Di pl ohesas ¢
Nektarios D. Mitakidis

Supervisor. Assistant Professor Georgios Chalkiadakis
Jury:
Assistant Professdteorgios Chalkiadakisschoolof ECE, TUC
Associate Professdvichail G. LagoudakisSchoolof ECE, TUC
Dr. Nikolaos Spanoudakisaboratory Teaching assistédthoolof PEM, TUC

Chania, October 2014

LU} Z2ZR7?7H8R1T AU Y MS
t2uod R Y ML e J PN w
yspPaerdorea [Avlor

URZJA?ST1Zz1ABLUEZ]Y
Zs8Y URJ Uk BYu® APEBZR

3111 d 1A 9A +

ms av¥e UUnbika K
2U0UaUY; 96d . zdqUUsaudd

J Ui dgsaed Usk emeselglssade gt Uddo dUe
i UsroasUlYoadd

A 9036 ®

A aecgyed U] dbeplwdideesitif. z.2. 3., Y. 7T

] 30U ady) rUedz dddga dile JgUsegli¥oadqdz. 3., Y. 7T.
pi?29o98fhaled EAUsspeHderew do.. .. @. ,

j UsB&y UL b20Bie d
2

ACKNOWLEDGMENTS

| would like to express my gratitude to both my supervidersfessoGeorgios Chalkiadakis and

Dr. Nikos Spanoudakis firstly for accepting me into their research field of autonomous agents and
secondly for their guidance. They were not only tutors and supervisors but also friends. Without
their help this thesis would not bempleted.

| would like to thank Professor Michail Lagoudakis for accepting to be at the jury committee and
for teaching me as an undergraduate student theshadi@nguages and a lot on the theory of
computation.

| want to thank everyone in the Tectali University of Crete, professors, staff and fellow students,
who despite the national economic crisis and the little recognition they keep working, in order to
offer high quality of studies and great achievements in the research. | hope for a hrightsiof

the university and Greece.

Special thanks to my family, for their patience and their endless love.

| would like to dedtate this thesis to my friends. They are the way to happiness and the best
psychological support one can have after theesmsdlonely hours of studying and working at the
office and in the houseFriends gave me all the power and the courage to carry on.

To My Friends

ABSTRACT

In this thesis we presehbw an engineer can transform a Gaia or ASEME role to a proweks,
compliant with the XML Process Definition Language (XPDL) portable standard. XPDL is a
format standardized by the Workflow Management Coalition (WfMC) to interchange business
process definitions between different workflow products. XPDL is cugreénd best file format

for exchanging BPMN diagrams, because it has been designed specifically to store all aspects of
a BPMN diagram.

An ASEME model is the Systeni®ole Model (SRM). The thesis offers a transformation of the
SystemsRole Model (SRM) to th&ML Process Definition Language (XPDL), which is the XML

of the Business Process Modeling Notation (BPMN). The transformation is achieved through Java
source code. A tool is developéat aiding the modeler in the transformation process. The tool
uses a ecursive algorithm for automating the transformation process and guides the user to
integrate two or more agent roles in a process model. The tool usage is demonstrated through a
running example. Moreover, simulations of the transformed roles in an opere sarocess
management tool are offered in order to display the effectiveness and usage of the derived process
model. The work fully demonstrates the transformation, the risks and the future of this effort.

L1 6¥vduwd

ZUd Wagpooeysd Us arvelUUsse "~ UypegloayYslOUUs 6 Uy} f° ¢
3U 00006 deCdilmASEME jyhaelds G U y3U ee3Uyac UsUlsal
°gabUUhXI\/ELUB~Ud|:U e} oteaiXPhDl9 Uagoallalg sPgHgepdqU
XPDLUa3 Us ey e ~e8g yWhidowlgragemenBodlitod WMT) ohs U q
Uds Uz UUeaaUocse 6ystet 3 BUHIE9; dollisqgUdosms Biugal
¢ XPDL Uas3Us UgUe Ud GUsoegee d oUei UUgBPMN G (e
UoUojU0segY U Usilie yclbg sear@ils il as Wi ghoeddoa Ui Us
BPMNU s Uoy) Yee UUgd.

O3U ecASEME@m 3 Us oaUs Us z83Uyas Afhovys UEgllUaeadlUU
“yellyy Us y3Us eU0UGGdeXPOb (de heU @ Gfp sxis Udd\E G U
FdeUsgoy UllaUd 995U Ud ze3UUac 6B d& Ul eadeeb(adle.
U sUgoe¥3UUUs ¢ ywavaOs Ud ol addhd Vatistulbéel0dUs ae baeddyU
cyetdlUd "eg e€63UUas 65U0a GUJ¢ el sliqdaddimdle & Wd Uy
UsUuyj eesahfh Ualbghlaesedklse oesald tdd sUd d UsUUsaUGoOg’ e U
Us 63 etUd o290 30 Uzt dUs Uias ¢ d&iUgidd EthgJ;dng;@L
"UyegliaoyYseUUUs eyly Ushd Uy Uilpetddeg GUsg U
e UU0UGGcde UUs tiely 3Uw3s sjcHJm¥ 3 ac adiE®mwied 3 @Yo Updld gz U
U eUUaU0GeUUsahUdqUU oUs d cjyeld Ueg ~UjyUoheUs
Uy oUlmey vd " UjyeglioYe Jbe ¢dg s ddWiigaagdlaliadiUs) 6"

TABLE OF CONTENTS

ACKNOWLEDGMENTSt eree e e e e et e e e et e e e e s e e eenns 3
N = 1T I ¥ O 5
Lo AN S G PP PPPEER 6
TABLE OF CONTENTS. ... tttiiiie e ettt e s smme ettt e e e e s sttt s smmme e e e e et e aa e e e s anssesannnseeeeeeeanns 7
TABLE OF FIGURES..... .ottt eens e e e e e st e e e e e e s rmmnssnnnnneneaeeans 9
TABLE OF TABLESoeoiiiii ittt sttt ermt e e st e e e e e et annss e e e e e e e ennneees 9
(@4 gF=T o] (=3 g A | 01 o Yo [1T £ o TSRS 10
1.1 TRESIS GOAIS .. .uuuuiiiiiiiiiiiiiii it eeeeti ettt ettt e e e e e e eeet e e e e e e e e e e e e e e e e s s s s s s ammne e e e e e e e e e e e annae 11
1.2 ThESIS PrOgrESSION. .. .uuiii i i e e e e e eeeeee et eeeet ettt emme e e e e et e e e eae e smmmreennnnens 13
1.3 DOCUMENT OULINE. ...ttt ettt e e e e e e e s et e e e e e e e e e e e e e e e e s s s mnne e e e e e e 13
Chapter 2 BaCKQrOUNG...........oooiiiiiiiiiiiceme e era s e e e e e e e e e e e e s ameesseeaaaeaaaeas 15
2.1 Model DrVeN ENQINEEIING.......uuuetiiiiiee e e e e e ceeeiies s e e e e e e e e eeeeeeeeesaeeesaeeeaaaaeaaeeeeennnsennaans 15
P2 Y N = PSR 16
2.3 ASEMEttt e et — e e e e s rnnn b rt e e e e e s nnaraaaaes 16
2.4 SRMZBPIMN. ...ttt e e e e et e e et e et e e nmm— e e e aanan 18
2.4.1. The Systems Role Model (SRM)......ccoouiiiiiiiiiiiiie e 18
2.4.2. Business Process Modeling Notation (BPMN)..........uuviiiiiiiiieesiiiiiiiiiiiieieeeeenn 19
2.4.3. Transforming the SRM to the BPMN..........oooiiiiiiiiiiieee e 26

2.5 The XPDL MetBNOUEL........cooiieeeieeiecm e e e e e e e e e e e eeanene s 27
2.6 ProcesSimulation TOOIS.........ouuuiiiiiiiiiis i e e e e e e e errns e s e e e e e e e e e e e e e eeeeeenees 29
Chapter 3 Problem State€ment........coooi oo rre e e e e eeeeees 30
3.1 Problems in SIMUIALIONS.........ccooii e e 31
Chapter 4 OUI APPIOBCK.uuiiiiiiiiiiii it ceeeite ettt e e e et e e e e e e e e e e e e e e nnne e e 33
4.1. The General DeSigN PICIULEcooii i 33
4.1.1. The Grammar Oof the SRM........coooiiiiiiiii e 33
4.1.2. The templates of SRM2XPDL........cooiiiiiiiiiiiee e e 36
4.1.3. Class Diagram of the SRM2XPDL Transformation............cccccceeeevieeeeeeeeeeennnnn, 36
4.1.4. The recursive algorithm for creating POOIS.........ccoovviiiiiiiiceee e 38
4.1.5. Class diagram of org.ennydra............ooooiiiiiiiiecciiii e 42

4.2 IMPlementation AR —————— 44

7

4.2.1 The class LIVE2XPAL.........coooiiiiiiiieeme e e e 44

4.2.2. The class LIVENESS2XPDL........coouiiiiiiiiiieeeeees e e e e 45
1 P 45
4.3.1. The LiveneSS2XPDLAPP CIASS........uuuuuuuiiiiiiieiieaniiiriieeeieeeeeeeee e e e e s emeeeeeeeeeaeeee s 45
4.3.2. The Inter_role_messages_definition Class............cccceeeevieeeeiiiiiineeeeeeeeeeeeeenn 47
CHAPTER 5 RESUISuui ittt eeme e e e e e et e e e e s eeene e e e eaaa e eaes 48
5.1 Transforming @ SiNgle AQENL........coooiiiiiieeee e 48
5.2 Creating Processes from MURJENTS.uiiiiiiiiiie e eecceeecciiee e eeeeeeene e 51
5.3 Imports in different t0O0IS............iiiiiii e ——— 52
5.3.1 Importing Xpdl files IN SIGNAVIO.......ccccviiiiiieeiiiiiiieeei e 52
5.3.2. Importing xpdl files to ADONIS Community Edition 3.0...........ccccceeeiiiiiiieecinnnns 53

Y [411 = o o =TT 54
(@ gF=T o] (=1 g G I @] o Td 113 [o PRSP 60
5.1 DISCUSSIONciiiiiiiiiiitttteeieees bbbttt et ettt e e e seesee e et e e e eeaaaaaeeeeaeesssmmmeaeeeeeeeeassssnnnnnns 60

G I R 10 = o o £SO RPRPPPP 61

6.2 FULUIE WOTK ...ttt ceeei ettt et e e e e eeet ettt et e e e e e e e e e e e e e e s ssammmeaeeeeeeeeeeannnnns 62
6.3 LESSONS LEAINEM.ot e e e e e e e e e e e e e annnr s e e e e e e eeaes 63

E N] 012 PPN 64
] (=] €= o =SSP 64
N o N | L P 66
APPENIX A JAVA SOUICE COOB... ...ttt ieeeii bbbttt et e et e e e e e e eeer e e e e et e e e e e e e e e e e e e e e s s aanae 66
The Class LIVE2XPAL........oeiiiiiiiiii e 66
The Class LIVENESS2XPDL.........cccoiiiiiieeeeeeeeee ettt a e e e e e e e ennas 99
The Class LIVENESS2XP DLADD.co ittt e ee bbb e e eeeess e e e e e e e e aaaeaeeens 103
The class Inter_role_@ssages definition..............ouuuuueiiiiccceeeeiiiicee e 111
APPENTIX B XPDL fIlES....uutiiiiiiiiiiiiiee ettt 118
The Personal @SSISTANT...........cuiiiiiiiiii e 118
TRE DIOKE ... s 121
The COMPIEX PrOVIGEL......cciieiiii e mmme e e e e e et e e e e e eannmeeenes 129

