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ABSTRACT

We develop a backstepping control design for a class of continuum systems of linear hyperbolic PDEs,
described by a coupled system of an ensemble of rightward transporting PDEs and a (finite) system of
m leftward transporting PDEs. The key analysis challenge of the design is to establish well-posedness
of the resulting ensemble of kernel equations, since they evolve on a prismatic (3-D) domain and
inherit the potential discontinuities of the kernels for the case of n 4+ m hyperbolic systems. We
resolve this challenge generalizing the well-posedness analysis of Hu, Di Meglio, Vazquez, and Krstic
to continua of general, heterodirectional hyperbolic PDE systems, while also constructing a proper
Lyapunov functional.

Since the motivation for addressing such PDE systems continua comes from the objective to
develop computationally tractable control designs for large-scale PDE systems, we then introduce a
methodology for stabilization of general n+m hyperbolic systems, constructing stabilizing backstepping
control kernels based on the continuum kernels derived from the continuum system counterpart. This
control design procedure is enabled by establishing that, as n grows, the continuum backstepping
control kernels can approximate (in certain sense) the exact kernels, and thus, they remain stabilizing
(as formally proven). This approach guarantees that complexity of computation of stabilizing kernels
does not grow with the number n of PDE systems components. We further establish that the solutions
to the n + m PDE system converge, as n — oo, to the solutions of the corresponding continuum PDE
system.

We also provide a numerical example in which the continuum kernels can be obtained in closed
form (in contrast to the large-scale kernels), thus resulting in minimum complexity of control kernels
computation, which illustrates the potential computational benefits of our approach.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Motivation

Krstic (2018), Hu, Di Meglio, Vazquez, and Krstic (2016), Hu,
Vazquez, Di Meglio, and Krstic (2019) and Ramirez, Zwart, and
Gorrec (2013). Such large-scale systems of hyperbolic PDEs may
be utilized to describe the dynamics of various systems with

Stabilization of large-scale systems of general, n + m het-
erodirectional linear hyperbolic PDEs can be achieved via back-
stepping, see, for example, Anfinsen and Aamo (2019), Auriol
and Bresch-Pietri (2022), Auriol and Di Meglio (2016), Coron,
Hu, and Olive (2017), Di Meglio, Bribiesca Argomedo, Hu, and
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practical importance. In particular, they can be utilized to de-
scribe, traffic flow dynamics in large traffic networks (Friedrich,
Gottlich, & Osztfalk, 2022; Gottlich, Herty, Moutari, & Weissen,
2021; Tumash, Canudas-de Wit, & Delle Monache, 2022; Zhang,
Luan, Lu, & Prieur, 2022), as well as in multi-lane (Herty & Klar,
2003; Yu & Krstic, 2021) or multi-class traffic (Burkhardt, Yu, &
Krstic, 2021; Mohan & Ramadurai, 2017); blood flow dynamics
in cardiovascular networks consisting of interconnected arterial
segments (Bikia, 2021; Reymond, Merenda, Perren, Rufenacht,
& Stergiopulos, 2009); epidemics spreading dynamics in various
geographical regions and among different age groups (Bastin &
Coron, 2016; Guan et al., 2020; Iannelli, 1995; Kitsos, Besancon,
& Prieur, 2022); dynamics of multi-phase flows in oil drilling
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applications (Di Meglio, Kaasa, Petit, & Alstad, 2011); and wa-
ter networks dynamics (Bastin & Coron, 2016; Diagne, Diagne,
Tang, & Krstic, 2017). Complexity of computation of stabilizing
backstepping kernels may, in general, grow with the number of
PDE systems components (Humaloja & Bekiaris-Liberis, 20253,
2025b), which may, in fact, be alleviated constructing backstep-
ping feedback laws based on continua PDE systems counterparts
(Humaloja & Bekiaris-Liberis, 2025a, 2025b). Consequently, moti-
vated by this and the practical significance of considering large-
scale systems of hyperbolic PDEs, we address the problem of
design of computationally tractable backstepping feedback laws
for large-scale systems of n + m heterodirectional linear hyper-
bolic PDEs, via introduction of a control design procedure that
relies on development of backstepping control laws for continua
PDE systems counterparts. In fact, we note that the considered
continua of PDE systems may appear in applications as such. This
is the case, for example, in multi-class traffic flow models, when
the vehicle classes are characterized by a continuous variable
depending on driving characteristics, such as, e.g., drivers’ age
(see also Alleaume and Krstic (2025, Sect. I), and Yu and Krstic
(2022, Ch. 9)).

1.2. Literature

The first result on backstepping stabilization of a class of
continua of hyperbolic PDE systems was developed in Alleaume
and Krstic (2025), while a formal connection between the class
of systems considered in Alleaume and Krstic (2025) and the
class of n + 1 linear hyperbolic systems (Di Meglio, Vazquez,
& Krstic, 2013) (for large n), as well as the application of the
control design originally developed for the continuum system to
the large-scale counterpart, were made in Humaloja and Bekiaris-
Liberis (2025b). Therefore, besides Alleaume and Krstic (2025)
and Humaloja and Bekiaris-Liberis (2025b), the present paper is
related to the results on backstepping stabilization of n+m linear
hyperbolic systems, see, for example, Anfinsen and Aamo (2019),
Auriol and Di Meglio (2016), Coron et al. (2017), Di Meglio et al.
(2018) and Hu et al. (2016, 2019), as well as to results in which
PDE ensembles may arise as result of employment of Fourier
transform, see, for example, Vazquez and Krstic (2008) (that
deals with parabolic PDEs). In addition, as the actual motivation
for our developments is to address computational complexity of
backstepping designs for large-scale hyperbolic systems, papers
related to computation of backstepping kernels are also rele-
vant, in particular, Bhan, Shi, and Krstic (2024) that introduces a
neural operators-based computation method, Auriol, Morris, and
Di Meglio (2019) that presents a late-lumping-based approach,
and Vazquez, Chen, Qiao, and Krstic (2023) that relies on power
series representations of the kernels (even though these results
do not explicitly aim at addressing computational complexity
with respect to increasing number of systems components). Here
we address the previously unattempted problems of backstepping
control design for the continuum counterpart of a large-scale
system of n + m hyperbolic PDEs and its application for the
stabilization of the original large-scale system.

1.3. Contributions

We start considering a continuum PDE system that may cor-
respond to the n + m hyperbolic system as n — oo for which
we employ the continuum PDE backstepping method. This gives
rise to a continuum plus m kernel equations that are defined on
a prismatic (3-D) domain that arises by continuating the trian-
gular (2-D) domain of definition of the respective n + m kernel
equations. We establish well-posedness of the kernel equations
treating them on each 3-D subdomain that is spanned along the
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direction of the ensemble variable from subdomains of the 2-D
triangular space on which the kernels do not feature disconti-
nuities. This allows us to then show continuity of the respective
characteristic projections and to employ the successive approx-
imations approach on each 3-D subdomain, thus generalizing
the well-posedness results from Alleaume and Krstic (2025)
and Hu et al. (2016, 2019) for the n + m and oo + 1 cases,
respectively, to the case of a continuum plus m (oo + m) kernels.
Such a generalization is highly nontrivial and requires a delicate
technical treatment as it inherits the technical intricacies of both
going from n+ 1 to n+ m systems, in particular, the fact that the
kernels may feature discontinuities, and going from a system with
finite components to a continuum, in particular, having to deal
with PDEs defined on 2-D domains instead of vector-valued 1-D
PDEs. We establish exponential stability (in L?) of the closed-loop
system, constructing a Lyapunov functional.

We then consider the large-scale n + m system counterpart
for which we design a feedback law employing the continuum
kernels (evaluated at n points for each control input), based on
the continuum approximation idea from Humaloja and Bekiaris-
Liberis (2025b). We establish that the closed-loop system is expo-
nentially stable (in L?) by showing that, for sufficiently large n, the
exact backstepping kernels can be approximated to any desired
accuracy by the continuum kernels. The proof relies on construc-
tion of a sequence of backstepping kernels that is defined such
that each kernel in the sequence matches the exact kernel (in a
piecewise manner with respect to the ensemble variable), while
then showing that this sequence converges to the continuum
kernel. This in turn implies that the approximation error of the
exact control kernels can be made arbitrarily small for sufficiently
large n. This gives rise to a closed-loop system that is affected
by a bounded vanishing perturbation with a bound that can be
made arbitrarily small, and thus, the closed-loop system remains
exponentially stable, which we show constructing a Lyapunov
functional. We further provide a convergence result establishing
the exact convergence properties of the actual solutions of the
n-+ m PDE system to the solutions of the continuum counterpart,
which is analogous to the m = 1 case considered in Humaloja and
Bekiaris-Liberis (2025b). We provide a numerical example of an
n+ m system for which the exact control kernels do not exhibit a
closed-form solution, but the continuum kernels of the respective
oo + m system do, illustrating the computational complexity
benefits of employing the continuum kernels for stabilization of
the large-scale system.

