
1

4ÅÃÈÎÉÃÁÌ 5ÎÉÖÅÒÓÉÔÙ ÏÆ #ÒÅÔÅȟ 'ÒÅÅÃÅ
3ÃÈÏÏÌ ÏÆ %ÌÅÃÔÒÏÎÉÃ ÁÎÄ #ÏÍÐÕÔÅÒ

%ÎÇÉÎÅÅÒÉÎÇ

4ÒÁÎÓÆÏÒÍÉÎÇ !3%-% 2ÏÌÅÓ -ÏÄÅÌÓ ÔÏ
0ÒÏÃÅÓÓ -ÏÄÅÌÓ

Diploma ɇhesis

Nektarios D. Mitakidis

Supervisor: Assistant Professor Georgios Chalkiadakis

Jury:

Assistant Professor Georgios Chalkiadakis, School of ECE, TUC

Associate Professor Michail G. Lagoudakis, School of ECE, TUC

Dr. Nikolaos Spanoudakis, Laboratory Teaching assistant School of PEM, TUC

Chania, October 2014

2

ɩʋʇʑʐʀʔʉʀʅ˄ʋ ɣʍʂ˄ʐʂʏ
ɫʔʋʇʂ˄ ɠʇʀʆʐʍÏʉʅʆʖ˄ ʉ ɥʂʔɻʉʅʆʖ˄ ʉ ʆɻʅ

ɥʂʔɻʉʅʆʖ˄ ʉ ɭʌʋʇʋɾʅʎʐʖ˄ ʉ

ɥʀʐɻʎʔʂʈɻʐʅ˄ʁʋʉʐɻʏ ɥʋʉʐʀ˄ʇɻ ɪʋ˄ʇʖʉ
ʐʂʏ ɥʀʃʋɿʋʇʋɾʅ˄ɻʏ !3%-% ʎʀ ɥʋʉʐʀ˄ʇɻ

ɝʅɻɿʅʆɻʎʅʖ˄ ʉ

ȹɘˊɚɤɛŬŰɘəɐ ȺɟɔŬůɑŬ

ɁŮəŰɎɟɘɞɠ ȹ. ɀɖŰŬəɑŭɖɠ

ɈˊŮɨɗɡɜɞɠ ŭɘˊɚɤɛŬŰɘəɐɠ: Ⱥˊɑəɞɡɟɞɠ ȾŬɗɖɔɖŰɐɠ ũŮɩɟɔɘɞɠ

ɉŬɚəɘŬŭɎəɖɠ

ȺˊɘŰɟɞˊɐ:

Ⱥˊɑəɞɡɟɞɠ ȾŬɗɖɔɖŰɐɠ ũŮɩɟɔɘɞɠ ɉŬɚəɘŬŭɎəɖɠ, Ɇɢɞɚɐ ȼ.ɀ.ɀ.Ɉ., Ʉ.Ⱦ.

ȷɜŬˊɚɖɟɤŰɐɠ ȾŬɗɖɔɖŰɐɠ ɀɘɢŬɐɚ ũ. ȿŬɔɞɡŭɎəɖɠ, Ɇɢɞɚɐ ȼ.ɀ.ɀ.Ɉ., Ʉ.Ⱦ.

ȹɟ. ɁɘəɧɚŬɞɠ ɆˊŬɜɞɡŭɎəɖɠ, Ⱥ.ȹȽ.Ʉ., Ɇɢɞɚɐ ɀ.Ʉ.ȹ., Ʉ.Ⱦ.

ɉŬɜɘɎ, ɃəŰɩɓɟɘɞɠ 2014

3

ACKNOWLEDGMENTS

I would like to express my gratitude to both my supervisors, Professor Georgios Chalkiadakis and

Dr. Nikos Spanoudakis firstly for accepting me into their research field of autonomous agents and

secondly for their guidance. They were not only tutors and supervisors but also friends. Without

their help this thesis would not be completed.

I would like to thank Professor Michail Lagoudakis for accepting to be at the jury committee and

for teaching me as an undergraduate student the basics of languages and a lot on the theory of

computation.

I want to thank everyone in the Technical University of Crete, professors, staff and fellow students,

who despite the national economic crisis and the little recognition they keep working, in order to

offer high quality of studies and great achievements in the research. I hope for a brighter future for

the university and Greece.

Special thanks to my family, for their patience and their endless love.

I would like to dedicate this thesis to my friends. They are the way to happiness and the best

psychological support one can have after the endless lonely hours of studying and working at the

office and in the house. Friends gave me all the power and the courage to carry on.

4

To My Friends

5

ABSTRACT

In this thesis we present how an engineer can transform a Gaia or ASEME role to a process model,

compliant with the XML Process Definition Language (XPDL) portable standard. XPDL is a

format standardized by the Workflow Management Coalition (WfMC) to interchange business

process definitions between different workflow products. XPDL is currently the best file format

for exchanging BPMN diagrams, because it has been designed specifically to store all aspects of

a BPMN diagram.

An ASEME model is the Systems-Role Model (SRM). The thesis offers a transformation of the

Systems-Role Model (SRM) to the XML Process Definition Language (XPDL), which is the XML

of the Business Process Modeling Notation (BPMN). The transformation is achieved through Java

source code. A tool is developed for aiding the modeler in the transformation process. The tool

uses a recursive algorithm for automating the transformation process and guides the user to

integrate two or more agent roles in a process model. The tool usage is demonstrated through a

running example. Moreover, simulations of the transformed roles in an open source process

management tool are offered in order to display the effectiveness and usage of the derived process

model. The work fully demonstrates the transformation, the risks and the future of this effort.

6

ɩɞɪɢɤɠɰɠ

ɆŰɖ ůɡɔɔŮəɟɘɛɏɜɖ ŭɘˊɚɤɛŬŰɘəɐ ˊŬɟɞɡůɘɎɕŮŰŬɘ ɞ Űɟɧˊɞɠ ɛŮ Űɞɜ ɞˊɞɑɞ əɎˊɞɘɞɠ ɛɖɢŬɜɘəɧɠ ɛˊɞɟŮɑ

ɜŬ ɛŮŰŬůɢɖɛŬŰɑůŮɘ ɏɜŬɜ Gaia ɐ ASEME ɟɧɚɞ ůŮ ɏɜŬ ɛɞɜŰɏɚɞ ŭɘŬŭɘəŬůɘɩɜ, Űɞ ɞˊɞɑɞ ŮɑɜŬɘ

ůɡɛɓŬŰɧ ɛŮ Űɖɜ XML ɔɚɩůůŬ ɞɟɘůɛɞɨ ŭɘŬŭɘəŬůɘɩɜ (XPDL) ˊɞɡ ŮɑɜŬɘ əŬɘ űɞɟɖŰɧ ˊɟɧŰɡˊɞ. H

XPDL ŮɑɜŬɘ ɛɞɟűɐ ˊɞɡ ɏɢŮɘ ŰɡˊɞˊɞɘɖɗŮɑ Ŭˊɧ Űɖ Workflow Management Coalition (WfMC) ɔɘŬ

Űɖɜ ŬɜŰŬɚɚŬɔɐ ɞɟɘůɛɩɜ ŮˊɘɢŮɘɟɖɛŬŰɘəɩɜ ŭɘŬŭɘəŬůɘɩɜ ɛŮŰŬɝɨ ŭɘŬűɞɟŮŰɘəɩɜ ɟɞɥəɩɜ ˊɟɞɥɧɜŰɤɜ.

ȼ XPDL ŮɑɜŬɘ ŬɡŰɐ Űɖ ůŰɘɔɛɐ ɖ əŬɚɨŰŮɟɖ ɛɞɟűɐ ŬɟɢŮɑɤɜ ɔɘŬ Űɖɜ ŬɜŰŬɚɚŬɔɐ BPMN

ŭɘŬɔɟŬɛɛɎŰɤɜ, ŮˊŮɘŭɐ ɏɢŮɘ ůɢŮŭɘŬůŰŮɑ ůɡɔɔŮəɟɘɛɏɜŬ ɔɘŬ ɜŬ ŬˊɞɗɖəŮɨŮɘ ɧɚŬ ŰŬ ůŰɞɘɢŮɑŬ Ůɜɧɠ

BPMN ŭɘŬɔɟɎɛɛŬŰɞɠ.

ȰɜŬ ɛɞɜŰɏɚɞ ASEME ŮɑɜŬɘ əŬɘ Űɞ ɀɞɜŰɏɚɞ Ʌɧɚɤɜ ɆɡůŰɐɛŬŰɞɠ ɀɅɆ. ȼ ŭɘˊɚɤɛŬŰɘəɐ ŮɟɔŬůɑŬ

ˊɟɞůűɏɟŮɘ ɏɜŬɜ ɛŮŰŬůɢɖɛŬŰɘůɛɧ Ŭˊɧ Űɞ ɀɅɆ ůŰɖɜ XPDL, ɖ ɞˊɞɑŬ ŮɑɜŬɘ ɖ XML Űɖɠ

ɆɖɛŮɘɞɔɟŬűɑŬɠ ɔɘŬ Űɖ ɀɞɜŰŮɚɞˊɞɑɖůɖ ȺˊɘɢŮɘɟɖɛŬŰɘəɩɜ ȹɘŬŭɘəŬůɘɩɜ. Ƀ ɛŮŰŬůɢɖɛŬŰɘůɛɧɠ

ŮˊɘŰɡɔɢɎɜŮŰŬɘ ɛɏůɤ ˊɖɔŬɑɞɡ əɩŭɘəŬ Java. ȰɜŬ ŮɟɔŬɚŮɑɞ ŬɜŬˊŰɨůůŮŰŬɘ Űɞ ɞˊɞɑɞ ɓɞɖɗɎŮɘ Űɞɜ

ɢɟɐůŰɖ ˊɞɡ ɛɞɜŰŮɚɞˊɞɘŮɑ ůŰɖ ŭɘŬŭɘəŬůɑŬ ɛŮŰŬůɢɖɛŬŰɘůɛɞɨ. ɇɞ ŮɟɔŬɚŮɑɞ ɢɟɖůɘɛɞˊɞɘŮɑ ɏɜŬɜ

ŬɜŬŭɟɞɛɘəɧ Ŭɚɔɧɟɘɗɛɞ ɔɘŬ Űɖɜ ŬɡŰɞɛŬŰɞˊɞɑɖůɖ Űɖɠ ŭɘŬŭɘəŬůɑŬɠ ɛŮŰŬůɢɖɛŬŰɘůɛɞɨ əŬɘ əŬɗɞŭɖɔŮɑ

Űɞ ɢɟɐůŰɖ ɔɘŬ ɜŬ ŮɜɩůŮɘ ŭɨɞ ɐ ˊŮɟɘůůɧŰŮɟɞɡɠ ɟɧɚɞɡɠ ˊɟŬəŰɧɟɤɜ. ȼ ɢɟɐůɖ Űɞɡ ŮɟɔŬɚŮɑɞɡ

ˊŬɟɞɡůɘɎɕŮŰŬɘ ɛɏůɤ Ůɜɧɠ ˊŬɟŬŭŮɑɔɛŬŰɞɠ ˊɞɡ ŮəŰŮɚŮɑŰŬɘ. Ⱥˊɘˊɚɏɞɜ, ˊɟɞůɞɛɞɘɩůŮɘɠ Űɤɜ

ɛŮŰŬůɢɖɛŬŰɘůɛɏɜɤɜ ɟɧɚɤɜ ůŮ ŬɜɞɘɢŰɞɨ ɚɞɔɘůɛɘəɞɨ ŮɟɔŬɚŮɑɞ ˊɟɞůűɏɟɞɜŰŬɘ ɔɘŬ ɜŬ ŬˊɞŭŮɘɢɗŮɑ ɖ

ŬˊɞŰŮɚŮůɛŬŰɘəɧŰɖŰŬ əŬɘ ɖ ɢɟɐůɖ Űɞɡ ˊŬɟŬɔɧɛŮɜɞɡ ɛɞɜŰɏɚɞɡ ŭɘŬŭɘəŬůɘɩɜ. ȼ ŭɘˊɚɤɛŬŰɘəɐ

ŮɟɔŬůɑŬ ˊɚɐɟɤɠ ˊŬɟɞɡůɘɎɕŮɘ Űɞ ɛŮŰŬůɢɖɛŬŰɘůɛɧ, Űɞɡɠ əɘɜŭɨɜɞɡɠ əŬɘ Űɞ ɛɏɚɚɞɜ Űɖɠ ˊɟɞůˊɎɗŮɘŬɠ.

