface, fostering detailed customization and
analysis, to effectively guide users toward optimised cloud infrastructure decisions.

Key Achievements

The project realized several notable achievements in pursuit of its objectives. First, the sys-
tem automated intricate decision-making processes, significantly reducing the need for man-
ual intervention and minimizing the likelihood of human error. Additionally, the implemen-
tation of an intuitive frontend interface simplified the user experience, making advanced de-
cision support functionalities readily accessible. Furthermore, the integration of the Gorgias
Cloud facilitated the establishment of a robust and adaptive argumentation framework, allow-
ing the system to accommodate a wide array of user requirements and preferences. Finally,
substantial enhancements were made, to the backend architecture to bolster the system’s scal-
ability and security, as well as to ensure seamless integration with external APIs for real-time
data processing. Collectively, these accomplishments have contributed to the creation of a
sophisticated and practical tool for cloud deployment decision support.

6.1 Future Work and Enhancements

Although this thesis has introduced a comprehensive argumentation-based decision-support
system, tailored for cloud deployment within public sector environments, several avenues
remain open for further development and enhancement. These prospective improvements
pertain not only to the refinement of decision-making mechanisms, but also to broadening
the system’s scope and enhancing user accessibility.

One particularly promising direction involves the integration of the system with cloud-
native DevOps pipelines. By embedding the decision-support framework, directly into con-
tinuous integration and deployment (CI/CD) workflows, it would be possible to automate the
provisioning and management of cloud resources seamlessly. For instance, the system’s deci-
sion outputs, such as YAML configuration files, could be injected into platforms, like Azure

72

DevOps, AWS CodePipeline, or GitHub Actions. Such integration would enable the auto-
matic execution of deployment recommendations, based on real-time user input, continuous
deployment of infrastructure configurations, as well as dynamic monitoring and rollback ca-
pabilities, ensuring that infrastructure choices remain adaptable to shifting resource demands
and compliance requirements.

Further, while the current system leverages static, predefined Prolog rules within Gorgias
Cloud and Raison Al, future work could incorporate machine learning-driven rule adapta-
tion. By employing machine learning models to analyze historical deployment data and user
feedback, the system could dynamically refine its argumentation rules, identify emerging pat-
terns in infrastructure preferences, and adapt to evolving regulatory standards. The adoption
of reinforcement learning techniques, could allow the system to continuously optimize its
decision-making process in response to actual deployment outcomes, thereby increasing the
relevance and accuracy of its recommendations as cloud technologies evolve.

Moreover, the system’s decision scope can be extended beyond the current focus on in-
frastructure selection. Future iterations might encompass a broader range of decisions, in-
cluding the configuration of security policies, the incorporation of compliance requirements
such as GDPR, FedRAMP, or ISO 27001, the implementation of cost-optimization strategies,
and the support for containerized application deployments. This holistic approach would bet-
ter align the system with the complex realities of cloud governance and infrastructure plan-
ning in modern organizations.

At present, the system generates YAML files for infrastructure automation. Expanding
support to include a variety of configuration formats, such as Terraform configurations, An-
sible playbooks, AWS CloudFormation templates, and Helm charts for Kubernetes, would
make the solution more versatile and accessible across diverse DevOps environments. En-
abling users to select their preferred configuration format would facilitate smoother integra-
tion and broader adoption.

Finally, enhancing the user experience through a personalized and adaptive user inter-
face, represents another important direction for future work. By leveraging user analytics,
the system could personalize recommendations based on past interactions, provide contextual
guidance and explanations for each decision, and support interactive scenario simulations to
help users better understand the trade-offs, involved in different deployment strategies. Such
improvements, would not only increase the system’s intuitiveness, but also ensure its accessi-
bility to both technical and non-technical stakeholders, ultimately broadening its impact and
practical value.

6.2 Final Thoughts

Completing this project, has significantly enhanced my understanding and skills, in both
the theoretical and practical aspects of building sophisticated decision support systems. The
journey, has been transformative, providing invaluable insights between cloud architecture,
web applications and decision-making automations.

Throughout this research, I have witnessed firsthand how an automated decision support
system, can bridge the gap between technical complexity and deployment needs. The de-
velopment process, challenged me to balance technical depth, with a user friendly design, a
critical consideration when creating tools intended for diverse professional audiences. The
positive evaluation from both technical experts and non-specialists, validates this balanced
approach for such systems.

73

This project has reinforced the crucial role of argumentation in the future of IT infras-
tructure management and set a foundation for ongoing innovation in cloud technology de-
ployments. As cloud environments continue to evolve, with increasing complexity and op-
tions, the need for intelligent decision support will only grow. The methods and frameworks,
developed in this thesis, provide a scalable foundation, that can adapt to emerging cloud
technologies, and deployment paradigms.