1.4. Organization

The paper is organized as follows. In Section 2, we present a
backstepping control law for co+m hyperbolic systems and show
exponential stability of the closed-loop system. In Section 3, we
show that the backstepping kernels employed in the control law
are well-posed. In Section 4, we show that the oo+ m kernels can
be used in constructing exponentially stabilizing control laws for
large-scale n + m hyperbolic systems. In Section 5, we formally
show the convergence of the solution of the n + m PDE system
to the solution of the co + m PDE system. In Section 6, we
validate the theoretical developments on a numerical example,
illustrating in simulation that stabilization of the n+m system can
be achieved employing the continuum kernels-based controller.
In Section 7, we provide concluding remarks and discuss open
problems.
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1.5. Notation

We use the standard notation [*(£2;R) for real-valued
Lebesgue integrable functions on a domain 2 C RY for some
d > 1. For conciseness, we occasionally use shorthand L? for
L?([0, 1]; R). The notations L>®(£2; R), C(§2; R), and C'(2; R) de-
note essentially bounded, continuous, and continuously differ-
entiable functions, respectively, on 2. Moreover, the notation
f e L2 ([0, 4+00); R) means that f € L[*([0,a];R) for any a €
N. We denote vectors and matrices by bold symbols, and || -
lloo, || - |I1 denote the maximum absolute row and column sums,
respectively, of a matrix (or a vector). For any n,m € N, we
denote by E the space L*([0, 1]; R*™™) equipped with the inner

product
(V). () =

1 . . ) )
| {5 oo + 3 vieon | ax 1)
0 i=1

which induces the norm ||-|[g = +/(:, -);. We also define the con-
tinuum version of E as n — oo by E. = L%([0, 1]; L*([0, 1]; R)) x
L([0, 1]; R™), (i.e., R" becomes [%([0, 1]; R) as n — oo) equipped
with the inner product

(V). (&), =

1 1 m X i
[ [ e spuste iy + - v | ax, @)
0 0

i=1

which coincides with L*([0, 1]?; R) x L([0, 1]; R™). Moreover, we
say that a system is exponentially stable on E (resp. on E.) if, for
any initial condition zy € E (resp. zo € E.), the (weak) solution
z € C([0, 00); E) (resp. z € C([0, 00); E.)) of the system satisfies
lz(Olle < Me™"l|zolle (resp. ||z(t)lle. < Me™|zo]lg.) for some

constants M, ¢ > 0 that are independent of zy. Finally, we denote
by 7 and P the triangular and prismatic, respectively, sets

T={x8el0,17:0<& <x=<1}, (3a)
P={x6y)€el0,1P:(x,§)eT}. (3b)

2. Stabilization of continua co + m systems
2.1. Continua oo 4+ m systems of hyperbolic PDEs

The considered class of systems can be thought of as the
continuum counterpart of n + m hyperbolic systems in the limit
case n — oo (this aspect is considered formally in Sections 4 and
5). However, instead of considering a countably infinite number
as n — oo, we replace the n-part by an (uncountably infinite)
ensemble over the variable y € [0, 1]. We note that the class of
systems (4), (5) is broader than the one obtained as continuum
limit of a respective n + m system (49), (50) in Section 4, as
(4), (5) is not limited to countably infinite ensembles. Thus, the
considered class of continuum systems is of the form

U(t, %, )+ A% Yl X, y) =

/0 1 o(x,y, mu(t, x, n)dn + W(x, y)u(t, x), (4a)
Vi(t, X) — M(x)Vy(t, X) =

fo 1 e(x, yu(t, x, y)dy + w(x)v(t, x), (4b)

with boundary conditions

u(t, 0,y) = Qly)v(t, 0), (5a)
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v(t, 1) = U(t), (5b)

for almost every y € [0, 1]. Here we employ the matrix notation
for v, Urrll\/L e, v, W,mand Q for the sake of conciseness, that is,
v= (U))j=1' U= (Uf)jz], and the parameters are as follows.

Assumption 1. The parameters of (4), (5) are such that

M = diag(), € C'([0, 1]; R™™), (6a)
® = (6)", € C([0, 11; L*([0, 1]; R™)), (6b)
@ = (Yi);,_, € CI0, 1; R™™), (6¢)
W= [w, W] € C([0, 11; L*([0, 1]; R™*™)), (6d)
Q=[Q Qu] € L*([0, 1]; RT™), (6e)

with A € CY([0, 1] R) and o € C([0, 1]; L*([0, 1]?; R)). More-
over, A(x,y) > 0 for all x, y € [0, 1] and

wi(x) > pa(x) >+ > pum(x) > 0, (7
for all x € [0, 1]. Finally, ¥;; =0forallj=1,..., m.!

Remark 1. Under Assumption 1, it can be shown by using
the same arguments as in Humaloja and Bekiaris-Liberis (2025b,
Prop. B.1) that the system (4), (5) is well-posed on E.. That
is, for any initial conditions uy € L?([0, 1]; L*([0, 1]; R)), vy €
12([0, 1]; R™) and input U € L2 ([0, +00); R™), there is a unique

loc

(weak) solution to (4), (5) satisfying (u, v) € C([0, +00); E;).
2.2. Continuum backstepping kernel equations

The target system for the continuum Volterra backstepping
transformation is essentially chosen as the n — oo continuum
counterpart of the respective n + m target system in Hu et al.
(2016, Sect. IILA), i.e.,

a(t, x,y) + Mx, Y)ax(t, X, y) =

1
/ o (%, 7, mar(t. x, m)dn + Wx, y)B(t, x)
0
1 X
+ / / CHx £, 3, alt, £, n)dedn
0 0

+ f C(x. £ y)B(t. )iz (8a)
0
Bi(E. %) — M(BA(t, x) = GB(L.0),  (8D)

with boundary conditions
a(t,0,y) = Q(y)B(t, 0), (9a)
B(t, 1) =0, (9b)

for (almost) all y € [0, 1], where C* e L*®(T; L*([0, 1]*; R)),
C™ e [°(T; I3([0, 11; R™*™)), and G € L*°([0, 1]; R™*™) is of the
form

0 . . 0
G(x) = Gz’f(") (10)
Gm,.l(x) Gm,mf-l(x) O

The choice of the target system (8), (9) is guided by the fact that
the B-part is decoupled from the «-part and, similarly to the n+m
case, tends to zero in finite time. Consequently, the remaining

1 This comes without loss of generality, as such terms can be removed using
a change of variables (see also, e.g., Hu et al. (2016, 2019)).
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dynamics for « are exponentially stable analogously to Alleaume
and Krstic (2025, (33), (34)). In order to map (4), (5) into (8), (9),
we employ the following continuum Volterra transformation

a(t,x,y) =u(t,x,y) (11a)
B(t.2) = (t.x) — f Lix, £)V(t, £)d&
f / K(x. £, y)u(t. &, y)dyds (11b)

where L € L®(7; R™™) and K e L*®(T; L*([0, 1]; R™)) are the
backstepping kernels. We note that (11b) comprises a Volterra
integral operator applied to the inner product in E. of (K, L) and
(u, v).

Derivation of the continuum kernels equations is provided in
Appendix A. We obtain that L and K need to satisfy the following
kernel equations

M(X)KX(X’ Suy) - I(E(X7 Svy))‘(gsy) - I((X, $7y))"§($7y) =

1
Lix. £)0(£.y) + f K(x. £, n)o (& 1. y)dn, (12a)
0

M(X)Ly(x, &) + Lg(x, §)M(8) + L(x, §M'(§) =

1
Lx, §)®(§) + / K(x, &, y)W(§, y)dy, (12b)
0

with boundary conditions
M(x)L(x, x) — L(x, x)M(x) + ¥(x) = 0, (13a)
K(x, x, y)A(x, y) + M(x)K(x, x, y) + ©(x, y) = 0, (13b)

1
L(x, 0)M(0) — / K(x, 0, y)A(0, y)Q(y)dy = G(x), (13¢)
0

for almost all0 < & <x < 1andy € [0, 1]. More precisely, (13c)
splits into two parts, for i <j and i > j, respectively,
Lij(x,0) =

-1 1
1 f Ki(x, 0, y)A0, Y)Q,(1)dy. (14a)
©

M
1
Gij(x) = Lij(x, O)Mj(O)—/ Ki(x, 0, y)A(0, y)Q;(y)dy, (14b)
0

where (14a) acts as a boundary condition for (12) and (14b)
defines the nonzero elements of G shown in (10). Similarly to Hu
et al. (2016, 2019), we also impose additional, artificial boundary
conditions, to ensure the well-posedness of the kernel equations,
as follows
Vi<i: o Li1.8) =L (15)
where the functions IS) are chosen such that a C° compatibility
condition? is satisfied on (x, £) = (1, 1).3 Thus, consistently with
(13a), we impose

()

mi(1) = (1)’
for all j < i. The well-posedness of the kernel equations (12)-(16)
is considered in Section 3.

(1) = (16)

2 While 2 compatibility conditions (and higher regularity of parameters) are
sought in Hu et al. (2019) for obtaining (piecewise) C? kernels, for our purposes
C% compatibility conditions are enough.