The Multi-Agent Personal Assistant, Broker, Complex Provider with assatsatio.....138

TABLE OF FIGURES

Figure 1:ASEME Process Tree from Analysis to Implementation..................cceeeevvveeenn. 12
Figure 2: The ASEME MDE Process for Agent Developmenfl]ccccovvvviiiiiiivieeneennn. 17
Figure 3: The ASEME SystemsRoles Model(SRM) metamodel...........ccccoeeveeiiiiiiiceeccnnn. 18
FIQUIE 4: BPIMIN EVENTS. .. .uuuiiiiiiii e eeeei ettt mmme e e e e e et e eeaeaastaan s smmmneannnnnes 20
Figure 5: BPMN ACHVITIESuuuiiiiiiiiiiiiiii ettt rmmme e e ee e 20
Figure 6: BPMN Gat@WAYS.......ccuiiiiiiiiiaeiieiiii it ee e eeneeannes 21
Figure 7: BPMN CONNECHIONS.cciiiiiiiiiiiiiiiitireer et e e s eeeesssss e e e e e e e e aeaeeeeeemms 21
Figure 8: A BPMN Pool with a BPMN Lane iNSIde...............uuuiiiiiiiiiieeeiiieiiieiieieeeeee e 24
Figure 9: BPMN Data ODJECT.........ccooiiiiiiieee e e e e e e amas 24
FIgUre 10: A BPMN GrOUP ...oooi ettt s e e e e e e e e e e e amannas 24
Figure 11: A BPMN ANNOLAtIONccciiiiiieeiiiiieieieeeeee e e 25
Figure 12: Templates of exteded Gaia operators (Op.) for BPMN model generatior4].. 26
Figure 13: The thesis XPDL MetaMOodel............oooiiiiiiiiiiiiieee e 28
Figure 14: Examples of roleggenerated by SRM grammar...........cccooovviiniiiiiiienne e 35
Figure 15: Templates of extended Gaia operators (Op.) for XPDL generation................ 36
Figure 16: The contentsof Package aseme.transformations.xpdl.........cccccccceeviiniiiaacnnnn. 36
Figure 17: The Class diagram for the SRM2XPDL transformation..............cccceeeeveeeeeeinne. 37
Figure 18: The recursve algorithm............cccooiiiiii i eeeee e 41
Figure 19: The Liveness2XPDL Transformation Application...............cccceeeeeiiiiceeennnnnnn... 45
Figure 20: The Inter-role Messages Definition................iiiiiiiiiccciicccieee e, 47
Figure 21: The Meetins Manager XPDL representation.............cccccvveverereeeninvnvnnneeeeeeee... 48
Figure 22: The Complex Provider XPDL representation...........ccccccceeeeeeiiieeceeeeeeeeeeeen.. . 49
Figure 23: The Broker XPDL repreSentation.uuee i eeeerriiiieeerieeieeeeeeeeeeeeeeeeeessmmee e 50
Figure 24: The Personal Assistant XPDL representation.............ccccccuvvevieeeneeesnicnnnenenns 50
Figure 25: An example of a multiagent system's XPDL representatian.......................... 51
Figure 26: Converted BPMN imported to SIgNaviQ................covvvviuiiiiceeeeeeeeeiviee s 52
Figure 27: Converted BPMN imported to ADONIS...........cooiiiiiiiiieeee e 53
Figure 28: The Agent roles that will be elements of the simulation.......................cccee. 54
Figure 29: The multi-agent system of the simulation...............c..ooooiiiieeeiiiiii e, 55
Figure 30: Average and maximum reSPONSE tIMES.........oooviiiiiiiiiiiimmne e 59
TABLE OF TABLES

Table 1:List of BPMN tools that offer the simulation feature.............cccccoeeviiiiiiiceciicceeennn. 29
Table 2:List Of teSted t00IS........cccoiiiieeeeee e e e e e e e e ane e 31
Table 3:The liveness formula of the SRM in EBNF Format...............coovvvviiviieemnnieeeeeennns 34
Table 4:The settings of the SIMUIAtION............ooooiii e 56
Table 5:Results of the SIMUIAtION..............oooiiiiiiii e 56

file:///C:/Users/nek/Desktop/diplomathesistext.docx%23_Toc402298523

Chapter 1
Introduction

From the beginning dfistoryhumars envisioned differerthings in order to @ate machines that

are able to think rationally and help them in their everyday life. These dreams led later the
humanity to start thinking about robots and artificial intelligence. Although there is a gap between
the artificial intelligence and the wayeiHomo sapiens thinksgreat scientific research efforts

were made in order to achieve better technology. The computerized era is a reality and this thesis
hopes for a small stone on the great wall to be added.

The artificial intelligence programs thatetrainedto take decisions in order to complete a task
are called agents. Agents can be simple, as far as their sodeie concerned, but they can also
be complex andifficult to the understanding even to the most experiengddditionally, agents
aresupposed to interact with other agents. Interactismshas the cooperation or the antagonism
or even the control of other agents are something common and usual and therefeagantilti
systems have become a reality.

However, multiagent systems candmme really complicated as the number of agents increases.
The answer to this problem the modular design approach. With modeVen engineering
simpler, easier and sometimes even more comprehensive approach to siévedopment is
provided. In orér to achieve model driven software engineering the need of model transformations
during the different development phases is of utmost importance.

One model driven engineering methodology is ASENIE, (2]). ASEME is an AgenDriented
Software Engineering (AOSE) methodology for developing ragént systemst uses the Agen
Modeling Language (AMOLA[3]), which provides the syntax and semantcreating models

of multir agentsystems covering thanalysis and design phases of a software development
processin this thesis, o one hand there is the transformation process of the AMOLA analysis
phase SysterRoles Model (SRM), on the other hand there is the XML Process Definition
Language (XPDL)With the transformation the thesasms to bring agent technology close to the
world of business modeling. It bridges the gap between software engineers and the business world
by allowing a MulttAgent System (MAS) analysis model to be represented as a [supnoesss

model. Thus, on one hand, the software engineer can employ available tools to validate specific

10

properties of the modeled system even before its final implementation, and, on the other hand, a
business collaborator can understand the system bedgled A first approach has been made

on the paper of Nikolaos Spanoudakis and Pavlos D§fipsi Si mu | a t-agengSystém| t i
Designs Using Bus i Havevsr, their appraach of tradnsfaineing then IR to

the BPMN met the obstacle of differences in the BPM Notations of different widely uded an
known BPMN tools.The only thing the tools had in common was XfeDL standardand not

always was this the cask order to help the transportation of the transformed SRM models
between the different BPMN todlswas decided thahe SRM should be trasformed into XPDL.

Following there are the thesis goals, the progression of the thesis and an outline of the document.

1.1 Thesis Goals

The major goal of this thesis e present all the work completed in order to havaasformed

SRM compliantto the XPDL standardThe higher goalis that agent software developers use this
thesis work, in order to immediately have tK@€DL of their Multi-agent systemSoftware
developers need only the substance of the transformation, which is how can someone from a SRM
file will get the XPDL representationh€& development of a transformation ttwt will guide in

simple stepss of utmost importance.

Rana and Stoub] highlighted the importance of combining performance engineering with agent
oriented design methodologies in order to develop large agent based applications. To derive
process performance meass, we need a quantitative process analysis technique. Process
simulation appears to be a prominent technigue that allows us to derive such measures (e.g. cycle
time) given data about the activities (e.g. processing times) and data about the resooikess in

in the process. Process simulation is a versatile technique supported by a rangessfrpoaeling

and analysis tool]. However, to run a process simulation, the engineer needs a process model.
And this is where the thesis comes to the spotli§RDL is a pocess model suitable for these
simulations.

Last but not least this thesis, tries to project the importance of the ASEME methodology, as it was
not only the foundation of this thesis but also to other modaktormations as wel[1], [2]).
ASEME is efficient for validating and simulating MAS desigfta example with the use of the
Rhapsody tool[7], the MARKET-MINER agent, which is a real wldr system has been
successfully implement€@].

11

Analysis Design-PIM PSM

AC2ADE { Java/JADE j
SE/GGenerator—
SRIM2IAC
SE/IAC2Monas (C“/M°”35 Software
Framework

SRM SRM2BPMN BPMN ﬁ’mce"s Management
and Simulation Tools

Figure 1:ASEME Process Tree from Analysis to Implementation

ASEME applies a model driven engineering approach to fag#nt systems development. It is
compatible with the Model Driven Architecture (MDA) paradi{#h MDAOGSsS strong poi
it strives for portability, interoperability and reusability, three4fmmctional requirements that are

deemed important for modern systems desWDA defines three models:

1 A computation independent model (CIM) is a view of a system that does not show details
of the structure of the systems. It uses a vocabulary that is familiar to the practitioners of
the domain in question as it is used for system specification.

1 A platform independent model (PIM) is a view of a system that on one hand provides
specific technial specification of the system, and on the other hand exhibits a specified
degree of platform independence so as to be suitable for use with a number of different
platforms. The system is described in platform independent format at the end of the design
phase.

1 A platform specifianodel(PSM) is a view of a system combining the specifications in the
PIM with the details that specify how that system uses a particular type of platform.

Figure 1 presents how the MDA phases apply to ASEWie ASEME Platform Indpendent

Model (PIM), which is the output of the design phase, is a statechart that can be instantiated in a
number of platforms usinBrocess Management and Simulatioals and to an agent platform,

the Java Agent Development Framework (JADdE)the C++Monas Software Framewark

12

ASEME defines three levels of abstraction for each phase. The societal level, where the whole
multi-agent system functionality is modeled. The agent level zooms in each part of the society.
Finally, the details that composeeach t he agent sé parts are defin

1.2 Thesis Progression

This thesis starts at the end of the work of Nikolaos Spanoudakis and Pavlos Delias on the
transformation of the Systerfi®le Model to the Business Process Model Notafi@n The first
attempt of this thesis was to transform thévbie the BPMN 2.0. However, different BPMN 2.0

tools used different notations. It was important thattansformed models had to becqmetable
between different toolS'he only way to succeed in an acceptable transportation was through the
XPDL.

And the route of the thesis changed.nibw provides a complete XPDL schema from a simple
liveness formula. Java was decided to be the programming language asefempersource
packageslready available for the use of the different XPDL elements. Hi2ltnodelis created
through arecursion.The source code isompact and new aspects have been added such as the
messaging interface.

Meanwhile, there was a necessity to find an egp@mwrce BPMN XPDL tool that can provide an
adequate simulator for the gerntexch XPDL modelA critic is available on all the tested tool$e
Signavio BPM Academic Initiative was used in order to simulate the generated XPDL model. The
results of the simulation are quite interesting and are displayed for the reader to evaluate.

1.3 Document Outline

This thesis main contribution is the complete transformation of a liveness formula to a XPDL
model. Also an effort is made to present the significant difficulties and also to prejecitiplete
methodology that led to the thesis contiple.

In Chapter 2 the background that acts as a basis is set. It all starts with Model Driven Engineering,
as it is expected, since the thesis tries to transform a model to another model. Then the definition
of an API and a brief explanation of the Ecipdodeling Framework are givehhen ASEME is
presented and briefly describéthe Systems Role Model (SRM), which is a basic milestone in
the ASEME methodology, is later analytically outlined. On one hand there is the SRM and on the
other there is the XMProcess Definition Language, which is the XML Definition of the Business
Process Modeling NotationA complete listing and description of the BPMN elements is
contained XPDL needs the graphics of the BPMN in order to be representedorevious work

of the transformation of the SRM to the BPMN is put after the SRM and BPMN descrifitnams.

the XPDL metamodel is presentedhapter 2 ends with a listing of all the tools that offer the
simulation option to the user, since simulations in process analgsimportant and project the
importance of the process development.