7

TABLE OF CONTENTS
ACKNOWLEDGMENTS .. 3

ABSTRACT .. 5

ɄȺɅȽȿȼɊȼ .. 6

TABLE OF CONTENTS .. 7

TABLE OF FIGURES .. 9

TABLE OF TABLES ... 9

Chapter 1 Introduction .. 10

1.1 Thesis Goals .. 11

1.2 Thesis Progression .. 13

1.3 Document Outline ... 13

Chapter 2 Background .. 15

2.1 Model Driven Engineering ... 15

2.2 EMF-API... 16

2.3 ASEME ... 16

2.4 SRM2BPMN ... 18

2.4.1. The Systems Role Model (SRM) .. 18

2.4.2. Business Process Modeling Notation (BPMN)... 19

2.4.3. Transforming the SRM to the BPMN ... 26

2.5 The XPDL meta-model ... 27

2.6 Process Simulation Tools .. 29

Chapter 3 Problem Statement ... 30

3.1 Problems in Simulations ... 31

Chapter 4 Our Approach ... 33

4.1. The General Design Picture ... 33

4.1.1. The Grammar of the SRM .. 33

4.1.2. The templates of SRM2XPDL .. 36

4.1.3. Class Diagram of the SRM2XPDL Transformation. .. 36

4.1.4. The recursive algorithm for creating pools. .. 38

4.1.5. Class diagram of org.enhydra ... 42

4.2 Implementation API .. 44

8

4.2.1 The class Live2xpdl ... 44

4.2.2. The class Liveness2XPDL .. 45

4.3 GUI ... 45

4.3.1. The Liveness2XPDLApp class ... 45

4.3.2. The Inter_role_messages_definition class .. 47

CHAPTER 5 Results.. 48

5.1 Transforming a single Agent .. 48

5.2 Creating Processes from Multi-Agents. .. 51

5.3 Imports in different tools .. 52

5.3.1 Importing xpdl files in Signavio .. 52

5.3.2. Importing xpdl files to ADONIS Community Edition 3.0 ... 53

5.4 Simulations ... 54

Chapter 6 Conclusion .. 60

6.1 Discussion ... 60

6.1.1. Limitations .. 61

6.2 Future Work .. 62

6.3 Lessons Learned.. 63

Annex 1. .. 64

References ... 64

APPENDIX ... 66

Appendix A Java source code ... 66

The class Live2xpdl .. 66

The class Liveness2XPDL .. 99

The class Liveness2XPDLApp ... 103

The class Inter_role_messages_definition .. 111

Appendix B XPDL files .. 118

The personal assistant ... 118

The broker ... 121

The complex provider ... 129

The Multi-Agent Personal Assistant, Broker, Complex Provider with associations 138

9

TABLE OF FIGURES
Figure 1:ASEME Process Tree from Analysis to Implementation .. 12

Figure 2: The ASEME MDE Process for Agent Development [1] ... 17

Figure 3: The ASEME Systems-Roles Model(SRM) metamodel ... 18

Figure 4: BPMN Events.. 20

Figure 5: BPMN Activities ... 20

Figure 6: BPMN Gateways .. 21

Figure 7: BPMN Connections .. 21

Figure 8: A BPMN Pool with a BPMN Lane inside ... 24

Figure 9: BPMN Data Object .. 24

Figure 10: A BPMN Group .. 24

Figure 11: A BPMN Annotation .. 25

Figure 12: Templates of extended Gaia operators (Op.) for BPMN model generation [4] .. 26

Figure 13: The thesis XPDL Meta-Model ... 28

Figure 14: Examples of roles generated by SRM grammar ... 35

Figure 15: Templates of extended Gaia operators (Op.) for XPDL generation.................... 36

Figure 16: The contents of Package aseme.transformations.xpdl .. 36

Figure 17: The Class diagram for the SRM2XPDL transformation. 37

Figure 18: The recursive algorithm... 41

Figure 19: The Liveness2XPDL Transformation Application ... 45

Figure 20: The Inter-role Messages Definition .. 47

Figure 21: The Meetins Manager XPDL representation .. 48

Figure 22: The Complex Provider XPDL representation ... 49

Figure 23: The Broker XPDL representation .. 50

Figure 24: The Personal Assistant XPDL representation ... 50

Figure 25: An example of a multiagent system's XPDL representation 51

Figure 26: Converted BPMN imported to Signavio .. 52

Figure 27: Converted BPMN imported to ADONIS ... 53

Figure 28: The Agent roles that will be elements of the simulation 54

Figure 29: The multi-agent system of the simulation .. 55

Figure 30: Average and maximum response times .. 59

TABLE OF TABLES
Table 1:List of BPMN tools that offer the simulation feature .. 29

Table 2:List of tested tools ... 31

Table 3:The liveness formula of the SRM in EBNF Format .. 34

Table 4:The settings of the simulation .. 56

Table 5:Results of the simulation .. 56

file:///C:/Users/nek/Desktop/diplomathesistext.docx%23_Toc402298523

10

Chapter 1

Introduction

From the beginning of history humans envisioned different things in order to create machines that

are able to think rationally and help them in their everyday life. These dreams led later the

humanity to start thinking about robots and artificial intelligence. Although there is a gap between

the artificial intelligence and the way the Homo sapiens thinks, great scientific research efforts

were made in order to achieve better technology. The computerized era is a reality and this thesis

hopes for a small stone on the great wall to be added.

The artificial intelligence programs that are trained to take decisions in order to complete a task

are called agents. Agents can be simple, as far as their source code is concerned, but they can also

be complex and difficult to the understanding even to the most experienced. Additionally, agents

are supposed to interact with other agents. Interactions, such as the cooperation or the antagonism

or even the control of other agents are something common and usual and therefore multi-agent

systems have become a reality.

However, multi-agent systems can become really complicated as the number of agents increases.

The answer to this problem is the modular design approach. With model driven engineering a

simpler, easier and sometimes even more comprehensive approach to software development is

provided. In order to achieve model driven software engineering the need of model transformations

during the different development phases is of utmost importance.

One model driven engineering methodology is ASEME ([1], [2]). ASEME is an Agent-Oriented

Software Engineering (AOSE) methodology for developing multi-agent systems. It uses the Agent

Modeling Language (AMOLA, [3]), which provides the syntax and semantics for creating models

of multiïagent systems covering the analysis and design phases of a software development

process. In this thesis, on one hand there is the transformation process of the AMOLA analysis

phase Systems-Roles Model (SRM), on the other hand there is the XML Process Definition

Language (XPDL). With the transformation the thesis aims to bring agent technology close to the

world of business modeling. It bridges the gap between software engineers and the business world

by allowing a Multi-Agent System (MAS) analysis model to be represented as a business process

model. Thus, on one hand, the software engineer can employ available tools to validate specific

11

properties of the modeled system even before its final implementation, and, on the other hand, a

business collaborator can understand the system being modeled. A first approach has been made

on the paper of Nikolaos Spanoudakis and Pavlos Delias, [4]: ñSimulating Multi-agent System

Designs Using Business Process Modelingò. However, their approach of transforming the SRM to

the BPMN met the obstacle of differences in the BPM Notations of different widely used and

known BPMN tools. The only thing the tools had in common was the XPDL standard and not

always was this the case. In order to help the transportation of the transformed SRM models

between the different BPMN tools it was decided that the SRM should be transformed into XPDL.

Following there are the thesis goals, the progression of the thesis and an outline of the document.

1.1 Thesis Goals
The major goal of this thesis is to present all the work completed in order to have a transformed

SRM compliant to the XPDL standard. The higher goal, is that agent software developers use this

thesis work, in order to immediately have the XPDL of their Multi-agent system. Software

developers need only the substance of the transformation, which is how can someone from a SRM

file will get the XPDL representation. The development of a transformation tool that will guide in

simple steps is of utmost importance.

 Rana and Stout [5] highlighted the importance of combining performance engineering with agent

oriented design methodologies in order to develop large agent based applications. To derive

process performance measures, we need a quantitative process analysis technique. Process

simulation appears to be a prominent technique that allows us to derive such measures (e.g. cycle

time) given data about the activities (e.g. processing times) and data about the resources involved

in the process. Process simulation is a versatile technique supported by a range of process modeling

and analysis tools [6]. However, to run a process simulation, the engineer needs a process model.

And this is where the thesis comes to the spotlight. XPDL is a process model suitable for these

simulations.

Last but not least this thesis, tries to project the importance of the ASEME methodology, as it was

not only the foundation of this thesis but also to other model transformations as well ([1], [2]).

ASEME is efficient for validating and simulating MAS designs, for example with the use of the

Rhapsody tool [7], the MARKET-MINER agent, which is a real world system has been

successfully implemented [8].

12

Figure 1:ASEME Process Tree from Analysis to Implementation

ASEME applies a model driven engineering approach to multi-agent systems development. It is

compatible with the Model Driven Architecture (MDA) paradigm [9]. MDAôs strong point is that

it strives for portability, interoperability and reusability, three non-functional requirements that are

deemed important for modern systems design. MDA defines three models:

¶ A computation independent model (CIM) is a view of a system that does not show details

of the structure of the systems. It uses a vocabulary that is familiar to the practitioners of

the domain in question as it is used for system specification.