3 For the L kernels, a compatibility condition cannot (generally) be satisfied
on (x,&)=(0,0) due to (13a) and (13c), (13b).
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2.3. Backstepping feedback law and stability result

The backstepping control law for j =1, ..., m is given by

1 1
- / / K(1, &, y)u(t. &, y)dyds
0 0

1 m
+/ > L1 E Wi, £)dé, (17)
0 i1

which stabilizes (4), (5) by Theorem 1.

Theorem 1. Under Assumption 1, the control law (17) exponen-
tially stabilizes the system (4), (5) on E..

Proof. Well-Posedness: We first establish that the target system
(8), (9) has a well-posed solution on E., which we achieve by
utilizing feedback results for the well-posed system (4), (5) (see
Remark 1). By Tucsnak and Weiss (2009, Sect. 10.1), we can
express the well-posed, boundary-controlled PDE (4), (5) as a
well-posed abstract Cauchy problem z(t) = Az(t) + BU(t) on
the Hilbert space E;, where z = (u, v), the system z(t) = Az(t)
corresponds to (4) with the homogeneous boundary condition
from (5) through the domain of A, and BU(t) corresponds to the
boundary control in (5). (We skip the explicit expressions of A
and B as knowing that they exist suffices here.) Now, expressing
the backstepping control law (17) as U(t) = Fz(t), the closed-
loop dynamics of (4), (5) under the control law (17) are given by
z(t) = (A + BF)z(t). As F is a bounded linear operator from E. to
R™, the operator A + BF is the generator of a strongly continuous
semigroup by Tucsnak and Weiss (2009, Cor. 5.5.1), and hence,
the dynamics z(t) = (A+BF)z(t) have a well-posed solution on E,.
Now, by applying the linear, bounded state transformation (11)
(see Theorem 2 in Section 3), we have that the target system (8),
(9) has a well-posed solution on E, as well.

Lyapunov Stability: Now we show that the (weak; see Hu-
maloja and Bekiaris-Liberis (2025b, Rem. C.1) for details on the
fact that existence and uniqueness of a weak solution suffices
for making our Lyapunov-based arguments legitimate) solution to
(8), (9) decays exponentially to zero, which by the invertibility of
the transform (11) (see Lemma 8 in Appendix B) implies that the
system (4), (5) under the control law (17) is exponentially stable.
Inspired by Hu et al. (2019, Prop. 2.1), the candidate Lyapunov
functional with parameters §, D = diag(D+, ..., Dp) > 0 is taken

o= [

/ W(r X)DM - ()B(t, X)dx. (18)
0

t
X y) ———dydx

Computing V(t) and integrating by parts in x gives

V(o) = [—e (e x, )% + e B(E. 03],

1
_5/ (e |lax(t, x, )% + ™| B(t, x)IIp) dx
+2/ // e txy) o (x, y, ma(t, x, n)dndydx

1 1
ot,
+2 f / e—5X Xy W, YB(t, 0y
0 0
txy)

1 1 1
+2 / / e"”%ﬁ(x, £y, ne(
0 0 0 0 )

1 1
+2 / / e XX e e B(e, £)dzdydn
o Jo Jo Ax,y)

t, &, n)d&dndydx
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1
+ / e”B'(t, x) (DM~ (x)G(x)
0
+6"(x)M~'(x)D) B(t, 0)dx, (19)
I3

where || - |5 = (-, D-)gm denotes the D-weighted inner product.
Using the following bounds (that exist by Assumption 1 using
Theorem 2 and Lemma 7 in Appendix A)

m, = min A(x,Y), (20a)
x,y€[0,1]

m, = min min wu;i(x), 20b

B et m}xe[O,l]M]() (20)
1

M, = max / o(x - n)dn| (200)
x€[0,1] 2

Mw = max max [|[Wi(x, )2, (20d)
j={1,....m} x€[0,1]

M- = esssup / CH . mdn| (20e)
(x,&)eT 2

Mc- = max esssup |G (x, &, -)ll2, (20f)
jel{1,...,m} (x.8)eT

Mg = max esssup]GU (20g)
ije{1,....m} xe[0,1]

MQ: max 1Qill 2, (20h)

the boundary conditions (9), the Cauchy-Schwarz inequality, and
2(f,g)p2 < ||f||f2 + ||g||f2 for any f, g € L?, we can estimate (19)

354
V(t) < —B"(t, 0) (D — MInm) B(t, 0)

1
s / (e lat, % % + Bt X)I3) dx
0

1
M, M,
+2 f e—“i"; < (e, x, I dx
0 A

1
+/ e~ (Iloz(tx)lllz +M ||ﬂ(t7x)||n2w> dx
0 m)\

1
+/ e” (”a(”)”“ + MZ- ||ﬂ(t,x)||§m) dx
0 m)\

1
+ mMg / e*BT(t, x)DM ™ (x)B(t, x)dx
0
mMce®
omy,
where F = diag (Fy, ...,

p_ [XDe 15j=m—1,
' o, j=m

B'(t, 0)FB(t, 0), (21)
Fn) with
(22)

where we employ the lower-triangular structure of G given in
(10) on the last two lines of (21). Now, V(t) can be guaranteed
to be negative definite by choosing § and D such that

2m, (M, + Mc+) +2 My, +MZ_ +mMg

§ > max R ,

2
m)\ mp,
(23a)
max{Mé,]}, j=m,
D; > 5 . 23b
J {max{Mé, 1} + m;:f; YD j<m (23b)

4 We use the shorthand notation lla(t, X, -)|l ;2 instead of writing the integrals
over y explicitly. While this is a slight abuse of notation (as «(t, x, ) is not
necessarily in L?), these expressions are valid appearing inside the integrals over
X.
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More specifically, by defining

2m,(My + Mc+)+2 Mg, +MZ +mMg
cy = § — max , )

m? my,

(24)
we have
. CV
V(i) ——V(t), 25
(t) max (M, M, (t) (25)
where
M, = Ax,y), M, = 26
A M=, a0, ()

which shows that the target system (8), (9) is exponentially sta-
ble. Thus, due to the invertibility of the transform (11) established
in Lemma 8 in Appendix B, the control law (17) exponentially
stabilizes (4), (5). O

3. Well-posedness of the continuum kernels

Theorem 2. Under Assumption 1, the continuum kernel equa-
tions (12)-(16) have a well-posed solution K € L°(T; L*([0, 1]; R™))
and L € L°°(T; R™™). Moreover, the solution is piecewise continu-
ous in (x, &) € T, where the set of discontinuities comprises finitely
many continuously differentiable, monotone curves.

The proof is presented at the end of this section by utilizing
the following lemmas. First, the kernels are split into subdomains
to deal with the potential discontinuity in the L; ; kernels for i < j
stemming from (x,£) = (0, 0) due to the boundary conditions
(13a) and (13c), (13b). Once the kernels are split into subdomains,
the resulting kernel equations can be solved by transforming
them into integral equations along the characteristic curves and
solving these integral equations by using the method of succes-
sive approximations combining Alleaume and Krstic (2025, Sect.
VI) and Hu et al. (2016, Sect. VI). In particular, we need to ensure
continuity of the characteristic curves such that the successive
approximations for the K; kernels, fori = 1, ..., m, are [? in y for
almost all (x, &) € 7.

Lemma 1 (Splitting the Kernels into Subdomains of Continuity). The
kernel equations (12) can be equivalently written in
L°(T3 L*([0, 1]; R™) x R™™) as

Mf(x)a)(I(jl](x? év y) - 8§I<lp(x7 %-7 .V))"(%-a .V) -

m 1
SOIP ( £)00(, 1) + f KP(x, &, mo (€. 0. y)dn,
=1

KD, &, y)he (€. y) =

0
(27a)
J(X)LE (%, &) + 1i(8)0 L2 (x, &) + (6D (x, §) =

ZL xsw@;m/ KP(x, &, YIW(E, y)dy,

(27b)

for1 <i<p<mandj=1,...,m wherelL, K’ denote the

restrictions of the kernels to T; b and Pp respectively, defined as

7= | &) e 017 70 < < o), (282)
P ={(x£y) €l0,17: (x.&) e T}, (28D)
where p"*' =0 foralli=1,...,mand

pP(x) = ¢ (i(x). (29)
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Sforlsigpfmwith

¢i(X)=/ a5 , i=1,...,m. (30)
o Mils)
The boundary conditions for (27) are given by
. i Vi j(x)
ViAis L% x) = ———t (31a)
iE L 10 — 1109
. 0
Vi Kixxy)= —— ) (31b)

A%, y) + wi(x)’

1
vz U= [ K090, 900,
1i(0) Jo
(31¢)
fori,j=1,..., m, with the artificial boundary conditions
1h(1,8) = (), (32)

forall & € [pPT'(1), pP(),p =i,...,mand 1 <j <i<m

Moreover, the segmented kernels Klp , Lf j are subject to continuity

conditions

Vi<pVi#Fp: L7 (x pP (1)) = Ly(x. pf (%), (33a)
Vi<p: K p(0.y) = K(x pf(0).).  (33b)

foralli,j=1,...,mi<p<mandx,y € [0, 1].

