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Abstract

The development of high-level behavior for autonomous robots is a time-consuming task 

even for experts. The Kouretes Statechart Editor (KSE) is a Computer-Aided Software Engineering 

(CASE) tool, which allows to easily specify a desired robot behavior as a statechart model utilizing 

a  variety  of  base  robot  functionalities  (vision,  localization,  locomotion,  motion  skills, 

communication) developed within the Monas robotic software architecture framework. This thesis 

presents an extension to  KSE, which allows to define generic  agent  behaviors  using automatic 

framework-independent code generation, as long as the underlying software framework is written in 

the C++ programming language. This way a user can program behaviors for physical robots or 

software agents that can be executed on any platform using any C++ software framework. This 

thesis demonstrates the transparent use of the extended KSE in the SimSpark 3D soccer simulation, 

the Wumpus world, and the Starcraft Broodwar strategy game. 



Περίληψη

Η  ανάπτυξη  υψηλού  επιπέδου  συμπεριφορών  για  αυτόνομα  ρομπότ  είναι  μια  αρκετά 

χρονοβόρα διαδικασία ακόμη και για τους ειδικούς αυτού του τομέα. Το Kouretes Statechart Editor 

(KSE) είναι ένα Computer-Aided Software Engineering (CASE) εργαλείο, το οποίο επιτρέπει τον 

εύκολο σχεδιασμό μίας επιθυμητής ρομποτικής συμπεριφοράς, η οποία βασίζεται σε διαγράμματα 

καταστάσεων, αξιοποιώντας μια ποικιλία βασικών ρομποτικών λειτουργιών (όραση, εντοπισμός, 

μετακίνηση,  κινητικές  διεξιότητες,  επικοινωνία)  που  έχουν  αναπτυχθεί  στα  πλαίσια  της 

αρχιτεκτονικής  ρομποτικού  λογισμικού  Monas.  Στην  παρούσα  διπλωματική  εργασία 

παρουσιάζουμε μία επέκταση του εργαλείου KSE, μέσω της οποίας μας επιτρέπεται να ορίσουμε 

συμπεριφορές αυτόνομων πρακτόρων χρησιμοποιώντας μια γεννήτρια που παράγει πηγαίο κώδικα, 

ο οποίος δεν έχει κάποια ιδιαίτερη εξάρτηση απο το περιβάλλον στο οποίο πρόκειται να εκτελεστεί, 

αλλά προϋποθέτει  μόνο ότι  η ευρύτερη αρχιτεκτονική λογισμικού στην οποία θα ενσωματωθεί 

βασίζεται  στην  γλώσσα  προγραμματισμού  C++.  Με  αυτό  τον  τρόπο  ο  χρήστης  μπορεί  να 

προγραμματίσει συμπεριφορές για πραγματικά ρομπότ ή πράκτορες λογισμικού που μπορούν να 

εκτελεστούν σε οποιαδήποτε πλατφόρμα χρησιμοποιεί C++. Στην εργασία αυτή επιδεικνύουμε την 

διάφανη λειτουργία του αναβαθμισμένου εργαλείου KSE δημιουργώντας συμπεριφορές αυτόνομων 

πρακτόρων για  το  περιβάλλον  προσομοίωσης  ρομποτικού  ποδοσφαίρου  SimSpark  3D,  για  τον 

δημοφιλή κόσμο του Wumpus και για το παιχνίδι στρατηγικής Starcraft Broodwar. 
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Chapter 1

 

Introduction

1.1 Motivation

Nowadays artificial intelligence systems are being applied to a wide variety of domains, like 

the Internet industry, the video-game industry, health-care industry and many more. These artificial 

intelligence  systems are  utilized  to  work  autonomously  towards  achieving a  user-defined goal, 

depending on the domain they are being applied to. Moreover, we divide these systems into single-

agent systems and  multi-agent systems (collection of single agents);  as agents, we refer to the 

modules  of  the  system that  act  autonomously.  In  either  case,  these  systems  can  be  described 

abstractly by the behavior they demonstrate when being applied to a specific environment. Thus, we 

can see that is of most importance to be able to define or edit the behavior of such a system at an 

abstraction layer that separates us from the hardware level of the system. 

Developing an agent behavior for a specific environment from scratch can be a tedious task, 

even  for  experts.  This  led  the  programming  community  to  develop  various  Computer  Aided 

Software Engineering (CASE) tools, which simplify this kind of tasks. The majority of these tools 

are developed in order to work with a specific underlying hardware architecture.  One such tool is 

the  Kouretes  Statechart  Editor  (KSE)  CASE tool.  KSE provides  the  user  with  an interface  for 

defining a statechart-based agent behavior for  the  Monas framework. The Monas framework is a 

software architecture developed by our Robotic Soccer team Kouretes primarily for the Aldebaran 

Nao humanoid robots. KSE provides an easy and user-friendly graphical interface for all the phases 

of  the  development  of  an  artificial  intelligence  agent  behavior,  according  to  the  ASEME 

methodology,  a  model-driven  software  engineering  methodology  from  the  Agent-  Oriented 

Software Engineering (AOSE) domain. Unfortunately, when we create a behavior using KSE we 

are bound to use the Monas framework and the real robot in order to test it. We wanted to be able to 

use the benefits provided by KSE in order to develop agent behaviors for other frameworks besides 

Monas. The need for a tool like this arises, because in many cases we want to be capable of testing 
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our developed team behaviors in a simulated environment (e.g. the SimSpark 3D Simulator), but not 

on the real Nao robots. However, the SimSpark platform is not compatible with the Monas robotic 

software architecture, which we use for deploying behaviors on the Nao robots. This is an important 

extension, because when we work on a simulated environment, we are free to work without the real 

robots and we can avoid many of the shortcomings imposed to us by hardware issues. 

1.2 Contribution

Our  approach  aims  towards  expanding  the  KSE  tool  for  generic  agent  behavior 

development. We do this by creating a new source code generator, the Generic C++ Generator, that 

can be configured during runtime in order to generate a behavior for any user-defined framework, 

as long as it supports C++. This gives us the opportunity of testing our statechart-based behaviors 

on a simulator rather than testing them on the real Nao robots.

We  test  our  solution  in  three  diverse  environments:  the  SimSpark  3D  Robotic  Soccer 

Simulator,  the Wumpus World Simulator,  and the StarCraft  Brood War strategy game. The first 

environment simulates a 3D world, where every agent in it is represented by a simulated Nao robot, 

the second is a 2D world ,where an agent tries to solve the famous Wumpus maze, and the third is a 

famous strategy game developed by Blizzard. We develop and generate agent behaviors for these 

three environments, following the exact same procedure and, thus, we demonstrate the transparent 

use of the extended KSE in various C++-based domains. 

1.3 Thesis Outline

As mentioned above, the main contribution of this thesis is the expansion of KSE with a new 

C++  generic  source  code  generator  (GGenerator)  in  order  to  provide  a  tool  for  developing 

statechart-based agent behaviors, according to the ASEME methodology, that can be applied to any 

user-defined  framework,  as  long  as  this  framework  is  implemented  in  the C++  programming 

language.

In Chapter 2, we give a brief report about the tools and the methods we use throughout the 

development of our GGenerator. At first, we present the Eclipse Modeling framework, along with 

the concept of model-driven engineering. Then, we  review the various software tools (like IAC-

Monas  and  KSE)  that  make  use  of  the  ASEME methodology  and  we  discuss  the  advantages 

ASEME provides to model-driven engineering. At last, we introduce the concepts of statecharts and 

13
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blackboard software architecture.

In Chapter 3, we state our problem. We start by giving brief information about artificial 

intelligence software systems. More specifically, we talk about the artificial intelligence software 

agents that are a vital part of these systems and we introduce the concept of defining a behavior for 

such  an  agent.  We,  then,  introduce  various  aspects  of  automatic  programming,  like  generative 

programming  and,  finally,  we  present  some  of  the  related  work  that  has  been  done  for  the 

aforementioned problem.

In Chapter 4, we start by giving a brief explanation for the need of a tool like Ggenerator 

and we also present our approach towards the solution of the problem stated in Chapter 3. Then, we 

explain in an abstract way our tool and the way we embedded it as a new module to the KSE 

framework. Afterward, we explain in a detailed way the steps we took in order to implement our 

new source-code generator. We discuss thoroughly the technical aspects of our implementation and 

the ideas and methodologies used. Next, we introduce the idea of a generic blackboard interface, 

which is a vital part of our software architecture.  The idea of using a generic blackboard interface 

is explained thoroughly in this chapter, since it is the glue that holds our system together. Then, we 

present  technical  aspects of our new source code generator,  like the new transition expressions 

grammar.  We demonstrate the use of our new grammar for a sample test  (surveillance camera 

system).  We also present the idea of properties files and their use as configuration files for our 

blackboard  interface.  Our  blackboard  interface  can  target  any C++ framework as  long as  it  is 

configured with the appropriate properties files.

In Chapter 5, we present the results taken when using the new GGenerator along with the 

KSE tool for creating behaviors for three different and very diverse frameworks; SimSpark 3D 

Robotic  Soccer  Simulator,  Wumpus  World  Simulator,  and  StarCraft  Brood  War.  At  first,  we 

demonstrate  a  standard  “three-step  procedure” for  developing  agent  behaviors  for  specific 

environments with the use of tools that the expanded KSE provides. In the first case, we created a 

behavior for an agent that can interact with SimSpark, in the second case, we created a behavior that 

can interact with the Wumpus simulator, and, in the third case, we developed a behavior that can 

interact with the StarCraft environment. Moreover, we demonstrate a cooperative scenario for the 

SimSpark 3D simulator. Before we close chapter 5, we give the results of our three simulations and 

we underline the fact that the same procedure was used in order to develop the behaviors for the 

three different frameworks. Part of the code that our GGenerator produces is presented for all of the 

aforementioned environments. This code includes the generated blackboard interface along with the 

14



Georgios L. Papadimitriou                                                                                                                                       Introduction  

code generated for a transition expression and for the agent's behavior. 

Finally in Chapter 6, we can find the conclusion of this thesis along with our ideas and plans 

for future work. We pinpoint the major differences between the three platforms we used in our 

examples and we discuss the contribution of this thesis and the way we want to use it in the future.

Background

15
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Chapter 2 

 

Background

In this chapter we are going to discuss concepts that already exist and are used by this thesis. 

It acts both as a reference, as well as an introduction to the reader to familiarize with the various 

fields that this thesis combines. At first we present the tools we used in our implementation; then, 

we continue by describing the main data  modules  (e.g statecharts)  and methodology  (ASEME, 

Blackboard architecture) that we used towards building our software application.

2.1 Model-Driven Engineering and the Eclipse Modeling Project

Over  the  past  five  decades,  software  researchers  and  developers  have  been  creating 

abstractions  that  help  them program in  terms  of  their  design  intent  rather  than  the  underlying 

computing environment – for example, CPU, memory, and network devices – and shield them from 

the complexities of these environments. Model-driven engineering technologies offer a promising 

approach  to  address  the  inability  of  third-generation  languages  to  alleviate  the  complexity  of 

platforms  and  express  domain  concepts  effectively. Model-driven  engineering  (MDE) is  a 

software development methodology which focuses on creating and exploiting domain models (that 

is,  abstract  re-presentations of the knowledge and activities  that govern a  particular  application 

domain) , rather than on the computing (i.e. algorithmic) concepts.

 The MDE approach is meant to increase productivity by maximizing compatibility between 

systems  (via  reuse  of  standardized  models),  simplifying  the  process  of  design  (via  models  of 

recurring  design  patterns  in  the  application  domain),  and  promoting  communication  between 

individuals and teams working on the system (via a standardization of the terminology and the best 

practices used in the application domain). A modeling paradigm for MDE is considered effective if 

its models make sense from the point of view of a user that is familiar with the domain, and if they 

can  serve  as  a  basis  for  implementing  systems.  The  models  are  developed  through  extensive 
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communication  among  product  managers,  designers,  developers  and  users  of  the  application 

domain. As the models approach completion, they enable the development of software and systems.

The  Eclipse  Modeling  Project  (EMP) is  a  top-level  project  at  Eclipse 

(www.eclipse.org/modeling, Budinsky F. 2003). In contrast, the core of the project, EMF, has been 

in  existence for as long as  the Eclipse platform itself.  Today the modeling project  is  largely a 

collection of projects related to modeling technologies. This collection was formed to coordinate 

and focus on model-driven software development capabilities within Eclipse. The introduction of 

the Amalgamation project ushered in the beginnings of a Domain Specific Language (DSL) focused 

development environment, although it has a long way to go before mainstream developers can use 

it.

 The  Modeling  project  is  organized  logically  into  projects  that  provide  the  following 

capabilities:  abstract  syntax  development,  concrete  syntax  development,  model-to-model 

transformation, and model-to-text transformation. A single project, the Model Development Tools 

(MDT) project, is dedicated to the support of industry-standard models. Another project within the 

Modeling project focuses on research in generative modeling technologies.

Specifically  EMP consists  of  EMF (Eclipse  Modeling  Framework), QVT (  Query:  Val-  

idation:  Transaction  ),  M2M  (  Model-to-Model  transformation  ),  M2T  (  Model-  to-Text  

transformation  ),  TMF  (  Textual  Modeling  Framework  )  and  GMF  (  Graphical  Modeling  

Framework ). EMF allows the developer to define a DSL language in an abstract syntax. EMF has 

as an output a model that describes a new language. QVT provides query, validation and transaction 

features for the EMF models. M2M provides Operational Mapping Language that allows model- 

to-model transformation for EMF models. M2T allows model-to-text by using JET ( Java Emitter 

Template ) or Xpand as a template engine. TMF is still under development and does not offer a lot 

of  capabilities,  but  its  purpose  is  to  provide  a  textual  editors  with  syntax  highlighting,  code 

completion and build for EMF models. In the other hand, GMF provides graphical editors for EMF 

models. 

2.2 The Xpand Language 

Xpand was developed from scratch as a part of the openArchitectureWare platform (oAW). 

While there are already many template languages available,  the authors of the framework have 

realized that  an effective template  development is  only possible with an easy-to-learn,  domain-

17
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specific language (DSL) for code generation, as well as good tool support. The Xpand language 

itself  has a small  but  sufficient vocabulary.  Beside its  own capabilities,  it  can access functions 

implemented in the Xtend programming language, which is another domain-specific language that 

is contained in the oAW framework (Klatt B. 2007).

The openArchitectureWare system is based on a workflow engine which executes different 

processing  steps,  like  model  instantiation,  validation,  model2model  and  model2text 

transformations.  Figure  2.1  shows  an  example  workflow.  The  components  can  be  configured 

arbitrarily so that it is possible to parse multiple models and combine them into an internal abstract 

syntax graph. Also, multiple transformers for model2model transformations with a validation step 

after each transformation could be configured, as well as multiple generators for different target 

artifacts. 

            Fig. 2.1 oAW example workflow 

In this  workflow the code generation (or model2text transformation) step will  be linked to the 

workflow definition. 

The workflow is defined in an XML descriptor file. A generator can be configured as shown 

in figure 2.2. First of all, the generator class is defined in the component tag. Inside this tag the 

required meta models are referenced so that they can be accessed by the generator. Then, the main 

template  that  will  be processed is  referenced.  The last  more complex outlet  tag sets  the target 

directory for the generated artifacts and it includes the JavaBeautifier to produce better formatted 

Java code (http://wiki.eclipse.org/Xpand). 

Example

... 
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<component id="generator" 

class="org.openarchitectureware.xpand2.Generator2"> 

<metaModel idRef="emf"/> 

<metaModel idRef="uml2"/> 

<metaModel idRef="profile"/> 

<expand value="Template::define FOR mySlot"/> 

<outlet path="main/src-gen"> 

<postprocessor 

class="org.openarchitectureware.xpand2 

.output.JavaBeautifier"/> 

</outlet> 

</component> 

... 

Fig. 2.2 Workflow example

Xpand itself is independent from the type of the source model. Different source models are 

handled by a parser linked to the openArchitectureWare workflow. Parsers can be written for any 

kind of source model but openArchitectureWare provides out-of-the-box parsers for EMF, Eclipse-

UML2, different UML-Tools (MagicDraw, Poseidon, Enterprise-Architect, Rose, XDE) and textual 

models using the Xtext framework as well as for XML and Visio. 

The advantages of Xpand are the fact that it is source model independent, its vocabulary is 

limited allowing for a quick learning curve while the integration with Xtend allows for handling 

complex  requirements.  Then,  EMP allows  for  defining  workflows  that  can  help  a  modeler  to 

achieve multiple parsings of the model with different goals. 