¶ A platform independent model (PIM) is a view of a system that on one hand provides

specific technical specification of the system, and on the other hand exhibits a specified

degree of platform independence so as to be suitable for use with a number of different

platforms. The system is described in platform independent format at the end of the design

phase.

¶ A platform specific model (PSM) is a view of a system combining the specifications in the

PIM with the details that specify how that system uses a particular type of platform.

Figure 1 presents how the MDA phases apply to ASEME. The ASEME Platform Independent

Model (PIM), which is the output of the design phase, is a statechart that can be instantiated in a

number of platforms using Process Management and Simulation tools and to an agent platform,

the Java Agent Development Framework (JADE), or the C++ Monas Software Framework.

13

ASEME defines three levels of abstraction for each phase. The societal level, where the whole

multi-agent system functionality is modeled. The agent level zooms in each part of the society.

Finally, the details that compose each of the agentsô parts are defined in the capability level.

1.2 Thesis Progression
This thesis starts at the end of the work of Nikolaos Spanoudakis and Pavlos Delias on the

transformation of the Systems-Role Model to the Business Process Model Notation, [4]. The first

attempt of this thesis was to transform the SRM to the BPMN 2.0. However, different BPMN 2.0

tools used different notations. It was important that the transformed models had to become portable

between different tools. The only way to succeed in an acceptable transportation was through the

XPDL.

And the route of the thesis changed. It now provides a complete XPDL schema from a simple

liveness formula. Java was decided to be the programming language as there were open-source

packages already available for the use of the different XPDL elements. The XPDL model is created

through a recursion. The source code is compact and new aspects have been added such as the

messaging interface.

Meanwhile, there was a necessity to find an open-source BPMN ï XPDL tool that can provide an

adequate simulator for the generated XPDL model. A critic is available on all the tested tools. The

Signavio BPM Academic Initiative was used in order to simulate the generated XPDL model. The

results of the simulation are quite interesting and are displayed for the reader to evaluate.

1.3 Document Outline
This thesis main contribution is the complete transformation of a liveness formula to a XPDL

model. Also an effort is made to present the significant difficulties and also to project the complete

methodology that led to the thesis completion.

In Chapter 2 the background that acts as a basis is set. It all starts with Model Driven Engineering,

as it is expected, since the thesis tries to transform a model to another model. Then the definition

of an API and a brief explanation of the Eclipse Modeling Framework are given. Then ASEME is

presented and briefly described. The Systems Role Model (SRM), which is a basic milestone in

the ASEME methodology, is later analytically outlined. On one hand there is the SRM and on the

other there is the XML Process Definition Language, which is the XML Definition of the Business

Process Modeling Notation. A complete listing and description of the BPMN elements is

contained. XPDL needs the graphics of the BPMN in order to be represented. The previous work

of the transformation of the SRM to the BPMN is put after the SRM and BPMN descriptions. Then

the XPDL meta-model is presented. Chapter 2 ends with a listing of all the tools that offer the

simulation option to the user, since simulations in process analysis are important and project the

importance of the process development.

14

In Chapter 3 the XPDL importance is provided. XPDL is the basic format for interchanging

information between different BPMN implementations of various tools. A review of different

BPMN tools that the author tested is available.

Chapter 4 is the heart of the thesis. In the General Design Picture paragraph the complete design

effort is portrayed. First, the SRM liveness formula grammar, in order to make clear the basic rules

for the transformation. Second, the templates of the SRM to the XPDL transformation in order for

the reader to distinguish how the specific part of the SRM is translated to the XPDL. The class

diagram of the transformation effort explains how the different elements depend on each other and

which class is responsible for which assignment. The recursive algorithm is available for a better

comprehension of the effort. The importance of the package org.enhydra in this thesis is great and

therefore a paragraph is offered to display which elements were necessary. After the design, the

implementation of the transformation through Java Source code is offered. The basic element is

the class Live2xpdl, which contains the methods for matching the SRM elements to their XPDL

representations. If there is the need for a multi-agent system where the different roles have different

responsibilities, then the Liveness2XPDL class comes into the spotlight which contains the

methods for creating multi-agent XPDL. After, the classes Liveness2XPDLApp and the

Inter_role_messages_definition are specified, which are graphical user interface classes that guide

a user through all the procedure of the transformation. With Liveness2XPDLApp the user can

create single or multi-agent systems from a liveness formula and with the

Inter_role_messages_definition the user can create messages between the different roles.

Chapter 5 presents different examples of single and multi-agent XPDL files created as a result of

the SRM2XPDL transformation. The efforts in importing this thesis created files are also

presented. A simulation example is also available to project the importance of the work.

In Chapter 6 there is the conclusion of the thesis, the limitations, along with ideas for future

research, a general evaluation of the diploma thesis and the contribution description of the thesis.

15

Chapter 2

Background

2.1 Model Driven Engineering
The Model Driven Engineering (MDE)[10] is a software development methodology, which

becomes widely accepted in the software development field. Models are graphical representations

of information that help the software developers program according to their design approach rather

than the single dimensional source code programming.

Also, MDE focuses on creating and exploiting domain models, which are abstract representations

of the knowledge and activities that govern a particular application domain, rather than on the

computing (i.e. algorithmic) concepts. With MDE productivity is increased, because the

compatibility between systems is maximized through the reuse of standardized models. Also the

process of design becomes simpler because models of recurring design patterns are used. The

communication between individuals and teams working on a system is more efficient, because of

the standards of the terminology and also best practices are used in the application domain. A

modeling paradigm for MDE is considered effective if its models make sense from the point of

view of a user that is familiar with the domain and if they can serve as a basis for implementing

systems. The models are developed through extensive communication among product managers,

designers, developers and users of the application domain. As the models approach completion,

they enable the development of software and systems.

Some of the better known initiatives are:

¶ The Object Management Group (OMG) initiative model-driven architecture (MDA),

which is a registered trademark of OMG.(http://www.omg.org/)

¶ The Eclipse ecosystem of programming and modeling tools (Eclipse Modeling

Framework).(http://www.eclipse.org/modeling/emf/)

http://www.omg.org/
http://www.eclipse.org/modeling/emf/

16

2.2 EMF-API
An Application Programming Interface (API) is a programming language that allows two different

applications to communicate with each other. With API features are enhanced and functionality is

added either to one or to both applications. Its main purpose is to define a set of functionalities that

are independent of their respective implementation, allowing both definition and implementation

to vary without compromising each other. In most object-oriented languages, an object API is a

prescription of how objects work in a language. In this thesis, the object-oriented language that

will be used is JAVA. When related to a software framework, a framework can be based on several

libraries implementing several APIs.

Eclipse Modeling Framework (EMF) is an Eclipse-based modeling framework and code

generation facility for building tools and other applications based on a structured data model. From

a model specification described in XMI 1, EMF provides tools and runtime support to produce a

set of Java classes for the model, a set of adapter classes that enable viewing and command-based

editing of the model, and a basic editor. Models can be specified using

annotated Java2, UML 3, XML 4 documents, or modeling tools, then imported into EMF. Most

important of all, EMF provides the foundation for interoperability with other EMF-based tools and

applications.

2.3 ASEME
According to [1], ASEME is an Agent-Oriented Software Engineering (AOSE) methodology for

developing multi-agent systems. It applies a model driven engineering approach to multi-agent

systems development, thus the models of the previous phase are transformed to models of the next

phase. Different models are created for each development phase and the transition of one phase to

another is assisted by automatic model transformation including model to model (M2M), text to

model (T2M), and model to text (M2T) transformations leading from requirements to software

development. In Figure 2 the whole ASEME MDE Process for Agent Development is described.

In the beginning there is the System Actor Goal Model (SAGModel), which is an XMI model.

Through the SAG2SUC transformation the System Use Case Model (SUC) is created. The

developer can refine the SUCModel and then insert it in the SUC2SRM transformation, in order

to get the SRMModelInitial. The System-Role Model (SRM) can be edited and then inserted to

the SRM2IAC transformation in order to get the Intra-Agent Control (IAC) model that can be used

1 The XML Metadata Interchange(XMI) is an Object Management Group (OMG) http://www.omg.org/ standard for

exchanging metadata information via Extensible Markup Language (XML).
2 Java is an object-oriented programming language
3 UML is a modeling language in software engineering, which provides a standardized way of visualizing a design of

a system.
4 XML is a markup language that defines a set of rules for encoding documents in a format that is both readable by

humans or machines.

http://www.omg.org/

17

to the IAC2JADE transformation in order to get the final .java file that describes the behavior of

the agent.

Figure 2: The ASEME MDE Process for Agent Development [1]

18

2.4 SRM2BPMN

2.4.1. The Systems Role Model (SRM)

The SRM is a model of AMOLA, [3]. In Figure 3, the metamodel of SRM is presented. An agent

role aggregates capabilities and activities. Capabilities also aggregate activities. The liveness

model has a formula at the first line (root formula) where activities or capabilities can be added.

A capability must be decomposed to activities in a following formula.

Figure 3: The ASEME Systems-Roles Model(SRM) metamodel

In the SRM, the Gaia operators are used ([1], [11]) for creating liveness formulas that define the

dynamic aspect of the agent system. The Gaia operators are:

¶ A.B: means that activity B is executed after activity A,

¶ A~: means that activity A is executed forever,

¶ A|B: means that either activity A or activity B is executed,

¶ A||B: means that activity A is executed in parallel with activity B,

¶ A+: means that activity A is executed one or more times,

¶ A*: means that activity A is executed zero or more times,

¶ [A] : means that activity A is optionally executed,

¶ |A~|n: means that activity A is executed forever n times parallel with A.

The liveness formula grammar is defined using the Extended BackusïNaur Form (EBNF), which

is a metasyntax notation used to express context-free grammars EBNF was originally developed

by Niklaus Wirth (1996). The EBNF syntax for the liveness formula is presented in Listing 2.1.

With bold the gaia operators used are presented:

19

Listing 2.1: The liveness formula grammar

2.4.2. Business Process Modeling Notation (BPMN)

Business Process Model and Notation (BPMN) is a standard for business process modeling that

provides a graphical notation for specifying business processes in a Business Process Diagram

(BPD), based on a flowcharting technique very similar to activity diagrams from Unified Modeling

Language (UML)5. The objective of BPMN is to support business process management, for both

technical users and business users, by providing a notation that is intuitive to business users, yet

able to represent complex process semantics. The BPMN specification also provides a mapping

between the graphics of the notation and the underlying constructs of execution languages.

The primary goal of BPMN is to provide a standard notation readily understandable by all business

stakeholders. These include the business analysts who create and refine the processes, the technical

developers responsible for implementing them, and the business managers who monitor and

manage them. Consequently, BPMN serves as a common language, bridging the communication

gap that frequently occurs between business process design and implementation.

BPMN is constrained to support only the concepts of modeling applicable to business processes.

In addition, while BPMN shows the flow of data, and the association of data artifacts to activities,

it is not a data flow diagram.

This thesis, uses the elements of the BPMN to demonstrate the graphic representation of XPDL.