13

In Chapter 3 the XPDL importance is provided. XPDL is the basic format for interchanging
information between different BPMN implementations of various todlseview of different
BPMN tools that the author tested is available.

Chapter 4 is the heart of the thesis. In the General Design Picture paragraph the complete design
effort is portrayed. Firstthe SRMliveness formula gramman order to make clear the basic rules

for the transfamation. Second, the templates of the SRM to the XPDL transformation in order for
the reader to distinguish how the specific part of the SRM is translated to the XR®klass
diagramof the tansformation effort explairsow the different elements depemaeach other and

which class is respondéfor which assignmenihe recursie algorithmis available for a better
comprehension of the effoifhe importance of the package org.enhydra in this thesis is great and
therefore a paragraph is offered topdy which elements were necessary. After the detign
implementation of the transformation through Java Source code is offered. The basic element is
the class Live2xpdl, which contains the methods for matching the SRM elements to their XPDL
representtions.If there is the need for a muligent system where the different roles have different
responsibilities, then the Liveness2XPDL class comes into the spotlight which contains the
methods fo creating multiagent XPDL. After, lte classes Liveness2XPBpp and the
Inter_role_messages_definition are specified, which are graphical ustxdatelasses that guide

a user through all the procedure of the transformation. With Liveness2XPDLApp the user can
create single or mukagent systems from a livenesformula and with the
Inter_role_messages_definition the user can create messages between the different roles.

Chapter 5 presents different examples of single and-agétnt XPDL files created as a result of
the SRM2XPDL transformationThe efforts in impding this thesis created files are also
presentedA simulation example is alsavailable to project the importance of the work.

In Chapter 6 there is the conclusion of the thatis, imitations along with ideas for future
research, a general evaluatiof the diploma thesis and the contribution description of the thesis.

14

Chapter 2
Background

2.1 Model Driven Engineering

The Model Driven Engineering (MDE)QO] is a software development methodology, which
becomes widely accepted in the software development Redels are graphical representations

of information that help the sefare developers program according to their design approach rather
than the single dimensional source code programming.

Also, MDE focuses on creating and exploiting domain modeltsch areabstract rpresentations

of the knowledge and activities that gavea parttular application domajrrather than on the
computing (i.e. algorithmic) concept®Vith MDE productivity is increased, because the
compatibility between systems is maximized through the reuse of standardized models. Also the
process of design bemes simpler becauseodels of recurring design patns are used. The
communication between indduals and teams working orsgstemis more efficient, because of

the standards of the terminology and ai&st practicesre used in the application domaA
modeling paradigm for MDE is considered effective if its models make sense from the point of
view of a user that is familiar with the domain and if they can serve as a basis for implementing
systems. The models are developed through extensive conatiomamong product managers,
designers, developers and users of the application domain. As the models approach completion,
they enable the development of software and systems.

Some of the better known initiatives are:

ﬂ The Object Management Group (OMG) tiaiive modeldriven architecture (MDA),
which is a registered trademark of OM Gitp://www.omg.org)

ﬂ The Eclipse ecosystem of programming and modeling tools (Eclipse Modeling
Framework http://www.eclipse.org/modeling/enmf/

15

http://www.omg.org/
http://www.eclipse.org/modeling/emf/

2.2 EMFAPI

An Application Programming Interface (API) is a programming language that allows two different
applications to communicate with each other. With API features are enhanced anaalibcis
added either to one or to both applicatidtssmain purpose is to define a set of functionalities that
are independent of their respective implementation, allowing both definition and implementation
to vary without compromising each othém most objectoriented languagesn object APl is a
prescription of how objects work in a languagiethis thesis, the objedriented language that

will be used is JAVAWhen related to a software framework, a framework can be based on several
libraries inplementing several APIs.

Eclipse Modeling FrameworfEMF) is an Eclipsebasednodeling frameworlandcode
generatiorfacility for building tools and other applications based on a structiatdmodelFrom

a model specification describedXMI !, EMF provdes tools and runtime support to produce a
set of Java classes for the model, a set of adapter classes that enable viewing and-basedand
editing of the model, and a basic editor.r Models can be specified using
annotatedave&, UML 3, XML # documents, omodeling tools, then imported into EMF. Most
important of all, EMF provides the foundation for interoperability with other Eds$ed tools and
applications.

2.3 ASEME

According to[1], ASEME is an AgenOriented Software Engineering (AOSE) methodology for
developing multagent systems. It applies a model dnivangineering approach to megtjent

systems development, thus the models of the previous phase are transformed to models of the next
phase. Different models are created for each development phase and the transition of one phase to
another is assisted lautomatic model transformation including model to mqt#2M), text to

model (T2M), and model to text (M2T) transformations leading from requirements to software
developmentln Figure 2the whole ASEME MDE Process for Agent Development is described.

In the beginning there is the System Actor Goal Model (SAGModel), which is an XMI model.
Through the SAG2SUC transformation the System Use Case Model (SUC) is created. The
developer can refine the SUCModel and then insert it in the SUC2SRM transformatiaterin or

to get the SRMModellnitial. The SysteRole Model (SRM) can be edited and then inserted to

the SRM2IAC transformation in order to get thea-AgentControl (AC) model that can be ad

1 The XML Metadata Interchange(XMl) is an Object Management Group (OMGY/www.omg.orgktandard for
exchanging metadata information via Extensible Markup LaggyXML).

2 Java is an objeariented programming language

3 UML is a modeling language in software engineering, which provides a standardized way of visualizing a design of
a system.

4 XML is a markup language that defines a set of rules for encodicignuents in a format that is both readable by
humans or machines.

16

http://www.omg.org/

to the IAC2JADE transformatiom order to get the finajava fie that describes the behavior of
the agent.

SAGMade SUCMoﬁellmeLxmu suC delReﬁnedxmn

oLﬁ .

Edit the SAG2sUC Edlt the SUCZ SRM
SAG SuC
model model

SRMModellnitialxmi

0 dit tf\e sg E§;h>e/
F'F‘r- m i W

Agentjava IACModelrennedxmi IACModelinitialxmi SRMModelRefined.xmi
Behavior.java

Figure 2: The ASEME MDE Process for Agent Developmenift]

17

2.4 SRM2BPMN

2.4.1.The Systems Role Model§RM)

The SRM is a modelf AMOLA, [3]. In Figure 3the metamodel of SRN4 presentedAn agent

role aggregates capaligis and activities. Capabilities also aggregate activities. The liveness
model has &rmula at the first linerpot formulg where activities or capabilities can be added.
A capabilitymust be decomposed aativitiesin a following formula.

H capability) o H Activity
T name : EString 0.7 actwities = functionality : EString
T name : EString

0.% lcapabilities H Role
T liveness : EStrin 1 * |t
Lk 2 . >Uring 1.* |activities
.* capabilities T hame : EString 0 activk
Woactivities
1.* roles
T] i

m»__k“‘ H srmMmodel —
-~

Figure 3: The ASEME SystemsRoles Model(SRM) metamodel

In the SRM, theGaia operators are usgd]([11]) for creating liveness formulas that define the
dynamic aspect of the agent systdine Gaia operators are:

T

= =4 =4 8 -4 49 -9

A.B:
A
A|B:
Al|B:
A+:
A*:
[A]:
|ATT™:

means that activity B is executed after activity A,

means that activity A is executearéver,

means that either activity A or activity B is executed,
means that activity A is executed in parallel with activity B,
means that activity A is executed one or more times,
means that activity A is executed zero or more times,
means that activity A is optionally executed,

means that activity A is executed forever n times panaitl A.

The liveness formula grammar is defined using the Extended Bad¢aus Form (EBNF), which

is a metasyntax notation used to expressectifiree grammar&BNF was originally developed
by Niklaus Wirth (1996) The EBNF syntax for the liveness formula is presented in Li&ihg

With bold the gaia operators used are presented:

18

liveness Y {formul a}

formula Y leftHandSide = expression

leftHandSide Y string

expression Y t e nparallelExpr | orExpr | sequentialExpr

parallelExpr Y tedmterm{ | term}

orExpr Y tednerm{ |term}

sequential Expr tefm{t e.r tarm}

term Y basi cTegexpression) | [expression] |term * |[term + |term ~
basicTerm Y sring

Listing 2.1: The liveness formula grammar

2.4.2.Busines Process Modeling NotationBPMN)

Business Process Model and Notation (BPMN) is a standard for business process modeling that
provides a graphical notation for specifying business processes in a Business Process Diagram
(BPD), based on a flowcharting tethue very similar to activity diagrams from Unified Modeling
Language (UML). The objective of BPMN is to support business process management, for both
technical users and business users, by providing a notation that is intuitive to business users, yet
ale to represent complex process semantics. The BPMN specification also provides a mapping
between the graphics of the notation and the underlying constructs of execution languages.

The primary goal of BPMN is to provide a standard notation readily unddedibe by all business
stakeholders. These include the business analysts who create and refine the processes, the technical
developers responsible for implementing them, and the business managers who amzhitor
manage them. Consequently, BPMN serves @a@anon language, bridging the communication

gap that frequently occurs between business process design and implementation.

BPMN is constrained to support only the concepts of modeling applicable to business processes.
In addition, while BPMN shows the flowf data, and the association of data artifacts to activities,
it is not a data flow diagram.

This thesis, uses the elements of the BPMN to demonstrate the graphic representation of XPDL.

5 The Unified Modeling Language (UML) is a genepairpose modeling language in the field of software engineering,
which is designed to provide a standard way toaliza the design of a sgsn.

It was created and developed by Grady Booch, Ivar Jacobson and James Rumbaugh at Rational Software during 1994
95 with further developent led by them through 1996.

In 1997 it was adopted as a standard by the Object Management Group (OMG), aegérhasabhaged by this
organization ever since. In 2000 the Unified Modeling Language was also accepted by the International Organization
for Standardization (ISO) as an approved ISO standard. Since then it has been periodically revised to cover the latest
revision of UML.

19

ELEMENTS OF BPMN

BPMN models consist of simple diagrams construétech a limited set of graphical elements.
For both business users and developers, they
process.

BPMN's four basic element categories are:

1 Flow objects
0 events
0 activities
0 gateways
1 Connecting objects
0 seqwence flow
0 message flow
0 association
1 Swim lanes
o pool
o lane
1 Atrtifacts
0 data object
0 group
0 annotation

These four categories enable creation of simple business process diagrams (BPDs). BPDs also
permit making new types of flow object or artifact, to make thgrim more understandable.

O O O

Start Intermediate End

Figure 4: BPMN Events

N

Task Sub Process Transaction Call Activity

L y

Figure 5: BPMN Activities

20

® O P

Exclusive Event Based Parallel

CO®

Inclusive Exclusive Complex

‘ Event Based

Parallel Event
Based

Figure 6: BPMN Gateways

Sequence Flow

Figure 7. BPMN Connections

Flow objectsare themain describing elements within BPMN, and consist of three core elements:
events, activities, and gatewayrs Figure 4 the BPMN Events are displayed.

Event

An Event is represented with a circle and denotes somethinabpengcompared with an
activity, which is something that tong. Icons within the circle denote the type of event (e.g., an
envelope representing a message, or a clock representing time). Events are also classified
asCatching (for example, if catching an incoming message starts @ps) ofThrowing (such

as throwing a completion message when a process ends).