Proof. After splitting the kernels into the 7;” and 7/ segments,
the transformation (11b) can be rewritten componentwise for
i=1,...,mas

Bilt, x) = vi(t, x) — ZZ/

j1p11

(. E)vi(t, §)ds

p,p(x
f / K2, &, ult. €, yde. (39

The kernel equations (27) are obtained by inserting (34) to (8b)
and integrating by parts once (similarly to Appendix A). In fact,
the kernel equations (27) are exactly of the same form as (12)
(written componentwise), and the boundary conditions (31), (32)
correspond to (13a), (13b), (14a), and (15) along the respective
boundaries (see Fig. 1 for an illustration of the 7;*’ segments).
Thus, the only difference to (12)-(15) are the continuity con-
ditions (33), which arise due to the segmentation of 7 when
differentiating (34) in x and integrating by parts once. O

The kernel equations (27) for Lf; and K on the segments 7,
and Pf with boundary conditions (31)-(33) can be transformed
into integral equations. In order to do this, in Lemma 2 we solve
the characteristic projections for (27).

Lemma 2 (Continuity of Characteristic Projections). The character-
istic projections for the kernel equations (27) are continuous on Tip
and P forall 1 <i<p<m.

Proof. As X is assumed to be in C([0, 1]%; R), we can argue
pointwise in y € [0, 1] and solve the characteristic projections
for the K" kernels from the following Cauchy problems on s €

,slfp )] for arbitrary, fixedy € [0,1]and 1 <i<p<m

d. N
—Xip(s,y) = —wi(Xip(s. y)), (35a)

ds

5 These are the characteristic curves of (27b), which are strictly increasing
in x and satisfy 0 = pim“(x) < p"(x) < --- < pj(x) =x forall 1 <i<m and
x € (0, 1] by (7) (see, e.g., Hu et al. (2019, (A.3))).
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Fig. 1. Illustration of the segments Tl.p for 1 <i < p < m. The dashed lines are
the characteristic curves & = pf’ (x) fori<p=<m

AEip(s.y). y), (35b)

d .
%Si,p(S,Y) =
with boundary conditions X;,(0, y) = XX (s[p,y> =

1,
R,00.650.9) = &y (s],0v) = &,0). Since i and A, y)
are continuously differentiable and posmve by Assumption 1, (35)
has a unique (local in s) solution for any (x, &) € 7;*’ (and each y)
by Picard-Lindel6f theorem (Teschl, 2012, Thm 2.2), where X; ,
is strictly decreasing in s and §;, is strictly increasing in s. Thus,
for any initial condition (x, é) € 77” , the solution to (35) tends

towards the boundary & = p; P(x), where it terminates at s = s{ p(y)

with the terminal condition )2{ - f; p), and the corresponding

boundary condition is given by (31b) for i = p, or by (33b) fori <
p. Considering that we have only split the domain of the kernel
equations in the (x, £) plane, we can employ the same continuity
arguments, not only in y but also in x and &, as in Alleaume and
Krstic (2025, Lem. 4) on each P for all 1 < i < p < m. Thus,
the characteristic projections solving (35) are continuous on each
Pf’ , particularly as A and u; are continuously differentiable by
Assumption 1.

The characteristic projections for the I” l<ernels are analogous
to the Zp kernels encountered in the n + m case. Thus, this
observatlon allows us to study continuity of the characteristic
projections for the L, kernels similarly to Hu et al. (2019, Thm
A.1) and Hu et al. (2016, Sect. VL.A.2). To elaborate, for all i,j =
1,...,mand p = 1 , m, the characteristic projections for the
Lﬁj kernels are solutions of the following Cauchy problems on

se[Osf

Sigip]
%Qi.j.p(s) = €ijkiXij p(S)), (36a)
%éi,j,p(s) = €ijii(€ijp(5)). (36b)
with boundary conditions %;;,(0) = X, X, (s{j,p) = f{jqp,

éi'j'p(O) =, éi’j,p (%{j,;,) = §fijp’, and ¢;; defined as

1, i>j
€j = {_‘17 i< (37)
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For initial condition (x,&) € 7,7” , the location of the terminal

condition x{]p, Si«j«l’) depends on i,j and p (cf. Hu et al. (2016,

Figs. 4-6)) as follows.

e For i > j, the terminal condition is located either on x = 1
with boundary condition (32) fori < p < m,oron & = x
with boundary condition (31a) for p = i, or on & = pip(x)
with boundary condition (33a) fori < p < m.

e For i = j, the terminal condition is located on & = 0 for
p = m with boundary condition (31c), and on & = p"“(x)
fori < p < m with boundary condition (33a) (forp — p+1).

e Fori < j, the terminal condition is located on & = x forp =i
with boundary condition (31a), on & = pf’(x) fori<p<j
with boundary condition (33a), on & = 0 for p = m with
boundary condition (31c), and on & = p?*'(x) forj < p < m
with boundary condition (33a) (for p — p + 1).

Thus, there exist unique, continuous characteristic projections as
the solutions to (36) on s € [0, s{,j,p], as every u; is continuously
differentiable by Assumption 1. O

As the final step, we transform the kernel equations (27) into
integral equations along the characteristic curves. By virtue of
Lemma 2, we can then proceed with the method of successive
approximations to obtain the unique continuous kernels K7, L} J
solving (27)-(33) on each 7;’3 by Lemma 3. Towards this end,
integrating (27) along the characteristic curves and plugging in

the boundary conditions (31)-(33) gives
kP . .9) = Bl (X, 00.9) =

B fo{p(y) (Kip (ﬁi,p s,), §i,p (s,9) ,y) Ag (éi,p s,y ,Y)

+f 0 (6.9 By 630 1) 0 (B 5.9 0.9) d

m
+ 31 (%0 9 i 9)) 00 (6uip O y)) ds,  (38)
=1
(x §) — up (’A‘ivivp (S{,j,p)) =
Lin
+€ij (Hj (gu p (5)) ij (Xi} p (9, %'1] p (5))
0
1
— | K (Rijp ). Eijp ). y) W (Eijp (). y) dy
/0 ( L],p L),p ) J ( L],p )
m
- Z L7, (&i,j,p (s, é’i,j,p(s)) Ve (éi,j,p(ﬂ)) ds (38b)
=1
where, forj=1,...,mand 1 <i<p<m,
1 i p=i
B, (x,y) =1 o’ 39a
Bl KP7'(x, oP(x),y), p > i, (399)
Vi j(X) .. .
~ p=ii#]
lﬁfﬁ(ls), p>i>j
P~ (x, pP(x)), i>]
B2 (%) = }5’_1( p;j( ) p>t>J (39b)
Li,j (x, Pj (x)), 1<p<]
) Jo K" 0.9(0.9)Q)y, p=m.i<]
P, P00, i<j<p<m,

denote the boundary conditions according to the terminal con-
ditions of the characteristic projections solved in Lemma 2. The
integral form (38) of the kernel equations can then be employed
in constructing the series of successive approximations, by first
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inserting (arbitrary) initial guesses for Kp and Lp The conver-
gence of such successive approximations is establlshed in Lemma
3.

Lemma 3 (Convergence of Successive Approximations). Let j =
1,....mand 1 < i < p < m be arbitrary, and denote the
sequences of successive approximations for the respective kernels I<p
and Lp corresponding to (38), (39) by (Ky)72, and (L¢3, respec-
tlvely, where we initialize Ko and Ly to zero. Then, the sequences of
successive approximations converge such that

lim max ||K(x, &, -)—K'(x,&, )|, =0, (40a)
£>00 (x £)eTy
lim max_|Ly(x, 5)—Lp x&)|= (40b)
[—)(X)(X E)GT

Proof. Denote the differences of successive approximations by
AK, = Kg+] — K and ALy = Lg+] — Ly for ¢ > 0. As Ky and Lo
were initialized to zero, the terms in the sequences of successive
approximations for £ > 0 can be written as

4 4
K=Y AK, L=)Y AL (41)
1=0 1=0

Now, the statement of the lemma is equivalent to the conver-
gence of the series of differences (41) in the stated sense, which
follows by showing that AK, and AL,, for any £ > 0, satisfy®

¢
e
IAK (X, &, )z < M M, (9x )Z, PN (42a)
ML | (di(x) — ei(€)*
AL (e, £)] < Mk O )Z, PN (42b)
uniformly on any 7;”, where M, Mg ; > 0 are given by
6i(x, )2
M=Mp+ (14+My) max max M
xyel0,11j={1....m} A(X, y) + p(x)
(43a)
Mkp = m(1 4 M}) (M} + M, + My) M,
+m (M), + My + M) M (43b)
where M = max {Mj, M3} with
ii(x
Mj = max max _ Vi , (44a)
1<izj<mxel0,1] | (i(X) — p;(x)
M2 = ‘z‘.].) 44b
b= max mex 6 s) (44b)
Myw and M, M,, are given by (20d), and (26), respectively,
M) = max [i(x,y)l, (45a)
x,y€[0,1]
M! = ! 4
o= max  max [ux)], (45b)
1
M! = max f o(x,n,)dn| (45¢)
x€[0,1] 2
My = Z max 16, )2, (45d)
My = max || ()], (45e)
xe[0,1]
A0,
My = max max 0P jq .. (45)

j=1,...myyel0,11 u;(0)