5 The Unified Modeling Language (UML) is a general-purpose modeling language in the field of software engineering,

which is designed to provide a standard way to visualize the design of a system.

It was created and developed by Grady Booch, Ivar Jacobson and James Rumbaugh at Rational Software during 1994ï

95 with further development led by them through 1996.

In 1997 it was adopted as a standard by the Object Management Group (OMG), and has been managed by this

organization ever since. In 2000 the Unified Modeling Language was also accepted by the International Organization

for Standardization (ISO) as an approved ISO standard. Since then it has been periodically revised to cover the latest

revision of UML.

liveness Ÿ {formula}

formula Ÿ leftHandSide = expression

leftHandSide Ÿ string

expression Ÿ term | parallelExpr | orExpr | sequentialExpr

parallelExpr Ÿ term || term { || term }

orExpr Ÿ term | term { | term }

sequentialExpr Ÿ term . term { . term}

term Ÿ basicTerm | (expression) | [expression] | term * | term + | term ~

basicTerm Ÿ string

20

ELEMENTS OF BPMN

BPMN models consist of simple diagrams constructed from a limited set of graphical elements.

For both business users and developers, they simplify understanding business activitiesô flow and

process.

BPMN's four basic element categories are:

¶ Flow objects

o events

o activities

o gateways

¶ Connecting objects

o sequence flow

o message flow

o association

¶ Swim lanes

o pool

o lane

¶ Artifacts

o data object

o group

o annotation

These four categories enable creation of simple business process diagrams (BPDs). BPDs also

permit making new types of flow object or artifact, to make the diagram more understandable.

Figure 4: BPMN Events

Figure 5: BPMN Activities

21

Figure 6: BPMN Gateways

Figure 7: BPMN Connections

Flow objects are the main describing elements within BPMN, and consist of three core elements:

events, activities, and gateways. In Figure 4 the BPMN Events are displayed.

Event

An Event is represented with a circle and denotes something that happens (compared with an

activity, which is something that is done). Icons within the circle denote the type of event (e.g., an

envelope representing a message, or a clock representing time). Events are also classified

as Catching (for example, if catching an incoming message starts a process) or Throwing (such

as throwing a completion message when a process ends).

Start event

Acts as a process trigger; indicated by a single narrow border, and can only be Catch, so is shown

with an open (outline) icon.

Intermediate event

22

Represents something that happens between the start and end events; is indicated by a double

border, and can Throw or Catch (using solid or open icons as appropriate). For example, a task

could flow to an event that throws a message across to another pool, where a subsequent event

waits to catch the response before continuing.

End event

Represents the result of a process; indicated by a single thick or bold border, and can only Throw,

so is shown with a solid icon.

Activity

An activity is represented with a rounded-corner rectangle and describes the kind of work which

must be done. In Figure 5 the BPMN activities are displayed.

Task

A task represents a single unit of work that is not or cannot be broken down to a further level of

business process detail without diagramming the steps in a procedure (which is not the purpose of

BPMN).

Sub-process

Used to hide or reveal additional levels of business process detail. When collapsed, a sub-process

is indicated by a plus sign against the bottom line of the rectangle; when expanded, the rounded

rectangle expands to show all flow objects, connecting objects, and artifacts. Has its own self-

contained start and end events; sequence flows from the parent process must not cross the

boundary.

Transaction

A form of sub-process in which all contained activities must be treated as a whole; i.e., they must

all be completed to meet an objective, and if any one of them fails, they must all be compensated

(undone). Transactions are differentiated from expanded sub-processes by being surrounded by a

double border.

Call Activity

A point in the process where a global process or a global Task is reused. A call activity is

differentiated from other activity types by a bolded border around the activity area.

Gateway

A gateway is represented with a diamond shape and determines forking and merging of paths,

depending on the conditions expressed. In Figure 6 the BPMN Gateways are displayed.

23

Exclusive

Used to create alternative flows in a process. Because only one of the paths can be taken, it is

called exclusive.

Event Based

The condition determining the path of a process is based on an evaluated event.

Parallel

Used to create parallel paths without evaluating any conditions.

Inclusive

Used to create alternative flows where all paths are evaluated.

Exclusive Event Based

An event is being evaluated to determine which of mutually exclusive paths will be taken.

Complex

Used to model complex synchronization behavior.

Parallel Event Based

Two parallel process are started based on an event, but there is no evaluation of the event.

Connections

Flow objects are connected to each other using Connecting objects, which are of three types:

sequences, messages, and associations. In Figure 7 the BPMN Connections are displayed.

Sequence Flow

A Sequence Flow is represented with a solid line and arrowhead, and shows in which order the

activities are performed. The sequence flow may also have a symbol at its start, a small diamond

indicates one of a number of conditional flows from an activity, while a diagonal slash indicates

the default flow from a decision or activity with conditional flows.

Message Flow

24

A Message Flow is represented with a dashed line, an open circle at the start, and an open

arrowhead at the end. It tells us what messages flow across organizational boundaries (i.e., between

pools). A message flow can never be used to connect activities or events within the same pool.

Association

An Association is represented with a dotted line. It is used to associate an Artifact or text to a Flow

Object, and can indicate some directionality using an open arrowhead (toward the artifact to

represent a result, from the artifact to represent an input, and both to indicate it is read and updated).

No directionality is used when the Artifact or text is associated with a sequence or message flow

(as that flow already shows the direction).

Figure 8: A BPMN Pool with a BPMN Lane inside

Figure 9: BPMN Data Object

Figure 10: A BPMN Group

http://en.wikipedia.org/wiki/File:Swin_Lane_-_BPMN_2.0_Artifact.png
http://en.wikipedia.org/wiki/File:Data_object_-_BPMN_2.0_Artifacts.png
http://en.wikipedia.org/wiki/File:Group_-_BPMN_2.0_Artifacts.png

25

Figure 11: A BPMN Annotation

Swim Lanes

Swim lanes are a visual mechanism of organizing and categorizing activities, based on cross

functional flowcharting, and in BPMN consist of two types. In Figure 8 a Pool with a Lane inside

is displayed:

Pool

The Pool represents major participants in a process, typically separating different organizations. A

pool contains one or more lanes (like a real swimming pool). A pool can be open (i.e., showing

internal detail) when it is depicted as a large rectangle showing one or more lanes, or collapsed

(i.e., hiding internal detail) when it is depicted as an empty rectangle stretching the width or height

of the diagram.

Lane

The Lane is used to organize and categorize activities within a pool according to function or role,

and depicted as a rectangle stretching the width or height of the pool. A lane contains the flow

objects, connecting objects and artifacts.

Artifacts

The artifacts allow developers to bring some more information into the model/diagram. In this way

the model/diagram becomes more readable. There are three pre-defined Artifacts and they are:

Data objects: Data objects show the reader which data is required or produced in an activity. A

Data Object is displayed in Figure 9.

Group: A Group is represented with a rounded-corner rectangle and dashed lines. The group is

used to group different activities but does not affect the flow in the diagram. A Group is displayed

in Figure 10.

Annotation: An annotation is used to give the reader of the model/diagram an understandable

impression. An annotation is displayed in Figure 11.

http://en.wikipedia.org/wiki/File:Annotation_-_BPMN_2.0_Artifacts.png

26

2.4.3. Transforming the SRM to the BPMN

Software Engineering (SE) and Business Process Management (BPM) are two disciplines with

clear associations. A visible influence of SE to BPM concerns quality assessment, while SE aims

its attention to BPM mainly to take advantage of its experiment design principles. For example,

following the BPM paradigm, one can find solutions about how business people and software

engineers are facilitated in communicating system requirements. Stakeholders are able to get

involved in the systemôs design, and hence to assure the alignment of the produced software with

the business objectives.

Simulation is employed to quantify the impact that a process design is likely to have on its

performance, and to numerically indicate the best design alternatives.

Popular modeling languages in designing software systems, such as the object-oriented ones (e.g.

UML), lack process views, an issue that has been early identified by [12]. On the other hand,

process models do not usually map clearly to a programming environment. Both approaches have

their relative advantages, so it is a hard decision to spare one. This is why there have been efforts

to bridge object-oriented models and process models through model transformations ([13], [14]).

For transforming the SRM to a BPMN model [4], it is essential to transform the liveness formula

to a valid BPMN graph. Delias and Spanoudakis defined the transformation templates shown in

Figure 12 which are applied recursively to a Gaia formula from left to right. With these templates

the transformation from the SRM liveness property to a BPMN model becomes a reality. The

transformation is a text to model transformation (T2M) transformation that can be automated using

existed techniques [15]

Figure 12: Templates of extended Gaia operators (Op.) for BPMN model generation [4]

27

After the process of transformation the software developer owns a BPMN model of the agent. This

model can be used to simulate the system. For a single-agent system the transformed SRM can be

used for simulation, verification and optimization. Considering a multi-agent system design, the

individual process models must be combined into a functional ecosystem. This fact raises some

additional transformation requirements.

In order to integrate multiple roles Delias and Spanoudakis set the followed requirements. A

distinct participant (represented with a Pool in BPMN) was created for every role instance

described in the SRM model. The pool derives from the outer level of the agentsô process models

(the sub-process element is transformed into a swimlane). This transformation brings also an

additional action: the elimination of the outermost start and end events. However, in order to

generate the society level, the major actions concern the messagesô flows. In order to be more

compliant with the business perspective of BPMN, the following rules are manually applied:

¶ All activities that stand for sending or receiving messages (the activities that the name starts

with ñsendò or ñreceiveò keywords) are labeled as message type activities.

¶ When a receive activity follows a start event, then the start event and the activity are

merged into a start event triggered by a message.

¶ When a receive activity follows precedes an end event, then the two are merged into an

end event triggered by a message.

¶ When a message can be sent to one or more out of many recipients, and this decision has

to be evaluated during runtime, then before the ñsend messageò activity a data-based

exclusive gateway is added.

The last rule was introduced because BPMN does not provide a standard solution for this

requirement. This deficiency is discussed in more detail in [16]. A BPMN modeling alternative,

which responds to this requirement, is to use signal- broadcasting events. However, the later

solution was not adopted since broadcasting does not rigorously match the message exchange

logic.

2.5 The XPDL meta-model
Similarly to the definition of SRM, we use the Eclipse EMF technology to represent the metamodel

for XPDL. The metamodel that we used for our project [17] is shown in Figure 13. The Package

concept represents a set of processes and contains:

ǒ pools, which represent major participant roles in a process, typically separating different

organizations. A pool can contain:

ƺ lanes, which are used to organize and categorize activities within a pool ac-cording to

function or role.