Start event

Acts as a process trigger; indicated by a single narrow border, and can @dfcheso is shown
with an open (outline) icon.

Intermediate event

21

Represents sometig that happens between the start and end events; is indicated by a double
border, and caiihrow or Catch(using solid or open icons as appropriate). For example, a task
could flow to an event that throws a message across to another pool, where a stiesegten
waits to catch the response before continuing.

End event

Represents the result of a process; indicated by a single thick or bold border, and Gdmawly
so is shown with a solid icon.

Activity

An activity is represented with a roundedrner retangle and describes the kind of work which
must be dondn Figure 5 the BPMN activities are displayed.

Task

A task represents a single unit of work that is not or cannot be broken down to a further level of
business process detail without diagrammirggsteps in a procedure (which is not the purpose of
BPMN).

Subprocess

Used to hide or reveal additional levels of business process detail. When collapsepiacesd
is indicated by a plus sign against the bottom line of the rectangle; when expaedednded
rectangle expands to show all flow objects, connecting objects, and artiaststs own seilf

contained start and end events; sequence flows frompattemtprocess must not cross the
boundary.

Transaction

A form of subprocess in which all edained activities must be treated as a whole; i.e., they must

all be completed to meet an objective, and if any one of them fails, they must all be compensated
(undone). Transactions are differentiated from expandegdesses by being surrounded by a
double border.

Call Activity

A point in the process where a global process or a global Task is reused. A call activity is
differentiated from other activity types by a bolded border around the activity area.

Gateway

A gateway is represented with a diamaidhpe and determines forking and merging of paths,
depending on the conditions expressadtigure 6 the BPMN Gateways are displayed.

22

Exclusive

Used to create alternative flows in a process. Because only one of the paths can be taken, it is
called exclusie.

Event Based

The condition determining the path of a process is based on an evaluated event.

Parallel

Used to create parallel paths without evaluating any conditions.

Inclusive

Used to create alternative flows where all paths are evaluated.

Exclusive Eent Based

An event is being evaluated to determine which of mutually exclusive paths will be taken.
Complex

Used to model complex synchronization behavior.

Parallel Event Based
Two parallel process are started based on an event, but there is no evafuatosvent.

Connections

Flow objectsare connected to each other usBwnnecting objects which are of three types:
sequences, messages, and associatioRsgure 7 the BPMN Connections are displayed.

Sequence Flow

A Sequence Flow is representedhwé solid line and arrowhead, and shows in which order the
activities are performed. The=quence flownay also have a symbol at its start, a small diamond
indicates one of a number cbnditional flows from an activity, while a diagonal slash indicates
the default flow from a decision or activity with conditional flows.

Message Flow

23

A Message Flow is represented with a dashed line, an open circle at the start, and an open
arrowhead at the end. It tells us what messages flow across organizational bo(irelabiesveen
pools). A message flow can never be used to connect actiteagents within the same pool.

Association

An Association is represented with a dotted line. It is used to associate an Artifact or text to a Flow
Object, and can indicate sond@rectionality using an open arrowhead (toward the artifact to
represent a result, from the artifact to represent an input, and both to indicate it is read and updated).
No directionality is used when the Artifact or text is associated with a sequemassage flow

(as that flow already shows the direction).

(Poal

L i

A

Figure 8: A BPMN Pool with a BPMN Lane inside

DN

Data

Figure 9: BPMN Data Object

Gicup

Figure 10: A BPMN Group

24

http://en.wikipedia.org/wiki/File:Swin_Lane_-_BPMN_2.0_Artifact.png
http://en.wikipedia.org/wiki/File:Data_object_-_BPMN_2.0_Artifacts.png
http://en.wikipedia.org/wiki/File:Group_-_BPMN_2.0_Artifacts.png

Annotation

Figure 11: A BPMN Annotation

Swim Lanes

Swim lanesare a visual mechanism ofganizingand categorizingactivities, based oaross
functional flowcharting, and in BPMN consist of two typksFigure 8 a Pool with a Lane inside
is displayed

Pool

The Pool epresents major participants in a process, typically separating ditbegamizationsA

pool contains one or more lanes (like a real swimming pool). A pool can be open (i.e., showing
internal detail) when it is depicted as a large rectartgbevsg one or more lanes, or collapsed
(i.e., hiding internal detail) when it is depicted as an empty rectangle stretching the width or height
of the diagram.

Lane

The Lane is sed toorganizeandcategorizeactivities within a pool according to function mle,
and depicted as a rectangle stretching the width or height of the pool. A lane contains the flow
objects, connecting objects and artifacts.

Artifacts

The artifactsallow developers to bring some more information into the model/diagram. In this way
the model/diagram becomes more readable. There are thrdefpred Artifacts and they are:

Data objects Data objects show the reader which data is required or produced in an ativity.
Data Obiject is displayed in Figure 9.

Group A Group is representlewith a roundegtorner rectangle and dashed lines. The group is
used to group different activities but does not affect the flow in the diagv&@roup is displayed
in Figure 10.

Annotation An annotation is used to give the reader of the model/diagraun@erstandable
impressionAn annotation is displayed in Figure 11.

25

http://en.wikipedia.org/wiki/File:Annotation_-_BPMN_2.0_Artifacts.png

2.4.3. Transforming the SRM to the BPMN

Software Engineering (SE) and Business Process Management (BPM) are two disciplines with
clear associations. A visible influence of SE to BPM eons quality assessment, while SE aims

its attention to BPM mainly to take advantage of its experiment design principles. For example,
following the BPM paradigm, one can find solutions about how business people and software
engineers are facilitated in monunicating system requirements. Stakeholders are able to get
involved in the systemd6s design, and hence to
the business objectives.

Simulation is employed to quantify the impact that a process desilkelg to have on its
performance, and to numerically indicate the best design alternatives.

Popular modeling languages in designing software systems, such as the@obéget ones (e.qg.
UML), lack process views, an issue that has been early identifi¢di2]. On the other hand,
process models do noswally map clearly to a prograning environment. Both approaches have
their relative advantages, gas a hard decision to spare one. This is why there have been efforts
to bridge objecbriented models and process modbteugh model transformationfl 8], [14]).

For transforming tt SRM to a BPMN modg#], it is essential to transform thigeness formula

to a valid BPMN graph. Delias and Spanoudakis defined the traraformemplates showim

Figure 12which are applied recursively to a Gaia formula from left to right. With these templates
the transformation from the SRM liveness proypdéo a BPMN model becomes a reality. The
transformation is a text to model transformation (T2M) transformation that can be automated using
existed techniqugd 5]

Op. Template Op. Template
L=

ly oo“o <y i O-C3-G3-CO
A

=5 ;
xlly } & >0 | ver i
uyg ||§ O—(h

-0

Y

Figure 12: Templates of extended Gaia operators (Op.) for BPMN model generatid#]
26

After the process of transfoation the software developewns a BPMN model of the ageiffihis

model can be used to simulate thetsys For a singlkagent system the transformed SRM can be
used for simulation, verification and optimization. Considering a ragkint system design, the
individual process models must be combined into a functional ecosystem. This fact raises some
additional transformation requirements.

In order to integrate multiple rold3elias and Spanoudaksetthe followed requirements

distinct participant (represented with a Pool in BPMMs createdor every role instance

described in the SRM model. Thepodet i ves from the outer | evel 0
(the subprocess element is transformed into a swimlane). This transformation brings also an
additional action: the elimination of the outermost start and end events. However, in order to
generateth soci ety | evel, the major actions conce
compliant with the business perspective of BPNt, following rules are manually applied

1 All activities that stand for sending or receiving messages (the activitiebehmme starts
with fisendod or)aferlabaled aswesdagetype astivitied. s

1 When a receive activity follows a start event, then the start event and the activity are
merged into a start event triggered by a message.

1 When a receive activity flows precedes an end event, then the two are merged into an
end event triggered by a message.

1 When a message can be sent to one or more out of many recipients, and this decision has
to be evaluated during runti me, datalbsed bef o
exclusive gateway is added.

The last rule was introduced because BPMN does not provide a standard solution for this
requirement. This deficiency is discussed in more detdll6h A BPMN modeling alternative,
which responds to this requirement, is to use sigmadadcasting events. However, the later
solution was not adopted since broadcasting does not riggrowch the message exchange
logic.

2.5 TheXPDL metamodel

Similarly to the definition of SRM, we use the Eclipse EMF technology to represent the metamodel
for XPDL. The metamodel that we used for our proj&ée] is shown in Figure 13rhePackage
concept represents a set of process®l contains:

0 pools which represent major participant roles in a process, typically separating different
organizations. A pool can contain:

3 lanes which are used to organize and categorize activities within a pagrdmng to
function or role.

0 workflowProcessesvhich aggregate sets of activities and transitions

27

3 activitiesare represented by rounded rectangles and correspond to thetiereaiua
task or to the functionality of a gateway, which can be:

Yy XOR gateway (one of the outgoingansitions will be followed), which is
represented by a diamond shape with the

y parallel gateway (all the outgoing transitions lead to activities that will be
executed in parallel), which is represented by a diamond shapet witle i + 0
character in the middle

3 eventsare represented by circles and are specific kinds of activities thegsmmond to
something that happens. Common events are the start of a process lane and its ending

3 transitions are represented with a solide and arrowhead and have source and target
(at the arrowhead) activities and define the control flow in the workflow process

0 associationsare represented with a dotted line and arrowhead and have source and target (at the
arrowhead) activities andefine the message flow between different pools. Therefore, they also

have source and target pools.

F=E0C ation: -)

pools—_> workflowProcesses

—

Yo ()
|—Iar'5—
M Transition
L transitions
S activities
= e | eee——
from
from
Activity Event
to

= TransitionRestriction gatewayType EventType type
= ..-:_'J

Figure 13: The thesis XPDL MetaModel
28

2.6 Process Simulation Tools

A list of Business Process Modeling Notation Tools is offered

(http://en.wikipedia.org/wiki/Comparison_of Business Process Modeling_Notatior) tools

From the previousist the tools that offer simulation are presertetbw:

Table 1:List of BPMN tools that offer the simulation feature

Name Platform/OS XPDL Version Software License
Activiti Modeler Crossplatform XPDL 2.1+ Apache License 2.0
ADONIS (Software) Windows XPDL 2.1+ Proprietary/Freeare
AuraPortal Windows XPDL 2.1+ Suite Proprietary or
Cloud and Modeler
Freeware
BPMN Visio Windows XPDL 2.1+ Proprietary, shareware
Modeler 1 month free trial
BPMN Web Cloud XPDL 2.1+ Proprietary, shareware
Modeler 1 month free trial
IBM Process eclipse based tool XPDL 2.1+ Proprietary
Dedgner for creating
executable processe
INNOVATOR for Windows XPDL 2.1+ Proprietary, free
Business Analysts Personal Edition
Logizian Windows, Linux, OS XPDL 2.1+ Proprietary
X, Solaris
Pega Systems Windows XPDL 2.1+ Proprietary
Process Modeler fol Windows XPDL 2.1+ Proprietary
Microsoft Visio
SemTalk Windows SPoint XPDL 2.1+ Proprietary
Visio
Signavio Process Cloud or XPDL 2.1+ Proprietary
Editor On-premise
(Windows, Linux)
server), Clienside
browser
TIBCO Linux, AIX, HP-UX, XPDL 2.1+ Proprietary
ActiveMatrix Solaris, Windows
Triaster Windows Proprieatary

From the above listing it is easy deducted thateare not so many tools that offer simulation.
The most are designed for Windows. All but the kgpport the BPMN2.0 version. As it is
deducted from the Listing only a few tools have a free License. These are Activity Modeler,
ADONIS, AURAPortal, and Innovator with a free Personal Edition.