6 Note that the estimates (42) depend on i, while the functions ¢;(x) — e¢i(§)

are non-negative for (x,§) € 7.
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where the parameter 0 < € < 1 is chosen such that

i(x
max max i) <e<1, (46)
1<j<i<mxe[0,1] [4j(X)
7 and M, = max{Mj. ., M} ., M2} with
i(x
M, .= max max Mli) (47a)
ie{1,....m} x,ye[0,1] i(X) + €A(x, y)
i(x
M, .= max max L (47Db)
’ 1<j<i<mxe[0,1] € j(x) — wi(x)
i(x
M2 _ = max max i) . (47¢)
1€ 1cisjsmxel0.1] pi(x) — €ui(x)

Due to linearity, the integral equations and boundary condi-
tions for AK, and AL, are of the same form as (38) and (39), but
with K and L replaced by AK, and AL,. Hence, the estimates (42)
can be proved by induction based on (38) and (39). Firstly, the
constant M (and the initialization of Ky, Ly to zero) guarantees
that the estimates (42) are satisfied for £ = 0, and for any
arbitrary £ > 0 we have (42) by the induction assumption. To
show that (42) then holds for ¢ — £ + 1, we insert the estimates
(42), (45), and (20), into the integral equations for AK, and AL,.
The following estimates for @;(x, &) = ¢;(x)—e¢p;(&) are key to the
induction step, and can be proved analogously to Hu et al. (2016,
Lem. 6.2) (see also Coron, Hu, Olive, and Shang (2021, Rem. 3.8)),

foralli,j=1,...,m,p=i,...,mand any £ > 0
/ o (o, Bl ) s = m, 2% o (482)
i (Xip(s,y), & (s, s < M, ——2——, a
A i XiplS,Y), SiplS,y <y 1
Sf- Vi 41
1jp . s D; (x,&)
/ ®; (x,-,]-,,,(s), g,-,j,p(s)) ds < M, -5 (48b)
0 0+ 1

where (x, &) € 77" is the (arbitrary) initial point of the respective
characteristic curve on the x&-plane.

Using (48) together with (42) and the induction assumption,
the induction step follows after similar computations as in Al-
leaume and Krstic (2025, Sect. VI.C), albeit some additional care
is required due to splitting the domain into the 7}" segments,
as some boundary conditions depend on AK, and AL,, which
are unknown. However, as the boundary condition for AK, on
every 7; is known (due to (39a)), we can solve (38a) first on
every 7?, and then utilize the obtained values to solve (38a) on
771, and so on, up to 7" (this process is described in detail
in Di Meglio et al. (2018, Sect. 3.2)). As the domain 7 is split
into at most m segments, we need to solve (38a) at most m
times over the different segments to compute the next successive
approximation. Hence, an adequate value for Mk ; corresponding
to the estimate for AK, would be m(M; + M} + M,)M,, which
gives the first term of (43b).

Deriving the estimate for AL, follows similar steps, where
we again need to traverse through the segments 7;“” (depending
also on j) to have known boundary conditions for the integral
Eq. (38b). That is, for all i # j, we begin from Ti with known
boundary condition on & = x or x = 1, and then utilize the
continuity conditions in (39b) up to 7, if i > j, or up to 77’ if
i <j. Fori < j, the remaining segments are reached by beginning
from 7" with the boundary condition on § = 0, and then utilizing
the continuity conditions up to 7;] As in the case of AK,, this
results in having to solve (38b) at most m times, which results in
the last term of (43b). Moreover, the boundary conditionon & = 0
depends on AK,;, which can be dealt with using the estimate
derived in the previous paragraph, which results in the remaining
term mMg (M, + M, + My)M, in (43b). Thus, the estimate (42)

7 Such e exist by (7).
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follows by induction. Hence the series (41) and, equivalently, the
sequences of successive approximations converge in the stated
sense (40). O

Proof of Theorem 2. By Lemma 3, the sequences of succes-
sive approximations for any Kip and Lf j converge uniformly on
7 (K" in the I? sense in y), which shows the existence (and
well-posedness) of the solutions Klp , Lf ;j to the kernel equations
(27)-(33). To conclude the proof of Theorem 2, we note that any
two Tp and 7 with p # s may only intersect along a common
boundary & = o '(x) for r = p or r = s (if the segments are
adjacent), which is a contmuously dlfferentlable curve. Thus, as
the kernels Lp and Kp are continuous on each (x,&) € 7"’ and
the mtersectlons of these segments comprise a finite number
of continuously differentiable curves, the discontinuities of the
kernels K; and L;; may only occur on finitely many continu-
ously differentiable curves, which are additionally monotone.®
In particular, the kernels K;, Lij solving (12)-(16) are uniquely
determined by K7, L} L; ;, almost everywhere on 7 and P.

4. Stabilization of large-scale n + m systems by continuum
kernels

In this section, we construct a stabilizing control law for large-
scale n+ m systems based on the co + m continuum kernels. The
core idea is to establish that, for large n, the exact control kernels
constructed based on the n + m system (see Appendix C) can be
approximated to any desired accuracy by the continuum kernels
computed on the basis of the co + m system.

4.1. Large-scale n + m systems of hyperbolic PDEs

Consider a system of n + m hyperbolic PDEs?

w(t, x) + A(x)u(t, x) = %E(x)u(t, x) + W(x)v(t, x), (49a)
Ve(t, x) — M(x)v(t, x) = %@(X)ll(t, X) + w(x)v(t, x), (49b)
with boundary conditions

u(t, 0) = Qv(t, 0), v(t, 1) = U(¢), (50)
where A(x) = diag(A(x), . An(X)), 3(x) = (Gij(X))f‘] 1 W(x) =

(0 0y Iy, ©00) = (B (0N, 1y, @ = (a1 I mu= (ul)”_l,
and M, ¥ correspond to the respective parameters in (4b). A

in Anfinsen and Aamo (2019), Auriol and Di Meglio (2016) and
Hu et al. (2016, 2019), we make the following assumptions on
the parameters.

Assumption 2. The transport velocities in (49) are continuously
differentiable with A;(x) > O forallx € [0,1]andi = 1,...,n
and p; satisfying (7). The parameters 3, W, ©, ¥ are continuous
with¢j; =0forallj=1,...,m

Remark 2. Under Assumption 2, it can be shown by using
the same arguments as in Humaloja and Bekiaris-Liberis (2025b,
Prop. A.1) that the system (49), (50) is well-posed on the Hilbert
space E.

8 In fact, the discontinuities may only occur in the L;; kernels for 1 <i <
j < m along the curves & = p{(x) due to (33).

9 We scale the sums involving the n-part states u,i = 1,..., n by 1/n in
order to make the considerations in the limit n — oo more natural, as discussed
in Humaloja and Bekiaris-Liberis (2025b, Rem. 2.2). Thus, under continuity of

1
the continuum parameters and (51), e.g., the sum/vector 4 e(x)u(t, x) tends to

/ O(x, y)u(t,x,y)dy as n — oo (provided that u and u are also connected

appropriately, as in Theorem 4).
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4.2. Control design and stability result

Consider any continuous functions 6;, W}, Q;, A, and o satisfy-
ing Assumption 1 with

0i(x, i/n) = 0;(x), (51a)
Wi(x, i/n) = wi;(x), (51b)
Qi(i/n) = qij, (51c)

Ax, i/n) = Ai(x), (51d)
o(x,i/n, l/n) = oy)(x), (51e)

forall x € [0,1],i,l = 1,...,nandj = 1,...,m. It follows
by Theorem 2 that the corresponding continuum kernel equa-

tions (27)-(33) have well-posed solution k¥ € C(7;”; L*([0, 1]; R)),

L} € C(7/;R) forallj = 1,...,mand 1 < i < p < m.
Thus, construct the following functions for all (x, &) € 7;” with
l<i<p=m'

- I/n

R 8)=n / K. E.y)dy. [=1.....n, (52a)
(I-1)/n

Cx6)=Lx.6)., j=1,....m (52b)

We have the following stabilization result.

Theorem 3. Consider (49), (50) satisfying Assumption 2. Let
(continuum) parameters 6;, W;, Q; for j =1, ..., m and o, A satisfy
Assumption 1 and relations (51). Define the feedback laws

ZZ/FH TR, e, £

=1 p=i

153 3] K

]lpzi

EN(t, £)dE, (53)

fori=1,...,m, where p! are given in (29) and kl b ” are given
by (52) for alIJ =1,...,mand 1 < i < p < m. The control law
(53) exponentially stablllzes system (49), (50) on E, provided that n
is sufficiently large.

4.3. Proof of Theorem 3

The proof of Theorem 3 is presented at the end of this section
based on the following lemmas.