2.3 IAC2Monas

IAC2Monas (Paraschos A. 2010) is a code generator, which extracts a statechart model in 

C++ language compatible with Monas architecture from a IAC model. IAC2Monas was developed 

by Alexandros Paraschos for Kouretes. IAC2Monas is developed in Xpand and java language and 

uses these java packages: 

• org.eclipse.emf.mwe.utils.Reader 

• org.eclipse.xpand2 

• java.util.HashSet 
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• java.util.List 

• java.util.Set 

• java.util.StringTokenizer 

2.4 ASEME Methodology 

The Agent Systems Engineering MEthodology (ASEME, Spanoudakis N. 2009) is an Agent 

Oriented Software Engineering (AOSE) methodology for developing multi-agent systems. It uses 

the  Agent MOdeling LAnguage (AMOLA), which provides the syntax and semantics for creating 

models of multi-agent systems covering the analysis and design phases of a software development 

process. It supports a modular agent design approach and introduces the concepts of intra- and inter-

agent control. The former defines the agent’s behavior by coordinating the different modules that 

implement his capabilities, while the latter defines the protocols that govern the coordination of the 

society of the agents. 

ASEME applies a model driven engineering approach to multi-agent systems development, 

so that the models of a previous development phase can be transformed to models of the next phase. 

Thus, different models are created for each development phase and the transition from one phase to 

another is assisted by automatic model transformation, including model to model  (M2M), text to 

model  (T2M),  and model to text  (M2T) transformations leading from requirements to computer 

programs. 

The ASEME Platform Independent Model (PIM), which is the output of the design phase, is 

a statechart that can be instantiated in a number of platforms using existing Computer Aided System 

Engineering (CASE) tools. The Agent Modeling Language (AMOLA, Spanoudakis N. et.al. 2008) 

describes  both  an  agent  and  a  multi-agent  system.  The  concept  of  functionality  is  defined  to 

represent  the  thinking,  thought  and  senses  characteristics  of  an  agent.  Then,  the  concept  of 

capability  is  defined as  the  ability  to  achieve  specific  goals  (e.g.  the  goal  to  decide  in  which 

restaurant  to  have  a  diner  this  evening)  that  requires  the  use  of  one  or  more  functionalities. 

Therefore,  the  agent  is  an  entity  with  certain  capabilities,  including  inter  and  intra-agent 

communication.  Each  of  the  capabilities  requires  certain  functionalities  and  can  be  defined 

separately from the other capabilities. 

The capabilities are the modules that are integrated using the intra-agent control concept to 

define an agent. Each agent is considered a part of a community of agents, i.e. a multi-agent system. 
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Thus, the multi-agent system’s modules are the agents and they are integrated into it using the inter-

agent  control  concept.  The  intra-agent  control  concept  allows  the  assembly  of  an  agent  by 

coordinating a set of modules, which are themselves implementations of capabilities that are based 

on  functionalities.  Here,  the  concepts  of  capability  and  functionality  are  distinct  and  comple-

mentary. 

The  agent  developer  can  use  the  same  modules,  but  different  assembling  strategies, 

proposing a different ordering of the modules execution producing in that way different profiles of 

an agent. This approach provides an agent with a decision making capability that is based on an 

argumentation based decision making functionality. Another implementation of the same capability 

could be based on a different functionality, e.g. multi-criteria decision making based functionality. 

Then, in order to represent system designs,  AMOLA is based on statecharts, a well-known 

and general language and does not make any assumptions on the ontology, communication model, 

reasoning process or the mental attitudes (e.g.  belief-desire-intentions) of the agents giving this 

freedom to the designer. The AMOLA models are related to the requirements analysis, analysis and 

design phases of the software development process. AMOLA aims to model the agent community by 

defining the protocols that govern agent interactions and each part of the community, the agent, 

focusing in defining the agent capabilities and the functionalities for achieving them. The details 

that instantiate the agent’s functionalities are beyond the scope of AMOLA that has the assumption 

that they can be achieved using classical software engineering techniques. 

In the analysis phase ASEME defines agent roles and protocols that govern their interaction. 

To model the behavior of the roles at this phase uses liveness formulas. The liveness formula is a 

process model that describes the dynamic behavior of the role by itself,  i.e. in the systems role 

model (SRM) or the role's behavior inside a protocol, i.e. in the agent interaction protocol model 

(AIP). It connects all the role’s activities using the Gaia operators (Table 2.1). The liveness formula 

defines  the  dynamic  aspect  of  the  role,  that  is  which  activities  execute  sequentially,  which 

concurrently and which are repeating.                                      

Operator Interpretation

 x . y x followed by y

 x | y x or y occurs

 x* x occurs 0 or more times

 x+ x occurs 1 or more times
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 x~ x occurs infinitely

[x] x is optional

x || y x and y interleaved

                    Table 2.1. Operators for Liveness Formula

An AIP defines one or more participating agent roles, the rules for engaging (why would the 

roles participate in this protocol), the outcomes that they should expect in successful completion 

and the process that they would follow in the form of a liveness formula. 

The System Roles Model (SRM) is mainly inspired by the Gaia roles model. A role model is 

defined for each agent role.  The role model contains the following elements:  a)  the interaction 

protocols that this agent will be able to participate in, b) the liveness model that describes the role’s 

behavior.  The liveness  model  has  a  formula  at  the  first  line  (root  formula)  where  activities  or 

capabilities can be added. A capability must be decomposed to activities in a following formula. 

The liveness formula grammar has not been defined formally in the literature, thus it is defined here 

using the Extended Backus-Naur Form (EBNF), which is a metasyntax or metametamodel notation 

used  to  express  context-free  grammars.  It  is  a  formal  way to  describe  computer  programming 

languages and other formal languages. It is an extension of the basic  Backus-Naur Form (BNF) 

metasyntax notation.  EBNF was originally developed by Niklaus Wirth (1996). The EBNF syntax 

for the liveness formula (Table 2.2),  using the  BNF style followed by Russell  and Norvig,  i.e. 

terminal symbols are written in bold. 

After completing the functionality Table the engineer can pass to the design phase in which 

EAC and  IAC models are created.  The Inter-Agent  Control  (EAC) is  defined as a statechart.  It 

should  be  initialized  by  transforming  the  agent  interaction  protocols  of  the  analysis  phase  to 

statecharts. Harel and Kugler (2004) present the statechart language adequately, but not formally. 

David’s  UML semantics for statecharts has been used as basis for the definition of the  AMOLA 

statecharts as it is the first intended for object-oriented language implementation. These models not 

only formally describe the elements of the statechart, they also focus on the execution semantics. It 

is assumed that, as long as the language of statecharts is not altered, a statechart can be executed 

with any semantics available depending on the available  CASE tool.  The formal  model that is 

adopted here-in is a subset of the ones presented in the literature as there are several features of the 

statecharts not used herein, such as the history states (which are also defined differently in these 
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works). 

Before formally defining the statechart for the EAC model, the elements that compose the 

transition  expressions  are  examined.  Then,  the  transition  expressions  are  defined  in  EBNF. 

Transitions are usually triggered by events. Such events can be: 

• a sent or received (or perceived, in general) inter-agent message 

• a change in one of the executing state’s variables (also referred to as an intra-agent message)

• a time-out 

• the ending of the executing state activity 

                                              Table 2.2. The liveness formula grammar in EBNF format 

The  latter  case  is  also  true  for  a  transition  with  no  expression.  Note  that  each  state 

automatically starts its activity on entrance. A message event is expressed by P(x,y,c) where P is the 

performative, x is the sender role, y the receiver role and c the message body. The items that the 

designer can use for defining the state transition expressions are the message performatives, the 
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ontology used for defining the messages content and the timers. An agent can define timers as 

normal variables initializing them to a value representing the number of milliseconds until they 

timeout (at which time their value is equal to zero). The transition expressions can use the time-out 

unary predicate, which is evaluated to true if the timer value is equal to zero, and false otherwise. 

Timers are initialized in the action part of a transition expression, while the time-out predicate can 

be used in both the event and condition parts of the transition expression depending on the needs of 

the designer. 

Besides  inter-agent  messages  and timers  there is  another  kind  of  events,  the  intra-agent 

messages. The change of a value of a variable can have consequences in the execution of a protocol. 

The variables taking part in a transition expression imply the fact that they are defined in the closest  

common ancestor OR state of the source and target states of the transition or higher in the statechart 

nodes hierarchy. The intention regarding the performative definition is not to enumerate all possible 

performatives, the modeler can define such as he sees fit. 

In the agent level, the Intra-Agent Control (IAC) is defined using statecharts in the same way 

with  the  Inter-Agent  Control  model  (EAC).  The  difference  is  that  the  top  level  state  (root) 

corresponds to the modeled agent (which is named after the agent type). One  IAC is defined for 

each agent type. 

ASEME  provides  a  tool  for  transforming  liveness  formulas  to  statecharts.  The 

Liveness2Statechart  transformation  is  achieved  by  using  the  “Gaia  operators  transformation 

templates” (shown in Table 2, Spanoudakis N. et. al. 2009) for transforming the process part of the 

agent interaction protocol model to a statechart. Thus, the statechart models (EAC and/or  IAC) of 

the design phase are auto-generated and the developer just needs to add the transition expressions.

2.5 Kouretes Statechart Editor (KSE)

The  Kouretes  Statechart  Editor  (KSE,  Topalidou-Kyniazopooulou  2012)  is  a  Computer-

Aided  Software  Engineering  (CASE)  tool  that  was  developed  by  Angelica  Topalidou 

Kyniazopoulou for Kouretes. It enables the developer to easily specify a desired robot behavior as a 

statechart model utilizing a variety of base robot functionalities (vision, localization, locomotion, 

motion skills, communication ).

KSE adopts the Agent Systems Engineering Methodology (ASEME) model-driven approach. 

Thus, it guides the developer through a series of design steps within a graphical environment that 
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leads to automatic source code generation . KSE was used for developing the behavior of the Nao 

humanoid robots of our team Kouretes competing in the Standard Platform League of the RoboCup 

competition. 

table 2.3  Gaia operators transformation templates

KSE is a CASE tool designed to support all steps of ASEME-based behavior development through 

an  intuitive  graphical  interface.  In  particular,  liveness  formulas  are  given  inplain  text  and  are 

automatically converted to an initial statechart model, where the designer can graphically add the 

appropriate transition expressions. The syntax of transition expressions is formally specified by an 

EBNF grammar. Each statechart can be associated with a source code repository containing the base 

activities; in our case, a repository of Monas activities. KSE also allows the creation of statecharts 

from scratch (without liveness formulas) and graphical editing and modification of any existing 

statechart. To ensure that the designer will not produce an invalid statechart with respect to Harel’s 

statechart language (Harel D. Kugler H. 1998) and the  EBNF grammar,  KSE offers a validation 
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procedure which identifies mistakes in the statechart and warns the user.  The final statechart is 

automatically  converted  to  source  code  which  is  integrated  with  the  associated  source  code 

repository and is cross-compiled for execution. 

2.6 Statecharts

Finite state machines  (FSM) are computational models that consist of a set of states, an 

initial state, an input alphabet and a transition function that maps every legal state combination to an 

other legal state combination,  given an input symbol.  Hence,  FSMs, “specifies the sequence of 

states an object goes through during its lifetime in responses to events, together with its responses to 

those events”.  FSMs achieve better results from textural representations when describing reactive 

rather than transactional systems. 

Statecharts are state diagrams, very useful for behavioral modeling. They differ from other 

forms of state diagrams, such as the classical finite state machines and its derivatives, because they 

address two major problems that mainly affect the number of nodes and transitions: hierarchy and 

orthogonality. Additionally, statecharts incorporate a powerful visual representation which improves 

the  readability  and  understanding  by  the  reader.  Statecharts  do  not  have  a  single  formalism. 

Historically, the first one is Classical Harel’s statecharts, while the other two were developed almost 

concurrently —borrowing elements from each other —are the object-oriented version of Harel’s 

statechart (implemented in Rhapsody tool, Harel D. Kugler H. 1998) and the UML State Machine 

Diagrams.  In  this  thesis,  the  formalism  that  is  followed  is  a  modified  version  of  Rhapsody 

statecharts (each difference is stated explicitly). 

There are three types of states in a statechart, OR-states, AND- states, and basic states. OR-

states  have  sub-states  that  are  related  to  each  other  by  “exclusive-or  ”,  and  AND-states  have 

orthogonal components that are related by “and ”(they are executed in parallel). Basic states are 

those at the bottom of the state hierarchy, that is those that have no sub-states. The state at the 

highest level (the one with no parent state) is called the root. The active states at a specific time, 

consist the active configuration of the statechart. 

The execution flow is decided from the transitions between the states. Each transition from 

one state (source) to another (target)  can be labeled by an expression,  whose general syntax is 

e[c]/a, where e is the event that triggers the transition; c is a condition that must be true in order for  

the transition to be taken when e occurs; and a is an action that takes place when the transition is 

taken. All elements of the transition expression are optional. A transition with an empty transition 

expression,  all  three  parts  missing,  is  called  a  null  transition.  Moreover,  there  are  compound 
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transitions (CT). These transitions are sequences of transition segments, connected by special states 

(defined  as  connectors)  between  a  source  and  a  target  state,  or  form an  other  point  of  view, 

transitions that can have more than one source or target states. There are two kinds of CTs: AND-

connectors and OR-connectors. AND connectors are of two types, joint transitions (more than one 

sources) and fork transitions (more than one targets). The most commonly used OR-connector is the 

conditional  transition.  The scope of a  transition is  the lowest  level  OR-state  that  is  a  common 

ancestor of both the source and target states. When a transition occurs all states in its scope are 

exited and the target states are entered. 

Additionally,  two  more  categories  of  states  exist  to  help  the  realization  of  specific 

behaviours on statecharts: psedo-states and transition connectors. In the former category we can 

locate START and END states, witch represent the initial transition and a sink (a state with no 

outgoing transitions).  In  the  latter  category  we can  find  out  states  that  are  used on compound 

transitions such as the junction, condition, fork and join connectors. 

As being defined for FSMs, statechart are changing configurations given an event. Then, 

none,  one  or  more  transitions  (or  compound  transitions)  are  activated  and  change  the  active 

configuration of the statechart, leaving it in a legal —statecharts can never “stop”their execution in 

the middle of a transition segment, a psedo-state, a connector or by activating a composite state and 

not it’s substate —and stable (no more null-transitions can be executed) configuration.

 Problems arise when more than one transitions can be executed at a specific execution step, 

but each one leads to a different active configuration. The point is crucial as if the two or more 

transitions are in different scopes, the one with the lower scope has priority, but if the transitions are 

in the same scope, then we arbitrary select one (the selection depends of the implementation).  

Multiple concurrently active statecharts are considered to be orthogonal components at the 

highest level of a single statechart.  If one of the statecharts becomes non-active (e.g.  when the 

activity it controls is stopped) the other charts continue to be active and that statechart enters an idle 

state until it is restarted.

2.7 Blackboard architecture

Since our in our thesis we build a blackboard software architecture (Hayes-Roth B. 1985), 

we feel obligated to present a brief report about blackboard systems and their mechanics.

A blackboard  system  is  an  artificial  intelligence  application  based  on  the  blackboard 
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architectural model, where a common knowledge base, the "blackboard", is iteratively updated by a 

diverse group of specialist knowledge sources, starting with a problem specification and ending 

with a solution. Each knowledge source updates the blackboard with a partial solution when its 

internal constraints match the blackboard state. In this way, the specialists work together to solve 

the problem. The blackboard model was originally designed as a way to handle complex, ill-defined 

problems, where the solution is the sum of its parts.

Blackboard systems are not new technology. The first blackboard system, the Hearsay-II 

speech understanding system, was developed nearly twenty years ago. While the basic features of 

Hearsay-II remain in today’s blackboard systems, numerous advances and enhancements have been 

made as a result of experience gained in using blackboard systems in widely varying application 

areas. 

Unlike most AI problem-solving techniques that implement formal models, the blackboard 

approach  was  designed  as  a  means  for  dealing  with  ill-defined,  complex  applications. 

Unconstrained by formal requirements, researchers and developers have had considerable flexibility 

in inventing and applying advanced techniques to blackboard architectures. However, the lack of 

formal specifications has also contributed to confusion about blackboard systems and their proper 

place in the AI problem-solving toolkit. 

2.7.1 The Blackboard Metaphor 

Blackboard-based problem solving is often presented using the following metaphor: 

Imagine  a  group  of  human  specialists  seated  next  to  a  large  blackboard.  The  

specialists are working cooperatively to solve a problem, using the blackboard as  

the workplace for developing the solution. Problem solving begins when the problem  

and  initial  data  are  written  onto  the  blackboard.  The  specialists  watch  the  

blackboard, looking for an opportunity to apply their expertise to the developing  

solution. When a specialist finds sufficient information to make a contribution,  

she  records  the  contribution  on  the  blackboard,  hopefully  enabling  other  

specialists to apply their expertise. This process of adding contributions to the  

blackboard continues until the problem has been solved. 