ǒ workflowProcesses, which aggregate sets of activities and transitions

28

ƺ activities are represented by rounded rectangles and correspond to the execu-tion of a

task or to the functionality of a gateway, which can be:

ƴ XOR gateway (one of the outgoing transitions will be followed), which is

represented by a diamond shape with the ñXò character in the middle

ƴ parallel gateway (all the outgoing transitions lead to activities that will be

executed in parallel), which is represented by a diamond shape with the ñ+ò

character in the middle

ƺ events are represented by circles and are specific kinds of activities that cor-respond to

something that happens. Common events are the start of a process lane and its ending

ƺ transitions, are represented with a solid line and arrowhead and have source and target

(at the arrowhead) activities and define the control flow in the workflow process

ǒ associations, are represented with a dotted line and arrowhead and have source and target (at the

arrowhead) activities and define the message flow between different pools. Therefore, they also

have source and target pools.

Figure 13: The thesis XPDL Meta-Model

29

2.6 Process Simulation Tools
A list of Business Process Modeling Notation Tools is offered:

(http://en.wikipedia.org/wiki/Comparison_of_Business_Process_Modeling_Notation_tools)

From the previous list the tools that offer simulation are presented below:

Table 1:List of BPMN tools that offer the simulation feature

Name Platform/OS XPDL Version Software License

Activiti Modeler Cross-platform XPDL 2.1+ Apache License 2.0

ADONIS (Software) Windows XPDL 2.1+ Proprietary/Freeware

AuraPortal Windows XPDL 2.1+ Suite Proprietary or

Cloud and Modeler

Freeware

BPMN Visio

Modeler

Windows XPDL 2.1+ Proprietary, shareware,

1 month free trial

BPMN Web

Modeler

Cloud XPDL 2.1+ Proprietary, shareware,

1 month free trial

IBM Process

Designer

eclipse based tool

for creating

executable processes

XPDL 2.1+ Proprietary

INNOVATOR for

Business Analysts

Windows XPDL 2.1+ Proprietary, free

Personal Edition

Logizian Windows, Linux, OS

X, Solaris

XPDL 2.1+ Proprietary

Pega Systems Windows XPDL 2.1+ Proprietary

Process Modeler for

Microsoft Visio

Windows XPDL 2.1+ Proprietary

SemTalk Windows SPoint

Visio

XPDL 2.1+ Proprietary

Signavio Process

Editor

Cloud or

On-premise

(Windows, Linux)

server), Client-side

browser

XPDL 2.1+ Proprietary

TIBCO

ActiveMatrix

Linux, AIX, HP-UX,

Solaris, Windows

XPDL 2.1+ Proprietary

Triaster Windows Proprieatary

From the above listing it is easy deducted that there are not so many tools that offer simulation.

The most are designed for Windows. All but the last support the BPMN2.0 version. As it is

deducted from the Listing only a few tools have a free License. These are Activity Modeler,

ADONIS, AURAPortal, and Innovator with a free Personal Edition.

http://en.wikipedia.org/wiki/Comparison_of_Business_Process_Modeling_Notation_tools

30

Chapter 3

Problem Statement

This thesis hopes to provide solutions to the following not solved yet problems. At first, the

question about how can someone verify and validate a system analysis or a design. The only way

to succeed this is by simulating experiments that resemble the reality objectives. Simulation is

employed to quantify the impact that a process design is likely to have on its performance, and to

numerically indicate the best design alternatives. Regarding business process simulation, various

tools exist [18], which facilitate the adoption of business process modeling as a practical way for

designing systems. However, a critical factor in selecting which tool is more appropriate is the

modeling language used.

The modeling language that will be used should offer a practical way of communicating between

the software developers and business analysts. On the one hand, agents, whose behavior is

described in the SRM, are programs that complete specific tasks in a specific way in order to fullfil

their purpose. On the other hand, there is the business process modeling, which represents

processes of an enterprise, so that each process in a system may be analyzed and improved. The

agent task and the business process have semantic resemblance, and therefore a way of

representing both can be available, but is not offered.

Another issue that the chosen modeling language should overcome is that in modern society there

are specific tasks completed by agents and specific tasks completed by humans. A logical question

now rises, can the common displaying of the interactions between different kinds of roles whether

they are human or artificial intelligence ones become possible. This can be solved, if the modeling

language is simple but comprehensible by both kinds of roles.

The modeling language should be portable to agent platforms like WADE6 in order for the agent

developers to use the created models the moment they are created.

6 http://jade.tilab.com/wadeproject/

http://jade.tilab.com/wadeproject/

31

The previous issues are solved by choosing the XPDL as the target transformation language for

the SRM.

3.1 Problems in Simulations
At the beginning this thesis was supposed to offer a SRM to BPMN2.0 transformation, but since

the procedure was to use liveness formula and generate XML elements, the thesis changed

direction to transform SRM to XPDL. This was a correct decision since all the BPMN tools are

based on the XML. It was of utmost importance that the generated files would be easily transported

through different tools and there comes the XPDL into the account. A few tools were tested in

order to take the former decision. The tools tested are presented below:

Table 2:List of tested tools

Name Reviewerôs month of testing XPDLv2.0+

ADONIS (Software) 07-2014 P

Bonita BPM 03-2014 P

Signavio Process Editor 06-2014 P

TIBCO ActiveMatrix 05-2014 P

A small review is offered for each of the listed tools:

¶ ADONIS: is a Business Process Analysis (BPA) tool supporting business process

management based on BPMS framework created at the University of Vienna. It is

developed by the BOC Information Technologies Consulting GmbH. It allows business

process modeling using BPMS notation and BPMN 2.0, process analysis, simulation,

evaluation as well as publishing and process automation with BPMN 2.0 XML (BPMN

DI) and XPDL. ADONIS is freeware that comes in handy for small enterprises. With

ADONIS the user can model in a relative easy way and the models can be saved as HTML

and can also be embedded in Word documents and presentations. As far as the analysis of

the model is concerned ADONIS is great in finding bottlenecks or inefficiencies in the

system. ADONIS offers also simulation which is not easily found on freeware BPM tools.

Last but not least, with ADONIS the sharing of models becomes something trivial. The

user can publish in HTML or also print in Word format.

¶ Bonita BPM: is an open-source business process management and workflow suite created

in 2001. It was started in France National Institute for Research in Computer Science, and

then had incubated several years inside of the French computer science company Groupe

Bull. Since 2009, the development of Bonita is supported by a company dedicated to this

activity: Bonitasoft. With Bonita BPM Studio the user can easily design the processes

graphically. Bonita offers easy connectivity to IT systems by including a great amount of

connectors, for example connectors for databases, ERP, CRM, ECM. Another advantage

of Bonita is that through its portal the user can manage daily tasks and follow process

32

activity. Bonitaôs engine is service-based and can support intensive workloads, is flexible

and can be used to third party applications. Lastly, the Bonita BPM offers an open

community edition.

¶ Signavio ProcessEditor: is a Berlin- and Silicon Valley-based software vendor in the

Business Process Management (BPM) space. Its main product, the Signavio Process Editor

is a web-based business process modeling tool, which was launched in May 2009. The

product enables the creation of process diagrams using the Business Process Model and

Notation and it is available as Software as a Service (SaaS) and for On-Premise

installations. Signavio offers process modeling using graphical editor and QuickModel,

and a spreadsheet-oriented process editing mode. There is also a simulation for process in

order to identify bottlenecks or evaluating alternatives. With model-repository the user can

build multi-level process architectures, can manage different versions and reuse the

different objects. Sharing capability for process diagrams, for collecting feedback and

enforcing approval workflows. The user can publish using reporting mechanisms and an

integrated process portal. The cloud service is a multi-tenant installation that offers online

workspaces to organizations with a subscription model. The Signavio Process Editor is also

available for on-premise installations with a traditional license purchase and

support/maintenance model.

¶ TIBCO Active Matrix: is a technology-neutral platform for composite business process

management (BPM) and service-oriented architecture (SOA) applications. The platform

includes products for service creation and integration, distributed service and data grids,

packaged applications, BPM and governance. TIBCO is an On-premise BPM software

solution. It is designed for communication between IT staff and business users. The user

can easily create processes. TIBCO displays process performance via visual analytics. Also

TIBCO can enforce compliance with company regulations. TIBCO has a proprietary

software license.

33

Chapter 4

Our Approach

4.1. The General Design Picture
In order to succeed in the correct transformation of the SRM to the XPDL, some basics steps were

followed. In the beginning the grammar of the SRM was defined. According to the grammar, the

corresponding templates to the XPDL were carefully builded. The model that will be created is

formed step by step recursively. Then a set of Java classes to create the XPDL files of different

kinds of multi-agent systems were designed. Lastly, an open source package was found in order to

acquire the XPDL elements descriptions in Java source code.

4.1.1. The Grammar of the SRM

The system roles model (SRM) is mainly inspired by the Gaia roles model (Wooldridge et al.,

2000). A role model is defined for each agent role. The role model contains the following elements:

a) The interaction protocols that this agent will be able to participate in.

b) The liveness model that describes the roleôs behavior.

The liveness model has a formula at the first line (root formula) where activities or capabilities can

be added. A capability must be decomposed to activities in a following formula. The Gaia

operators have been enriched with a new operator, the |x~|n , with which a defined activity can be

concurrently instantiated and executed more than one times (n times).

34

The liveness formula grammar has not been defined formally in the literature, thus it is defined

here using the Extended BackusïNaur Form (EBNF), which is a metasyntax notation used to

express context-free grammars. It is a formal way to describe computer programming languages

and other formal languages. It is an extension of the basic BackusïNaur Form (BNF) metasyntax

notation. EBNF was originally developed by Niklaus Wirth (1996). The EBNF syntax for the

liveness formula is presented in Table 3, using the BNF style followed by Russel and

Norvig(2003), i.e. terminal symbols are written in bold.

liven ess Ÿ {formula}

formula Ÿ leftHandSide = expression

leftHandSide Ÿ string

expression Ÿ term

|parallelExpression

|orExpression

 |sequentialExpression

parallelExpression Ÿ term|| term{ || term}

orExpression Ÿ term| term | term}

sequentialExp ression Ÿ term.term{. term}

term Ÿ basicTerm

 | (expression)

 | [expression]

 |term *

 |term +

 |term ~

 | | basicTerm ~| number

basicTerm Ÿstring

number Ÿdigit | digit number

digit Ÿ1|2|3|é

string Ÿ letter|letter string

letter Ÿa|b|c|é

Table 3:The liveness formula of the SRM in EBNF Format

35

Some examples of roles generated by the former grammar are listed below:

Figure 14: Examples of roles generated by SRM grammar

Liveness:

MeetingsManager = RequestNewMeeting~

RequestNewMeeting = ReceiveNewMessage.SelectMeetingDate.SendNewResponse

Liveness:

complex provider = |requestforservicesSP~|n

requestforservicesSP = receiverequestmessage.processrequest.sendresponsemessage

processrequest = (decideroutetype.requestforservicesSR.sortroutes) |

(decidePOItypes.request forservicesSR.decidePOIs.request for services SR)

requestforservicesSR = sendrequestmessage.receiveresponsemessage

Liveness:

PersonalAssistant = (ManageMeetings.LearnUserHabits)~||(NegotiateMeetingDate)~

ManageMeetings=GetUserRequest.(ReadSchedule|RequestChangeMeeting|

RequestNewMeeting).ShowResults

LearnUserHabits = LearnUserPreference.UpdateUserPreferences

RequestNewMeeting = SendNewRequest.ReceiveNewResults.UpdateSchedule

RequestChangeMeeting = SendChangeRequest.ReceiveChangeResults.UpdateSchedule

NegotiateMeetingDate = ReceiveProposedDate.