Beyond the technical achievements, this work has highlighted the importance of human
centered design in technical tools. The integration of usability principles with sophisticated
argumentation, represents a significant shift in how we approach infrastructure management
tools, moving from purely technical considerations, to a more holistic view that acknowledges
the human elements of technology adoption and use.

The experiences and insights gained throughout this project, lay a solid groundwork for
my future endeavors, in the field of cloud computing and technology development. They have
equipped me with not only technical proficiency, but also a deeper understanding of how
to create meaningful technological solutions that address real-world challenges. As cloud
computing continues to enrich vital evolution, the principles and approaches developed in
this research, will remain relevant and adaptable to new contexts and requirements.

Looking forward, I envision extending this work to incorporate emerging technologies,
such as edge computing paradigms, multi-cloud orchestration, and integration with Al-driven
operational analytics. The foundations established through this research, provide a robust
platform for such future innovations, potentially transforming the way organizations ap-
proach their cloud infrastructure decisions and management.

In conclusion, this project represents not just an academic exercise, but a meaningful
contribution to the field of cloud computing, that I hope will inspire further research and
practical applications in this rapidly evolving domain.

74

Bibliography

[1] N. K. Janjua, 4 Defeasible Logic Programming-Based Framework to Support Argu-
mentation in Semantic Web Applications. Springer Theses, Springer International Pub-
lishing, 1st ed., 2014.

[2] I. Michalakis, “Cloud deployment assistant (deployai app).” https:
//github.com/imichalakis/michalakis-thesis-code.git and https:
//michalakis-thesis-v12.onrender.com/, 2024. Accessed: Mar. 10, 2025.

[3] A. C. Kakas, P. Moraitis, and N. I. Spanoudakis, “Gorgias: Applying argumentation,”
Argument & Computation, vol. 10, no. 1, pp. 55-81, 2019. Published online Decem-
ber 6, 2018.

[4] F. H. van Eemeren and R. Grootendorst, 4 Systematic Theory of Argumentation: The
Pragma-Dialectical Approach. Cambridge University Press, 2004.

[5] N. I. Spanoudakis, E. Constantinou, A. Koumi, and A. C. Kakas, “Modeling data ac-
cess legislation with gorgias,” in International Conference on Industrial, Engineering
and Other Applications of Applied Intelligent Systems (IEA/AIE 2017), pp. 317-327,
Springer, 2017.

[6] E. Karali, A. C. Kakas, N. I. Spanoudakis, and E. C. Lupu, “Argumentation-based se-
curity for social good,” in 2017 AAAI Fall Symposium Series, 2017.

[7] F.Cloppet, P. Moraitis, and N. Vincent, “An agent-based system for printed/handwritten
text discrimination,” in International Conference on Principles and Practice of Mullti-
Agent Systems (PRIMA 2017), pp. 180—197, Springer, 2017.

[8] N. Spanoudakis and P. Moraitis, “Engineering an agent-based system for product pric-
ing automation,” Engineering Intelligent Systems, vol. 17, no. 2, p. 139, 2009.

[9] K. Pendaraki and N. Spanoudakis, “Portfolio performance and risk-based assessment
of the portrait tool,” Operational Research, vol. 15, no. 3, pp. 359-378, 2015.

[10] P. M. Dung, “On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games,” Artificial Intelligence,
vol. 77, no. 2, pp. 321-357, 1995.

[11] W. E. Clocksin and C. S. Mellish, Programming in Prolog: Using the ISO Standard.
Springer, 5th ed., 2003.

[12] A. C. Kakas and P. Moraitis, “Argumentation based decision making for autonomous
agents,” in Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2003), pp. 883—890, 2003.

75

https://github.com/imichalakis/michalakis-thesis-code.git
https://github.com/imichalakis/michalakis-thesis-code.git
https://michalakis-thesis-v12.onrender.com/
https://michalakis-thesis-v12.onrender.com/

[13] A.J. Garcia and G. R. Simari, “Defeasible logic programming: An argumentative ap-
proach,” Theory and Practice of Logic Programming, vol. 4, no. 1-2, pp. 95-138, 2004.

[14] G. L. Turnquist, Learning Spring Boot 2.0: Simplify the development of production-
grade applications using Spring Boot. Packt Publishing Ltd, 2017.

[15] J. C. Johnson, Spring Microservices in Action. Manning Publications, 2019.

[16] M. Raible, “Modern java web development: Bootstrapping, spring boot, and angularjs.”
Presentation, 2016.