This simple metaphor captures a number of the important characteristics of blackboard systems, 
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each of which is described separately below. 

• Independence of expertise (I think, therefore I am.) 

The human specialists in the metaphor were not trained to work solely with that specific 

group  of  specialists.  Our  metaphorical  specialists  learned  their  expertise  in  vastly  different 

situations.  Some specialists  have  years  of  work  experience,  others  recently  received  academic 

degrees, and still others are outside consultants brought in specifically for this particular problem. 

Each specialist is a self-contained expert on some aspects of the problem and can contribute to the 

solution independently of the particular mix of other specialists in the room. 

Blackboard systems also have this functional modularization of expertise. Each knowledge 

module (called a Knowledge Source, or simply a KS) is a specialist at solving certain aspects of the  

overall problem. No KS requires other KSs in making its contribution. Once it finds the information 

it needs on the blackboard, it can proceed without any assistance from other KSs. Furthermore, 

without changing any other KSs, additional KSs can be added to the blackboard system, poorer 

performing KSs can be enhanced, and inappropriate KSs can be removed. Kss perform relatively 

large computations, reflecting the processing required to implement their specialty. 

Rule-based systems are also modular, but at the level of individual rules. Unlike the large-

grained scope of KSs, the small size of each rule prevents full independence. A pair of rules that  

implement iteration by using a counter value and a termination rule is an example of two rules that  

cannot be designed independently or removed individually without affecting the performance of the 

other rule. 

• Diversity in problem-solving techniques (I don’t think like you do.) 

There are vast differences in how human experts think about and solve problems. Yet, these 

differences do not prevent our metaphorical group of specialists from solving the problem. 

In blackboard systems, the internal representation and inferencing machinery used by each 

KS is similarly hidden from direct view. The blackboard approach views each KS as a black box in 

which the internal workings are invisible from the outside. It does not matter if one KS is a forward-

chaining  rule-based  system,  another  uses  a  neural  network  approach,  another  uses  a  linear-

programming algorithm, and still another is a procedural simulation program. Each of these diverse 

approaches can make its contributions within the blackboard framework. 

• Flexible representation of blackboard information (If you can draw it, I can use it.) 
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Our metaphorical human specialists could use any intelligible doodles when adding their 

contributions  to  the  blackboard.  They might  use formulas,  diagrams,  sentences,  checklists,  and 

numerous circles and arrows. 

Representational flexibility is similarly important in blackboard systems. The blackboard 

model does not place any prior restrictions on what information can be placed on the blackboard. 

One blackboard application might use assertional blackboard data and require that consistency be 

maintained.  Another  application might  allow incompatible  alternatives  to  be  maintained on the 

blackboard, with each alternative available for opportunistic1 exploration of the solution. 

• Common interaction language (What’d you say?) 

While flexible representation of blackboard information is important, there must also be a 

common understanding of the representation of the information placed on the blackboard in order 

for the specialists to interact. The formulas, diagrams, sentences, and checklists must be understood 

by all specialists who need to access the information. If our metaphorical specialists consisted of 

specialists of differing nationalities, the use of different languages on the blackboard would hamper 

or even prohibit sufficient interaction to solve the problem. 

Similarly,  KSs in blackboard systems must be able to correctly interpret the information 

recorded on the blackboard by other  KSs.  Private  jargon shared by only a  few KSs limits  the 

flexibility of applying other KSs on that information. In practice, there is a trade off between the 

representational expressiveness of a specialized representation shared by only a few KSs and a fully 

general representation understood by all KSs. Finding the proper balance is an important aspect of 

blackboard-application engineering. 

• Positioning metrics (You could look it up.) 

If the problem being solved by our human specialists is complex and the number of their  

contributions  made  on  the  blackboard  begins  to  grow,  quickly  locating  pertinent  information 

becomes a problem. A specialist should not have to scan the entire blackboard to see if a particular 

item has been placed on the blackboard by another specialist. 

One solution is to subdivide the blackboard into regions, each corresponding to a particular 

kind of information. This approach is commonly used in blackboard systems, where different levels, 

planes, or multiple blackboards are used to group related objects. 

Similarly, ordering metrics can be used within each region, to sort information numerically, 
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alphabetically,  or  by  relevance.  Advanced  blackboard-system frameworks  provide  sophisticated 

multidimensional metrics for efficiently locating blackboard objects of interest. 

Efficient retrieval is needed to support the use of the blackboard as a group memory for 

contributions generated by earlier  KS executions.  An important characteristic of the blackboard 

approach  is  the  ability  to  integrate  contributions  for  which  relationships  would  be  difficult  to 

specify by the KS writer in advance. 

For example, a KS working on one aspect of the problem may put a contribution on the 

blackboard that does not initially seem relevant or immediately interesting to any other KS. Only 

until much later, when substantial work on other aspects of the problem has been performed, is 

there enough context to realize the value of the early contribution. By retaining these contributions 

on the blackboard, the system can save the results of these early problem-solving efforts, avoiding 

recomputing them later (when their importance is understood). Additionally, the system can notice 

when promising contributions placed on the blackboard remain unused by other KSs and possibly 

choose  to  focus  problem-solving  activity  on  understanding  why  they  did  not  fit  with  other 

contributions. 

Locating previously generated contributions of interest  is dependent upon the context of 

other information being used by a KS. This makes a simple pattern-matching specification of the 

specific contributions difficult and computationally inefficient. Many contributions placed on the 

blackboard may never prove useful,  and maintaining the state of numerous, partially completed 

patterns is expensive. Therefore, an important characteristic of blackboard systems is enabling an 

executing KS to quickly and efficiently inspect the blackboard to see if relevant information is 

present. 

The  developers  of  the  original  Hearsay-II  system  recognized  that  rule-like  condition 

specifications of KS interest would be ineffective. Instead, they opted for a combination of simple 

triggering-condition specifications to be followed by a more detailed procedural examination of the 

blackboard before activating the KS for execution. 

• Event-based activation (Is anybody there?) 

In the metaphor, specialists do not interact directly. Each specialist watches the blackboard, 

looking for an opportunity to contribute to the solution. Such opportunities arise when an event 

occurs (a change is made to the blackboard) that enables the specialist to act. Blackboard events 

include  the  addition  of  some  new  information  to  the  blackboard,  a  change  in  some  existing 
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information, or the removal of existing information. Some specialists may also respond to external 

events, such as receiving a telephone call, noticing it is lunch time, and so on. 

KSs in blackboard systems are similarly triggered in response to blackboard and external 

events. Rather than having each KS scan the blackboard (as in the metaphor), each KS informs the 

blackboard system about the kind of events in which it is interested. The blackboard system records 

this information and directly considers the KS for activation whenever that kind of event occurs. 

• Need for control (It’s my turn.) 

What if most of the human specialists respond to an event and all rush to the blackboard 

simultaneously? Some means of ordering their contributions is needed. (A single piece of chalk is a 

simple control strategy, but one that favors the swiftest rather than the most appropriate specialist.) 

A manager, separate from the individual specialists, can be used to restore civility at the 

blackboard. The manager’s job is to consider each specialist’s request to approach the blackboard in 

terms of what the specialist can contribute and the effect that the contribution might have on the 

developing solution.  The manager attempts to keep problem solving on track,  to insure that all 

crucial  aspects  of  the  problem are receiving  attention,  and to  balance the  stated  importance of 

different specialist’s contributions. 

Blackboard systems have a similar approach to controlling KSs. A control component that is 

separate from the individual KSs is responsible for managing the course of problem solving. The 

control component can be viewed as a specialist in directing problem solving, by considering the 

overall  benefit  of  the  contributions  that  would  be  made by triggered  KSs.  When the  currently 

executing KS activation completes, the control component selects the most appropriate pending 

KS activation for execution. 

Importantly, the control component must be able to make its selection among pending KS 

executions without posessing the expertise of the individual KSs. Without such a separation, the 

modularity and independence of KSs would be lost. Therefore, the control component must be able 

to ask for estimates from triggered KSs in making its control decisions. 

When a KS is triggered, the KS uses its expertise to evaluate the quality and importance of 

its  contribution.  Each  triggered  KS  informs  the  control  component  of  the  quality  and  costs 

associated with its contribution, without actually performing the work to compute the contribution. 

Instead, each KS generates estimates of the computations that would be generated by using fast, 

low-cost, approximations developed by the KS writer. These estimates are of the form, ”If I am 
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executed,  I’ll  generate  contributions  of  this  type,  with  these  qualities,  while  expending  these 

resources.” The control component uses these estimates to decide how to proceed. 

• Incremental solution generation (Step by step, inch by inch. . .) 

In the metaphor, the solution is generated incrementally as each specialist adds contributions 

to  the  blackboard.  No  single  specialist  can  solve  the  problem.  Instead,  specialists  refine  and 

extended one another’s contributions, building the solution incrementally. 

Blackboard  systems  also  operate  incrementally.  KSs  contribute  to  the  solution  as 

appropriate, sometimes refining, sometimes contradicting, and sometimes initiating a new line of 

reasoning.  Blackboard systems are particularly effective when there are  many steps toward the 

solution and many potential paths involving those steps. By opportunistically exploring the paths 

that are most effective in solving the particular problem, a blackboard system can significantly 

outperform a problem solver that uses a predetermined approach to generating a solution. Now that 

we’ve considered the metaphor in detail, let’s restate the blackboard model of problem solving. 

2.7.2 The Blackboard Model of Problem Solving 

A blackboard system architecture is presented in figure 2.2, and in figure 2.3 we can see that  

a system based in this architecture scheme consists of three main components. Below we give a 

thorough explanation for each one of these components.

      

  Fig. 2.3 The blackboard architecture scheme
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    Fig. 2.4 Basic components of the Blackboard Model

• Knowledge sources (KSs) are independent modules that contain the knowledge needed to 

solve the problem. KSs can be widely diverse in representation and inference techniques. 

• The blackboard is a global database containing input data, partial solutions, and other data 

that are in various problem-solving states. 

• A control component makes runtime decisions about the course of problem solving and the 

expenditure  of  problem-solving  resources.  The  control  component  is  separate  from the 

individual KSs. In some blackboard systems, the control component itself is implemented 

using a blackboard approach (involving control KSs and blackboard areas devoted to con- 

trol). 

Knowledge Sources 

Each KS is separate and independent of all other KSs. A KS needs no knowledge of the 

expertise, or even the existence, of the others; however, it must be able to understand the state of the 

problem-solving process and the representation of relevant information on the blackboard. 

Each KS knows the conditions under which it can contribute to the solution and, at appropri- 

ate times, attempts to contribute information toward solving the problem. This knowledge that each 

KS has about when to contribute to the problem-solving process is known as a triggering condition. 

34

         BlackBoard

Knowledge
sources

Control
component



Georgios L. Papadimitriou                                                                                                                                       Background  

KSs are much larger grained than the individual rules used by expert systems. While expert 

systems work by firing a rule in response to stimuli, a blackboard system works by firing an entire  

knowledge module,  or KS, such as an expert  system; a neural  net or fuzzy logic routine;  or a 

procedure. 

Unlike our metaphor, KSs are not the active agents in a blackboard system. Instead, KS 

activations  (sometimes  called  KS  instances)  are  the  active  entities  competing  for  execution 

resources.  A KS activation  is  the  combination  of  the  KS knowledge  and  a  specific  triggering 

context.  The  distinction  between  KSs  and  KS  activations  is  important  in  applications  where 

numerous events trigger the same KS. In such cases, control decisions involve choosing among 

particular applications of the same KS knowledge (focusing on the appropriate data context), rather 

than  among  different  KSs  (focusing  on  the  appropriate  knowledge  to  apply).  KSs  are  static 

repositories of knowledge, KS activations are the active processes. 

The blackboard 

The blackboard is a global structure that is available to all KSs and serves as: 

• a community memory of raw input data; partial solutions, alternatives, and final solutions; 

and control information 

• a communication medium and buffer 

• a KS trigger mechanism. 

Blackboard applications tend to have elaborate blackboard structures, with multiple levels of 

analysis or abstraction. 

Occasionally, a system containing subsystems that communicate using a global database is 

incorrectly presented as a blackboard system. (A set of FORTRAN routines using COMMON is an 

extreme example of this  view).  True blackboard systems involve closely interacting KSs and a 

separate control mechanism. 

Control component 

An explicit control mechanism directs the problem-solving process by allowing KSs to respond 
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opportunistically to changes on the blackboard database. On the basis of the state of the blackboard 

and the set of triggered KSs, the control mechanism chooses a course of action. 

A blackboard system uses an incremental reasoning style: the solution to the problem is built 

one step at a time. At each step, the system can: 

• execute any triggered KS 

• choose a different focus of attention, on the basis of the state of the solution. 

Under a typical control approach, the currently executing KS activation generates events as 

it makes contributions to the blackboard. These events are maintained (and possibly ranked) until 

the executing KS activation is completed. At that point, the control components use the events to 

trigger and activate KSs. The KS activations are ranked, and the most appropriate KS activation is 

selected for execution. This cycle continues until the problem is solved. 

Blackboard systems support a variety of control mechanisms and algorithms, so a choice of 

opportunistic control techniques is available to the application developer. 

2.8 The C++ Programming Language

C++ (pronounced cee plus plus) is a general purpose programming language (Srtoustrup B.  

2000). It has imperative, object-oriented and generic programming features, while also providing 

the  facilities  for  low  level  memory  manipulation.  It  is  designed  with  a  bias  for  systems 

programming (e.g. embedded systems, operating system kernels), with performance, efficiency and 

flexibility of use as its design requirements. C++ has also been found useful in many other contexts, 

including desktop applications, servers (e.g e-commerce, web search, SQL), performance critical 

applications  (e.g.  telephone switches,  space probes)  and entertainment  software,  such as  video-

games. It is a compiled language, with implementations of it available on many platforms.

C++ is standardised by the International Organization for Standardization (ISO), which the 

latest  (and  current)  having  being  ratified  and  published  by  ISO in  September  2011.  The  C++ 

programming  language  was  initially  standardised  in  1998.  The  current  standard  (C++  11) 

supersedes these, with new features and an enlarged standard library. Before standardization, C++ 

was developed by Bjarne Stroustrup at Bell Labs, starting in 1979, who wanted an efficient flexible 

language (like  C)  that  also  provided  high level  features  for  program-organization.  Many other 
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programming languages have been influenced by C++, including C#, Java, and newer versions of C 

(after 1998).

Problem Statement
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Chapter 3

Problem Statement

3.1 Autonomous Agent and Multi-Agent systems 

An autonomous agent is an intelligent agent operating on an owner's behalf but without any 

interference of that ownership entity. An intelligent agent, according to a multiply cited statement 

(source: wikipedia) is described as follows:

“ Intelligent  agents  are  software  entities  that  carry  out  some  set  of 

operations on behalf of a user or another program with some degree of  

independence  or  autonomy,  and  in  so  doing,  employ  some  knowledge  or 

representation of the user's goals or desires.”

Such an agent is a system situated in, and part of, a technical or natural environment, which 

senses any or some status of that environment, and acts on it,  over time, in pursuit of its own 

agenda. Such agenda evolves from drives (or programmed goals). The agent acts to change part of 

the environment or of its status and influences what it sensed.

Non-biological  examples  include  intelligent  agents,  autonomous  robots,  and  various 

software agents, including artificial life agents, and many computer viruses. Biological examples 

are not yet defined.

A multi-agent system is a computerized system composed of multiple interacting intelligent 

agents within an environment. Multi-agent systems can be used to solve problems that are difficult 

or  impossible  for  an  individual  agent  to  solve.  Intelligence  may  include  some  methodical, 

functional, procedural or algorithmic search, find and processing approach. 

Although there is considerable overlap, a multi-agent system is not always the same as an 

agent-based model  (ABM).  The  goal  of  an  ABM is  to  search  for  explanatory  insight  into  the  
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collective behavior of agents (which don't necessarily need to be "intelligent") obeying simple rules, 

typically in natural systems, rather than in solving specific practical or engineering problems. The 

terminology of ABM tends to be used more often in the sciences, and Multi Agent Systems in 

engineering and technology. Topics where multi-agent systems research may deliver an appropriate 

approach include on-line trading, disaster response, and modeling social structures.

The agents in a multi-agent system have several important characteristics (source: wikipedia):

• Autonomy: the agents are at least partially independent, self-aware, autonomous

• Local views: no agent has a full global view of the system, or the system is too complex for 

an agent to make practical use of such knowledge

• Decentralization:  there  is  no  designated  controlling  agent  (or  the  system is  effectively 

reduced to a monolithic system)

Multi-agent systems, which have also been referred to as "self-organized systems", tend to find the 

best solution for their problems "without intervention". There is high similarity here to physical 

phenomena, such as energy minimizing, where physical objects tend to reach the lowest energy 

possible  within  the  physically  constrained  world.  For  example:  many  of  the  cars  entering  a 

metropolis  in  the  morning  will  be  available  for  leaving  that  same  metropolis  in  the  evening. 