Lemma 4 (Transforming n + m Kernels from E to E;). Consider
the n + m kernel equations (C.1)-(C.5) with parameters satisfying
Assumption 2 and define the following functions for all x € [0, 1],
piecewise iny fori,l=1,...,nandj=1,...,m

A%, y) = Mix), ye((i—1)/n,i/n], (54a)
o"(x,y,m) = 0ui(x), ye((i—1)/n,i/n],

e (I— 1)/n, I/n), (54b)

Wi(x, y) = wijf(x), y e ((i—1)/n,i/n], (54c¢)

0/'(x,y) = 6;i(x), y € ((i—1)/n,i/n], (54d)

Q') =aqij, ye((i—1)/n,i/n]. (54e)

Construct the following functions for (x, &) € 7}‘3 withl<i<p<
m, piecewiseiny forl=1,...,n

I<ir,lp(x’ gv y) = kf.[(x’ g)! y € (l - ])/Tl, l/n]v (55)

10 ¢ Kl.p(x, &, ) is continuous, the mean-value sampling in (52a) can be
replaced with pointwise evaluation, e.g., aty = 1/n, ..., 1.
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where kj), is the solution to (C.1a) on 77. Then, K", together with ¢}
forj=1,..., m(the solution to (C.1b) on 7;1’) satisfy the continuum
kernel equations (27), (31)-(33) with parameters defined in (54)
and the original p;, ¥ij, lij, fori,j=1,...,m

Proof. We define the linear transform 7 = diag(F,, I;) where
Fn€i = X((i—1)/n,i/n] with X((i=1)/n,i/n] being the indicator function
of the interval ((i—1)/n, i/n] and (e;)], being the Euclidean basis
of R". Thus, the transform maps any b = (b)!*[" € R™™™ into
L2 ([0, 1]; R) x R™ as

n
Fb= [Zf—lé’fﬁﬁ”/w”}] : (56)

J/j=n+1"
For any g € [*([0, 1]; R), the adjoint F satisfies

£/n 1
(Fn€es 8)20.11:m) = / gy = — (e, Fig)pn - (57)
(t=1)/n n
that is, F; is given by
i/n n
Fig = (n / g(y)dy) , (58)
(i=1)/n i=1

where each component is the mean value of g over the interval
[(i — 1)/n,i/n]. Thus, F has the adjoint 7* = diag (7}, In).
which additionally satisfies 7*F = I, i.e, F (and F,) are
isometries, and thus, norm preserving from their domain to their
co-domain. Now, the claim follows similarly to Humaloja and
Bekiaris-Liberis (2025b, Lem. 4.2) after applying F to (C.1) from
the left (pointwise in (x,&) € 7;" forevery 1 < i < p <
m), using the fact that 7*F = I,,,, and the definitions (54),
(55). Moreover, one needs to verify that the boundary conditions
(31)-(33) are satisfied, which is trivially true for (31a), (32), (33a)
as the F transform is identity in the second component, and the
remaining (31b), (31c), (33b) are verified utilizing the fact that
Ki’:‘p are piecewise constant iny. O

Lemma 5 (Approximating n + m Kernels by Continuum). Consider
the solutions Kl"p, ij cforj=1,...,m1 < i < p < mto the
kernel equatlons (27) (31)-(33) for any n € N with parameters
A i, o, W]" 91" an Yij, lij, fori,j = 1,...,m, from Lemma 4.
There exist continuum parameters A, o, W;, 6;, Q; constructed such
that they satisfy (51) and together with the original parameters
Wi, ¥ij they satisfy Assumption 1. For any such parameters, the
solution Kl L Pforj=1,.... m1<i< p < m to the continuum

kernel equations (27), (31) ( 3), wherel = I, exists and satisfies
the following implications. For any §; > O there exists an ns, € N
such that for all n > ns, we have

max  max [KP(x, &, ) — K (x, &, -)ll;2 < 81, (59a)
Isisp=m(y £)e T '
max max max |L (x S)—Z (x,§)| <. (59b)

J={l.my 1<isp<m (x £)e 7P

Proof. Following the same steps as in the proof of Humaloja and
Bekiaris-Liberis (2025b, Lem. 4.3), we first note that the kernel
Eqs. (27), (31)-(33) have well-posed solutions for the two sets
of parameters considered in the statement of the lemma. Thus,
1<,”p,zf’ depend continuously on A", u;j, o™, W'1 9” Qj Yij, and
l;j by Hu et al. (2019, Thm A.1) and Lemma 4, and K?, L7; depend
continuously on A, uj, o, W;, 6;, Q;, ¥ij, and l;; by Theorem 2,
fori,j = 1,...,m withi < p < m. As the parameters
Wi, Vij, lij coincide, the claim follows after showing that the
parameters A", 0", W”, ) Qj converge to A, o, W;, 6;, Q; (for all

j=1,...,m)asn —> oo. This convergence is estabhshed under
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(54) by Tao (2011, Sect. 1.3.5) in the sense that, for any ¢; > 0,
the following estimates are satisfied for any sufficiently large n

nggli(] IA(x, ) — A"(x, Mzqo.r) < €15 (60a)

Xren[ga(] llo(x, ) — ™%, ll2go12:r) < €15 (60Db)

jmax max 16i(x, -) = 6]"(x, li2(p0, 13:) < &1 (60c)
Jmax  max [[Wi(x, ) — W% Jlizqo.1ym = 1. (60d)
j:n?,?.),(m 19 — Q" ll2q0,11:7) < €10 O (60e)

Remark 3. As noted in Humaloja and Bekiaris-Liberis (2025b,
Rem. 4.4), the step functions A", o",Gj", Wj", an could be con-
structed in various, alternative ways to (54), but the result of
Lemma 5 remains valid as long as the step functions approxi-
mate the continuous functions A, o, 8;, W;, Q; (satisfying (51)) to
arbitrary accuracy as n — oo as in (60).

Lemma 6 (Representation of (53) as Perturbation of Exact Con-
troller). The control law (53) can be written as

/ ])nkf’m e, )
l 1 p=i Y Pi

+zz/

j=1 p=i

Uit

W(t, §)dg

n

533 /pﬂ

I=1 p=i

*Akf’,1 Eul(t, £)dg

mn

m

+zz/

j=1 p=i

AL(1,E)(t, §)ds, (61)

where k" ,,Ef s the (exact) solution to the n + m kernel equa-

tions (C. l) (C.5) and Akpl, AZP are the approximation error terms

that become arbitrarily small, umformly inée [,opH(l), pf(l)],for
all =1,...,nandi,j=1,...,mwithi < p < m, whenn is
sufficiently Iarge.

Proof. Transform the functions Fﬁ , from (52) into step functions
iny as

K £.9) =R (x, &),

y e (I=1)/n,l/n],
for all (x,&) € 7;” and 1 < i < p =< m, piecewise for y
for | = 1,2,...,n By (52) and (62), we have Ki’fp(x,é, ) =
]-'n]-‘:Kip(x, &,-), which is the mean-value approximation of
K(x, &, ) forall (x,€) € 7" and 1 < i < p < m. By Tao (2011,
Sect. 1.6), the mean-value approximation becomes arbitrarily
accurate for sufficiently large n, i.e., for any &, > 0 there exists
some n,, € N such that

(62)

max max |KP(x,&,-)—
‘l<1<p<m XE ETp

Kl (%, &, 2 < &2, (63)

for any n > n,,. Combining (63) with the estimate (59a) and using
the triangle inequality, we have for any n > max {nav n,,z}

X&) — KL (% £z

IA

max max ||1
‘l<1<p<m (X E)E

max  max [KP(x, &, ) — K (x, &, )ll;2
Isisp=m (y £)e TP

+ max max [K'(x, &, )—K" (*, &, )2
1<i<p=m (y £)c TP

IA

10
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81+ &2, (64)

where both §; and &, can be made arbitrarily small by increasing
n, which follows from Lemma 5 and (62), respectively. As the
estimate is uniform on every 7;", P it particularly applies on x = 1.

Moreover, the step functlons K " and K”p constructed in (55)
and (62), respectively, are obtalnec{2 through applying the trans-
form F,, introduced in the proof of Lemma 4, to (E ) and

i,l)1=1
(k). respectively, for all i = 1,....m. Thus, as 7, is an

isometry, the estimate (64) also holds for these functions, i.e.,

‘ kl, x,€)) kﬁl(x,s))rzl

851+ &3.
(65)

In addition, from (59b) in Lemma 5 we already have for n > nj,

max max
]<1<p<m (x, E)ETP

v

p m P m

max max b — (¢P. < Jms..

1sis?asm(x,5)277" (EI’J(X’g))le e”’(x’g))le HR'" = Vmdy
(66)

Now, setting Ak l = T{f | — ki, and A€}, Zp — £}, we have

written (53) as (61), where the error term can be estlmated using
(65), (66), triangle inequality, and Cauchy-Schwarz inequality, for
alli=1,...,m,as

S0 pak e e
=1 p= sl
mom el
S [0 A exe <
j=1 p=i YA (1)

(8 + &2+ v/ma) [ (V) [, (67)

where §; and &, become arbitrarily small when n is sufficiently
large. O

Proof of Theorem 3. By Lemma 6, the control law (53) splits into
two parts as shown in (61), where the first part exponentially
stabilizes the system (49), (50) by Hu et al. (2019, Thm 2.1), while
the second one becomes arbitrarily small when n is arbitrarily
large. Thus, the exponential stability of the closed-loop system
(49), (50) under control law (61), when n is sufficiently large,
follows directly from the well-posedness of (49), (50) (see Remark
2) and Humaloja and Bekiaris-Liberis (2025b, Prop. A.2).