(DecideResponse.SendResults.ReceiveOutcome)+.UpdateSchedule

36

4.1.2. The templates of SRM2XPDL

Figure 15: Templates of extended Gaia operators (Op.) for XPDL generation

4.1.3. Class Diagram of the SRM2XPDL Transformation.

In order for this thesis to present a sound transformation of the SRM to the XPDL some Java

classes were developed. Below is the class diagram of these classes:

Figure 16: The contents of Package aseme.transformations.xpdl

37

Figure 17: The Class diagram for the SRM2XPDL transformation.

In just a few classes the transformation from SRM to the XPDL becomes a reality. The four classes

are: Liveness2XPDLApp, Inter_role_messages_definition, Liveness2XPDL, Live2xpdl.

¶ Liveness2XPDLApp: This class creates a GUI that helps the user open SRM models, to

write new formulas and to transform them into XPDL models. When the user decides to

transform a liveness formula, the createRoles() method from Liveness2XPDL class is

called. If there is a need to define messages between the roles in a multi-agent system, the

main of the class Inter_role_messages_definition is called.

¶ Liveness2XPDL: This class contains the method createRoles(), where the basic XPDL

elements are generated and stored in the XPDL package. The createRoles() method calls

the transform() method from Live2Xpdl class in order to acquire all the pools of the

package.

¶ Live2XPDL: This class is responsible for the creation of a pool, which represents a single

role in the multi-agent system. The transform() method makes this possible, through the

call of the createProcess() method. The createProcess() method is recursive and creates

XPDL elements and connects them by matching terms in the liveness formula to their

templates.

¶ Inter_role_messages_definition: This class creates a GUI that helps the user create

message flows between the participant roles of the multi-agent system.

38

4.1.4. The recursive algorithm for creating pools.

The transformation algorithm uses elements from the liveness formulas grammar (Table 3), from

the SRM metamodel (Figure 3) and the XPDL metamodel (Figure 13). It is a recursive algorithm

that takes the liveness formula expression elements from left to right and applies the templates

shown in Figure 13, gradually building the XPDL process. For all templates, the control flows

from left to right, i.e. if a template follows another, then it is connected to its rightmost activity.

Listing 4.2 presents the pseudocode of the tranformation algorithm. The different model elements

are represented as classes and their properties as class properties, accessible using the dot operator,

i.e. <classname>.<property>. For representing a list we use a List class that supports the

operations add (to add an element to the list) and size (to return the number of its elements). The

program takes as input an XPDL Package instance and the String liveness property of an SRM

Role instance.

Program transform(String liveness, Package package) 1
WorkflowProcess workflowProcess = new WorkflowProcess 2
package.workflowProcesses.add(workflowPr ocess) 3
Event startEvent = new Event 4
startEvent.type = start 5
workflowProcess.add(startEvent) 6

39

Activity lastActivity = createProcess(liveness.formula1.expression, 7
workflowProcess, startEvent) 8
Event endEvent = new Event 9
endEvent.type = end 10
workflowProce ss.add(endEvent) 11
Transition transition = new Transition 12
transition.from = lastActivity 13
transition.to = endEvent 14
workflowProcess.add(transition) 15

End Program 16
Function Activity createProcess(String expre ssion, WorkflowProcess 17
workflowProcess, Activity a ctivity) 18

List terms = new List 19
For Each term i In expression 20

terms.add(term i) 21
End For 22
If terms.size() > 1 Then 23

If expression Is sequentialExpr Then 24
For Each term i In expression 25

Activity newActivity = createProcess(term i , 26
workflowprocess, activity) 27
activity = newActivity 28

End for 29
Else If expression Is orExpr 30

Activity xorEntryGateway = new Activity 31
xorEntryGateway.gatewayType = XOR 32
workflowProcess.add(xorEntryGateway) 33
Transition transition = new Transition 34
transition.from = activity 35
transition. to = xorEntryGateway 36
workflowProcess.add(transition) 37
Activity xorExitGateway = new Activity 38
xorExitGateway.gatewayType = XOR 39
workflowProcess.add(xorExitGateway) 40
For Each term i In expression 41

Activity newActivity = createProcess(term i , 42
workflowprocess, xorEntryGateway) 43
transition = new Transition 44
transition.from = newActivity 45
transition.to = xorExitGateway 46
workflowProcess.add(transition) 47

End for 48
activity = xorExitGateway 49

Else If expression is parallelExpr 50
 Activity parallelEntryGateWay = new Activity 51
 parallelGateWay.gatewayType = Parallel 52
 workflowProcess.add(parallelEntryGateway) 53
 Transition transition = new Transition 54
 transition.from = activity 55
 transition.to = parallelEntryGateway 56
 workflowProcess.add(transition) 57
 Act ivity parallelExitGateway = new Activity 58
 parallelExitGateway.gatewayType = Parallel 59
 workflowProcess.add(parallelExitGateway) 60
 For Each term i In expression 61

40

Activity newActivity = createProcess(term i , 62
workflowprocess, parallelEntryGateway) 63
transit ion = new Transition 64
transition.from = newActivity 65
transition.to = xorExitGateway 66
workflowProcess.add(transition) 67

 End For 68
 activity = parallelGateway 69

End If 70
For Each term i In expression 71

If term i Is basicTerm 72
boolean foundLeftHandSideEqualsBas icTerm = false 73
For Each formula i In liveness 74

If formula i .leftHandside = term i Then 75
Activity newActivity = 76
createProcess(formula i .expression, 77
workflowprocess, activity) 78
activity = newActivity 79
foundLeftHandSideEqualsBasicTerm = true 80

End If 81
If foundLef tHandSideEqualsBasicTerm = false 82

Activity newActivity = new Activity 83
workflowProcess.add(newActivity) 84
Transition transition = new Transition 85
transition.from = activity 86
transition.to = newActivity 87
workflowProcess.add(transition) 88
activity = newActivity 89

End If 90
Else If (term i is of type ó(ô term ó)ô) Then 91

Activity newActivity = createProcess(term, 92
workflowprocess, activity) 93
activity = newActivity 94

Else If (term i is of type ó[ô term ó]ô)Then 95
 Activity xorEntryGateway = new Activity 96
 xorEntryGate way.gatewayType = XOR 97
 workflowprocess.add(xorEntryGateway) 98
 Activity xorExitGateway = new Activity 99
 xorEntryGateway.gatewayType = XOR 100
 workflowprocess.add(xorEntryGateway) 101
 Transition transition = new Transition 102
 transition.from = activi ty 103
 transition.to = xorEntryGateway 104
 workflowprocess.add(transition) 105

Activity newActivity = createProcess(term, 106
workflowprocess, xorEntryGateway) 107
Transition transition = new Transition 108
transition.from = newActivity 109
transition.to = xorExitGateway 110
work flowprocess.add(transition) 111
Transition transition = new Transition 112
transition.from = xorEntryGateway 113
transition.to = xorExitGateway 114
activity = xorExitGateway 115

Else If (term i is of type ó*ô) Then 116
Activity xorEntryGateway = new Activity 117

41

 xorEntryGateway.g atewayType = XOR 118
 workflowprocess.add(xorEntryGateway) 119
 Activity xorExitGateway = new Activity 120
 xorEntryGateway.gatewayType = XOR 121
 workflowprocess.add(xorEntryGateway) 122
 Transition transition = new Transition 123
 transition.from = activity 124
 transition.to = xorEntryGateway 125
 workflowprocess.add(transition) 126

Activity newActivity = createProcess(term, 127
workflowprocess, xorEntryGateway) 128
Transition transition = new Transition 129
transition.from = newActivity 130
transition.to = xorExitGateway 131
workflowp rocess.add(transition) 132
Transition transition = new Transition 133
transition.from = xorEntryGateway 134
transition.to = xorExitGateway 135
workflowprocess.add(transition) 136
Transition transition = new Transition 137
transition.from = xorExitGateway 138
transition.to = startof(t erm) 139
workflowprocess.add(transition) 140
activity = xorExitGate way 141

Else If (term i is of type ó~ô) Then 142
Activity newActivity = createProcess(term, 143
workflowprocess, activity) 144
Transition transition = new Transition 145
transition.from = newActivity 146
transition.to = s tartof(term) 147
workflowprocess.add(transition) 148
activity = newActivity 149

Else If (term i is of type ó+ô) Then 150
 Activity xorExitGateway = new Activity 151
 xorExitGateway.gatewayType = XOR 152
 workflowprocess.add(xorExitGateway) 153

Activity newActivity = createPr ocess(term i , 154
workflowprocess, activity) 155
Transition transition = new Transition 156
transition.from = newActivity 157
transition.to = xorExitGateway 158
workflowprocess.add(transition) 159
Transition transition = new Transition 160
transition.from = xorExitGateway 161
transition.t o = startof(term) 162
workflowprocess.add(transition) 163
activity = xorExitGateway 164

End If 165
End If 166

End For 167
return activity 168

Figure 18: The recursive algorithm

42

The basic outline of the algorithm is:

¶ Lines 20-22: The findTermsInExpression() method is called to find the terms.

¶ Lines 24-29: A sequential expression is processed.

¶ Lines 30-49: An XOR expression is processed.

¶ Lines 50-70: A parallel expression is processed.

¶ Lines 72-90: A basic term is processed.

¶ Lines 74-81: The handle basic term method is described.

¶ Lines 91-94: A parenthesis term is processed.

¶ Lines 95-115: A brackets term is processed.

¶ Lines 116-142: A star term is processed.

¶ Lines 142-150: A tilda term is processed.

¶ Lines 150-164: A plus term is processed.

4.1.5. Class diagram of org.enhydra

The Together© Teamsolutions Co., Ltd. In Thailand has developed the org.enhydra and is

distributed under the GNU Free Documentation License.