The main feature which is achieved when developing multi-agent systems, if they work, is 

flexibility, since a multi-agent system can be added to, modified and reconstructed, without the need 

for detailed rewriting of the application. These systems also tend to be rapidly self-recovering and 

failure proof, usually due to the heavy redundancy of components and the self managed features, 

referred to above.

3.2 Developing Autonomous Agent Behaviors 

The task of developing an autonomous agent behavior is a tedious one when you try to build 

it  from scratch.  One has to  deal with many agent-modules that share a  lot  of diversities when 

building a software architecture for an autonomous agent. The problem for the user interested only 

in creating the behavior of the agent can, and should be, handled in a different and abstract way than 

the handling of the rest of the agent's basic modules, like the agent's hardware configuration (if any 

exists), or the agent's skills, communication etc. 
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Thus we can see that in order to focus our effort towards the development of the behavior,  

we must work on an abstraction layer that is independent of the underlying software and hardware 

architecture. The KSE tool, provides that layer to the user and propose a way of creating agent 

behaviors in standardized way exploiting the benefits that ASEME methodology has to offer. The 

problem with the aforementioned framework is that it is platform dependent and can work only 

when targeting a specific environment. KSE can generate behaviors for the Monas framework only. 

Our Robocup Team Kouretes use statecharts to define the behavior of the Nao robots they 

use in the competitions they participate. The Kouretes Statechart Editor (KSE) is a tool, developed 

by our  team, that  allows the user  to  design  quickly  a  new robot-behavior  or  change easily  an 

existing robot-behavior. Unfortunately, when using KSE we cannot test a statechart-based behavior 

prior to it's use on a real robot, and this takes a significant amount of time and patience in most 

cases.

The motivation behind the work presented in this thesis is the need for using a simulator 

when modeling a  robotic  team behavior.  Regularly testing new features  on the real  robots  has 

several shortcomings, i.e. the robots need maintenance after some hours, a number of people are 

needed in order to set  up an experiment with the robotic team in the lab,  and the experiments 

themselves tend to take quite long to setup and demonstrate. Thus, we decided that we needed to 

use a simulator for modeling and testing team behavior and when the simulation proved successful, 

then move to field tests with the real robots. The SimSpark simulation environment, which is also 

used for the RoboCup 3D soccer simulation league, was the ideal candidate for our goals. However, 

the SimSpark platform was not compatible with our Monas robotic software architecture, which we 

use for deploying behaviors on the Nao robots. 

3.3 Team Kouretes 

Team Kouretes is  the RoboCup team of the Technical University  of Crete and the only 

RoboCup SPL team founded in Greece. The team was founded in 2006 and participates in the main 

RoboCup  competition  ever  since  in  various  leagues  (Four-Legged,  Standard  Platform,  MSRS, 

Webots), as well as in various local RoboCup events (German Open, Mediterranean Open, Iran 

Open,  RC4EW,  RomeCup)  and  RoboCup  exhibitions  (Athens  Digital  Week,  Micropolis, 

Schoolfest). Distinctions of the team include: 2nd place in MSRS at RoboCup 2007; 3rd place in 

SPL-Nao, 1st place in SPL-MSRS, among the top 8 teams in SPL-Webots at RoboCup 2008; 1st  

place in RomeCup 2009; 6th place in SPL-Webots at RoboCup 2009; 2nd place in SPL at RC4EW 
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2010; and 2nd place in SPL Open Challenge Competition at RoboCup 2011 (joint team Noxious-

Kouretes). 

Fig. 3.1 The statechart model should be the same for real world and simulator  

In the RoboCup 2012 competition, the team succeeded to proceed to the second round- robin 

round and  rank among the  top-16 SPL teams  in  the  world.  Recently,  the  team participated  in 

AutCup 2012, in RoboCup Iran Open 2013, and in the RoboCup 2013 competition in Eindhoven. 

The members of the team are senior undergraduate and postgraduate ECE students of the Technical 

University of Crete working on their diploma thesis on RoboCup-related topics. RoboCup offers a 

great opportunity for research in artificial intelligence ( Kitano H. et.al. 1997) 

Kouretes started developing their own robotic software framework in 2008 and the 

code is constantly growing and gets maintained ever since. The team’s available code repository 

includes  a  custom  software  architecture,  a  custom  communication  framework,  a  graphical 

application for behavior specification, and modules for object recognition, state estimation, obstacle 

avoidance, behavior execution, and team coordination.

3.4 Robotics Simulators 

A robotics simulator is used to create embedded applications for a robot without depending 

physically on the actual machine, thus saving cost and time. In some case, these applications can be 

transferred on the real robot (or rebuilt) without modifications. The term robotics simulator can 

refer  to  several  different  robotics  simulation  applications.  For  example,  in  mobile  robotics 

applications, behavior-based robotics simulators allow users to create simple worlds of rigid objects 
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and light sources and to program robots to interact with these worlds. Behavior-based simulation 

allows for actions that are more biological in nature when compared to simulators that are more 

binary, or computational. In addition, behavior-based simulators may "learn" from mistakes and are 

capable of demonstrating the anthropomorphic quality of tenacity. In our case we want to be able to  

test our Kouretes robotic soccer team behavior in a simulated environment.

One  of  the  most  popular  applications  for  robotics  simulators  is  for  3D  modeling  and 

rendering of a robot and its environment. This type of robotics software has a simulator that is a 

virtual robot, which is capable of emulating the motion of an actual robot in a real work envelope.  

Some robotics  simulators,  such as Robologix and SimSpark 3D Robotic  Simulator  use physics 

engine  for  more  realistic  motion  generation  of  the  robot.  The  use  of  a  robotics  simulator  for 

development of a robotics control program is highly recommended regardless of whether an actual 

robot is available or not. The simulator allows for robotics programs to be conveniently written and 

debugged off-line with the final version of the program tested on an actual robot. Of course, this 

primarily holds for industrial robotic applications only, since the success of off-line programming 

depends on how similar the real environment of the robot is to the simulated environment. Sensor-

based robot actions are much more difficult to simulate and/or to program off-line, since the robot  

motion depends on the instantaneous sensor readings in the real world.

3.5 Automatic Programming

In  computer  science,  the  term  automatic  programming identifies  a  type  of  computer 

programming  in  which  some  mechanism  generates  a  computer  program  to  allow  human 

programmers to write the code at a higher abstraction level.

There has been little agreement on the precise definition of automatic programming, mostly 

because  its  meaning  has  changed  over  time.  David  Parnas,  tracing  the  history  of  "automatic 

programming"  in  published  research  (Parnas  D.  2001),  noted  that  in  the  1940s  it  described 

automation of the manual process of punching paper tape. Later it referred to translation of high-

level  programming  languages  like  Fortran  and  ALGOL.  In  fact,  one  of  the  earliest  programs 

identifiable as a compiler was called Autocode. Parnas concluded that "automatic programming has 

always been a euphemism for programming in a higher-level language than was then available to 

the programmer."

Generative programming (source wikipedia) is a style of computer programming that uses 
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automated source creation through generic frames, classes, prototypes, templates, aspects, and code 

generators to improve programmer productivity.  It  is  often related to code-reuse topics such as 

component or model based software engineering and product family engineering.

Source code generation (source wikipedia) is the act of generating source code based on an 

ontological  model  such as a  template  and is  accomplished with a  programming tool  such as  a 

template  processor  or  an   integrated  development  environment  (IDE).  These  tools  allow  the 

generation  of  source  code  through  any  of  various  means.  A macro  processor,  such  as  the  C 

preprocessor, which replaces patterns in source code according to relatively simple rules, is a simple 

form of source code generator.

Considering the above, we can see that in order to be able to develop agent behaviors for a 

variety of applications using an abstract methodology like ASEME, and test them in a variety of 

platforms and environments  like real robots or a  robotics simulators;  we must  have a tool that 

generates code for an agent behavior, based on a standard methodology, and also hasn't got any 

dependencies with the underlying framework it targets. Thus we need a source code generator for 

agent  behaviors  that  can  be  configured  during  runtime  in  order  to  target  any  user  specified 

framework.

3.6 Related Work

Here we give examples of already implemented software tools that try to solve problems 

closely related to ours. As we will see there are many CASE tools that provide the user with the 

capability of generating source code for an agent behavior. Here we will give a brief presentation 

for XABSL and Yakindu. 

XABSL

The Extensible Agent Behavior Specification Language (XABSL, http://www.xabsl.de/) is a 

very simple language to describe behaviors for autonomous agents based on hierarchical finite state 

machines. XABSL was developed to design the behavior of soccer robots. Behaviors specified in 

XABSL proved to be very successful during Robocup since 2004. The German Team has won the 

competitions in the Standard platform league (using Sony Aibo robots) in 2004, 2005, and 2008. 

The  Darmstadt  Dribblers  have  won  the  Humanoid  Kid  Size  competition  in  2009  and  2010. 

However, the usage of the language is not restricted to robotic soccer. XABSL is a good choice to 
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describe behaviors for all kinds of autonomous robots or virtual agents like characters in computer 

games.

 In order to start using XABSL tools for developing your agent behavior you only need three 

things:

•A text editor of your choice

•The XABSL-Compiler (ruby-based)

•The XabslEngine (C++ or Java library)

The behavior is described by a set of xabsl files. These have to be compiled to an intermediate code 

using the  XABSL-Compiler.  At  the  start-up of  the agent  this  intermediate  code is  read  by the 

XabslEngine  which  executes  the  behaviors  during  run-time.In  XABSL complex  behaviors  are 

described as hierarchical finite state machines. 

To use XABSL, you have to know four concepts: Agents, options, states and decision trees. 

In XASBL, an  agent  consists of a number of behavior modules called  options. The options are 

ordered  in  a  rooted  directed  acyclic  graph,  the  option  graph.  Moreover  options  are  behavior 

modules which make up the hierarchical  decomposition of the complex agent  behavior.  Lower 

hierarchy levels consist of primitives behaviors which are composed into more complex behavior 

options. Each option is a finite state machine. The states of an option define the actions that are 

active. The actions of a state can reference other options, thus allowing the decomposition of a task 

into  primitive options.  Decision trees  are  responsible  for  the  definition  of  the state  transitions. 

Decision trees can reference input symbols in order to access input data such as the agent's world 

state or sensory data.

Yakindu 

Yakindu  Statechart  Tools  (SCT,  http://statecharts.org/)  is  an  open  source  tool  for  the 

specification and development of reactive, event-driven systems with the help of state machines. It 

consists of an easy-to-use tool for graphical editing and provides validation, simulation and code 

generators for different target platforms. The users come from both the industrial and academic 

sectors.

The first version of Yakindu Statechart Tools was released in 2008 as part of the research 

project MDA for Embedded systems. In this research project, model-based development processes 

for the development of embedded systems based on the Eclipse project were developed. Since mid-
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2010 the Yakindu-Team has been working on Version 2.0. The first official version was released 

together with Eclipse version Juno.

Yakindu  (Figure  3.2)  is  a  free  toolkit  for  the  model  driven  development  of  embedded 

systems. Through the systematic use of models, it aims at an integrated development process as 

well as an increase in quality and maintainability. The Yakindu toolkit supports the development of 

both reactive, event-driven and data flow-oriented systems with the help of statecharts and block 

diagrams.  The  continuous  support  begins  with  graphical  modeling  tools,  includes  integrated 

validation and simulation, that allows for the early assessment of the models and offers efficient 

code-generators for the generation of source code for a target platform. Technologically, it is based 

on Eclipse-platform and integrates itself seamlessly into Eclipse-based workbenches and extends 

this in the direction of model-driven development. The main features of Yakindu Statechart tools 

are:

• smart combination of textual and graphical modeling

• syntactic and semantic validation of the state machines

• executable models via the simulation engine

• code generators for Java C and C++

The Yakindu toolkit allows to design embedded systems by using both statecharts and block-

diagrams  .  The  Yakindu  Statechart  Tools  (SCT)  allow  graphical  modeling  based  on  Harel 

statecharts.  They support all  essential  concepts like extended state variables,  hierarchical states, 

orthogonal states (also known as And-States or parallel regions) or History-States. This corresponds 

to the concepts that are used in modelling languages such as UML. The convenient model-editor 

integrates features such as model validation and simulation as well as the generation of source code. 

Below we see a screen-shot from the environment of Yakindu.
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Fig. 3.2 The Yakindu environment

Fig. 2.4 The Yakindu environmentOur Approach

Our Approach
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Chapter 4

 

Our Approach

As we mentioned in chapter 3, our Robocup Team Kouretes use KSE and statecharts to 

define the behavior of the Nao robots they use in the competitions they participate (Topalidou-

Kyniazopoulou et. al. 2013). We also mentioned that the KSE tool, developed by our team, is used 

to design quickly a new robot-behavior or change easily an existing robot-behavior. Unfortunately, 

we are bound to use the real Nao robots to test the statechart-based behaviors that we produce when 

using KSE. This takes a significant amount of time and patience in most cases. 

To avoid these problems we want  to be able  to  test  our statechart-based behaviors  in  a 

simulated environment prior to their use in a real robot. Various advantages arise when using a 

simulator for testing an agent behavior; the number of experiments we can try in a simulator can be 

enormous in contrast to the real world and this is crucial for machine learning algorithms. Also, we 

avoid any hardware issues that may occur when using a real robot. This means that we want be able 

to generate code for the simulation environment and for the real world based on the same statechart 

model.  

Thus, we decided to develop a platform-independent code generation component for the 

KSE tool. To this end, we added a number of platform-specific parameterization features at the code 

generation  tool.  Adopting  this  parametric  approach and provided the  correct  parameters  of  the 

underlying platform, we can now use the KSE tool for deploying platform-independent agents on 

any platform by exporting the generated code directly in the C++ programming language using the 

specification provided by the parameters. 

4.1 The KSE Generic C++ Generator

The Kouretes Statechart Editor (KSE) is a tool which enables the developer to easily specify 

a desired agent behavior as a statechart model utilizing a variety of base robot functionalities. More 

specifically, KSE supports (a) the automatic generation of the initial abstract statechart model using 
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compact liveness formulas, (b) the graphical editing of the statechart model and the addition of the 

required transition expressions, and (c) the automatic source code generation for compilation and 

execution  on  the  robot.  This  tool  is  build  for  developing  behaviors  for  the  Monas  robot  C++ 

architecture. 

The KSE Generic C++ Generator is a tool that extends KSE in order to give the developer 

the ablility to create  behaviors for agents, independent of their architecture and their environment. 

By this we mean that the KSE GGenerator enables the user to create agent behaviors for different  

platforms and  different environments,  with the only prerequisite being C++. Also,  the old KSE 

provides us with the functionality of automatic transformation of liveness formulas to statechart 

model  (  Text-to-Model  (or  T2M),  transformation).  As  long  as  we  are  done  with  the  T2M 

ransformation we proceed to the next phase of development. We edit the model produced and we 

generate code for it (Model-to-Text (or M2T), transformation). In this phase we cannot use the M2T 

transformation  provided  by  KSE,  since  it's  implemented  to  generate  code  only  for  the  Monas 

architecture.

We meet  the above demands by extending the  statechart  engine used  on KSE with the 

addition of a generic blackboard interface, a new transition expression grammar for the engine and 

the creation of a new source code generator for our tool ( a new Model-to-Text transformation ).  

The blackboard interface is generated every time along with our statechart model source code by 

the KSE GGenerator during the M2T transformation and can target any C++ platform according to 

it's initialization. This interface along with our generator are integrated on KSE. By using the KSE 

GGenerator the user is able to create agent behaviors for any C++ framework. In figure 4.1 we 

show an abstract scheme of our GGenerator as a new module to the old KSE tool.

          Fig. 4.1 Our GGenerator as a new module to the old KSE
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4.2 Generic Blackboard 

We add a generic blackboard interface to the statechart engine used on KSE, to be able to 

bind  our  statechart  model  with  any  user-specified  framework.  In  order  to  achieve  this  the 

blackboard interface is created during the source code generation process and targets a specific 

environment according to it's  initialization and the parameters given .  This way the user is not 

concerned about model-framework compatibility issues because the created blackboard interface 

acts as a middleware between the statechart model and the targeted environment and handles their 

communication.

 The initialization of the blackboard interface depends on the properties files. The properties  

files are defined by the user during the early stages of the behavior development process. These are 

the include_classes.txt file and the instances.txt file. Both files are in text format and they are used 

by the KSE GGenerator tool. These files are responsible for generating a blackboard interface that 

targets a specific framework. In these files we add functions, variables and header files that are 

needed for the  communication between our statechart model and the targeted environment. In the 

first one we add the header files we want to include in our interface, and in the second one we add 

the functions and the variable instances we need.