29

http://en.wikipedia.org/wiki/Comparison_of_Business_Process_Modeling_Notation_tools

Chapter 3
Problem Statement

This thesis hopes to providelstions to the following not solved yet problems. At first, the
guestion about how can someone verify and validate a system analysis or a design. The only way
to succeed this is by simulating experiments teaemble the reality objectiveSimulation is
employed to quantify the impact that a process design is likely to have on its performance, and to
numerically indicate the best design alternatives. Regarding business proadasa@invarious

tools exisf18], which facilitate the adoption of business process modaigng practical way for
designing systems. However, a critical factor in selecting which tool is more appropriate is the
modeling language used.

The modeling language that will be usedwsld offer a practical way of communicating between

the software developers and business analysts. On the one hand, agents, whose behavior is
described in the SRM, are programs that complete specific tasks in a specific way in order to fullfil
their purpos. On the other hand, there is the business process modeling, which represents
processes of an enterprise, so that each process in a system may be analyzed and improved. The
agent task and the business process have semantic resemblance, and thereforef a way
representing both can be availglidat is noffered.

Another issue that the chosen modeling language should overcome is that in modern society there
are specific tasks completed by agents and specific tasks completed by hunogitalAjlestion

now rises,canthe common displaying of the interactions between different kinds of roles whether
they are human or artificial intelligence ormxome possibléhis can be solved, if the modeling
language is simple but comprehensible by both kinds a$.role

The modeling language should be portable to agent platforms like WikiEder for the agent
developers to use the created models the moment they are created.

6 http://jade.tilab.com/wadeproject/

30

http://jade.tilab.com/wadeproject/

The previous issues are solved by choosing the XPDL as the target transformation language for
the SRM.

3.1 Problems in Simulations

At the beginning this thesis was supposedffer a SRM to BPMNZ2.0 transformation, but since

the procedure was to use liveness formula and generate XML elements, the thesis changed
direction to transform SRM to XPDIThis was a correct decision since all 8MN tools are

based on the XMLIt was of utmost importance that the generated files would be easily transported
through different tools and there comes the XPDL into the account. A few tools were tested in
orderto take the former decisioffihe toolstestedare presented below:

Table 2:List of tested tools

Name Revi ewer 6s mo XPDLv2.0+
ADONIS (Software) 07-2014 P
Bonita BPM 03-2014 P
Signavio Process Editor 06-2014 P
TIBCO ActiveMatrix 05-2014 P

A small review is offere for each of the listed tools:

1 ADONIS: is a Business Process Analysis (BPA) tool supporting business process
management based on BPMS framework created at the University of Vienna. It is
developed by the BO Information Technologies Consulting GmbH. It allows business
process modeling using BPMS notation and BPMN 2.0, process analysis, simulation,
evaluation as well as publishing and process automation with BPMN 2.0 XML (BPMN
DI) and XPDL.ADONIS is freewarethat comes in handy for small enterprises. With
ADONIS the usecan model in a relative easy way and the models can be saved as HTML
and can also be embedded in Word documents and presentations. As far as the analysis of
the model is concerned ADONIS isegt in finding bottlenecks or inefficiencies in the
system. ADONIS offers also simulation which is not easily found on freeware BPM tools.
Last but not least, with ADONIS the sharing of models becomes something trivial. The
user can publish in HTML or asprint in Word format.

1 Bonita BPM: is an opersource business process management and workflow suite created
in 2001. It was started in France National Institute for Research in Computer Science, and
then had incubated several years inside of the Fremopwter science company Groupe
Bull. Since 2009, the development of Bonita is supported by a company dedicated to this
activity: Bonitasoft.With Bonita BPM Studio the user can easily design the processes
graphically. Bonita offers easy connectivity to Msgems by including a great amount of
connectors, for example connectors for databases, ERP, CRM, ECM. Another advantage
of Bonita is that through its portal the user can manage daily tasks and follow process

31

activity. B o n i thasédandcanmsigppont etensige werldoads,iisdlexible
and can be used to third party applications. Lastly, the Bonita BPM offers an open
community edition.

Signavio ProcessEditor:is a Berlin and Silicon Valleybased software vendor in the
Business Process Managemh (BPM) space. Its main product, the Signavio Process Editor
is a webbased business process modeling tool, which was launched in May 2009. The
product enables the creation of process diagrams using the Business Process Model and
Notation and it is avadble as Software as a Service (SaaS) and foiPi@mise
installations.Signavio offers process modeling using graphical editor and QuickModel,
and a spreadsheetiented process editing mode. There is also a simulation for process in
order to identify botenecks or evaluating alternatives. With megdsdository the user can

build multi-level process architectures, can manage different versions and reuse the
different objects. Sharing capability for process diagrams, for collecting feedback and
enforcing aproval workflows. The user can publish using reporting mechanisms and an
integrated process portdlhe cloud service is a mulignant installation that offers online
workspaces to organizations with a subscription model. The Signavio Process Editor is al
available for orpremise installations with a traditional license purchase and
support/maintenance model.

TIBCO Active Matrix: is a technologyneutral platform for composite business process
management (BPM) and serviodented architecture (SOA) apgditions. The platform
includes products for service creation and integration, distributed service and data grids,
packaged applications, BPM and governarid8CO is an Ompremise BPM software
solution. It is designed for communication between IT stafflarginess users. The user

can easily create process€iBCO displays process performance via visual analytics. Also
TIBCO can enforce compliance with company regulations. TIBCO has a proprietary
software license.

32

Chapter 4
Our Approach

4.1. The General Design Picture

In order to succeed the correct transformation of the SRM to the XPDL, some basics steps were
followed. In the beginning the grammar of the SRM was defined. According to the grammar, the
corresponding templates to the XPDL weegefully builded.The model that will be created is
formed step by step recursiveljhen a set ofavaclasses to creathe XPDL files ofdifferent

kinds ofmulti-agent systems were designed. Lastly, an open source package was found in order to
acquirethe XPDL elements descriptions in Java source code.

4.1.1. The Grammarof the SRM

The system roles model (SRM) is mainly inspired by the Gaia roles model (Wooldridge et al.,
2000). A role model is defined for each agent role. The role model contafoidivéng elements:

a) The interaction protocols that this agent will be able to participate in.
b) The | iveness model that describes the role

The liveness model has a formula at the first line (root formula) where activities or capabilities can
be added. A capability must be decomposed to activities in a following formula. The Gaia
operators have been enriched with a new operator, fhewith whicha defined activity can be
concurrently instantiated and executed more than one times (n times).

33

The liveness formula grammar has not been defined formally in the literature, thus it is defined
here using the Extended Backbsur Form (EBNF), which is a metasyntax notation used to
express contexfree grammars. It is a formal way to describe compotegramming languages

and other formal languages. It is an extension of the basic Bataus Form (BNF) metasyntax
notation. EBNF was originally developed by Niklaus Wirth (1996). The EBNF syntax for the
liveness formula is presented in Table, Rising te BNF styé followed by Russel and
Norvig(2003), i.e. terminal symbols are written in bold.

Table 3:The liveness formula of the SRM in EBNF Format

liven ess Y {formul a}

formula Y leftHandSide = expression
leftHandSide Y string

expression Y term

|parallelExpression
|orExpression

|sequentialExpression

parallelExpression Y t e|r term{ || term}
orExpression Y t e|temm | term}

sequentialExp ression Y ter m. ttermm{
term Y basicTerm

| (expression)

| [expression]

[term *

[term +

[term ~

| | basicTerm ~| number
basicTerm Ystring
number Ydigit | digit number
digit V1] 2] 3] ¢
string Y letter]|letter string
letter Ya| b| c]| é

34

Some examples of roles generated by the former grammaisted below

Liveness:
MeetingsManager = RequestNewMeeting~

RequestNewMeeting = ReceiveNewMessage.SelectMeetingDate.SendNewResponse

Liveness:

complex provider = |[requestforservicesSP~|n
requestforservicesSP = receiverequestmessage.processrequest.sendresponsemessag
processrequest = (decideretype.requestforservicesSR.soutes)|
(decidePOiypes.requedbrservicesSR.decidePOls.request for services SR)

requestforservicesSR = sendrequestmessage.receiveresponsemessage

Liveness:

PersonalAssistant = (ManageMeetings.LearnUdgitB)e||(NegotiateMeetingDate)~
ManageMeetingsGetUserRequest.(ReadSchedule|RstChangeMeeting|
RequestNewMeetinjShowResults

LearnUserHabits = LearnUsad®erence.UpdateUserPreferences
RequestNewMeeting = SendNewRequest&tveNewResults.UpdateSchedule
RequestChangeMeeting = SendChangeRequesiMeetmngeResults.UpdateSchedule
NegotiateMeetingDate = ReceiveProposedDate.

(DecideRespase.SendResults.ReceiveOutcomblpdateSchedule

Figure 14: Examples of roles generated by SRM grammar

35

4.12. The templates of SRM2XPDL

Op. Template Op. Template Op. Template

[A]

| & n

Al A | Ay
AT Ao] An

Figure 15: Templates of extended Gaia operators (Op.) for XPDL generation

4.1.3 Class Diagram of the SR12XPDL Transformation.

In order for this thesis to present a sound transformation of tié t8Rhe XPDL some Java
classes were developdgklow is theclass diagram of these classes:

4 [<Package> aseme.transformations.xpdl
£ <Class> Live2xpd
=] <Class> Liveness2XPDL
] <Class> Liveness2XPDLApp
Q <Class> Inter_role_messages_definition

Figure 16: The contents of Package aseme.transformations.xpdl|

36

Liveness2 XPDLApp Inter_role_messages_definition

main{) —I—-"' maini)

new Runnable() new Runnable()

Liveness2 XPDL

createRoles{List<String=, String) : retums Package

LiveZxpd|

transform (String, Package, String): retums Poo

createProcess|string, WorkflowProcess, Activity): retums Activity
findTermsInExpressioniString, String, WorkflowProcess): retums List<String=
handle BasicTerm(String, WorkflowProcess, Activity): retums Activity

| E V))

Figure 17: The Class diagram for the SRM2XPDLtransformation.

In just a few classes the transformation fisRM to the XPDL becomes a realifjhe four classes
are:Liveness2XPDLApp, Inter_role_messages_definition, Liveness2XPDL, Live2xpdl

1 Liveness2XPDLApp This class creates a GWiat helps the & open SRM models, to
write new formulas and to transform them into XPDL models. When the user decides to
transforma liveness formulathe createRoleg method from Liveness2XPDL class is
called. If there is a need to define messages between the ralewuitFagent system, the
main of the class Inter_role_messages_definition is called.

1 Liveness2XPDL: This class contains the methorkateRoleg, where the basic XPDL
elements are generatadd storedn the XPDL package. The creReles() method calls
the transform() method from Live2Xpdl class order to acquire all the poots the
package.

1 Live2XPDL: This class is respaible for the creation of a pqalhich represents a single
role in the multdagent system. The transform() method makes this pessilvough the
call of the createProcess() method. The createProcess() msthexlisive and creates
XPDL elements and connects thdim matching terms in the liveness formula to their
templates.

1 Inter_role_messages_definition:This class creates a GUhat helps the usecreate
message flows between the participahés of the multagent system.