This thesis uses extensively the org.enhydra package in order to produce XPDL(v2.1) files. The

complete class hierarchy is not described below, there are only packages present that have some

impact on the transformation, the packages that are imported are underlined:

Hierarchy For All Packages

Package Hierarchies:

¶ org.enhydra.jxpdl,

¶ org.enhydra.jxpdl.elements,

¶ org.enhydra.jxpdl.utilities

Class Hierarchy

o java.lang.Object
o org.enhydra.jxpdl.XMLElement (implements java.lang.Cloneable, java.io.Serializable)

o org.enhydra.jxpdl.XMLBaseForCollectionAndComplex

o org.enhydra.jxpdl.XMLComplexElement

o org.enhydra.jxpdl.elements.NodeGraphicsInfo

o org.enhydra.jxpdl.elements.Package

o org.enhydra.jxpdl.elements.TransitionRestriction

o org.enhydra.jxpdl.XMLCollectionElement

o org.enhydra.jxpdl.elements.Activity

o org.enhydra.jxpdl.elements.Association

o org.enhydra.jxpdl.elements.Lane

file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/package-tree.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/package-tree.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/utilities/package-tree.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XMLElement.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XMLBaseForCollectionAndComplex.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XMLComplexElement.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/NodeGraphicsInfo.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Package.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/TransitionRestriction.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XMLCollectionElement.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Activity.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Association.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Lane.html

43

o org.enhydra.jxpdl.elements.Pool

o org.enhydra.jxpdl.elements.Transition

o org.enhydra.jxpdl.elements.WorkflowProcess

o org.enhydra.jxpdl.XMLUtil

o org.enhydra.jxpdl.XPDLRepositoryHandler

A brief description of each package that is imported in the source code is available:

¶ org.enhydra.jxpdl.elements.NodeGraphicsInfo: Contains all the graphical information of

the xpdl elements that need to be represented.

¶ org.enhydra.jxpdl.elements.Package: Contains everything a user needs in order to create a

XPDL Package and to effectively use it. It refers to the Package presented in the XPDL

metamodel.

¶ org.enhydra.jxpdl.elements.TransitionRestriction : Contains information about

restrictions that the Transitions need to comply with in order to connect different kind of

XPDL Elements.

¶ org.enhydra.jxpdl.elements.Activity : Contains everything a user needs in order to create

an Activity and to effectively use it. It refers to the Activity presented in the XPDL

metamodel.

¶ org.enhydra.jxpdl.elements.Association: Contains the information to create Associations

between XPDL elements. It refers to the Association presented in the XPDL metamodel.

¶ org.enhydra.jxpdl.elements.Lane: Contains the information to create Lanes and to

effectively use them. It refers to the Lane presented in the XPDL metamodel.

¶ org.enhydra.jxpdl.elements.Pool: Contains the information to create Pools and to

effectively use them. It refers to the Pool presented in the XPDL metamodel.

¶ org.enhydra.jxpdl.elements.Transition : Contains the information to create Transitions

between XPDL elements. It refers to the Transition presented in the XPDL metamodel.

¶ org.enhydra.jxpdl.elements.WorkflowProcess: Contains the information to create a

WorkflowProcess and to effectively use it. It refers to the WorkflowProcess presented in

the XPDL metamodel.

¶ org.enhydra.jxpdl.XMLUtil : Contains the information that is needed to describe a file as

XML file.

¶ org.enhydra.jxpdl.XPDLRepositoryHandler: Contains the information to handle XPDL

files in the repository system. It is used to write the package in a file as XPDL.

file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Pool.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/Transition.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/elements/WorkflowProcess.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XMLUtil.html
file:///C:/Users/nek/Desktop/New%20folder/api/org/enhydra/jxpdl/XPDLRepositoryHandler.html

44

4.2 Implementation API

4.2.1 The class Live2xpdl

The class Live2xpdl contains the basic methods in order to transform a SRM liveness formula into

a XPDL model. The SRM liveness formula corresponds to a single role in a system. The class

Live2xpdl contains the following methods:

¶ Activity createProcess(String expression, Workflowprocess workflowprocess, Activity

actprevious): The createProcess method is a recursive method responsible for filling

the workflowProcess with XPDL elements. The process is completed by matching

terms of the input expression, which is a liveness formula, to their respective templates.

The method needs an activity as argument in order to store the activity before the call

of the recursion. It returns the last activity to be used as a node for the continuation of

the model. The createProcess method is described in lines 23-168 of the recursive

algorithm.

¶ List<String> findTermsInExpression(String expression, String connector,

Workflowprocess workflowprocess): This method is responsible for tokenizing a string

expression in order to separate the terms between the connectors (., |, ||) and returns a

list of string terms to be used by createProcess. The findTermsInExpression method is

not analytically described, but it corresponds to the lines 20-22 of the recursive

algorithm.

¶ Activity handleBasicTerm(String term, Workflowprocess workflowprocess, Activity

actprevious): This method is used in order to substitute a term with a basic term so as

for the recursion to find which is the current node. It returns an activity as the current

node. The handleBasicTerm method is described in lines 74-81 of the recursive

algorithm.

¶ String preprocessing(String formula): This method is used to substitute a |x~|n term to

its semantic equal string, which is a parallel expression of x~ term n times with itself.

It returns the semantic equal string.

¶ String remover(String term): The remover method was developed in order to remove

invalid characters of a string that might be used as an id. In XPDL there can be no

special characters or symbols in the ids. It returns the string without the removed

elements.

¶ Pool transform(String liveness, Package package, String outputfile): The transform

method is responsible for creating a lane to be stored in the XPDL package. It needs as

arguments a String which should be a liveness formula of a role, the package of the

XPDL and an output file for an optional write to file capability. It returns a pool.

A finding of this thesis is that all XPDL elements that will be created need unique XMI ids. Also

the ids should not contain special characters or symbols. In order to avoid creating elements with

45

the same id, the following convention was followed: Each time an element is created that needs id

except of the package, the pools and the workflowprocess the time milliseconds of the program

time run, the role that the element is created in and a counter that is increased, are put in this

respective order in a string that will be the id of the created element. This way ids are created that

are unique and are easily and effectively monitored in the debugging process.

4.2.2. The class Liveness2XPDL

The class Liveness2XPDL is the API and contains the methods to generate a multi-agent XPDL

model from some liveness formulas. The liveness formulas are added as lanes to the pool of the

multi-agent system. The class Liveness2XPDL contains the following methods:

¶ Package createRoles(List<String> roles, String filename): The createRoles() is

responsible for creating the XPDL package of the multi-agent XPDL and adding all the

generated pools to it. Therefore it calls multiple times the Live2xpdl.transform() method.

It returns the package.

4.3 GUI

4.3.1. The Liveness2XPDLApp class

This thesis offers a friendly user interface for opening an SRM model from an existing file, creating

a liveness formula, and transforming one or more roles to a single or a multi-agent XPDL model.

The Liveness2XPDLApp extends JFrame and implements MouseListener and ActionListener.

Subsequently the procedure is presented:

Figure 19: The Liveness2XPDL Transformation Application

46

The Liveness2XPDL Transformation Application contains three menus in the menu bar. The

menus provide the following functionalities:

¶ File

o Open SRM

o Edit Gaia Formula

o Delete Selected Role(s)

o Exit

¶ Transform

o Single Role Transformation

o Multiple Role Transformation

¶ Help

o About

Open a SRM Model:

To open a SRM model from the existing file, the user has to choose File then click Open SRM and

find the location of the SRM in the file system.

Edit a formula:

To edit or write a new formula the user has to choose File then click Edit Formula and write the

formula in the message box.

Delete formulas

To delete one or more roles that are presented in the list the user has to first select which roles to

delete by ctrl + click and then choose File then click Delete Selected Role(s) or by pressing the

delete button while the specific roles are selected.

Transform a single role model

To transform a single role model the user has to choose a role from the list of roles then click

Transform then click Single Role Transformation.

Transforming a multi role model

To transform a multi role model the user has to choose one or more roles from the list of roles then

click Transform then click Multiple Role Transformation.

Help

If the user needs help the user needs to click Help then click About.

47

4.3.2. The Inter_role_messages_definition class

In some roles there might be activities that need the sending of a message and perhaps there might

be activities in other roles to receive this message. If such is the case, a new GUI will appear. This

GUI is described in the Inter_role_messages_definition class which extends JFrame. Below an

example of this GUI is presented:

Figure 20: The Inter-role Messages Definition

In the left side of the window there is a combo box where all the sending activities are shown.

When the user chooses a sending activity the possible receivers that will receive the same kind of

message will appear on the right list.

Then the user just needs to choose one or more possible receivers and click add message receiving

activities.

When the users finishes creating messages, on save & exit there is a save to file dialog in order to

update the existing package.

48

CHAPTER 5

Results

For the display of the XPDL files the Together Workflow editor (v.4.5-1) was used. The Together

Workflow Editor was developed by Together© Teamsolutions Co., Ltd. in Thailand. The Together

Workflow Editor can be downloaded by http://sourceforge.net/projects/jawe/files/jawe/4.5-1/. In that link

there is also the manual of the tool to help decide if the tool satisfies the userôs needs.

5.1 Transforming a single Agent
For the completion of this thesis a lot of single liveness formulas where transformed into XPDL.

Some examples are presented below:

¶ The Meetings Manager:

Liveness formula:

MeetingsManager = RequestNewMeeting~

RequestNewMeeting = ReceiveNewMessage.SelectMeetingDate.SendNewResponse

Figure 21: The Meetins Manager XPDL representation

The MeetingsManager contains only one activity, the RequestNewMeeting. RequestNewMeeting

has a ~ operand which means that will be executed forever. RequestNewMeeting is then

substituted with what it semantically means. RequestNewMeeting is a sequential expression

between the activities ReceiveNewMessage which is followed by SelectMeetingDate and the

SendNewResponse after.

http://sourceforge.net/projects/jawe/files/jawe/4.5-1/

49

¶ The Complex Provider

Liveness formula:

complex provider = |requestforservicesSP~|n

requestforservicesSP = receiverequestmessage.processrequest.sendresponsemessage

processrequest = (decideroutetype.requestforservicesSR.sort routes)|(decidePOI types.request

forservicesSR.decidePOIs.request for services SR)

requestforservicesSR = sendrequestmessage.receiveresponsemessage

Figure 22: The Complex Provider XPDL representation

The Complex Provider runs the activity requestforservicesSP for ever.

The requestforservicesSP means to ReceiveRequestMessage then ProcessRequest and then

SendResponseMessage.

The ProcessRequest means to either (DecideRouteType then requestforservicesSR then

SortRoutes) or (DecidePOITypes then requestforservicesSR then DecidePOIS then

requestforservicesSR)

The requestforservicesSR means to SendRequestMessage then to ReceiveResponseMessage.

50

¶ The Broker

Liveness formula:

Broker = |RequestforServicesSP~|n

RequestforServicesSP=ReceiveRequestMessage.ProcessRequest.SendResponseMessage

ProcessRequest = ServiceMatch.[(InvokeDataManagement | RequestForServicesSR)]

RequestForServicesSR = SendRequestMessage.ReceiveResponseMessage

Figure 23: The Broker XPDL representation

The Broker runs the activity RequestForServicesSP for ever.

The RequestForServicesSP means to ReceiveRequestMessage then ProcessRequest and then

SendResponseMessage

The ProcessRequest means first to ServiceMatch and then optionally InvokeDataManagement or

RequestForServicesSR.

The RequestForServicesSR means to SendRequestMessage and then ReceiveResponseMessage.

¶ The Personal Assistant

Liveness formula:

PersonalAssistant = RequestForServicesSR

RequestForServicesSR = SendRequestMessage.ReceiveResponseMessage

Figure 24: The Personal Assistant XPDL representation

The Personal Assistant is simple. This role just SendRequestMessage and then

ReceiveResponseMessage.