 The creation  of  the  properties  files  requires  some knowledge about  the  framework we 

target. Before our blackboard interface is generated we have to point out the framework's modules 

that provides us with the information needed for the right communication between our statechart 

model and the environment. In most cases the information needed for creating an agent behavior, is 

the updated state of the targeted environment, or an update on the agent's sensor values, although 

we can use any kind of information the framework provides. Once we are aware of the framework's 

modules that provide the information we need we can easily create the properties files based on 

these modules. In chapter 5 we give three examples of how to create the properties files for three 

different platforms and we show the blackboard interfaces they generate for each one of them along 

with the properties files.

In our approach we also give the ability to the user to register variables in the blackboard 

interface by using the editing tool provided by KSE. This is extremely important because most of 

the times when we develop an agent behavior, we need many variables that a framework may not 

provide. These variables can be of any type and can be used in transition expressions along with the 

variables defined in the properties files. This combination helps us to make our system generic and 

also to avoid the tedious work of dealing with code every time we need to add a simple variable to 
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our statechart model. Also, this helps us for the inter-agent communication when we have more than 

one agents. 

Finally when we work on a specific platform we need to register our generic blackboard 

interface along with our statechart model on it. This has to be done in the last stage of our behavior 

development after we have finished with the properties files creation, and the code generation. In 

this last stage we instantiate our model on the platform and we are ready to test our behavior. In 

figure 4.2 we can see an abstract scheme that shows the use of blackboard interface as a middleware 

between our statechart engine and the targeted framework, and in figure 4.3 we can see the software 

architecture of our system.

 

                          

         Fig 4.2 Use of our generic Blackboard interface as a middleware

4.3 Transition Expression and C++ Generator

Since  we  changed  the  statechart  engine  used  on  KSE by  adding  a  generic  blackboard 

interface, we also need a different C++ generator from the one the old KSE tool used. Also the new 

statechart engine supports a different syntax for the transition expressions. Thus we create a new 

C++ generator for our extended statechart engine using the Eclipse Modeling Framework along 

with Xpand. We also create a new grammar for the transition expressions used in the statechart. The 

grammar is shown in EBNF format in Fig. 4.3.

Every  statechart  model  we  create  to  describe  an  agent  behavior,  contains  transition 

expressions that are  responsible for the right execution of the statechart.  These expressions are 

inserted  manually  by  the  user  during  behavior  specification  using  the  GGenerator  tool  and 

following the syntax shown in figure 4.3, for controlling the statechart execution . In a transition 

expression the user should be able to, optionally, define events and conditions, as well as multiple 
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actions if desired. Moreover in the transition expressions, the user should be able to use framework 

specific variables or user defined variables as  events conditions  and  actions,  for controlling the 

statechart execution. Either way these variables should be registered in the blackboard's interface in 

order for the transition expressions to work properly. In the first case we have the properties files 

discussed above to do the work for us. In the second case we use KSE to add any user defined 

variables we need for the expressions. It is very important to notice that we provide the user with 

the ability to create any kind of variables he finds necessary for the transition expressions during the 

graphical editing of the statechart model. 

As we can see the transition expressions are a vital part of our statechart engine. This means 

that it should be relatively easy for a user to edit them, even without having a good knowledge of 

the underlying framework he works with. To meet these demands, we created a user-friendly 

grammar for our transition expressions, which is independent of the underlying platform, and uses 

common syntactic rules for expressions. In the examples that we present in the next section we will 

see that, although we create behaviors for two different environments, we use the same syntax for 

the transition expressions for all  the statechart models that we create.

Fig. 4.3 Transition expression grammar in EBNF format
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transition expression = [event] [“ [” condition“ ]” ] [/actions]

event = string

condition = condExpr | condition operator condExpr

condExpr = variable operator variable

variable = string | varString

varString =  (letter+) string | (letter+) string ” .”  varString

actions = TimeoutAction | Action

TimeoutAction = TimeoutAction ” .”  letter+ ” .”  digit_list

Action = variable actionOp variable | Action “ ;”  Action

string = letter_or_digit | letter_or_digit string 

letter_or_digit = letter | digit

letter = ” a”  | ” A”  | ” b”  | ”  B”  | ” c”  | ” C”  | ” d”  | ” D”  | ... 

digit_list = digit | digit digit_list

operator = “ >”  | “ <”  | “ >=”  | “ <=”   | “ ==”  | “ &&”  | “ &”  | “ ||”  | “ |”  | “ !=”

actionOp = “ =”

digit = ” 0”  | ” 1”  | ” 2”  | ” 3”  | ... 
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                                                                             .

                                                                             .

      .

                            Fig. 4.4 The scheme of our software architecture for different frameworks

4.4 Transition Expression Example

In order to present the files and the code that is produced for a full transition expression 

according to our grammar rules we use a simple example. Below in figure 4.6 we show a statechart  

model which describes the behavior for a surveillance camera. The behavior we describe is simple: 

Based on the transition expression shown in the statechart, the camera will choose when to scan the  

area. [event1=Night, x=systemOn, y=lightsOn, action1=triggerAlarm]

Transition expression =event1[(x==true)&&(y==false)]/action1=false
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Fig. 4.5 Code for the event part of the transition expression

 

   Fig. 4.6 Statechart model for the surveillance               Fig. 4.7 Code for the action part of the transition expression

                       camera example

4.5 KSE Integration

As already mentioned above the KSE tool was used for creating behaviors for the Monas 

robot architecture. The tool is able to generate code for Monas based on a statechart model defined 
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 #include "../IEvent.h" 
     class TrEvent_0_2_2TOScan : public 
     statechart_engine::IEvent { 

    public: 
     TrEvent_0_2_2TOScan(string str):IEvent(str) { ;}
     };

#include "../IAction.h" 
class TrAction_test0_2_2 : public statechart_engine:: 
IAction { 
 public: 
void UserInit () {} 
int Execute() 
{ 
this->_blk->action1=false; 
 return 0; 
} 
};
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by the user.  The definition of the statechart  model is  based on liveness formulas.  The liveness 

formulas are submitted manually by the user to KSE and they describe the agent behavior we want 

to create. 

    Fig. 4.8 Code for the condition part of transition expression

In our extended KSE Generic C++ Generator we keep using the same process for creating an 

agent behavior, but we have made serious changes to the C++ generator of the tool, in order to be 

able to generate code for frameworks beside Monas. Since we wanted to use the same graphical 

interface provided by the old KSE for creating our agent behaviors we integrated our work on it. In 

figure  4.1  of  section  4.2.1,  we  present  an  abstract  model  that  shows  how  we  registered  our 

GGenerator as a new module to the old KSE. In this section we present the details of this procedure. 

We use an option provided by the old KSE tool in order to guide the KSE to use another generator 

for the creation of the statechart's source code. After this operation the new KSE GGenerator is 

ready to work as described above, and the source code that generates can work directly on a user-

specified framework. In chapter 5 (Results), we give two examples of agent behavior creation using 

the KSE Generic C++ Generator. For creating a new generator for KSE we used Eclipse Modeling 

Framework along with Java and Xpand.

 

54

#include "../ICondition.h" 
#include "../BlackBoard.h" 

class TrCond_test0_2_20_2_3 : public statechart_engine::ICondition 
{  
public: 
void UserInit () { } 
bool Eval() {   
if((this->_blk->x==true)&&(this->_blk->y==false))
{ return true; }
else{ return false; }}
};
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       Fig. 4.9 Initialize KSE with a new code generator 

           Fig. 4.10 Selecting the GGenerator

4.6 Implementation

Until now we have shown in an abstract form our software architecture and the way we use 

it.  In this section we present technical aspects of our software development. First we show the 

creation of our generic blackboard interface, next we present some of the templates we created in 

order to generate code using Xpand, and at last we show the created workflow that invokes our 

generator using Eclipse Modeling Tools.

4.6.1 Creating a Generic Blackboard Interface  

In order  to  be able  to  connect  our statechart  engine with a user  defined framework we 

decided to create a blackboard interface. Since our interface must not have any dependencies with 

underlying framework, we created a C++ class called BlackBoard to serve that cause. Prior to the 

user's configuration (properties files), the BlackBoard class holds information that is needed only in 

the  statechart's  mechanics(  e.g  the  timeouts  mechanism,  events  mechanism).  So  our  effort  was 

towards giving the ability to our tool to register to the  BlackBoard class any kind of information 

needed during the code generation phase. We should point out that the user is obligated to update 

this information using the modules provided by the underlying framework for this cause. In figure 

4.11 we show the BlackBoard interface class prior to the user's configuration and afterwards, for the 

simple surveillance camera example presented above, while in figure 4.12 we show the BlackBoard 

interface class after the code generation.
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                       Fig. 4.11 The BlackBoard interface class prior to it's configuration

As we can see the skeleton code of the  BlackBoard interface is remains intact during the 

code generation, and the only change that happens to the  BlackBoard  class is the registration of 

some new framework related variables needed for our behavior in order to work on the targeted 

environment. The new variable that comes from the properties files is  an object called worldInfo  

which is of type CameraInfo. The CameraInfo is a class that belongs to the camera's environment 

and  is  included  in  the  interface  according  to  the  properties  files  configuration.  The  boolean 

variables x and y, were registered during the editing of the statechart using the KSE editing tool. We 

demonstrate more thoroughly the use of our tool and the creation of properties files for a specific 

environment in chapter 5.
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#include <iostream> 
#include <string> 
#include <list> 
#include "MessageHub.h" 
#include "TimeStamp.h" 
using namespace std; 
using namespace statechart_engine; 

class BlackBoard 
{  
private: 
    string name; 
    string event; //current event  
public: 
    
   list<Time_stamp> *listTimeStamps;      
   BlackBoard(){} 
   BlackBoard(const string& str){name=str;} 
   virtual ~BlackBoard(){} 
   
  /** gives access to the instance of the blackboard */ 
  static BlackBoard& getInstance() 
  { 
    /** We have ONLY one instance of the blackboard */ 
    static BlackBoard instance; 
    return instance; 
  } 
   
 bool checkEvent(string str) 
  { 
    if(event==str)//&& str!="GameOver" 

{ 
 return true; 
}else 
return false; 

  } 
1

  //sets blackboard name 
  void setBlackBoardName(const string& str) 
  { 

  name=str; 
  } 

 //prints blackboard name 
  void printBlackBoardName() 
  { 
    cout<<"BlackBoard name is "<<name<<endl; 
  } 

  //clearing triggered timeouts 
void clearPassedTimeouts() 
{ 

list<Time_stamp>::iterator list_counter; 
for(list_counter=listTimeStamps->begin();list_counter!
=listTimeStamps->end();++list_counter) 

{ 
//if timeout is true => timeout is already 

triggered and has to be removed 
if(list_counter->getTrigger()==true) 
{ 

listTimeStamps-
>erase(list_counter); 

} 
} 

}//closing function 

#endif /* BlackBoard_H */ 

2
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                           Fig. 4.12 The BlackBoard interface class after the configuration and the code generation

4.6.2 Why Use the Blackboard Problem-Solving Approach? 

The blackboard model offers a powerful problem-solving architecture that is suitable in the 

following situations. 

• Many diverse, specialized knowledge representations are needed. KSs can be developed in 

the most appropriate representation for the data they are to handle. For example, one KS 

might be most naturally written as a rule-based system while another might be written as a 
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#ifndef BlackBoard_H 
#define  BlackBoard_H 
#include "CameraInfo.h" //added using properties 
files
#include <iostream> 
#include <string> 
#include <list> 
#include "MessageHub.h" 
#include "TimeStamp.h" 

using namespace std; 
using namespace statechart_engine; 

class BlackBoard 
{  
private: 
    string name;  
    string event; //current event
public: 
    
   list<Time_stamp> *listTimeStamps;  
       bool x;  //added using properties files
   bool y; //added using properties files
   CameraInfo worldInfo; //added using KSE editor
 
   BlackBoard(){} 
   BlackBoard(const string& str){name=str;} 
   virtual ~BlackBoard(){} 
   
  /** gives access to the instance of the blackboard */ 
  static BlackBoard& getInstance() 
  { 
    /** the ONLY instance of the blackboard */ 
    static BlackBoard instance; 
    return instance; 
  } 
  
  void setPlayMode(string str) 
  { 
   playMode=str; 
   }    

  string getPlayMode() 
  { 
    return playMode; 
   } 

1

  bool checkEvent(string str) 
  { 
    if(event==str)//&& str!="GameOver" 

{ 
 return true; 
}else 
return false; 

  } 

  //sets blackboard name 
  void setBlackBoardName(const string& str) 
  { 

  name=str; 
  } 

 //prints blackboard name 
  void printBlackBoardName() 
  { 
    cout<<"BlackBoard name is "<<name<<endl; 
  } 
  //clearing triggered timeouts 
void clearPassedTimeouts() 
{ 

list<Time_stamp>::iterator list_counter; 
for(list_counter=listTimeStamps->begin();list_counter!

=listTimeStamps->end();++list_counter) 
{ 

//if timeout is true => timeout is already 
triggered and has to be removed 

if(list_counter->getTrigger()==true) 
{ 

listTimeStamps-
>erase(list_counter); 

} 
} 

}//closing function 

  //for use in spl only 
  void attachTo(MessageHub* hub) 
  { 

 //implement for spl 
  } 
}; 

#endif /* BlackBoard_H */ 

2
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neural-net or fuzzy-logic routine. 

• An integration framework is needed that allows for heterogeneous problem-solving repre- 

sentations and expertise. For example, a blackboard is an excellent framework for combin- 

ing several separately established diagnostic systems. 

• The development of an application involves numerous developers. The modularity and in- 

dependence provided by large-grained KSs in blackboard systems allows each KS to be 

developed and tested separately. The software-engineering benefits of this approach apply 

during design, implementation, testing, and maintenance of the application. 

• Uncertain  knowledge  or  limited  data  inhibits  absolute  determination  of  a  solution.  The 

incremental approach of the blackboard system will still allow progress to be made. 

• Multilevel reasoning or flexible, dynamic control of problem-solving activities is required in 

an application. 

The blackboard approach has been applied in numerous areas, including the following (source:  

Wikipedia, Hayes-Roth, B. 1985): 

• knowledge-based simulation • symbolic learning 

• sensory interpretation • planning and scheduling 

• knowledge-based instruction • data fusion 

• design and layout • computer vision 

• command and control • case-based reasoning 

• process control 

In each of these applications, the scope of the problem to be solved was the prime factor in selecting 

a blackboard approach. That is, deciding whether to use a blackboard approach should be based on 

the problem-solving requirements discussed above, rather than the specific application area. 

4.6.3 Developing our Generator using Xpand and Workflows

In this section we present some of the Xpand templates we created during the development 

of our GGenerator. The templates we show are the condition template along with our BlackBoard 

interface template. Finally we present the workflow we created in order to invoke our GGenerator 
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and make a stand alone application. 

