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 a b s t r a c t

We develop a backstepping control design for a class of continuum systems of linear hyperbolic PDEs, 
described by a coupled system of an ensemble of rightward transporting PDEs and a (finite) system of 
m leftward transporting PDEs. The key analysis challenge of the design is to establish well-posedness 
of the resulting ensemble of kernel equations, since they evolve on a prismatic (3-D) domain and 
inherit the potential discontinuities of the kernels for the case of n + m hyperbolic systems. We 
resolve this challenge generalizing the well-posedness analysis of Hu, Di Meglio, Vazquez, and Krstic 
to continua of general, heterodirectional hyperbolic PDE systems, while also constructing a proper 
Lyapunov functional.

Since the motivation for addressing such PDE systems continua comes from the objective to 
develop computationally tractable control designs for large-scale PDE systems, we then introduce a 
methodology for stabilization of general n+m hyperbolic systems, constructing stabilizing backstepping 
control kernels based on the continuum kernels derived from the continuum system counterpart. This 
control design procedure is enabled by establishing that, as n grows, the continuum backstepping 
control kernels can approximate (in certain sense) the exact kernels, and thus, they remain stabilizing 
(as formally proven). This approach guarantees that complexity of computation of stabilizing kernels 
does not grow with the number n of PDE systems components. We further establish that the solutions 
to the n + m PDE system converge, as n → ∞, to the solutions of the corresponding continuum PDE 
system.

We also provide a numerical example in which the continuum kernels can be obtained in closed 
form (in contrast to the large-scale kernels), thus resulting in minimum complexity of control kernels 
computation, which illustrates the potential computational benefits of our approach.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Motivation

Stabilization of large-scale systems of general, n + m het-
erodirectional linear hyperbolic PDEs can be achieved via back-
stepping, see, for example, Anfinsen and Aamo (2019), Auriol 
and Bresch-Pietri (2022), Auriol and Di Meglio (2016), Coron, 
Hu, and Olive (2017), Di Meglio, Bribiesca Argomedo, Hu, and 

I The material in this paper was partially presented at the 23rd European 
Control Conference in Thessaloniki, Greece on 24–27 June 2025, involving a 
preliminary version of Sections 2 and 3. This paper was recommended for 
publication in revised form by Associate Editor Miroslav Krstic under the 
direction of Editor Rafael Vazquez.
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Krstic (2018), Hu, Di Meglio, Vazquez, and Krstic (2016), Hu, 
Vazquez, Di Meglio, and Krstic (2019) and Ramirez, Zwart, and 
Gorrec (2013). Such large-scale systems of hyperbolic PDEs may 
be utilized to describe the dynamics of various systems with 
practical importance. In particular, they can be utilized to de-
scribe, traffic flow dynamics in large traffic networks (Friedrich, 
Göttlich, & Osztfalk, 2022; Göttlich, Herty, Moutari, & Weissen, 
2021; Tumash, Canudas-de Wit, & Delle Monache, 2022; Zhang, 
Luan, Lu, & Prieur, 2022), as well as in multi-lane (Herty & Klar, 
2003; Yu & Krstic, 2021) or multi-class traffic (Burkhardt, Yu, & 
Krstic, 2021; Mohan & Ramadurai, 2017); blood flow dynamics 
in cardiovascular networks consisting of interconnected arterial 
segments (Bikia, 2021; Reymond, Merenda, Perren, Rufenacht, 
& Stergiopulos, 2009); epidemics spreading dynamics in various 
geographical regions and among different age groups (Bastin & 
Coron, 2016; Guan et al., 2020; Iannelli, 1995; Kitsos, Besancon, 
& Prieur, 2022); dynamics of multi-phase flows in oil drilling 
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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applications (Di Meglio, Kaasa, Petit, & Alstad, 2011); and wa-
ter networks dynamics (Bastin & Coron, 2016; Diagne, Diagne, 
Tang, & Krstic, 2017). Complexity of computation of stabilizing 
backstepping kernels may, in general, grow with the number of 
PDE systems components (Humaloja & Bekiaris-Liberis, 2025a, 
2025b), which may, in fact, be alleviated constructing backstep-
ping feedback laws based on continua PDE systems counterparts 
(Humaloja & Bekiaris-Liberis, 2025a, 2025b). Consequently, moti-
vated by this and the practical significance of considering large-
scale systems of hyperbolic PDEs, we address the problem of 
design of computationally tractable backstepping feedback laws 
for large-scale systems of n + m heterodirectional linear hyper-
bolic PDEs, via introduction of a control design procedure that 
relies on development of backstepping control laws for continua 
PDE systems counterparts. In fact, we note that the considered 
continua of PDE systems may appear in applications as such. This 
is the case, for example, in multi-class traffic flow models, when 
the vehicle classes are characterized by a continuous variable 
depending on driving characteristics, such as, e.g., drivers’ age 
(see also Alleaume and Krstic (2025, Sect. I), and Yu and Krstic 
(2022, Ch. 9)).