37

4.1.4. The recursve algorithm for creating pools.

The transformation algorithm uses elements from thenkgs formulas grammar (Tablg fBom

the SRM meamodel (Figure Band the XPDL metamodel (Figure)1® is a recursive algorithm
that takes the liveness formula expression elements from left to right and appliesnplates
shown in Figure 13gradually building the XPDL process. For all templathks, ¢ontrol flows
from left to right, i.e. if a template fldws another, then it is concted to its rightmost activity.
Listing 4.2 presentshe pseudocode of theahformation algorithm. The ddrent model elements
are represented as classes aet froperties as class propiess, accessible using the dot operator,
i.e. <classname>.<property> For representing a list we uselsst class that supports the
operationsadd (to add an element to the list) aside(to return the number of its elements). The
program takes as input an XPDL Package instance and the String liveness property of an SRM
Role instance.

OUIRAWNE

Program transform(String liveness, Package package)
WorkflowProcess workflowProcess = new WorkflowProcess
package.workflowProcesses.add(workflowPr ocess)
Event startEvent = new Event
startEvent.type = start
workflowProcess.add(startEvent)

38

7 Activity lastActivity = createProcess(liveness.formulal.expression,

8 workflowProcess, startEvent)
9 Event endEvent = new Event
10 endEvent.type = end
11 workflowProce ss.add(endEvent)
12 Transition transition = new Transition
13 transition.from = lastActivity
14 transition.to = endEvent
15 workflowProcess.add(transition)
16 End Program
17 Function Activity createProcess(String expre ssion, WorkflowProcess
18 workflowProcess, Activity a ctivity)
19 List terms = new List
20 For Each term; In expression
21 terms.add(term ;)
22 End For
23 If terms.size() > 1 Then
24 If expression Is sequentialExpr Then
25 For Each term; In expression
26 Activity newActivity = createProcess(term i
27 workflowprocess, activity)
28 activity = newActivity
29 End for
30 Else If expression Is orExpr
31 Activity xorEntryGateway = new Activity
32 xorEntryGateway.gatewayType = XOR
33 workflowProcess.add(xorEntryGateway)
34 Transition transition = new Transition
35 transition.from = activity
36 transition. to = xorEntryGateway
37 workflowProcess.add(transition)
38 Activity xorExitGateway = new Activity
39 xorExitGateway.gatewayType = XOR
40 workflowProcess.add(xorExitGateway)
41 For Each term; In expression
42 Activity newActivity = createProcess(term i
43 workflowprocess, xorEntryGateway)
44 transition = new Transition
45 transition.from = newActivity
46 transition.to = xorExitGateway
47 workflowProcess.add(transition)
48 End for
49 activity = xorExitGateway
50 Else If expression is parallelExpr
51 Activity parallelEntryGateWay = new Activity
52 parallelGateWay.gatewayType = Parallel
53 workflowProcess.add(parallelEntryGateway)
54 Transition transition = new Transition
55 transition.from = activity
56 transition.to = parallelEntryGateway
57 workflowProcess.add(transition)
58 Act ivity parallelExitGateway = new Activity
59 parallelExitGateway.gatewayType = Parallel
60 workflowProcess.add(parallelExitGateway)
61 For Each term i In expression

39

62
63
64
65
66
67
68
69
70
71
72
73
74

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

End If

Activity newActivity = createProcess(term
workflowprocess, parallelEntryGateway)
transit ion = new Transition
transition.from = newActivity
transition.to = xorExitGateway
workflowProcess.add(transition)

End For

activity = parallelGateway

For Each term; In expression
If term; Is basicTerm

Else If

Else If

Else If

boolean foundLeftHandSideEqualsBas icTerm = false
For Each formula i In liveness
If formula ;.leftHandside = term i Then
Activity newActivity =
createProcess(formula i .expression,

workflowprocess, activity)
activity = newActivity
foundLeftHandSideEqualsBasicTerm = true
End If
If foundLef tHandSideEqualsBasicTerm = false
Activity newActivity = new Activity
workflowProcess.add(newActivity)
Transition transition = new Transition
transition.from = activity
transition.to = newActivity
workflowProcess.add(transition)
activity = newActivity
End If
(term i i s of type O6(6 tThenm o)
Activity newActivity = createProcess(term,
workflowprocess, activity)
activity = newActivity
(term ; i s of type O6[6 Themrm 6]
Activity xorEntryGateway = new Activity
xorEntryGate way.gatewayType = XOR
workflowprocess.add(xorEntryGateway)
Activity xorExitGateway = new Activity
xorEntryGateway.gatewayType = XOR
workflowprocess.add(xorEntryGateway)
Transition transition = new Transition
transition.from = activi ty
transition.to = xorEntryGateway
workflowprocess.add(transition)
Activity newActivity = createProcess(term,
workflowprocess, xorEntryGateway)
Transition transition = new Transition
transition.from = newActivity
transition.to = xorExitGateway
work flowprocess.add(transition)
Transition transition = new Transition
transition.from = xorEntryGateway
transition.to = xorExitGateway
activity = xorExitGateway
(term ; i s of typeTheén* 6)
Activity xorEntryGateway = new Activity

40

(@)}

o

118 xorEntryGateway.g atewayType = XOR

119 workflowprocess.add(xorEntryGateway)
120 Activity xorExitGateway = new Activity
121 xorEntryGateway.gatewayType = XOR
122 workflowprocess.add(xorEntryGateway)
123 Transition transition = new Transition
124 transition.from = activity

125 transition.to = xorEntryGateway

126 workflowprocess.add(transition)

127 Activity newActivity = createProcess(term,
128 workflowprocess, xorEntryGateway)

129 Transition transition = new Transition
130 transition.from = newActivity

131 transition.to = xorExitGateway

132 workflowp rocess.add(transition)

133 Transition transition = new Transition
134 transition.from = xorEntryGateway

135 transition.to = xorExitGateway

136 workflowprocess.add(transition)

137 Transition transition = new Transition
138 transition.from = xorExitGateway

139 transition.to = startof(t erm)
140 workflowprocess.add(transition)

141 activity = xorExitGate way

142 Else If (term ; i s of tvypeThén~0)
143 Activity newActivity = createProcess(term,
144 workflowprocess, activity)

145 Transition transition = new Transition
146 transition.from = newActivity

147 transition.to = s tartof(term)

148 workflowprocess.add(transition)

149 activity = newActivity

150 Else If (term ; i s of tvypeThén+ o)
151 Activity xorExitGateway = new Activity
152 xorExitGateway.gatewayType = XOR
153 workflowprocess.add(xorExitGateway)
154 Activity newActivity = createPr ocess(term i,
155 workflowprocess, activity)

156 Transition transition = new Transition
157 transition.from = newActivity

158 transition.to = xorExitGateway

159 workflowprocess.add(transition)

160 Transition transition = new Transition
161 transition.from = xorExitGateway

162 transition.t 0 = startof(term)

163 workflowprocess.add(transition)

164 activity = xorExitGateway

165 End If

166 End If

167 End For

168 return activity

Figure 18: The recursive algorithm

41

The basic outline of the algorithm is:

1 Lines 2022: The findTermsInExpreson() method is called to find the terms.
1 Lines 2429: A sequential expression is processed.

1 Lines 30649: An XOR expression is processed.

i1 Lines 5670: A parallel expression is processed.

1 Lines 7290: A basic term is processed.

1 Lines 7481: The haule basic term method is described.
1 Lines 9194: A parenthesis term is processed.

1 Lines 95115: A brackets term is processed.

1 Lines 116142: A starterm is processed.

1 Lines 142150: A tilda term is processed.

1 Lines 150164: A plus term is processed.

4.1.5 Class diagram of org.enhydra

The Together© Teamsolutions Co., Ltd. In Thailand has developed the org.enhydra and is
distributed under the GNU Free Documentation License.

This thesis usesxtensively theorg.enhydra package in order to produce XPDL{y&les. The
complete class hierarchy et described belowthere are only packages present that have some
impact on the transformatipthe packages that are imported are undetlined

Hierarchy For All Packages
Package Hierarchies:

org.enhydra.jxpdl,
I org.enhydra.ixpdl.elements,

I org.enhydra.ixpdl.utilities

Class Hierarchy

o java.lang.Object
0 org.enhydra.jxpdl. XMLElement (implements java.lang.Cloneable, java.io.Serializable)
0 org.enhydra.jxpdl.XMLBaseForCollectionAndComplex
0 org.enhydra.jxpdl.XMLComplexElement

0 org.enhydra.jxpdl.elements.NodeGraphicsinfo

0 org.enhydra.ixpdl.elements.Package

0 org.enhydra.jxpdl.elements.TransitionRestriction

0 org.enhydra.jxpdl.XMLCollectionElement
0 org.enhydra.ixpdl.elements.Activity
0 org.enhydra.jxpdl.elements.Association
0 org.enhydra.jxpdl.elements.Lane

42

file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/package-tree.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/package-tree.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/utilities/package-tree.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XMLElement.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XMLBaseForCollectionAndComplex.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XMLComplexElement.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/NodeGraphicsInfo.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Package.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/TransitionRestriction.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XMLCollectionElement.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Activity.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Association.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Lane.html

0 org.enhydra.jxpdl.elements.Pool
0 org.enhydra.jxpdl.elements.Transition
0 org.enhydra.jxpdl.elements.WorkflowProcess

0 org.enhydra.jxpdl. XML Util
0 org.enhydra.jxpdl.XPDLRepositoryHandler

A brief description of each package that is imported in the source code is available:

T

org.enhydra.jxpdl.elementéodeGraphicsinfo: Contains all the graphical information of
the xpdl elements that need to be represented.

org.enhydra.jxpdl.elemenBadkage Contans everything a user needsorder to create a
XPDL Packageand to effectively use it. It refers to the Package presented in the XPDL
metamodel.

org.enhydra.jxpdl.elemenf@ansitionRestriction: Contains information about
restrictions that th&ransitions need to comply with in order to connect different kind of
XPDL Elements.

org.enhydra.jxpdl.elementsctivity : Contains everything a user nsed order to create

an Activity and to effectively use it. It refers to the Activity presented inXR&L
metamodel.

org.enhydra.jxpdl.elemenfsssociation Contains the information to create Associations
between XPDL elements. It refers to the Association presented in the XPDL metamodel.
org.enhydra.jxpdl.elementsane: Contains the information to creatLanes and to
effectively use them. It refers to the Lane presented in the XPDL metamodel.
org.enhydra.jxpdl.elemenBool. Contains the information to create Pools and to
effectively use them. It refers to the Pool presented in the XPDL metamodel.
org.erhydra.jxpdl.element$ransition: Contains the information to create Transitions
between XPDL elements. It refers to the Transition presented in the XPDL metamodel.
org.enhydra.jxpdl.elemenWorkflowProcess Contains the information to create a
WorkflowPracess and to effectively use it. It refers to the WorkflowProcess presented in
the XPDL metamodel.

org.enhydra.jxpdKMLULtil : Contains the information that is needed to describe a file as
XML file.

org.enhydra.jxpdKPDLRepositoryHandler: Contains the infanation to handle XPDL
files in the repository system. It is used to write the package in a file as XPDL.

43

file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Pool.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Transition.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/WorkflowProcess.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XMLUtil.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XPDLRepositoryHandler.html

4.2 Implementation API

4.2.1 The class Live2xpdl

The class Live2xpdl contains the basic methods in order to transform a SRM liveness formula into
a XPDL model. The SRM liveness formula corresponds to a single role in a sydtenclass
Live2xpdl| contains the following methods:

1 Activity createProcess§tring expressionWorkflowprocessvorkflowprocessActivity
actpreviou$. The createProcess retd isa recursive method responsible for filling
the workflowProcess with XPDL elements. The process is completed by matching
terms of the input expression, which is a liveness formula, to their respective templates.
The method needs an activity as argumemtrder to store the activity before the call
of the recursion. It returns the last activity to be used as a node for the continuation of
the model.The createProcess method is described in line$683of the recursive
algorithm.