Fig. 4.13 BlackBoard interface Xpand template (pages 1-3) 

Fig. 4.14 BlackBoard interface Xpand template (page 4) 
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«FILE "BlackBoard.h"-» 
#ifndef BlackBoard_H 
#define  BlackBoard_H 
«ReadHeaderProperties()» 
#include <iostream> 
#include <string> 
#include <list> 
#include "MessageHub.h" 
#include "TimeStamp.h" 
using namespace std; 
using namespace statechart_engine; 
class BlackBoard 
{  
private: 
    string name;  
    string playMode;  //gameMode  
public:    
   list<Time_stamp> *listTimeStamps; 
   «ReadClassProperties()» 

               1                        

  «IF !variables.isEmpty -» 
       
   «DeclareVariables(variables)» 

«ENDIF-»  
   
   BlackBoard(){} 
   BlackBoard(const string& str)
{name=str;} 
   virtual ~BlackBoard(){} 
   
  /** gives access to the instance of the 
blackboard */ 
  static BlackBoard& getInstance() 
  { 
    /** the ONLY instance of the 
blackboard */ 
    static BlackBoard instance; 
    return instance; 
  } 
                           2

  void setPlayMode(string str) 
  { 
   playMode=str; 
   }    
 string getPlayMode() 
  { 
    return playMode; 
   } 

  bool checkEvent(string str) 
  {   if(playMode!
="GameOver")//==str)//&& str!
="GameOver" 
{ 

 return true; 
}else 
return false; 

  }

                          3

//sets blackboard name 
  void setBlackBoardName(const string& str) 
  { name=str; } 
 //prints blackboard name 
  void printBlackBoardName() 
  {  cout<<"BlackBoard name is "<<name<<endl; } 
  //clearing triggered timeouts 
void clearPassedTimeouts() 
{ 

list<Time_stamp>::iterator list_counter; 
for(list_counter=listTimeStamps->begin();list_counter!=listTimeStamps->end();++list_counter) 
{ 

//if timeout is true => timeout is already triggered and has to be removed 
if(list_counter->getTrigger()==true) 
{ listTimeStamps->erase(list_counter); } 

} 
}//closing function 
  //for use in spl only 
  void attachTo(MessageHub* hub) 
  {  //implement for spl  } 
}; 
#endif /* BlackBoard_H */ 

«ENDFILE» 
  
       4
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                                               Fig. 4.15 Condition Xpand template

Fig. 4.16 The workflow file for our GGenerator  
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<?xml version="1.0"?> 
<workflow> 

<property name="model" value="src/Models/StateChartExample_new.iac" /> 
<property name="src-gen" value="src-gen" /> 
<property name="statechart" value="src-gen" /> 
<property name="activities" value="src-gen/activities" /> 
<property name="transitions" value="src-gen/transitions" /> 
<!-- set up EMF for standalone execution --> 
<!--<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup" > 

<platformUri value=".."/> 
</bean>--> 

 <!--RegisterEcoreFile value="platform:/resource/IAC_EMF/metamodel/IAC.ecore"/--> 
<!-- load model and store it in slot 'model' --> 
<component class="org.eclipse.emf.mwe.utils.Reader"> 

<uri value="${model}" /> 
<modelSlot value="model" /> 
<firstElementOnly value="false" /> 

</component> 
<component class="org.eclipse.xpand2.Generator"> 

<metaModel id="mm" class="org.eclipse.xtend.typesystem.emf.EmfMetaModel" > 
<metaModelPackage value="IAC.IACPackage"/>  

</metaModel> 
<expand value="mainTemplate::model FOR model"/>  
<outlet path= "${statechart}" append="true" /> 
<outlet path= "${activities}" name="activities_outlet" /> 
<outlet path= "${transitions}" name="transitions_outlet" append="true"/> 
<beautifier class="org.eclipse.xpand2.output.JavaBeautifier"/> 

</component> </workflow> 

«IMPORT IAC» 

«EXTENSION JavaHelpers::NodeHelper» 

«EXTENSION JavaHelpers::TransExpr» 

«DEFINE Condition(String modelname) FOR IAC::Transition» 

«IF HasCondition(TE)-» 

«FILE TransitionName(modelname+source.label+target.label)+".h" transitions_outlet» 

#include "../ICondition.h" 

#include "../BlackBoard.h" 

// «name» 

class «ConditionName(modelname+source.label+target.label)» : public statechart_engine::ICondition {

public: void UserInit () { } 

bool Eval() { 

/* «getConditionOfExpression(TE)» */  

«getNaothConditionExpression(TE)»   } 

}; «ENDFILE» 

ICondition* «ConditionNameInst(modelname+source.label+target.label)» = new 
«ConditionName(modelname+source.label+target.label)»; 

_conditions.push_back( «ConditionNameInst(modelname+source.label+target.label)» ); 

«ENDIF-» 

«ENDDEFINE»
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4.7 Editing the Statechart Engine

We should point out that we made some enhancements in the statechart engine that the old 

KSE was using. Firstly, as we mentioned before, we added a blackboard interface to the statechart 

engine and we created the syntax used for the transition expressions. Secondly, we changed the 

code for the events.

In the Monas implementation the statechart checks for valid transitions starting from the 

state that is active in the lowest level (activity) when the statechart configuration is about to change. 

Moreover, it did not explicitly support events. This way, events were checked as conditions in the 

transition expressions. Our work added the support for events, and the statechart checks for valid 

transitions  with  respect  to  events  starting  from  the  highest  level  states  when  the  statechart 

configuration is about to change.

4.8 Summary                   

In this chapter we tried to explain our idea of using a generic blackboard interface in order to 

achieve a connection between a statechart-based autonomous agent behavior and a user defined 

framework. To do so, we expanded our statechart engine with a new class called BlackBoard and 

we gave the user the ability to utilize this class according to the environment he targets. We should 

also mention that we do not only achieve communication (between our behavior and the targeted 

framework) via the blackboard interface, but synchronization also. As long as the user utilizes the 

class properly using the properties files, he can then generate and edit behaviors for the platform he 

works with. 

Closing, we present all sorts of technical aspects concerning our implementation by showing 

parts of the code that our GGenerator generates, the Xpand templates that are used for this cause 

the workflow that invokes our new generator, and the changes we made in the statechart engine. We 

also show the connection of our GGenerator with the old KSE and how this extension solves our 

problem.

Results
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Chapter 5

 

Results

In this chapter we are going to test our approach using three different platforms to work with 

as an attempt to provide objective results. Since our main subject is to show that our KSE C++ 

GGenerator is platform independent we use three diverse frameworks for our examples. The only 

thing that the three platforms have in common is that they are both implemented in C++. 

 In the first example we work with SimSpark 3D Robotic Soccer Simulator , and we develop 

an agent behavior for it. In the second example we work with Wumpus World Simulator, and we 

create  a  behavior  for  it.  Moreover  we  create  a  team  of  agents  for  the  SimSpark  in  order  to 

demonstrate a cooperative scenario between the agents. At last, we develop a behavior for a very 

famous video game; the Starcraft Brood War strategy game. In all these cases we use the KSE C++ 

GGenerator  that  exploits  the  benefits  of  ASEME to  develop our  behaviors.  The procedure  we 

follow  for  generating  our  behaviors  is  identical  for  all  the  platfoms  although  they  simulate 

completely different environments. In the first one we have a 3D world with noisy sensor values, 

in the second one we have a two-dimensional environment with no noise added in the perception of 

our agent, and in the third we have a 3D dynamic environment with multiple agents and no noise. 

Below we give a brief explanation of the three platforms we use and their operation. Firstly, we 

present  the  SimSpark  3D  Robotic  Soccer  Simulator,  secondly  we  present  the  Wumpus  World 

Simulator, and finally the StarCraft game platform. In a next section we discuss more thoroughly 

about the major differences among these platforms. 

As we discussed in section 4 our purpose is to work on the high level of agent programming. 

By this we mean that we want to focus on developing the “brain” of the agent without having to 

deal with low-level programming like the agent's basic actions or agent-simulator communication 

issues (e.g agent-SimSpark communication). The two frameworks we present below are utilized in 

order to meet these demands. They both provide a number of agent basic activities for the simulator 

they target, and they both handle the communication between the agent and the simulator, giving us 
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the freedom to implement only the behavior of the agent. 

 Finally  we demonstrate  the  development  process  of  creating  agent  behaviors  for  these 

specific environments using the KSE C++ Generic Generator, and at last we present results from the 

use of our created behavior for the two simulation worlds.

5.1 Creating a Behavior for the SimSpark 3D Robotic Soccer Simulator

5.1.1 SimpSpark 3D Robotic Soccer Simulator

Platform overview 

The overall system consists of the Soccer Server and the agents, i.e. the player programs. 

The Soccer Server simulates the physical world: The playground, the ball and the bodies of the 

players according to the laws of physics. As parts of the body, the sensors and effectors of the 

players are simulated by the Soccer Server as well.

An agent is the “brain” of a player. It is an autonomous program to control the simulated 

body. The implementation of agents is explained separately. The interaction between the Soccer 

Server and an agent is performed by messages which contain the sensations and action commands, 

respectively. The system works cyclically with basic cycles of 20 msec: 

1. The server sends individual server messages with sensations to the agents. 

2. The agents can decide for new actions depending on their beliefs about the situation. 

3. The agents can send their agent messages to the server for desired actions. 

4. The server collects the agents messages and calculates the resulting new situation (poses of the  

players, ball movement etc.) according to the laws of physics and the rules of the game.

5.1.2 Simulation using SimSpark: The Soccer Server and the Monitor

Soccer Server

The  Soccer  Server  simulates  the  physical  world  for  simulated  soccer.  It  is  based  on 

SimSpark,  a  generic  physical  multi  agent  simulator  system  for  agents  in  three-dimensional 

environments (http://simspark.sourceforge.net/wiki/). It uses the Open Dynamics Engine (ODE) for 
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detecting collisions and for simulating rigid body dynamics. ODE allows accurate simulation of the 

physical properties of objects such as velocity, inertia and friction.

Besides  the  physical  simulation,  the  simulator  maintains  the  states  of  a  soccer  match 

according to  the decisions  of  an  automated  referee.  The referee  decides  about  the game states 

according to the soccer rules of the  RoboCup competitions. The server informs the agents about 

game states and prevents players from forbidden locations, e.g. crossing the halfway line before 

kick-off. 

Parameters  of  the  simulator  can  be  changed  by  the  various  configuration  files(rb-files) 

provided by Simspark. The field coordinates have their center in the middle of the playground, the 

x-axis points to the opponent goal. The dimensions of the soccer field are x = 18m by y = 12m. The 

center spot has a radius of 1.5 meters. Each goal is y = 2.1m by x = 0.6m with a height of z = 0.8m. 

The penalty area to each goal is y = 3.9m by x = 1.8m. The soccer field is surrounded by a border of 

10 meters in each direction. Space outside this border area is not reachable by an agent. The soccer 

ball has a radius of 0.042 meter and a mass of 26 grams. For an up to date list of all values please 

refer to (./rcssserver3d/naosoccersim.rb). 

At each corner of the soccer field, and at the goal posts, a distinctive flag is placed. The 

positions of these flags are fixed and known to each agent. Agents perceive the relative position of a 

subset  of  these  flags  and are  therefore  able  to  localize  themselves  on  the  soccer  field.  Agents 

distinguish flags through their identifier as shown in  Fig 5.1. While the markers for the flags are 

placed on ground level (z = 0.0m), the goalpost markers are placed on the top of each goalpost at a 

height of z = 0.8m. 

    

 Fig. 5.1 The dimensions of the field and the object markers on the field as perceived by an agent 
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Simspark Monitor

Simspark provides also a visualization: The Soccer Monitor visualizes the ongoing match on 

the  playground.  It  serves  as  a  user  interface  and allows  for  interventions  by  a  human referee, 

especially for game start and interrupts (e.g. in case of game stuck). 

 SimSpark  provides an internal monitor and an external one. The first one is part of the 

SimSpark server. It can be enabled by editing the configuration files of the server. The second one is 

called rcssmonitor3d and it either connects to a running SimSpark instance or replays a simulation 

run from a log file. 

                   Fig. 5.2 Soccer Monitor connected to a soccer simulation with 6 vs 6 robots (source: Wiki)

The SimSpark monitor renders the current simulation it and displays the running time, the 

play mode, and the goal scores, respectively. The monitor serves also as a user interface and accepts 

commands by key or mouse. These commands either control the movement of the monitor camera 

or send instructions back to the server as controls of the human referee. Below in Fig. 3 we give a 

table of the commands that the monitor accepts from the user.
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Fig. 5.3 List of Soccer Monitor commands

5.1.3 Robot Model used by the Soccer Server 

The simulated robot is based on the real robot Nao from the French company Aldebaran (cf.  

http://www.aldebaran-robotics.com).  This  robot  is  used  in  many scientific  projects  all  over  the 

world, it is also used in the Standard Platform League of  RoboCup  (cf. http://www.tzi.de/spl). Its 

height is about 57cm and its weight is around 4.5kg. Details of the physical properties are presented 

on the Wiki. We should point out that the simulator supports other robot models too.

 Actually,  there  are  some  differences  between  the  real  and  the  simulated  robot.  The 

simulated  robot  has  22  degrees  of  freedom,  while  the  real  one  has  only  21  (because  the 

HipYawPitch joints are controlled by only one motor). The motors of the simulated robot can be 

controlled only by setting an angular speed, while the motors of the real robot are controlled via 

torque and stiffness. Not all sensors of the real robot are available by the simulated one. Moreover, 

instead of the raw sensory data, the simulation provides preprocessed data in some cases (e.g. for 

the vision data). 

 

Simulated robot effectors: 

Below we present several effectors of the simulated robot.

• Each joint can be controlled separately by related hinge joint commands. The figure “Joints 
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of  the  Nao  model”  shows  all  joints  of  the  simulated  robot  with  their  names  and  their 

identifiers.

• The say effector allows to communicate textual “voice” messages to other agents via the 

Soccer  Server.  Note that other communication between agents (e.g.  via sockets)  are  not 

permitted by the rules. 

• Further effectors are dedicated to initialization (see Wiki for a detailed information). 

Simulated robot perceptors

The robot is equipped with several perceptors. SimSpark uses the notion “perceptor” 

because some sensation messages contain preprocessed data (“percepts”)  instead of raw sensor 

data. The simulated robot has the following perceptors: 

• Joint perceptors report the current angle of each joint. 

• Gyroscope and accelerometer keep track of radial and axial movements of the upper torso in 

the three dimensional space. 

• Force resistance perceptors in each foot indicate the actual pressure on it. 

• The visual perceptor presents objects from preprocessed images of the camera at the head. 

The view range is 120 degrees horizontally, and 120 degrees vertically. 

• The hear perceptor presents say messages from other players in textual format. 

• The game state perceptor informs about the actual play time and play mode. 

For  more  details  about  the  formats  and  contents  of  the  messages  please  refer  to  (http://sims-

park.sourceforge.net/wiki/).

 Fig. 5.4 The real Nao robot (source:Wiki)        Fig. 5.5 The virtual Nao in the simulation environment (source:Wiki)
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5.1.4 Communication between Agents and Soccer Server 

The  communication  between  the  Soccer  Server  and  the  agents  is  realized  by  message 

exchange using TCP (details are described in the Wiki). After starting, an agent must connect to the 

Soccer Server. Then it has to send the initialization messages (see below). 

For data transfer, the messages between the server and the agents are packed as byte streams. 

The  messages  use  S-expressions  (“symbolic  expressions”)  as  their  basic  data  structure.  S-

expressions are either strings, or lists of simpler S-expressions. They can be easily parsed.

The agent interacts with the Soccer Server like a central control program communicates with 

sensors and effectors of a real robot. Actually, some sensations are not presented as raw data but in 

an already preprocessed form as “percepts”, and  SimSpark  uses the term  “perceptor” instead of 

“sensor”. All sensations of a single cycle are sent together as a server message which has to parsed 

for access to the information of sensors. Similarly, the effector commands of a single cycle should 

be packed by the user-defined agent, to an agent message. 

For  more  information  about  the  messages  transmitted  during  the  agent-Soccer  Server 

communication, and about their format please refer to (http://sims-park.sourceforge.net/wiki/) or 

the SimSpark user manual.

5.1.5 Synchronization between the Server and the Agents 

As already presented in the overview, the basic cycle has a length of 20 msec. At each cycle, 

the server calculates the actual situation depending on the previous situation and the commands 

received from the agents. The calculation regards the physical laws and the implemented rules of 

soccer play.  Furthermore,  the server calculates the individual sensor information for each agent 

according to the new situation including the pose of the agent. This information is sent to the agents 

by  a  server  message  at  every  cycle,  but  not  all  perceptors  are  available  at  each  cycle:  Most 

importantly, the vision information comes only at each third cycle. 

At each cycle, an agent can process the server message and decide for the next actions. He 

can send related effector messages to the server at each cycle. In sync mode, the server waits for the 

agent messages of all agents until it starts to calculate the new situation. This results in a deadlock, 

if one agent does not send its messages. The sync mode can be switched on (off) by setting the flag  

agentSyncMode to true (false) in the configuration file spark.rb. In Real Time mode (if sync mode 

is switched off), the server will not regard the agent messages which do not come in time. If an 

agent messages comes in a later cycle, it will be processed in that cycle. Vice versa, the server will 
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send a server message at every cycle, which remains in the message stream until it is read by the 

agent. If an agent misses to read a message in time, then there can be several server messages in the 

stream, and the synchronization can be lost. 

The exchange of messages is interleaved as depicted in  Fig. 5  “Synchronization between 

Soccer Server and agent”. This corresponds to the time needed to process information in reality. 

Hence, an action command sent by the agent at cycle t will be processed by the server at cycle t+1 

and  the  result  can  be  observed  by the  agent  not  before  cycle  t+2.  This  must  be  regarded  for 

controlling, i.e. the control needs an appropriate forethought. 

        

                       Fig. 5.6 Synchronization between Soccer Server and the agent (source: Wiki) 

5.1.6 Simple Soccer Agent: C++ Framework for the SimSpark Simulator

Simple Soccer Agent (Mellman, Krause T. 2012) is  a C++ software architecture which is 

able  to  run  on the  SimSpark   simulator.  The underlying  framework we chose  is  based  on the  

software release of the RoboCup team Berlin United - Nao Team Humboldt; it is written in C++ and 

provides basic activities, such as Walk, Turn Left, Scan For Ball or Stand Up. More importantly it  

provides an easy interface for the user who want to focus only in developing the behavior of the 

agent.  When  using  Simple  Soccer  Agent,  the  user  is  not  concerned  about  implementing  basic 

activities for his agent nor implementing the communication and synchronization with the Soccer 

Server (Mellman H., Krause T 2010).