1.2. Literature

The first result on backstepping stabilization of a class of 
continua of hyperbolic PDE systems was developed in Alleaume 
and Krstic (2025), while a formal connection between the class 
of systems considered in Alleaume and Krstic (2025) and the 
class of n + 1 linear hyperbolic systems (Di Meglio, Vazquez, 
& Krstic, 2013) (for large n), as well as the application of the 
control design originally developed for the continuum system to 
the large-scale counterpart, were made in Humaloja and Bekiaris-
Liberis (2025b). Therefore, besides Alleaume and Krstic (2025) 
and Humaloja and Bekiaris-Liberis (2025b), the present paper is 
related to the results on backstepping stabilization of n+m linear 
hyperbolic systems, see, for example, Anfinsen and Aamo (2019), 
Auriol and Di Meglio (2016), Coron et al. (2017), Di Meglio et al. 
(2018) and Hu et al. (2016, 2019), as well as to results in which 
PDE ensembles may arise as result of employment of Fourier 
transform, see, for example, Vazquez and Krstic (2008) (that 
deals with parabolic PDEs). In addition, as the actual motivation 
for our developments is to address computational complexity of 
backstepping designs for large-scale hyperbolic systems, papers 
related to computation of backstepping kernels are also rele-
vant, in particular, Bhan, Shi, and Krstic (2024) that introduces a 
neural operators-based computation method, Auriol, Morris, and 
Di Meglio (2019) that presents a late-lumping-based approach, 
and Vazquez, Chen, Qiao, and Krstic (2023) that relies on power 
series representations of the kernels (even though these results 
do not explicitly aim at addressing computational complexity 
with respect to increasing number of systems components). Here 
we address the previously unattempted problems of backstepping 
control design for the continuum counterpart of a large-scale 
system of n + m hyperbolic PDEs and its application for the 
stabilization of the original large-scale system.

1.3. Contributions

We start considering a continuum PDE system that may cor-
respond to the n + m hyperbolic system as n → ∞ for which 
we employ the continuum PDE backstepping method. This gives 
rise to a continuum plus m kernel equations that are defined on 
a prismatic (3-D) domain that arises by continuating the trian-
gular (2-D) domain of definition of the respective n + m kernel 
equations. We establish well-posedness of the kernel equations 
treating them on each 3-D subdomain that is spanned along the 
2

direction of the ensemble variable from subdomains of the 2-D 
triangular space on which the kernels do not feature disconti-
nuities. This allows us to then show continuity of the respective 
characteristic projections and to employ the successive approx-
imations approach on each 3-D subdomain, thus generalizing 
the well-posedness results from  Alleaume and Krstic (2025) 
and Hu et al. (2016, 2019) for the n + m and ∞ + 1 cases, 
respectively, to the case of a continuum plus m (∞ +m) kernels. 
Such a generalization is highly nontrivial and requires a delicate 
technical treatment as it inherits the technical intricacies of both 
going from n+1 to n+m systems, in particular, the fact that the 
kernels may feature discontinuities, and going from a system with 
finite components to a continuum, in particular, having to deal 
with PDEs defined on 2-D domains instead of vector-valued 1-D 
PDEs. We establish exponential stability (in L2) of the closed-loop 
system, constructing a Lyapunov functional.

We then consider the large-scale n + m system counterpart 
for which we design a feedback law employing the continuum 
kernels (evaluated at n points for each control input), based on 
the continuum approximation idea from Humaloja and Bekiaris-
Liberis (2025b). We establish that the closed-loop system is expo-
nentially stable (in L2) by showing that, for sufficiently large n, the 
exact backstepping kernels can be approximated to any desired 
accuracy by the continuum kernels. The proof relies on construc-
tion of a sequence of backstepping kernels that is defined such 
that each kernel in the sequence matches the exact kernel (in a 
piecewise manner with respect to the ensemble variable), while 
then showing that this sequence converges to the continuum 
kernel. This in turn implies that the approximation error of the 
exact control kernels can be made arbitrarily small for sufficiently 
large n. This gives rise to a closed-loop system that is affected 
by a bounded vanishing perturbation with a bound that can be 
made arbitrarily small, and thus, the closed-loop system remains 
exponentially stable, which we show constructing a Lyapunov 
functional. We further provide a convergence result establishing 
the exact convergence properties of the actual solutions of the 
n+m PDE system to the solutions of the continuum counterpart, 
which is analogous to the m = 1 case considered in Humaloja and 
Bekiaris-Liberis (2025b). We provide a numerical example of an 
n+m system for which the exact control kernels do not exhibit a 
closed-form solution, but the continuum kernels of the respective 
∞ + m system do, illustrating the computational complexity 
benefits of employing the continuum kernels for stabilization of 
the large-scale system.