Remark 4. In order to quantify an upper bound on §; and &,
n (67), one can employ Lyapunov-based arguments similarly
to Humaloja and Bekiaris-Liberis (2025b, App. C.4). A Lyapunov
functional for (49), (50) under the control law (61) can be con-
structed similarly to (18) for u(t, -) € L*([0, 1]; R*) (see also Hu
et al. (2019, Prop. 2.1)), i.e,,

V(t) (68)

1 - -
- f (e e, 1% + 1B X)) i,
0
where B is defined for u(t, -) € L*([0, 1]; R") in Hu et al. (2016,
(28)) and satisfies (8b), (9b). The stability analysis follows the
same steps as in the proof of Theorem 1, which results in
Cv

Vi = - max {1\71,“ 1\7&}

V(o) + e 181, )12, (69)

for some ¢y, 1\71,“ 1\71)\ > 0, where the boundary condition in B(t, 1)
is not zero but it is given by the error terms in the control law
(61). Given the estimate (67) and since by Hu et al. (2016, Thm.
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3.4) the n + m backstepping transformation (of B) is invertible,

we can estimate from (61)
2
I18(t. I =< (61 + o2 + Vo M | (563)]

where My is a bound on the inverse backstepping transformation
of B for the n+m case (see Hu et al. (2016, (45))). Now, if §, D>0
have been fixed such that (69) holds for B(1, t) = 0, for 8;, &, > 0
sufficiently small, given a sufficiently large n, V remains negative
definite also when B(1, t) is estimated with (70).

[p],m (70)

5. Convergence of the large-scale system to a continuum

While in Section 4 we present an approximation result that
concerns backstepping kernels, in the present section we provide
a formal proof that the actual solutions of the PDE system (49),
(50) converge to the solutions of the continuum PDE system (4),
(5), as n — oo. The following result is of interest itself as it
provides a formal connection between the solutions of the n +m
system and the solutions of its continuum counterpart.

Theorem 4. Consider an n+ m system (49), (50) with parameters
Mj, 1//]‘.(, Qj,i, Wi j, i, )\.i, and 0l fOT l,l = 1, .., n and j, L =
1, ..., m, satisfying Assumption 2, initial conditions (ug, Vo) € E,
and mput U e Lloc([O, +00); R™). Construct a continuum system
(4), (5) with parameters A, uj, o, 0;, W, Qj, ¥je forj, £ =1,...,m
that satisfy Assumption 1 and (51), and equip (4), (5) with initial
conditions ug, vo and input U, such that uq is continuous in y and
satisfies

Up(x,i/m) =ub(x), i=1,...,n (71

Sample the solution (u,v) to the resulting PDE system (4), (5
for these data into a vector-valued function (4,V) as u(t, x)
Fru(t, x, ) (see (58)) and V(t, x) = v(t, x), pointwise for all t > 0
and almost all x € [0, 1]. On any compact interval t € [0, T], for
any given T > 0, we have

(o)
)= ()], =

where g3 > 0 becomes arbitrarily small when n is sufficiently large.

| =

max ‘
te[0,T]

(72)

Proof. The statement follows applying the same steps as in the
proof of Humaloja and Bekiaris-Liberis (2025b, Thm 6.1). In a
nutshell, as the systems (49), (4) and (50), (5) have well-posed
solutions under the assumptions of the theorem by Remark 2
and Remark 1, respectively, the solutions in particular depend
continuously on the parameters, initial conditions, and inputs of
the respective PDEs. Now, as the input to (49), (4) and (50), (5)
is the same, while the respective parameters converge as in (60)
and ug can be approx1mated to arbitrary accuracy by F,uq due to
(71), we have that F (V(t)) approximates ( L)) arbitrary accuracy
on E;, when n is sufficiently large. Since u(t, x) Fru(t, X, -)
and V(t, x) v(t, x), while 7, (and F) is an isometry and the
mean-value approximation 7,7, u(t) of the solution u(t) (which
is bounded on t € [0, T]) is convergent (in L?; see Tao (2011,
Sect. 1.6)), the estimate (72) follows by the triangle inequality as
in Humaloja and Bekiaris-Liberis (2025b, (C.43)). O

6. Numerical example and simulation results

Consider the parameters for x,y, n € [0, 1]

)‘(Xv .y) = 1’ M](X) = 27 MZ(X) = ]7 (733)

s 1 1
G(X!yvn)=x(x+l) _5 77—5 )

(73b)
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Wilx,y) = Walx, y) = x(x + 1) ( - %) , (730
Oi(x,y) = =3y(y — 1), 6alx,y) = —2y(y — 1), (73d)
0 =0, ije(l2), (73¢)
Q) =8 (y - %) Q) = -85 -2), (730

corresponding to an oo + m system for m = 2, which can be
viewed as a continuum approximation of an n + m system (for
large n) based on (51) with respective parameters

rix) =1 (74a)

oii(x) = B(x+ 1) (% - %) (% - %) , (74b)

O1i(x) = —3— (1 - 1) e (% - 1) , (74c)

wj 1(x) = wio(x) = x(x + 1)e* <i - ]) , (74d)
n 2

q,l—s(—]), sz——S(—2> (74e)
n 2 n

fori,l = 1,...,n. For the parameters (73), the solution to the
continuum kernel equations (27), (31)-(33), where we choose
(21] = 9.1 = 0, is explicitly given by

Ki(x.&.y)=yy—1), (75a)
Ki(x, &, y) = e yy—1), (75b)
K3 (x, &, y) = e y(y — 1) (75¢)

Li(x, €)= L% (%, ) = (75d)

L,(x &)= L3 ,(x, g)— —2eF %, (75e)

Lgl(x,é) 0, L3,(x,&)=—2e"""5), (75f)
C,

where K(-, y), L} ;, and L} , are defined on 7;' = {(x, £) € [0, 1]* :
X < & < x} and?’2 {(x £) € [0,1 : § < 3x} for the
respective supermdex * = 1,2, while I(z( y), L21 and L%_z are
defined on 7’22 = T, for each y € [0, 1]. Note the discontinuity
in Ly, along & = %x. In case the explicit solution is not avail-
able, one could employ, e.g., the methods of characteristics and
successive approximations, as in Section 3, or a power series-
based approach (as in Humaloja and Bekiaris-Liberis (2025a)) to
numerically evaluate the solution.

We implement the control law (53) with (52) for n+m systems
with parameters (74) for n = 2,6, 10 (and the same u, ¥ as
n (73)). As the continuum kernels (75) are continuous in y, we
approximate the exact n + m kernels by sampling pointwise
K}, K% and K7 aty = 1/n,2/n, ..., 1 instead of using (52a) (see
Footnote 10).

For the simulation, the n+m system (49), (50) is approximated
by finite differences with 256 grid points in x € [0, 1]. The ODE
resulting from the finite-difference approximation is solved using
ode45 in MATLAB. The initial conditions are uy(x) = ¢i1 + qi 2,
fori = 1,...,n, and vj(x) vi(x) = 1, for all x € [0,1].
The simulation results for t € [0, 5] are shown in Figs. 2 and
3, which show the controls (53) for n = 2,6, 10 along with
the exact controls for n = 10 (computed using the kernels in
Appendix C) and the solution components u" and v! for n = 10,
respectively. We note that the controls shown in Fig. 2 act as
weighted averages of the solution components, but since K/, K]z,
and K? vanish at y 1 and L, = 0, the solution
components u" and v! do not affect the control law and are hence
displayed separately in Fig. 3 for n = 10.

Based on Figs. 2 and 3, we conclude that the control law (53)
based on the continuum kernels (75) exponentially stabilizes the

= L1
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Fig. 2. The controls U(t) based on the approximate control law (53) for n =
2,6, 10 and the respective exact control law for n = 10.

100
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-10
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\\\ ///5
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Fig. 3. The solution components u™(t, x) and v'(t, x) for n = 10.

n + m system for n = 2,6, 10 (and m = 2),'! with improved
performance for larger n. This verifies the theoretical results. Fur-
thermore, based on Fig. 2, the continuum kernels-based control
law tends close to the exact control law computed based on the
n + m kernels, as n increases. We note that the n + m kernels
are computed based on a finite-difference approximation of the
n + m kernel equations in Appendix C, since we were not able to
find the solution in closed form.