The  interface  provided  in  order  to  change  the  sample-agent's behavior  (e.g.  for  better 

coordination) is the  Cognition class interface  (Fig. 5.7 and Fig. 5.8). As its name suggests, the 

framework uses this class to provide an easy access to the user to all the robot's updated sensor 
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values, and all the information about the state of the simulated world. Based on these information 

the robot must execute its next action. A user can change the behavior of the robot by changing the 

files Cognition.cpp and Cognition.h accordingly. 

In order to register a new component to use for cognition, we use the interface provided by 

Cognition's initialization function (Fig. 5.7). If we want to edit the behavior of the agent we edit the 

Cognition's call  function (Fig. 5.8). (For more information please refer to the SimpleSoccerAgent 

documentation http://www.naoteamhumboldt.de/en/projects/simple-soccer-agent/).

Fig. 5.7 Fragment from Cognition.h                                               Fig. 5.8 Fragment from Cognition.cpp

5.1.7 Developing the Agent's Behavior using the Extended KSE 

In this example, we use GGenerator to create a behavior for an agent that plays soccer. Our 

simple behavior can be described as follows: The agent searches for the ball in the soccer field and,  

if the ball is found, the robot walks towards the ball and takes it in possession. If the game is over,  

the robot pauses. The first step is to create the properties files; these files are shown below. In fact, 

we just need to include the appropriate header files to gain access to those framework-provided 

variables  that  allow the  user  (and the  statechart!)  to  gain  information  about  the  game and the 

perception of the ball, but also request the execution of a motion.

Our purpose was to work only in the high level of agent programming (thus we mean the 

“brain” of the agent) and not to have to deal with low level programming such as agent actions 

(Walk,Kick etc), or agent-simulator technical aspects (e.g communication with the simulator ). The 

framework we choose meet these demands by providing basic activities like Walk, Turn Left, Scan 
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void init(naoth::PlatformDataInterface& platformInterface)  { 

platformInterface.registerCognitionInput(theSensorJointData); 

platformInterface.registerCognitionInput(theInertialSensorData); 

platformInterface.registerCognitionInput(theFSRData); 

platformInterface.registerCognitionInput(theAccelerometerData); 

platformInterface.registerCognitionInput(theGyrometerData); 

platformInterface.registerCognitionInput(theVirtualVision); 

platformInterface.registerCognitionInput(theImage); 

platformInterface.registerCognitionInput(theFrameInfo); 

platformInterface.registerCognitionInput(theSimSparkGameInfo); 

std::cout << "Cognition register end" << std::endl; }//end init

void Cognition::call() { 

// perceive the world information 

perception(); 

// make a decision what to do next 

decide(); 

}//end call

http://www.naoteamhumboldt.de/en/projects/simple-soccer-agent/
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For Ball or Stand Up for our agent, and also handles the communication with the simulator.

We divide the process of creating a behavior for a specific framework in three stages. In the 

first stage we create the properties files that will configure our blackboard interface in order to 

connect  our  statechart  model  with  the  specified  platform.  In  the  second one  we  use  the  KSE 

GGenerator to create our behavior and generate code for it and in the last one we instantiate our 

generated behavior within the targeted framework. 

Stage 1: Generic Blackboard configuration

When we are about to create a blackboard interface for a specific framework we focus on 

two things. First we have to be able to connect our interface with the framework and second we 

need to instantiate our statechart model as a new module in the framework. The second part takes 

place after the code generation and we don't have to worry about it yet. For the first part we need to  

know some basic things about the framework we target, like how to obtain the information we need 

for our statechart model. In this case the information we need includes the updated sensor readings 

for the robot and the state of the simulated world (time elapsed, team name, player number etc.). We 

also need to know how to use the provided robot-actions( Walk, Scan etc).

Once we know the modules of the framework that provides us with that kind of information, 

we  create  the  blackboard's  properties  files. The  properties  files  consist  of  the  files 

include_classes.txt and instances.txt. The first file includes any header files necessary for the update 

of the robot's sensor readings. The second file, instantiates the required modules to achieve the right 

communication between the blackboard and the targeted platform. The properties files that were 

used  in  this  example  are  shown  below  and  they  are  responsible  for  generating  a  blackboard 

interface that connects our statechart model with the Simple Soccer Agent framework (we discuss 

further about the properties files in a previous section). Now the blackboard interface that will be 

created  during the   code generation  will  act  like  a  middleware  between the  simulator  and our 

statechart model.

include_classes.txt include_instances.txt

BallPercept.h 

MotionRequest.h 

SimsparkGameInfo.h 

BallPercept theBallPercept; 

MotionRequest theMotionRequest; 

SimsparkGameInfo gameState; 
                                              

Fig. 5.9 properties files for SimpleSoccerAgent framework
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Stage 2: Using the KSE Generic C++ Generator  

The next step is to use the KSE graphical interface to create our behavior. We start 

by providing the liveness formulas that describes our agent behavior abstractly: 

LogicalAgent = Init.(Play | NoPlay)+ 

Play = [StandUp].(PlayBall | ScanBall) 

PlayBall = Turn | Walk 

The first formula indicates that our behavior (LogicalAgent) will execute Init (for initialization of 

the player) and then will choose one or more times between Play or NoPlay exclusively (depending 

on the current game state). The second formula suggests that our behavior may execute StandUp (if 

needed) and then will choose between PlayBall or ScanBall exclusively (depending on whether the 

ball is visible or not). Finally, the third formula indicates that our agent will choose between Turn or 

Walk exclusively (depending on where the ball is seen). 

As soon as we provide the KSE GGenerator with the liveness formulas, the initial statechart 

model is generated and the user has to associate it to a source code repository that provides the code 

for the basic agent activities (Walk, Scan, etc). If the framework does not provide some activity, our 

tool generates the corresponding skeleton code and the user is asked to provide the corresponding 

C++ code using the built-in editor in KSE. Note that the abstract behavior specification of the 

liveness  formula  specifies  what  activities  are  included  in  the  desired  behavior,  but  gives  no 

information  on  when  execution  switches  from  one  activity  to  another.  It  is  the  execution  of 

transition expressions that make this switching between activities possible. 

After the statechart is created, we use the statechart editor tool of KSE to add the necessary 

variables we are about to use in the transition expressions. In our case these are: myInertialSens, 

ballFound, and horizontalAngle. The first variable is of type class and holds information about the 

posture of the robot. The second one is of type bool and is true if the ball is seen by the robot and 

false otherwise. The last one is of type double and holds information about the horizontal angle 

between  the  robot  and  the  ball.  These  are  user-defined  variables,  which  are  updated  from the 

framework- provided variables inside the statechart, and are used in our transition expressions for 

controlling the statechart execution. They are added in the blackboard interface using the editing 

tool  provided by the KSE. The next  step is  to edit  the transition expressions,  according to the 

grammar, using the KSE editor. The final statechart model with all the transition expressions is 

shown in Fig 5.10. The last step of our procedure is to use GGenerator to produce the C++ code for 

this statechart model and transfer the generated files to the source folder of the framework, so that it 
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is compiled and used in the target framework. 

Stage 3: Instantiate our generated behavior in the framework

To  execute  the  generated  agent  behavior  we  have  to  instantiate  it  within  the  target 

framework.  This  is  a  framework-specific  step  and  depends  on  the  requirements  set  by  the 

framework itself. In the present example, it amounts to simply adding a couple of C++ lines (see 

Fig.  5.19  and Fig.  5.20)  in  the  configuration  files  of  the  framework to  register  the  generated 

behavior as a new module within the framework. This is the only handwritten C++ code during our 

behavior generation procedure and is done only once, since any updates to the statechart simply 

modify the behavior, but remain registered in the framework. In Fig 5.11-5.14 we show four screen-

shots  from the  execution  of  the  LogicalAgent  behavior.  Initially,  we  register  the  agent  in  the 

environment; as soon as the agent interacts with the environment, he starts to search for the ball;  

when he finds the ball he goes towards it, and takes it in possession.

By following the procedure described above we created a simple behavior for the Simpark 

Robotic Soccer simulator in three simple steps. We should point out that only in stage three of the 

procedure  we wrote  C++ a  small  amount  of  code  by  hand.  We should  also  notice  that  if  the 

framework doesn't provides us with the basic agent actions, our tool generates the skeleton code for 

these actions used in the behavior although we have to code them by hand afterwards. This happens 

when a repository with agent's basic activities is not available.  At last in Fig. 5.15-5.20 we show 

parts of the code that is produced during the generation process. As we can see in  Fig 5.16 the 

generated  blackboard  includes  the  files  BallPercept.h and  MotionRequest.h as  long  as  their 

instances as expected to do according to the properties files we used. In Fig 5.17 we see a small part 

of the generated code for our behavior.

 Finally we see code fragments produced for a transition expression in Fig 5.18, and in Fig 

5.19 and  5.20 we see in bold the changes we made in the framework in order to instantiate our 

behavior in it.
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     Fig. 5.10 Logical Agent Statechart model with all the transition expressions
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  Fig. 5.11.  we add the agent on the environment                       Fig. 5.12 The agent searches for the ball

       Fig. 5.13  The agent goes towards the ball               Fig. 5.14  The agent takes possession of the ball

   Fig. 5.15 Generated blackboard fragment  (a)                    Fig. 5.16 Generated blackboard fragment (b)
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#include "BallPercept.h" 

#include "MotionRequest.h" 

#include <iostream> 

#include <string> 

#include <list> 

#include "TimeStamp.h" 

using namespace std; 

using namespace statechart_engine; 

public: 

   BallPercept theBallPercept;  /*ballPercept*/ 

   MotionRequest theMotionRequest;  /*request 
for motion*/      

   list<Time_stamp> *listTimeStamps;       

   BlackBoard(){} 

   BlackBoard(const string& str){name=str;} 

   virtual ~BlackBoard(){}
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Fig. 5.17 Part of the generated code for our behavior                 Fig. 5.18 Generated code for a transition expression

Fig. 5.19 Changes to Cognition's call function                  Fig. 5.20 Changes to Cognition's init function

5.2 Cooperative Multi-Agent Behavior 

In this  section we follow the procedure described above in order to create two different 

behaviors for agents that are part of the same robotic team. The team consists of the agent that is 

described in the previous section and the two newly created agents; player_1 and player_2. Thus we 

can  demonstrate  the  concept  of  cooperation  between  the  agents.  We  have  already  shown  the 

statechart of chief-player (Logical Agent) in the previous section. Now we show below the two 

different liveness formulas and the corresponding statecharts that each one describes a different 

agent behavior (player_1 and player_2 accordingly) .
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class LogicalAgent {

public: LogicalAgent (MessageHub* com) {_statechart 
= new Statechart ( "Node_LogicalAgent", com ); 

Statechart* Node_0 = _statechart; 

_states.push_back( Node_0 ); 

StartState* Node_0_1 = new StartState ( "Node_0_1", 
Node_0 ); //Name:0.1 

...

class 
TrCond_LogicalAgent0_3_2_3_3_3_20_3_2_3_3_3_4  : 
public statechart_engine::ICondition { 

public: 

void UserInit () { } 

bool Eval() { 

/* [(ballfound==true)&&(horizontalAngle<0.1)] */  

if((this->_blk->ballFound==true)&&(this->_blk-
>horizontalAngle<0.1)){  return  true;  }else{  return 
false;} } };

void Cognition::call() {

perception(); 

//starting the statechart 

if(mr_logic->getStatechartIsRunning()==false) { 

 mr_logic->Start(); //statechart runs in a new     
//thread 

}else if(BlackBoard::getInstance().getPlayMode()==

"GameOver") { 

//stops the thread that runs the statechart 

 mr_logic->Stop(); 

}//closing else

void init(naoth::PlatformDataInterface& platformInterface)
{ platformInterface.registerCognitionInput(theSensorJointData); 
platformInterface.registerCognitionInput(theInertialSensorData); 

platformInterface.registerCognitionInput(theFSRData); 
platformInterface.registerCognitionInput(theAccelerometerData)
; platformInterface.registerCognitionInput(theGyrometerData); 
platformInterface.registerCognitionInput(theVirtualVision); 
platformInterface.registerCognitionInput(theImage); 
platformInterface.registerCognitionInput(theFrameInfo); 
platformInterface.registerCognitionInput(theSimSparkGameInfo
); 

std::cout << "Cognition register end" << std::endl; 

//register our agent in the framework

com=new MessageHub(); 

mr_logic=new LogicalAgent(com); }//end init 
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Fig. 5.21 Player_1 liveness formula                  Fig. 5.22 Player_2 liveness formula

    Fig. 5.23 Player_1 Statechart                             Fig. 5.24 Player_2 Statechart

The behavior of player_1 is to search for the ball. Once the ball is visible the agent starts to 

walk in the direction the ball is spotted (but no towards the ball). The behavior of player_2 is to 

track the ball. He turns around trying to spot the ball. If the ball is found the agent stops and stands 

still. Finally the behavior of the third agent is the one we presented in the previous section. The 

third agent tries to find the ball and take it in possession.
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player1 = (Play | NoPlay)+ 

Play = [Scan].(Walk | Turn)

player2 = (Play | NoPlay)+ 

Play = [Scan].(Turn | Stand)
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For running and stopping our agents simultaneously we created two simple scripts that use 

simple linux commands. The start.sh script starts the agents and connects them to the SimSpark 

server. The kill.sh stop the agents. Below we present screen-shots from the cooperative scenario and 

we also show the scripts mentioned above.

 

    Fig. 5.25 Cooperative Behavior screen-shot 1                            Fig. 5.26 Cooperative Behavior screen-shot 2

         Fig. 5.27 Start team script Fig. 5.28 Kill team script

5.3 Creating a Behavior for the Wumpus World Simulator

5.3.1 Platform Overview 

The Wumpus Simulator is a simple C++ framework for simulating the Wumpus World 
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#!/bin/bash 

# Start script for 3D Simulation 

team="KOURETES" 

AGENT_BINARY=naoth-simspark 

BINARY_DIR="." 

NUM_PLAYERS=3  #can change according to our will 

for ((i=1;i<=$NUM_PLAYERS;i++)); do 

    echo "Running agent No. $i" 

    "$BINARY_DIR/$AGENT_BINARY"  &> /dev/null & 

    sleep 2 

done 

#!/bin/bash 

# kill script for stoping the agents 

# Kill agents 

AGENT="naoth-simspark" 

killall  $AGENT 

sleep 1 



Georgios L. Papadimitriou                                                                                                                                               Results  

described in Russell and Norvig's "Artificial Intelligence: A Modern Approach". In this world the 

agent's  goal  is  to  climb  down  in  a  cave  find  the  gold  hidden  in  it,  and  return  back  alive.  

Unfortunately for the user there are many traps in this cave along with a monster (Wumpus) 

that's waiting to eat him. The user is armed with only one arrow. Thus he has to depend on his 

“brain” in order to achieve his goal and come out of the cave alive. The simulator provides us with 

the updated state of the world each time before we decide our next move. The state of the world is 

defined by a set of boolean variables. These are  Stench, Breeze, Glitter Bump  and Scream.  The 

available actions for an agent in this environment are predefined (Forward, Turn Left, Turn Right,  

Shoot, Grab, Climb) 

  As we can see is a much more different environment than the SimSpark simulator. The 

Wumpus Simulator is written in C++ by Larry Holder (holder@wsu.edu ).

5.3.2 Simulation using the Wumpus World Simulator

The simulator works by generating a new world and a new agent. Before each try on this 

world,  the  agent's  Initialize()  method  is  called,  which  you  can  use  to  perform  any  pre-game 

preparation. Then, the game starts. The agent provided by the user must call the Process method in 

order for the agent to return an action, which is performed in the simulator. Prior to Process call the 

agent must have the updated state of the world given by Percept class. This continues until the game 

is over (agent dies or leaves cave) or the maximum number of moves (1000) is exceeded. When the 

game is over, the agent's GameOver method is called.

After the game is over, the agent is deleted. So, you may want to store some information in 

the agent's destructor method to be reloaded during the agent's constructor method when reborn for 

a next trial. If additional trials have been requested, then a new Wumpus world is generated, and the 

process continues as described above. Scoring information is  shown at the end of each try. 

Simulator Options 

The wumpus simulator takes a few options, as described below. 

-size <N> lets you to set the size of the world to NxN (N>1). Default is 4. 

-trials <N> runs the simulator for N trials, where each trial generates a new wumpus world. Default  
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is 1. 