1 List<String> findTermsInExpession(String expression String connector
Workflowprocessvorkflowprocesy This method is responsible for tokenizing a string
expression in order to separate the terms between the conrfedtdiyand returs a
list of string terms to be used breateProces3.he findTermsInExpression method is
not analytically described, but it corresponds to the line2®f the recursive
algorithm.

1 Activity handleBasicTerm(Stringerm, Workflowprocessvorkflowprocess Activity
actpreviou$. This method is ugkin orderto substitute a term with a basic term so as
for the recursion to find which is the current noldeeturns an activity as thaurrent
node. The handleBasicTerm method is described in line874f the recursive
algorithm.

9 String preprocessin(tring formula): This method is used to substitute a'Jtefm to
its semantic equatring which is a parallel expression of x~ term n times with itself.

It returns the semanti@aal string

1 String remover(Stringerm): The remover method was develdpga order to remove
invalid characters of a string that might be used as an id. In XPDL there can be no
special characters or symbols in the idsteturns the tsing without the removed
elements.

1 Pool transform(Stringliveness,Packagepackage String outputfile): The transform
method is responsible for creating a lane to be stored in the XPDL package. It needs as
arguments a String which should be a liveness formula of a role, the package of the
XPDL and an output file for an optional write to file chpiy. It returns a pool

A finding of this thesis is that all XPDL elements that will be created need unique XMl ids. Also

the ids should not contain special characters or symbols. In ordeoithbcreating elements with
44

the same id, the following conwigon was followed: Each time an element is created that needs id
except of the package, the pools and the workflowprocess the time milliseconds of the program
time run, the role that the element is creatednda counterthatis increased, are put inish
respective order in a string that will be the id of the created element. This way ids are created that
are unique and are easily and effectively monitored in the debugging process.

4.2.2. The class Liveness2XPDL

The class Liveness2XPDE the APl anccontains the methods to generate a rradfent XPDL
model from some liveness formulas. The liveness formulas are added as ldmeepdol of the
multi-agent systenilhe class Liveness2XPDdontains the following methods

1 Package creatdRoles(List<String> roles String filenamg: The creatRoleg) is
responsible for creating the XPDL package of the nagant XPDL ad adding all the
generated poolw it. Therefore it calls multiple times the Live2xpdl.transform() method.
It returns the package.

4.3 GUI

4.31. The Liveness2XPDLApp class

This thesis offers a friendly user interface for opening an SRM model from an existing file, creating
a liveness formula, and transforming one or more roles to a single or sagriiti XPDL model.

The Liveness2XPDLApp extendd-rame and implements MouseListener and ActionListener.
Subsequently the procedure is presented:

Pz | N

|| Liveness2XPDL Transformation Application =NNCH X

File Transform Help

List of Roles
Role:ComplexProvider
Role:Broker
Role:PersonalAssistant
Role:MeetingsManager

L

Figure 19: The Liveness2XPDL Transformation Application

45

The Liveness2XPDL Transformation Application contains three menus imémei bar. The
menus provide the following functionalities:

1 File
o Open SRM
o Edit Gaia Formula
0 Delete Selected Role(s)
o Exit
1 Transform
o Single Role Transformation
0 Multiple Role Transformation

1 Help
o About

Open a SRM Model:

To open a SRM model from the existingefilhe user has to choose File then clijien SRM and
find the location of the SRM in the filgstem.

Edit a formula:

To edit or write a new formula the user has to choosetifdle clickEdit Formula and writéhe
formula in the message box.

Delete formulas

To delete one or mom®les that are presented in the list the user has to first select which roles to
delete by ctrl + click and then choose File then click Delete Selected Role(s) or by pressing the
delete button whil¢éhe specific roles are seledte

Transform a single role model

To transform a single role model the user has to chaas¢e from the list of roles then click
Transformthen click Single Role Transformation.

Transforming a multi role model

To transform a multi role model the user tkmshoose one or more roles from the list of rahen
click Transform then click Multiple Role Transformation

Help

If the user needs help the user nageddick Help then click About.

46

4.3.2. The Inter_role_messages_definition class

In some roles themmight be activities that need teendingof a message and perhaps there might
be activities in other roles to receive this messHgeich is the case new GUI will appear. This
GUI is described in the Inter_role_messages_definition class which sxi€&nameBelow an
example of this GUI is presented:

p
| £/ Inter-role Messages Definition
Agent:Activity possible receivers
PersonalAssistant:SendRequestMessage l v l ComplexProvider:ReceiveRequesthMessage

Broker:ReceiveRequestMessage

Welcome to the messager.

Here you can create the messages between the roles.
First choose a sending activity from the combo box.
Then choose one or more possible receiving activities.
Then click add message receiving activities.

add message receiving activities

save & exit

Figure 20: The Inter-role Messages Definition

In the left side of the window there is a combo box where all the sending activities are shown.

When the user chooses a sendingayg the possible receivers that will receive the same kind of
messagavill appear on the right list.

Then the user just needs to choose one or more possible reaedetckadd message receiving
activities

When the users finishes creating messagesave &exit there is a save to file dialog in order to
update theexistingpackage.

a7

CHAPTER 5
Results

For the display of the XPDL files the Together Workflow editor (v#).5vas used. The Together

Workflow Editor was developed Byogethe® Teansolutions Co., Ltd. in Thailand he Together

Workflow Editor can be downloaded lbyp://sourceforge.net/projects/jawe/files/jawefa/5In that link

there is also the manual oftte¢ | t o hel p decide i f the tool sa

5.1 Transforming a single Agent
For the completion of this thesis a lot of single liveness formulas where transformed into XPDL.
Some examples are presented below:

1 The Meetings Manager

Liveness fomula:
MeetingsManager = RequestNewMeeting~

RequestNewMeeting = ReceiveNewMessade@kleetingDate.SendNewResponse

SelectMeetingDat
e

Figure 21: The Meetins Manager XPDL representation

TR,
SendNewRespons]
e

end

=8 MeetingsManager
gMeetingsManager

The MeetingsManager contains only @etivity, the RequestNeMeeting. RequestNewMeeting

has a ~ operand which means that will be executed forever. RequestNewMeeting is then
substituted with what it semantically means. RequestNewMeeting is a sequential expression
between the activities ReceiveNewMessage which i@t by SelectMeetingDate and the
SendNewResponse after.

48

http://sourceforge.net/projects/jawe/files/jawe/4.5-1/

1 The Complex Provider
Liveness formula:

complex provider = |[requestforservicesSP~|n
requestforservicesSP = receiverequestmessage.processrequest.sendresponsemessage

processrequest = (decideroutetypguestforservicesSR.sort routes)|(decidePOI types.request
forservicesSR.decidePOls.request for services SR)

requestforservicesSR = sendrequestmessage.receiveresponsemessage

ReceiveRequestM DecidePOITypes SendRequestMes rReceiveResponsE DecidePOlIs (SendRequestMes
O__, essage x sage Message sage
start 4

;‘ Decision ——)

SendResponseMe| ;ZZ:!;EESDOHSE

ssage x

§ e,
SendRequestMes FleceiveResponse SortRoutes
sage Message

Figure 22 The Complex Provider XPDL representation

DecideRouteType

end

The Complex Provider runs the activity requestforservicesSP for ever.

The requestforservicesSP means to ReceiveRequestMessage then ProcessRequest and then
SendResponseMessage.

The ProcessRequest means to either (DecideRouteType then requestforsenticesSR
SortRoutes) or (DecidePOITypes then requestforservicesSR then DecidePOIS then
requestforservicesSR)

The requestforservicesSR means to SendRequestMessage then to ReceiveResponseMessage.

49

i The Broker
Liveness formula:
Broker =|RequestforServicesSpr
RequestforServicesSP=ReceiveRequestMessage.ProcessRequest.SendResponseMessage
ProcessRequest = ServiceMatch.[(InvokeDataManagement | RequestForServicesSR)]
RequestForServicesSR = SendRequestMessage.ReceivaRagessage

ServiceMatch
SendRequestMes
sage

ReceiveRequestM
o—F

start
SendResponseMe
ssage

end Decision2:[(InvokeDataManagement|RequestForServicesSR)]

Decision
Decision:[(InvokeDataMapagement|RequestForServicesSR)]

ReceiveResponse
Message

Decision2

Figure 23: The Broker XPDL representation

The Broker runs the activity RequestForServicesSP for ever.

The RequestForServicesSP means to ReceiveRequestMessage then ProcessRequest and then
SendResponseMessage

The ProcessRequest means first to ServiceMatch and thenalptiinvokeDataManagement or
RequestForServicesSR.

The RequestForServicesSR means to SendRequestMesdaferaReceiveResponseMessage.

i The Personal Assistant
Liveness formula:
PersonalAssistant = RequestForServicesSR
RequestForServicesSR = SendRequestddge.ReceiveResponseMessage

SendRequestMes ﬁeceiveResponse

O sage > Message .<)

start end

=8 PersonalAssistant
a9 PersonalAssistant

Q

Figure 24: The Personal Assistant XPDL representation

The Personal Assistant is simple. This role just SendRequestMessade then
ReceiveResponseMessage.

50

5.2 Creating Processes from MulAgents.

One of the greatest challenges that this thesis detedevercome was to create a XPDL that
contains many agents and to represent the communication between them. With the use of the
Liveness2XPDL Transformation Application and the Multiple Roles Transfoom choice the
multi-agent system between the Personal Assistant, the Broker and the Complex Provider of the
previous paragraph becomes a XRRL1 file ready to be imported to different BPMN tools.

The representation is displayed below. The associati@misare represented depict the message
flow between different activities of different roles and are created with therbleeMessages
Definition GUI.

SendRequestMes
age
- start
T
i3
2
-]
(f‘ ReceiveResgons:
Message
<5 Decision: __
Brecition:[(InvokeDataManagement | RequestF dPB&igite:
; Receiver
R DecideRout=Ty pl smethi fEasnge
o—1 —
start Defisior
e DecidePOIs
= Decide?0IType SeodfequestMe Receiv eRespons
ﬂ _fEg= Message
S ‘
2
a L
= 4
o
=
& i :
-] RequestM
i |3 S EEP—— f°:° -k
] B spage 5
end ;
i E Decision:
: 3 ‘ SortRoutes
H X ReceiveResgans
H \ Message
E SendRequestMe: RecaiveRespons
= O ==g= Meszage ,,————-—DO
a
< stait end
)
c
5
=
@
%
@
c
=
c
2
7
2
=
uw
cJ

Figure 25: An example of a multiagent system's XPDL representation

51

5.3 Imports in different tools

As the thesis progressed different tools were tested in order to verify the xpdl portability and how
different tools utilize theXPDL files. The Signavio BPM Academic Initiative and Adonis
Community edition v3.0 had the most encaimng results. Signavio anddénis have great
research valudecause they are free and also provide-ngardly simulatorsMost BPMN tools
trumpets that they encourage the transfer of models that were created in different tools, however
not all the infemation is trangrred and inconcistencies occur.