7. Conclusions and discussion

We introduced a backstepping control design methodology for
a class of continua of hyperbolic PDE systems. Well-posedness
of the derived kernel equations was established, together with
exponential stability of the closed-loop system. We then utilize
the continuum backstepping kernels for stabilization of a large-
scale system counterpart, establishing that, as n — oo, the
continuum kernels can approximate (to arbitrary accuracy) the
exact backstepping kernels (constructed via applying backstep-
ping to the large-scale system). This allowed us to prove that
the control design constructed on the basis of the continuum
PDE system can stabilize the respective large-scale system, which
may be particularly useful, as, with this approach, complexity of
computation of stabilizing kernels may not grow with the number
n of PDE systems components. This was also demonstrated in
a numerical example for which the continuum kernels were
obtained in closed form, but for which the respective, large-scale
kernels did not exhibit a closed-form solution. We also provided a
formal convergence result of the solutions of the large-scale PDE
system to the solutions of the respective continuum.

The case m — oo requires a quite different treatment through
development of new analysis tools that cannot be obtained in an
obvious manner via extending the tools developed here. Some

11 Based on numerical simulations, the n 4 2 system with parameters (74) is
unstable for any n > 2.
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of the main reasons for this are the following. As m — oo the
input space changes from R™ to, e.g., L*([0, 1]; R), which may
impose important changes in the present analysis and results. In
particular, as the exact, control inputs themselves (rather than the
respective control kernels) would have to be approximated (in a
certain sense), it is neither clear what are the stability properties
of the closed-loop system one would obtain nor how to translate
the analysis performed for finite m to the case m — oo. In fact,
in contrast to the present paper that deals with approximation
of the control kernels, which gives rise to a bounded, vanishing
perturbation that preserves exponential stability, in the case of
control inputs approximation one may have to prove a type of
practical stability with a residual value that tends to zero as
m — oo, which would require introduction of a different, stability
proof strategy (in particular, a respective result to Theorem 4
of solutions’ convergence may be essential). Furthermore, the
characteristic curves would become 3-D regions, which makes
the respective well-posedness analysis of the kernels much more
involved. In particular, it is not obvious how one would then
have to split the 4-D domain of evolution of the kernels into
subdomains in which the kernels are continuous, which involves
deriving 3-D discontinuity regions. In addition, the case m —
oo may impose important challenges in the purely technical
steps. In particular, as the transport speeds u; would become
a function of two variables, namely u(x, n), it is not obvious
how the assumptions made here (e.g., (7)) would have to be
translated. In turn, this imposes challenges on how the well-
posedness analysis of the kernels would have to be carried out,
as, for example, one may have to properly translate the boundary
conditions (e.g., (31a)), as well as to re-derive from scratch certain
bounds (e.g., corresponding to (44a), (46)), specifically for the case
m — oo.
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Appendix A. Derivation of continuum kernel equations (12)

Let us first differentiate (11b) with respect to x and use the
Leibniz rule to get

1
Bx(t, x) = vy (t, x) — L(x, x)v(t, x) —/ K(x, x, y)u(t, x, y)dy
0

X X 1
- fo Lu(x, £)V(t. £)d& — fo /0 Ky(x. £, y)u(t. £, y)dyde.
(A1)

Moreover, differentiating (11b) with respect to t and using (4b)
gives

1
Bult. x) = MGwy(t. )+ / o(x Y)ult, x, y)dy
0
OOVt %) — /0 L(x, & M(E We(t, £ )dE
X 1
- / Lx. ) / &, Yult. £, y)dyds
0 0

_ /0 L(x, £)W(E)V(t, £)de
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X 1
+ / / K(x. £, YIA(E, y)ue(t, €. y)dyde
0 0

1
0

X 1
- / / K(x. £.7) / o (&, y. mu(t, &, n)dndyds
0 0

- ' | K. £y WCE V(L. )y, (A2)
where integratizn boy parts further gives
/O L, M, £)dE =
L(x, x)M(x)V(t. x) — L(x, O)M(0)V(t, 0)
-/ " (Lo, £IMCE) + L, §M(E)) W, ) (A3)

and

/ K(x, £, YA(E, y)ue(t, £, y)d& =
0
K(x, x, y)A(x, y)u(t, x,y) — K(x, 0, y)1(0, y)u(t, 0, y)
_ f (Ke(x, £, YA(E. )+ K(x, £, yhe(E. YUt £.9)dE. (Ad)
0

Thus, in order for (8) to hold, the kernels L and K need to satisfy
(12), (13), where we also used (9a) with «(t, 0, -) = u(t, 0, -) and
B(t,0) = v(t, 0) for all t > 0. Moreover, inserting (11) into (8a)
gives that C~ and C™ need to satisfy

C_(X,é,y)ZW(X,y)L(X,S)ﬁL/ C(x, ¢, y)U¢, §)dg,  (ASa)
£
CH(x, &y, 1) = WX, y)K(x, &, 1)

X

+ /E C (0, £, YK &, e, (ASD)
for almost all 0 < & <x < 1andy,n € [0, 1] (when applicable).
Once L and K are solved from the kernel Eqs. (12), (13), then
(A.5a) is a Volterra equation of second kind, and well-studied in
the literature. We show in Lemma 7 that (A.5a) has a well-posed
solution C~ e L*®(T; [*([0, 1]; R™*™)). Once C~ is solved from
(A5a), CT is explicitly given as a function of W, K and C~ by
(A.5Db), by which C* e L°°(T; [*([0, 1]%; R)) follows.

Lemma 7. Under Assumption 1, Eq. (A.5a) admits a unique solution
C e I™(T; L*([0, 1]; R™™)).

Proof. Utilizing similar tools as in Hochstadt (1989, Thm 2.3.5)
and Hu et al. (2019, Thm. A.2), we show that C~ is given by the
series

CXEY) =) AGKEY), (A6)
k=0
where  AC,(x,&,y) = W(x, y)L(x, €), so that

ACy € C(ﬁp; L*([0,1];R)) for any 1 < i < p < m by Theorem 2,
and AC, for k > 1 is defined recursively by
X
A6 (x .3 = [ 4G (x €.y, X (A7)
&
by which AC, € C(7; L*([0, 1]; R)) for k > 1. By induction, it
immediately follows that AC satisfy

max esssu ACT) (x, &, - <
max (&an( ) e
M k+1 X — k

MW( L) S),

i (A8)
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where

M, = max esssup |Lij(x, &)
ijef{l,...,m} (x,E)eT

) (A.9)

and My is given in (20d). Thus, the series (A.6) converges on
L°°(T; L*([0, 1]; R)) to the stated solution to (A.5a). O

Appendix B. Invertibility of (11)

Lemma 8. Under Assumption 1, the transformation (11) is bound-
edly invertible on E..

Proof. The claim follows after solving for (u, v) from (11). Since
u = «, inserting this to (11b) gives

v(t, ) — f Lix, (¢, £)dE =
0

X 1

| [ sy v = pe. (1)
which is a Volterra equation of second kind for v(t, -) in terms
of «(t, -), B(t,-),L, and K, for any (fixed) t > 0. Since («, B) €
C([0, 4-00); E.), being the solution to (8), (9) (by Theorem 1), and
as K € L®°(7; L%([0, 1]; R™)), L e L*®°(7; R™™) by Theorem 2, Eq.
(B.1) has a unique solution v(t,-) € L([0, 1]; R™) for all t > 0
by Hochstadt (1989, Thm 2.3.6). O

Appendix C. Kernel equations for linear hyperbolic n+m PDEs
" where kP, ¢7. for

m
Denote ki = (k7)) _, and £ (Zﬁj)jzl, e
I=1,...,n,j=1,...,myand 1 <i < p < m denote the n + m
kernels restricted to 7}". Using the notation of (49), (50), these
satisfy the kernel equations (cf. Hu et al. (2019, (A.19)-(A.23)))

i(X)oxk; (x, €) — A(§)oe K (x, §) — A'(E)K(x, &) =

1
EET(S)kf(X, £)+ O (60 (x, &), (C1a)
wi(x)0: L0 (x, £) + M(£)9: €] (x, &) + M'(£)E] (x, &) =
1
EWT(S)kf(X, £)+ W (&) (x, £), (C.1b)
on 7,"” 1 <i < p < m, with boundary conditions
mix)Ki(x, x) + AX)K(x, x) = —©] (x), (C2a)
mix)Ei(x, x) — M(x)€(x, x) = — ] (x), (C.2b)
L7 AR (x,0) ~ M) (x, ) = 5, (C20)

where g; = (gi,j)jr":l satisfies g;; = 0 for i < j. Additionally, an arti-
ficial boundary condition is imposed to guarantee well-posedness

of the kernel equations as follows
Vi<i: €1.8)=1).

where the functions [;; can be chosen arbitrarily. However, we
choose I;j such that

¥i (1)
mi(1) = pi(1)°
in order for (C.3) to coincide with (C.2b) at x = 1 (see Hu et al.

(2016, Rem. 6)). Finally, the segmented kernels are subject to
continuity conditions

Vi<p,Vi#Dp:

(C.3)

ij(1)=— (C4)

05 (. pf ) = € (x. pf(x).  (C5a)
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Vi<p: K7 plx)=Kx pf(x).  (C5b)

forl<i<p<mandj=1,...,mIt follows by Hu et al. (2019,
Thm A.1) that the kernel equations (C.1)-(C.5) have well-posed
solutions, which are additionally continuous on every 7}” .
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