-tries <N> runs each trial of the simulator N times, giving your agent multiple tries at the same 

world. Default is 1. 

-seed <N> lets  you set  the random number seed to some positive integer so that the simulator 

generates the same sequence of worlds each run. By default, the random number seed is set semi-

randomly based on the clock. 

-world <file> lets you play a specific world as specified in the given file. The -size option are  

ignored, and each try and trial uses the same world. The format of the world file is as follows (all  

lowercase, must appear in this order): 

size N 

wumpus N N 

gold N N 

pit N N 

pit N N 

... 

where N is a positive integer. Some error checking is performed. A sample world file is provided in 

testworld.txt as part of the simulator. 

Running a Wumpus World simulation

To try out the simulator, install the code on a UNIX system (or a system that has the 'make' 

program installed and a C++ compiler). Type 'make' to build the 'wumpsim' executable. Then, type 

'./wumpsim'. You should see a randomly-generated 4x4 world, information about the game state, 

and a prompt for the next action. When the game is over, scoring information is provided as an 

output to the screen. In Fig. 5.29 we show a screen-shot for a randomly generated 4x4 world, while 

in Fig. 5.30 we see a 7x7 world.
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5.3.3 Wumpus Agent: C++ Framework for the Wumpus World Simulator

Wumpus Agent  provides  a C++  sample-agent that  can interact  with the Wumpus World 

Simulator.  More specific the framework provides basic agent activities needed for the Wumpus 

environment such as Forward, Turn Left, Turn Right, Shoot, Grab, Climb, and also provides an easy 

interface for editing the behavior of the sample-agent according to user needs.

In order to create a behavior for the Wumpus World Simulator we use the interface provided 

by  the  Percept  class,  and  the  interface  provided  by  the  Agent  class  of  the  Wumpus  Agent 

framework. The Percept class provides access to the information about the simulated world's state. 

This information is updated by the simulator before the agent executes his next move. Based on the 

information that is stored in Percept class the agent must choose his next action. This class is used 

by the Agent class interface. The user only has to edit the interface's Proccess method (Fig. 5.31) in 

order to create a new behavior.

    

         Fig. 5.29 4x4 Wumpus World simulation    Fig. 5.30 7x7 Wumpus World Simulation

 Fig. 5.31 Sample Agent Proccess method
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Action Agent::Process (Percept& percept) { 

char c; 

Action action; 

bool validAction = false; 

while (! validAction) {

validAction = true; cout << "Action? "; cin >> c; 

if (c == 'f') { action = FORWARD; } else if (c == 'l') { action = TURNLEFT; }

else if (c == 'r') { action = TURNRIGHT; } else if (c == 'g') { action = GRAB; }

else if (c == 's') { action = SHOOT; }else if (c == 'c') { action = CLIMB; } else { cout << "Huh?" << 
endl; 

validAction = false; } } return action; }
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5.3.4 Developing the Agent's Behavior using the Extended KSE

In this example, we create a behavior for the Wumpus world: the agent tries to find the gold  

in the maze and escape alive. Our goal is not to solve the maze, but to simply demonstrate how easy 

it is to create a behavior for this environment using GGenerator. As we discussed in the previous 

section in order to develop a behavior for a specific framework we have to follow three simple 

steps.  In  the  first  step  we connect the  framework  with  our statechart  engine via  the  generic 

blackboard interface (properties files). In the second one we use the KSE GGenerator to create our 

behavior and generate code for it,  and in the last one we register our generated behavior to the 

platform.

Stage 1: Generic Blackboard configuration

To connect our statechart to the Wumpus World platform we create the properties files first. 

Below in figure 25 we show the properties files used in this example (We discuss further about the 

properties files and the specific framework inteface handling in a previous section).

include_classes.txt include_instances.txt

WumpusWorld.h 

Percept.h 

Action.h 

WumpusWorld ww; 

Fig. 5.32 The properties files for the Wumpus World Framework

Stage 2: Using the KSE Generic C++ Generator 

In this step we use the KSE GGnerator interface to create our behavior for the Wumpus 

World. We do this the same way we did our first example. First we provide the KSE tool with the 

liveness formulas that describe abstractly the behavior of the agent we want to create. 

wumpie=init.(Play|NoPlay)+ 

Play= percept.Move 

Move=forward | turnLeft | turnRight | grab | shoot | climb

The first formula indicates that our behavior (Wumpie) will execute Init and then will choose one or 

more times between Play or NoPlay exclusively. The second formula suggests that our behavior will 
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execute Percept and then Move. Finally, the third formula indicates that our agent will choose one 

of the moves Forward, TurnLeft, TurnRight, Grab, Shoot, Climb (depending on the information 

gathered so far). From these liveness formulas, the initial statechart model is generated and the user  

has to associate it to a source code repository that provides the code for basic agent activities 

(Forward, Percept, Init, etc.). 

In the next step, we use the KSE tool to add the necessary variables we are about to use in 

the  transition  expressions  of  the  statechart.  In  this  case  these  are:  glitter,  stench,  breeze,  

turnedRight, turnedLeft, scream, gold, arrow, posX, posY. These are user-defined variables that are 

registered in the blackboard during the code generation. Once we add the transition expressions 

according to the grammar rules, we are ready to generate code for our behavior. In figure 26 we 

show the statechart created for our behavior with all the transition expressions.

Stage 3: Instantiate our generated behavior in the framework

The registration of our created behavior as a new module to the Wumpus World framework 

is done as in the previous example in two steps. In the first step we add our generic statechart 

engine source files to the source folder of the framework. In the second step we use the interface 

provided by the Wumpsim class that is part of the framework in order to instantiate our generated 

statechart model in it. This class provides us with the updated state of the agent's environment. In 

this class we instantiate our behavior.

 The code added to Wumpsim class to instantiate our model it's the only piece of code we 

wrote by hand during the agent behavior development. In figures 5.34-5.36 we show fragments 

from the source code generated for a transition expression, our model and the blackboard for this 

example.

As we can see the blackboard interface has been generated according to the properties files  

that we provided to the tool and the addition of variables we made using the KSE GGenerator 

editing tool. We should also notice that the transition expression and the agent behavior code looks 

exactly the same with the code generated in the previous example. Thus we show that our tool, and 

the code it produces for our statechart model does not have any framework dependencies. At last, in 

figure 5.38 we show two screen-shots from the execution of  our behavior  within the Wumpus 

environment.
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                                  Fig. 5.33 Wumpus Statechart model with all the transition expressions

              Fig. 5.34. Transition expression generated code                          Fig. 5.35 Part of the generated blackboard  
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// 0.3.2.3.3.2TOturnLeft 

class  TrCond_wumpie0_3_2_3_3_20_3_2_3_3_4  :  public 
statechart_engine::ICondition {

public: 

void UserInit (){ } 

bool Eval() { 

/* [(breeze==true)&&(hasTurned==false)] */

if((this->_blk->breeze==true)&&(this->_blk->hasTurned==false)){ 

 return true; }else{ return false; }} };

bool hasTurnedRight; 

bool  getVar_hasTurnedRight(){  return 
hasTurnedRight; } 

void setVar_hasTurnedRight(bool v)

{hasTurnedRight=v; } 

void addWumpusWorld(WumpusWorld *ww) 

{ wumWorld=ww;}
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        Fig. 5.36 Generated source code of our behavior                       Fig. 5.37 Register our agent in Wumpsim class 

                        Fig. 5.38 Two successive screen-shots from our behavior in the wumpus world simulator

5.4 Creating a Behavior for the Starcraft Brood War Strategy Game

StarCraft: Brood War is the expansion pack for the award winning military science fiction, 

real-time strategy video game StarCraft. Released in 1998 for Windows and Mac OS, it was co-

developed by Saffire and Blizzard Entertainment. The expansion pack introduced new campaigns, 

map tilesets, music, extra units for each race, and upgrade advancements. The campaigns continue 

the story from where the original StarCraft ended. Brood War was critically well-received, with 

reviewers praising it for being developed with the care of a full game rather than as an uninspired 

extra. As of 31 May 2007, StarCraft and Brood War have sold almost ten million copies combined. 

The game is especially popular and professional players and teams participate in matches, earn 
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class wumpie {

public:  

wumpie (MessageHub* com) {

_statechart = new Statechart ( "Node_wumpie", com ); 

Statechart* Node_0 = _statechart; 

_states.push_back( Node_0 ); 

StartState* Node_0_1 = new StartState ( "Node_0_1",Node_0 ); 

...

wumpie* wumpAgent;
BlackBoard::

getInstance().addWumpusWorld(wumpusWorld);

wumpAgent->Start();
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sponsorships, and compete in televised matches. Moreover the game is a test-bench for artificial 

intelligence  applications.  A StarCraft  Brood  War  competition  is  held  annually  where  artificial 

intelligence agents compete with each other and they also compete against humans. 

Following the three-stages process described in previous sections we manage to create and 

instantiate an agent behavior for the StarCraft Brood War game. Our behavior is simple; if we find 

idle workers we order them to go to work. Thus, the player can focus on mobilizing the troops and 

building rather than dealing with idle workers. Below we show the properties files, the liveness 

formula and the statechart model that we use in this example. We won't explain technical details 

since the procedure for the creation of the StarCraft behavior is identical with the one described in 

the sections 5.2 and 5.3

include_classes.txt include_instances.txt

BWAPI.h

Fig. 5.39 Properties files for StarCraft      Fig. 5.40 Liveness formula for StarCraft agent

        

            Fig. 5.41 Statechart model for the StarCraft game
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starcraft_bot = (Play | NoPlay)+

Play = doStuff | idle
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       Fig. 5.42 Two successive screen-shots from our starcraft behavior        

We should mention that SimSpark 3D and Wumpus World are open source platforms. This, 

of course  doesn't apply for StarCraft. StarCraft is a commercial game and in order to be able to 

interact with it we use the BWAPI interface. The BWAPI interface and the sample agents it provides 

use Visual Studio in order to compile and work. Although, since the BWAPI interface is written in 

C++, we have no problem in using it. As we have already clarify before, our tool can target any 

platform as long as this platforms supports C++.

5.5 Summary 

As we can see in the examples given above, the procedure we followed in order to create our 

behaviors for each one of the three aforementioned frameworks (SimSpark, Wumpus and StarCraft  

Brood War) is identical. Although these three frameworks share a bunch of differences we deal with 

them the same way. To do so, we assume that the user knows basic things about the mechanics of 

the framework he targets. Our aim is to provide an ideal tool to the user who want to create a 

statechart-based behavior for the platform he works with, without having to deal with the writing of 

the source code for it. We also give the user the ability to modify at will, an already developed 

behavior via a user-friendly graphical interface. 

In this chapter we try to give an idea of a standard way to deal with any kind of framework 

when using the KSE GGenerator as long as this framework is implemented in C++. If we can 
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standardize the procedure needed for this kind of job, we can save a significant amount of time 

during the developing of the agent's behavior and exploit the benefits provided by our tool.

Conclusion
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Chapter 6

 

Conclusion 

6.1 Discussion

In this  thesis,  we presented an extension to our  CASE tool  KSE that  allows to  specify 

statechart-based agent behaviors independently of the underlying software framework, relying on 

the C++ programming language as the common code base. We demonstrated the use of our tool in 

three  completely  different  environments:  SimSpark  3D  Robotic  Simulator,  Wumpus  World 

Simulator,  and StarCraft  Brood War  strategy game.  Moreover,  we showed that  the process  we 

followed to generate sourcecode for the three different statechart models follows the same pattern 

and does nto have any framework dependencies. Additionally, we presented a cooperative scenario 

for the SimSpark simulator.

It is easy to see  that the three environments presented in  Chapter 5 (SimSpark, Wumpus 

World, and StarCraft Brood War) are completely different to each other. Since we are aiming  at 

showing that  our  KSE C++  Generic  Generator  is  platform-independent  and  not  aware  of  the 

environment that is going to generate code for, we pinpoint some of the differences of the three 

simulation environments we use for our examples.

SimSpark 3D Robotic Soccer Simulator simulates a 3D world, provides a physics engine for 

this  world,  and represents a dynamic environment.  Moreover,  the agents that participate in this 

simulator have a physical representation and are modeled as robots that can sense the environment, 

and take a decision according to their senses. In order to do so, an agent in this simulator must be 

able to communicate with the server that provides the simulation environment and the sensor values 

for the robot. Additionally, all the information the robot gets from the framework (sensor values) is 

“noisy” and the agent has to deal with concepts of uncertainty. As we can see, an agent has to take a 

lot of things into consideration in order to make even simple moves in this “noisy” environment. An 

action in this environment can have different results than expected, since the simulator adds noise to 

the perception of the agent. At last, the simulator provides a monitor for depicting the simulation.

In the Wumpus World, we have a two-dimensional static environment and the agent does not 
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have a physical representation in it. The agent doesn't have to connect to a server and we don't need  

to connect a monitor for watching the simulation. All magic happens in our terminal via text mode 

graphics. In this world, our agent is defined by his position on the world grid. The agent receives his 

sensor values with no noise added on them by the main program. Thus, once the agent makes a 

move in this world this move will be executed with the expected behavior contrary to the previous 

simulation. 

The StarCraft  environment is  widely-known (since it's  a famous game) and represents a 

strategy game, where agents need to plan ahead in order to achieve their goal. In Fig. 6.1, we show 

the major differences among the three simulation environments.

    

SimSpark 3D Robotic Soccer  

Simulator environment

Wumpus World Simulator  

environment

StarCraft Brood War
environment

Stochastic

Dynamic 

Adds noise

Physical representation

Uncertainty

Sequential

Continuous 

Multi-agent

Competitive, Cooperative

Deterministic

Static

No noise added

No physical representation

No uncertainty

Episodic

Discrete

Single-agent

non-Competitive, non-Cooperative

Deterministic

Dynamic

No noise added

No physical representation

Uncertainty

Sequential

Continuous

Multi-Agent

Competitive, Cooperative

Fig. 6.1 Major differences between the three platforms we use 

The aim of our work is to provide the user with an easy way to abstractly define statechart-

based agent behaviors. Our contribution relies on the fact that the GGenerator does not generate 

code for a specific platform, like the old KSE did for Monas architecture; but, according to its 

initialization, can target any environment that uses C++. We achieve this by creating a blackboard 

interface that acts as a middle-ware between our statechart model and the targeted environment for 

every different  platform. We should point out  that  in order for a  user to  use GGenerator for a 

specific framework, the user should know basic things about the framework. Assuming this is a fact, 

we presented a standard way of dealing with diverse frameworks. In Chapter 5, we demonstrate the 

transparent use of our GGenerator for three different platforms.

At  last,  we  have  shown  how  we  exploited  the  KSE  ability  of  working  with  arbitrary 
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generators, in order to embed our new software architecture in it and expand it in order to use the 

C++ GGenerator.

6.2 Future work

Our future plans, which served as motivation for this work, is the use of our statechart tools 

in order to automatically and massively generate team behaviors for RoboCup. Then, we plan to test 

these generated behaviors in the SimSpark 3D Robotic Simulator within an evolutionary framework 

for discovering suitable soccer team behaviors. As soon as this task is completed, we plan to test 

these behaviors on the real Nao Robots that are used by our team Kouretes. We are also looking 

forward in expanding our code generator in order to support other programming languages, like 

Java, and thus expand the range of frameworks that can be used in conjunction with KSE, such as 

the Jade framework (Java-based) . 

Another domain which is of interest, is to use our statechart tools for creating behaviors for 

video-game agents (like quake, unreal, racing simulation etc). Video game environments offer a 

great opportunity for the user who wants to focus in developing autonomous agent behaviors. They 

can be multi-agent (quake) or single agent (tetris) environments. They provide a variety of skills for 

the game-agents (depending on the game), a simulated virtual world, and they offer an easy way to 

interact with this world and get results (start game, add agent, save game, etc.). This way, the user 

is not concerned with game graphics issues or with uncertainty during an agent action (walk, shoot,  

etc.) and is free to focus only in developing the behavior of the agent or the team of the agents that 

participate in the game. Given this, we can see that these environments can serve as a test bench for 

a large portion of artificial intelligence applications. 

6.3 Lessons Learned

While working towards the completion of this thesis, the first thing that I learned is that 

when you have to work with advanced software architectures, like robot architectures, organization 

during studying is priceless. I also learned that, when you have to use someone else's code, the first 

thing to do is to read the manual (if any exists) and the second and more important is to contact the 

author (Thank you Manolis and Vaggelis).

Next, I learned that patience is a great asset to anyone during compilation time and that you 

can have an enormous number of versions of the software application you develop, until you reach 

your  final  version  (and  this  helps  a  lot  in  the  organization  part).  Finally,  and  most  important,  
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working for this thesis made me understand that when you love your work,  all work and no 

play does not make Jack a dull boy.
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