5.3.1 Importing xpdl files in Signavio

When importing thegenerated broker.xpdl to the Signavio BPM Academic Initiative directly
through the import of XPDL2.1 choice in the menu bar the redtdr the imprt XPDL was
disappointing. From the importezcognized the Pool, the Lanes and the Transitions. All the othe
elements were not recognizddhe XPDL 2.1 importer is malfunctioning and can be deducted that
is under development.

In order to get a better mpective an indirect method iofiport was adopted. First, thedker.xpdl
was online converted torBker.opmn.

After that the converted BPMN was imported to the Signavio BPM initiative and the result is given
below:

ReceiveRequ
estMessage

; <
\/Decis:on:[(InvokeD;ta'@é‘?ﬁa'sg%hfe.‘.:° o InvokeDataM FSR)]
l anagement

ServiceMatch

\

fr—
\

/
< /

(SerdRespon
seMessage

end N 4

SendRequest
Message

R ———

‘(ReceiveReso
onseMessage

Decision2:[(InvokeDataManav<DeoldRequestFol

Figure 26: Converted BPMN imported to Signavio

The conversion to BPMN stored more informatiato the XML that was understandable by
Signavio, however sne apparent problems exifdr example in the topf the figurethere is not
cleardistinguishing between the Hamnd the Lanes

52

5.3.2. Importing xpdl files to ADONIS Community Edition 3.0

When importing thegenerated broker.xpdl to the ADONIS Community Edition 3.0 directly
through the import atice of menu there is a prompt to convert the imported xpdl filento
ADONIS accepted format. The conversion takes place online. fRartthe user presses OK
webpage appears informing the user that the XPDL converter is under constrGotme.
ADONIS is a free toglmalfunctioning is easily tolerated by the usditse author believes that the
ADONIS online XPDL conversion will produce acceptable files.

So in order toget a better perspective the same indirect method was adopted. The same
broker.bpmn file wagmported into the ADONIS tool.

And when this XML ismported to ADONIS the result is:

(‘ » [ReceiveRequest] > [SoricoMen] » s | INvokeDataMana
Message \ gement

start I Decision:[(InvokeDataManagement|RequestForSeniDesBft
!

v

SendReguestMe

/ / ssage oAl
< SendResponse | (- ﬂ. ReceiveRespons
Message \ Y eMessage
end

Decision2:[(InvokeDataManagement|RequestForSemnvicesSR)] Decision2

Broker

Figure 27. Converted BPMN imported to ADONIS

The ADONIS has a sufficient XML conversion, which keeps the information intact and therefore
the resulting models are really close to the model beforedheersions. The mostpparent
problem of the ADONIS ishat it does not focus on the graphics infos of the Pools and the Lanes
which results in a mess when the BPMN is depicted on the palette.

The former exampleare results thatlustrate that if therewill be a formal and widely accepted
language in which all the information correctly is stored, then the different tools will have better
results when getting imports from files that were generatether ¢ools. This is the problem for
whichthe XPDL ties to offer a solutionAfter all, the same procedure is hidden. When a BPMN

is about to travebetween different tooJsan XML conversion occurs antden from the XML
conversion a new BPMN is created in order to get imported into a different tool.

53

5.4 Simulations
In this section, islemonstraté how simulation camid the system modeler and jgct manager
alike to make important decisions, mainly concerningfumctional requirements

Firstly, the liveness formulas of the ageate definedthat when they are combined they will be
elements of theystem that will be simulated

Role: PersonalAssistant

Liveness:PA = SendServiceRequest. ReceiveServiceResponse
Role: Broker

Liveness:Broker = ServicePAs || ServiceCP

ServicePAs = ReceiveServiceRequest. ProcessRequest.
(InvokeDataManagement | SendComplexServiceRequest.
ReceiveComplexServiceResponse). SendServamitse

ServiceCP = ReceiveSimpleServiceRequest. InvokeDataManagement.
SendSimpleServiceResponse

Role: ComplexProvider

Liveness CP = ReceiveComplexServiceRequest. DecideRouteType.
SendSimpleServiceRequest. ReceiveSimpleServiceResponse. SortRoutes
SendComfexServiceResponse

Figure 28: The Agent roles that will be elements of the simulation

The XPDL of the multagent system was imported in Signavio BRbademic in order to begin
the simulation.

54

ReceiveService
Response

SendServiceRe
quest

Persenal Assistant

hesssssssssamas
e EsrsssssEEEEEESEEEEESIEIEASSSEsEESSSEEEsEssEEAEEEEEEsEEEEEEEEEy

.
v
.
.
.

ke esfes

-

~

SendServiceRe
sponse

InvokeDataMa
nagement

ReceiveService

SendComplexs
Request

ProcessRequest erviceRequest

ReceiveComple
xServiceRespo
nse

ﬁ_/

Broker

' S

InvokeDataMa
nagement

ReceiveSimple

| SendSimpleSer
ServiceRequest

viceResponse

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
v
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
s

00—
H
A H
T +
H H
H H
H H
H L H
H - H
h o H
h o H
. . .
- . . H
s kv kv
g () .((((
£ ReceiveComple 0 1 ReceiveSimple
% ; DecideRouteTy SendSimpleSer - SendComplexS
%L xSerwc;Reque pe viceRequest Ser\ruc:&espcn SortRoutes erviceResponse
o
o

Figure 29: The multi-agent system of the simulation

55

In order for the reader to haverre specific view theettings are presentedtable form:

Table 4:The settings of the simulation

ActivityName Distribution Mean Standard | Performer
Deviation
SendServiceRequest Normal 0.024 0.063 PA
ReceiveServiceResponse Normal 0 0 PA
ReceiveServiceRequest Normal 0.002 0.002 BR
ProcessRequest Normal 0254 0.112 BR
InvokeDataManagement Normal 2.639 1.113 BR
SendComplexServiceRequest Normal 0.007 0.006 BR
ReceiveComplexServiceReque| Normal 0.024 0.063 BR
SendServiceResponse Normal 0.002 0.002 BR
ReceiveSimpleServiceReques, Normal 0.024 0.063 BR
InvokeDataManagement Normal 2.639 1.113 BR
SendSimpleServiceResponse Normal 0.007 0.006 BR
ReceiveComplexServiceRespor, Normal 0.024 0.063 CP
DecideRouteType Normal 0.127 0.056 CP
SendSimpleServiceRequest Normal 0.007 0.006 CP
ReceiveSimpleServiceRespony Normal 0.024 0.063 CP
SortRoutes Normal 0.127 0.056 CP
SendComplexServiceRespons| Normal 0.007 0.006 CP
Fixed Requests Every: 30, 20, 10, 5, 3, 2, 1, 0.5 seconds.
Gateway Probabilities: 50%60%
Number of Brokers: 1, 2, 3
Number of Complex Providers: 1, 2
The results fier thesimulation are presented below:
Table 5:Results of the simulation
Request| Number | Number | Complex Broker Average | Max Min
Every of of Provider | Utilization Cycle Cycle | Cycle
Brokers | Complex | Utilization Time Time Time
Providers
30 1 1 0.96% 15.87% 5.7 10.3 2
20 1 1 1.52% 21.33% 5.2 11.2 2.3
10 1 1 3.33% 44.64% 55 10.2 2.2
5 1 1 6.14% 84.54% 6.7 17.2 2.3
3 1 1 7.70% 99.49% 78 120 5.4
2 1 1 7.66% 99.54% 120 174 5.2
1 1 1 7.31% 99.53% 162 198 9.6

56

0.5 1 1 7.68% 99.53% 174 204 14.9
30 2 1 1.04% 7% 4 6.7 2

20 2 1 1.58% 10.70% 4.1 7.3 2

10 2 1 3.11% 21.53% 4 7.8 2

5 2 1 6.88% 42.54% 45 8.6 2.1
3 2 1 12.36% 64.08% 4.3 8.2 2

2 2 1 15.38% 97.15% 10.1 16.8 3

1 2 1 14.03% 98.20% 58.4 84 2.9
0.5 2 1 14.06% 98.93% 84 108 2.2
30 3 1 1.13% 5.66% 4.3 7.1 2.4
20 3 1 1.65% 6.96% 4.1 7.5 2

10 3 1 2.92% 13.14% 4 6.9 2.1
5 3 1 6.66% 29.29% 41 6.4 2.2
3 3 1 11.27% 50.77% 4.2 7.8 2.3
2 3 1 17.01% 68.95% 4.2 8.2 2

1 3 1 19.19% 96.07% 29.9 48.9 4.1
0.5 3 1 21.03% 97.31% 49 60 4.5
30 1 2 0.52% 14.81% 5.4 9 2.5
20 1 2 0.74% 22.46% 5.5 9 2.4
10 1 2 1.60% 42.01% 5.1 9 2.3
5 1 2 3.17% 78.10% 5.6 10.3 2.6
3 1 2 3.69% 98.07% 59 108 2.3
2 1 2 3.78% 99.54% 102 168 9.5
1 1 2 3.65% 99.53% 156 192 12.8
0.5 1 2 3.19% 99.57% 198 222 11.8
30 2 2 0.55% 7.69% 4.2 7.4 2.3
20 2 2 0.88% 10.21% 4.1 6.6 2.1
10 2 2 1.59% 23.28% 4.1 7.1 2.1
5 2 2 3.44% 38.93% 3.9 8.7 2.1
3 2 2 5.28% 67.26% 4.7 8.4 2

2 2 2 6.39% 97.74% 24.1 43.9 3.9
1 2 2 7.25% 98.71% 51 78 4.3
0.5 2 2 7.11% 98.51% 78 96 4.4
30 3 2 0.53% 5.02% 4.1 7 2.1
20 3 2 0.81% 7.08% 4.1 6.9 2

10 3 2 1.70% 15.55% 4.3 7.3 1.9
5 3 2 3% 31.49% 4.3 6.9 1.9
3 3 2 4.88% 51.39% 4.4 7.3 2.1
2 3 2 7.60% 66.31% 4.3 8.8 2

1 3 2 11.34% 97.10% 19.9 31.9 3.5
0.5 3 2 9.33% 96.01% 524 72 2.7

57

Initially, there were two reasons for simulating the ABKsystem. The first was that the ASK

IT service provieérs needed to know if the system can satisfy-fnoctional user requirements,

one of which was the delivery of the service within ten seconds. The frequency of service requests
was calculated to be one request per 30 seconds. The second was to fimwotlbhe system

scale whenservicedeand i ncreased for use in preparing

The Signavio tool allows simulating a process model involving several roles. For each simulation
scenario, it allows to define:

available resoues for each role (how many instances of this role are available)

the frequency in which a role can appear and start executing

the percentage of times that a XOR gateway selects one or the other execution path
activity duration (distribution type, meandastandard deviation values)

number of simulations for each scenario

= =4 4 -4

For the simulationseveral executions of function prototypesre usedo define the activitie
durations. Moreovetthe network latency in the message receiving actiwtias addedAll the
distributionsare normal, since it is the most commonly used distribution and there must be specific
circumstanceso use others. Thewljfferent scenariosvere definedy varying the frequency of

PAs appearing in the network and asking for sesjithe number of brokers serving the requests
and the number of complex provideffie experiments are pregexd in Figure 30It is validated

that the system with one broker and one complex provider can respond within 10ssacied

worst case when #éne isan incoming request every 30 seconds. Moreover, we can see what the
expected quality of service will be, as the requests frequency rises. As far as system scaling is
concerned we see that by adding more érakstances, the system penfance has better gain

than by adding complex providers. Finally, we can claim that with three broker instances the
system can offer the same quality of service (respond within ten seconds) even if we have a request
every two seconds.

58

t

Figure 30: Average and maximum response times

59