51

5.2 Creating Processes from Multi-Agents.
One of the greatest challenges that this thesis needed to overcome was to create a XPDL that

contains many agents and to represent the communication between them. With the use of the

Liveness2XPDL Transformation Application and the Multiple Roles Transformation choice the

multi-agent system between the Personal Assistant, the Broker and the Complex Provider of the

previous paragraph becomes a XPDLv2.1 file ready to be imported to different BPMN tools.

The representation is displayed below. The associations that are represented depict the message

flow between different activities of different roles and are created with the Inter-role Messages

Definition GUI.

Figure 25: An example of a multiagent system's XPDL representation

52

5.3 Imports in different tools
As the thesis progressed different tools were tested in order to verify the xpdl portability and how

different tools utilize the XPDL files. The Signavio BPM Academic Initiative and Adonis

Community edition v3.0 had the most encouraging results. Signavio and Adonis have great

research value, because they are free and also provide user-friendly simulators. Most BPMN tools

trumpets that they encourage the transfer of models that were created in different tools, however

not all the information is transferred and inconcistencies occur.

5.3.1 Importing xpdl files in Signavio

When importing the generated broker.xpdl to the Signavio BPM Academic Initiative directly

through the import of XPDL2.1 choice in the menu bar the result after the import XPDL was

disappointing. From the importer recognized the Pool, the Lanes and the Transitions. All the other

elements were not recognized. The XPDL 2.1 importer is malfunctioning and can be deducted that

is under development.

In order to get a better perspective an indirect method of import was adopted. First, the Broker.xpdl

was online converted to Broker.bpmn.

After that the converted BPMN was imported to the Signavio BPM initiative and the result is given

below:

Figure 26: Converted BPMN imported to Signavio

The conversion to BPMN stored more information into the XML that was understandable by

Signavio, however some apparent problems exist, for example in the top of the figure there is not

clear distinguishing between the Pool and the Lanes.

53

5.3.2. Importing xpdl files to ADONIS Community Edition 3.0

When importing the generated broker.xpdl to the ADONIS Community Edition 3.0 directly

through the import choice of menu there is a prompt to convert the imported xpdl file to an

ADONIS accepted format. The conversion takes place online. But after the user presses OK a

webpage appears informing the user that the XPDL converter is under construction. Since

ADONIS is a free tool, malfunctioning is easily tolerated by the users. The author believes that the

ADONIS online XPDL conversion will produce acceptable files.

So in order to get a better perspective the same indirect method was adopted. The same

broker.bpmn file was imported into the ADONIS tool.

And when this XML is imported to ADONIS the result is:

Figure 27: Converted BPMN imported to ADONIS

The ADONIS has a sufficient XML conversion, which keeps the information intact and therefore

the resulting models are really close to the model before the conversions. The most apparent

problem of the ADONIS is that it does not focus on the graphics infos of the Pools and the Lanes

which results in a mess when the BPMN is depicted on the palette.

The former examples are results that illustrate, that if there will be a formal and widely accepted

language in which all the information correctly is stored, then the different tools will have better

results when getting imports from files that were generated in other tools. This is the problem for

which the XPDL tries to offer a solution. After all, the same procedure is hidden. When a BPMN

is about to travel between different tools, an XML conversion occurs and then from the XML

conversion a new BPMN is created in order to get imported into a different tool.

54

5.4 Simulations
In this section, is demonstrated how simulation can aid the system modeler and project manager

alike to make important decisions, mainly concerning non-functional requirements.

 Firstly, the liveness formulas of the agents are defined, that when they are combined they will be

elements of the system that will be simulated .

Figure 28: The Agent roles that will be elements of the simulation

The XPDL of the multi-agent system was imported in Signavio BPM Academic in order to begin

the simulation.

Role: PersonalAssistant

Liveness: PA = SendServiceRequest. ReceiveServiceResponse

Role: Broker

Liveness: Broker = ServicePAs || ServiceCP

ServicePAs = ReceiveServiceRequest. ProcessRequest.

(InvokeDataManagement | SendComplexServiceRequest.

ReceiveComplexServiceResponse). SendServiceResponse

ServiceCP = ReceiveSimpleServiceRequest. InvokeDataManagement.

SendSimpleServiceResponse

Role: ComplexProvider

Liveness: CP = ReceiveComplexServiceRequest. DecideRouteType.

SendSimpleServiceRequest. ReceiveSimpleServiceResponse. SortRoutes.

SendComplexServiceResponse

55

Figure 29: The multi -agent system of the simulation

56

In order for the reader to have a more specific view the settings are presented in table form:

Table 4:The settings of the simulation

ActivityName Distribution Mean Standard

Deviation

Performer

SendServiceRequest Normal 0.024 0.063 PA

ReceiveServiceResponse Normal 0 0 PA

ReceiveServiceRequest Normal 0.002 0.002 BR

ProcessRequest Normal 0254 0.112 BR

InvokeDataManagement Normal 2.639 1.113 BR

SendComplexServiceRequest Normal 0.007 0.006 BR

ReceiveComplexServiceRequest Normal 0.024 0.063 BR

SendServiceResponse Normal 0.002 0.002 BR

ReceiveSimpleServiceRequest Normal 0.024 0.063 BR

InvokeDataManagement Normal 2.639 1.113 BR

SendSimpleServiceResponse Normal 0.007 0.006 BR

ReceiveComplexServiceResponse Normal 0.024 0.063 CP

DecideRouteType Normal 0.127 0.056 CP

SendSimpleServiceRequest Normal 0.007 0.006 CP

ReceiveSimpleServiceResponse Normal 0.024 0.063 CP

SortRoutes Normal 0.127 0.056 CP

SendComplexServiceResponse Normal 0.007 0.006 CP

Fixed Requests Every: 30, 20, 10, 5, 3, 2, 1, 0.5 seconds.

Gateway Probabilities: 50% - 50%

Number of Brokers: 1, 2, 3

Number of Complex Providers: 1, 2

The results after the simulation are presented below:

Table 5:Results of the simulation

Request

Every

Number

of

Brokers

Number

of

Complex

Providers

Complex

Provider

Utilization

Broker

Utilization

Average

Cycle

Time

Max

Cycle

Time

Min

Cycle

Time

30 1 1 0.96% 15.87% 5.7 10.3 2

20 1 1 1.52% 21.33% 5.2 11.2 2.3

10 1 1 3.33% 44.64% 5.5 10.2 2.2

5 1 1 6.14% 84.54% 6.7 17.2 2.3

3 1 1 7.70% 99.49% 78 120 5.4

2 1 1 7.66% 99.54% 120 174 5.2

1 1 1 7.31% 99.53% 162 198 9.6

57

0.5 1 1 7.68% 99.53% 174 204 14.9

30 2 1 1.04% 7% 4 6.7 2

20 2 1 1.58% 10.70% 4.1 7.3 2

10 2 1 3.11% 21.53% 4 7.8 2

5 2 1 6.88% 42.54% 4.5 8.6 2.1

3 2 1 12.36% 64.08% 4.3 8.2 2

2 2 1 15.38% 97.15% 10.1 16.8 3

1 2 1 14.03% 98.20% 58.4 84 2.9

0.5 2 1 14.06% 98.93% 84 108 2.2

30 3 1 1.13% 5.66% 4.3 7.1 2.4

20 3 1 1.65% 6.96% 4.1 7.5 2

10 3 1 2.92% 13.14% 4 6.9 2.1

5 3 1 6.66% 29.29% 4.1 6.4 2.2

3 3 1 11.27% 50.77% 4.2 7.8 2.3

2 3 1 17.01% 68.95% 4.2 8.2 2

1 3 1 19.19% 96.07% 29.9 48.9 4.1

0.5 3 1 21.03% 97.31% 49 60 4.5

30 1 2 0.52% 14.81% 5.4 9 2.5

20 1 2 0.74% 22.46% 5.5 9 2.4

10 1 2 1.60% 42.01% 5.1 9 2.3

5 1 2 3.17% 78.10% 5.6 10.3 2.6

3 1 2 3.69% 98.07% 59 108 2.3

2 1 2 3.78% 99.54% 102 168 9.5

1 1 2 3.65% 99.53% 156 192 12.8

0.5 1 2 3.19% 99.57% 198 222 11.8

30 2 2 0.55% 7.69% 4.2 7.4 2.3

20 2 2 0.88% 10.21% 4.1 6.6 2.1

10 2 2 1.59% 23.28% 4.1 7.1 2.1

5 2 2 3.44% 38.93% 3.9 8.7 2.1

3 2 2 5.28% 67.26% 4.7 8.4 2

2 2 2 6.39% 97.74% 24.1 43.9 3.9

1 2 2 7.25% 98.71% 51 78 4.3

0.5 2 2 7.11% 98.51% 78 96 4.4

30 3 2 0.53% 5.02% 4.1 7 2.1

20 3 2 0.81% 7.08% 4.1 6.9 2

10 3 2 1.70% 15.55% 4.3 7.3 1.9

5 3 2 3% 31.49% 4.3 6.9 1.9

3 3 2 4.88% 51.39% 4.4 7.3 2.1

2 3 2 7.60% 66.31% 4.3 8.8 2

1 3 2 11.34% 97.10% 19.9 31.9 3.5

0.5 3 2 9.33% 96.01% 52.4 72 2.7

58

 Initially, there were two reasons for simulating the ASK-IT system. The first was that the ASK-

IT service providers needed to know if the system can satisfy non-functional user requirements,

one of which was the delivery of the service within ten seconds. The frequency of service requests

was calculated to be one request per 30 seconds. The second was to find out how would the system

scale when service demand increased for use in preparing the projectôs exploitation plan.

The Signavio tool allows simulating a process model involving several roles. For each simulation

scenario, it allows to define:

¶ available resources for each role (how many instances of this role are available)

¶ the frequency in which a role can appear and start executing

¶ the percentage of times that a XOR gateway selects one or the other execution path

¶ activity duration (distribution type, mean and standard deviation values)

¶ number of simulations for each scenario

For the simulations several executions of function prototypes were used to define the activities

durations. Moreover, the network latency in the message receiving activities was added. All the

distributions are normal, since it is the most commonly used distribution and there must be specific

circumstances to use others. Then, different scenarios were defined by varying the frequency of

PAs appearing in the network and asking for services, the number of brokers serving the requests

and the number of complex providers. The experiments are presented in Figure 30. It is validated

that the system with one broker and one complex provider can respond within 10 seconds in the

worst case when there is an incoming request every 30 seconds. Moreover, we can see what the

expected quality of service will be, as the requests frequency rises. As far as system scaling is

concerned we see that by adding more broker instances, the system performance has a better gain

than by adding complex providers. Finally, we can claim that with three broker instances the

system can offer the same quality of service (respond within ten seconds) even if we have a request

every two seconds.

59

Figure 30: Average and maximum response times