[17] M. Fazio, A. Puliafito, and M. Villari, “A comparative evaluation of spring boot, drop-
wizard, and wildfly swarm for microservices development,” Journal of Computer Sci-
ence and Technology, vol. 16, pp. 101-110, 2016.

[18] J. Soldani, D. A. Tamburri, and W.-J. van den Heuvel, “Microservices migration in in-
dustry: intentions, strategies, and challenges,” in 2018 IEEE International Conference
on Software Architecture (ICSA), pp. 29-290, IEEE, 2018.

[19] N. A. Chohan, M. A. Qureshi, A. Ullah, and M. Z. Aziz, “Java frameworks for rest-
ful web services: A comparative study,” International Journal of Advanced Computer
Science and Applications, vol. 10, no. 7, pp. 524-531, 2019.

[20] A. Myers and D. Thomas, “Continuous integration and continuous deployment prac-
tices in java web application development,” Journal of Software Engineering and Ap-
plications, vol. 14, no. 4, pp. 175-183, 2021.

[21] T. Project, Thymeleaf Documentation, 2023. Available: https://www.thymeleaf.
org/documentation.html.

[22] D.Fernandez, Thymeleaf: Modern Server-side Java Template Engine for Web and Stan-
dalone Environments. Thymeleaf Project, 2013.

[23] L. Pivotal Software, Spring Boot Reference Documentation, 2023. Available: https:
//docs.spring.io/spring-boot/docs/current/reference/htmlsingle/.

[24] D. Merkel, “Docker: lightweight linux containers for consistent development and de-
ployment,” Linux Journal, vol. 2014, no. 239, 2014.

[25] C. Boettiger, “An introduction to docker for reproducible research,” ACM SIGOPS Op-
erating Systems Review, vol. 49, no. 1, pp. 71-79, 2015.

[26] C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing, vol. 2, no. 3,
pp. 24-31, 2015.

[27] A.Martins, M. Ahmed, and J. Bernardino, “Security analysis of docker containers,” in
2019 IEEFE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), pp. 05240530, IEEE, 2019.

[28] D. Bernstein, “Containers and cloud: From Ixc to docker to kubernetes,” IEEE Cloud
Computing, vol. 1, no. 3, pp. 81-84, 2014.

[29] S. Chacon and B. Straub, Pro Git. Apress, 2014.

76

https://www.thymeleaf.org/documentation.html
https://www.thymeleaf.org/documentation.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

[30] J. Loeliger and M. McCullough, Version Control with Git: Powerful tools and tech-
niques for collaborative software development. O’Reilly Media, Inc., 2012.

[31] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu, “The
promise and perils of mining git,” Proceedings of the 6th IEEE International Working
Conference on Mining Software Repositories (MSR), pp. 1-10, 2010.

[32] Microsoft Docs, “Azure architecture decision flowchart,” 2023. Available
at https://learn.microsoft.com/en-us/azure/architecture/guide/
technology-choices/compute-decision-tree.

77

https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree

	Introduction
	Concept
	Thesis Contribution
	Thesis Outline

	Literature Review
	Argumentation
	Preference-Based Argumentation
	Computational Tools for Argumentation
	Prolog as a Foundation for Computational Argumentation
	Gorgias Cloud as a Tool for Argumentation-Based Reasoning
	Raison: No-Code Symbolic Argumentation-Reasoning Platform

	Technologies for Web Application and Integration
	Technical Background: HTTP Methods and JSON Format
	Spring Boot Framework for Web Service Development

	Dynamic Web Content Thymeleaf Template Engine
	Deployment Technologies: Docker and Git

	Methodology and System Design
	System Architecture Overview
	System Workflow and Behavior
	User Interface Design
	User-Guided Configuration through Decision Forms
	User Interface Views

	Back-end Logic and Processing
	UI Data Submission
	Dispatching the Gorgias Query via a Swagger-Generated Client
	Post-processing of Gorgias Results

	Argumentation Engine Design

	Implementation
	Technology Stack and Tools
	Development Environment and Project Setup
	VS Code and Spring Boot Setup
	Dependency Management: pom.xml
	Integration of Gorgias Cloud API via Swagger Codegen
	Version Control with Git
	Containerization with Docker

	Automated Configuration File Generation
	How the Final Deployment Strategy Is Determined
	Official Flowchart Connection System Output
	Sample YAML Template

	Evaluation And Results
	System Usability Scale (SUS) Questionnaire
	Analysis of Results Using Boxplot Diagrams

	Conclusions and Future Work
	Future Work and Enhancements
	Final Thoughts