1.4. Organization

The paper is organized as follows. In Section 2, we present a 
backstepping control law for ∞+m hyperbolic systems and show 
exponential stability of the closed-loop system. In Section 3, we 
show that the backstepping kernels employed in the control law 
are well-posed. In Section 4, we show that the ∞+m kernels can 
be used in constructing exponentially stabilizing control laws for 
large-scale n + m hyperbolic systems. In Section 5, we formally 
show the convergence of the solution of the n + m PDE system 
to the solution of the ∞ + m PDE system. In Section 6, we 
validate the theoretical developments on a numerical example, 
illustrating in simulation that stabilization of the n+m system can 
be achieved employing the continuum kernels-based controller. 
In Section 7, we provide concluding remarks and discuss open 
problems.
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1.5. Notation

We use the standard notation L2(Ω;R) for real-valued
Lebesgue integrable functions on a domain Ω ⊂ Rd for some 
d ≥ 1. For conciseness, we occasionally use shorthand L2 for 
L2([0, 1];R). The notations L∞(Ω;R), C(Ω;R), and C1(Ω;R) de-
note essentially bounded, continuous, and continuously differ-
entiable functions, respectively, on Ω . Moreover, the notation
f ∈ L2loc([0,+∞);R) means that f ∈ L2([0, a];R) for any a ∈

N. We denote vectors and matrices by bold symbols, and ∥ ·

∥∞, ∥ · ∥1 denote the maximum absolute row and column sums, 
respectively, of a matrix (or a vector). For any n,m ∈ N, we 
denote by E the space L2([0, 1];Rn+m) equipped with the inner 
product ⟨( u1

v1

)
,
( u2
v2

)⟩
E =∫ 1

0

⎛⎝1
n

n∑
i=1

ui
1(x)u

i
2(x) +

m∑
j=1

v
j
1(x)v

j
2(x)

⎞⎠ dx, (1)

which induces the norm ∥·∥E =
√

⟨·, ·⟩E . We also define the con-
tinuum version of E as n → ∞ by Ec = L2([0, 1]; L2([0, 1];R)) ×

L2([0, 1];Rm), (i.e., Rn becomes L2([0, 1];R) as n → ∞) equipped 
with the inner product ⟨( u1

v1

)
,
( u2
v2

)⟩
Ec

=∫ 1

0

⎛⎝∫ 1

0
u1(x, y)u2(x, y)dy +

m∑
j=1

v
j
1(x)v

j
2(x)

⎞⎠ dx, (2)

which coincides with L2([0, 1]2;R)×L2([0, 1];Rm). Moreover, we 
say that a system is exponentially stable on E (resp. on Ec) if, for 
any initial condition z0 ∈ E (resp. z0 ∈ Ec), the (weak) solution 
z ∈ C([0,∞); E) (resp. z ∈ C([0,∞); Ec)) of the system satisfies 
∥z(t)∥E ≤ Me−ct

∥z0∥E (resp. ∥z(t)∥Ec ≤ Me−ct
∥z0∥Ec ) for some 

constants M, c > 0 that are independent of z0. Finally, we denote 
by T  and P the triangular and prismatic, respectively, sets 
T =

{
(x, ξ ) ∈ [0, 1]2 : 0 ≤ ξ ≤ x ≤ 1

}
, (3a)

P =
{
(x, ξ , y) ∈ [0, 1]3 : (x, ξ ) ∈ T

}
. (3b)

2. Stabilization of continua ∞ + m systems

2.1. Continua ∞ + m systems of hyperbolic PDEs

The considered class of systems can be thought of as the 
continuum counterpart of n + m hyperbolic systems in the limit 
case n → ∞ (this aspect is considered formally in Sections 4 and
5). However, instead of considering a countably infinite number 
as n → ∞, we replace the n-part by an (uncountably infinite) 
ensemble over the variable y ∈ [0, 1]. We note that the class of 
systems (4), (5) is broader than the one obtained as continuum 
limit of a respective n + m system (49), (50) in Section 4, as 
(4), (5) is not limited to countably infinite ensembles. Thus, the 
considered class of continuum systems is of the form 

ut (t, x, y) + λ(x, y)ux(t, x, y) =∫ 1

0
σ (x, y, η)u(t, x, η)dη + W(x, y)v(t, x), (4a)

vt (t, x) − M(x)vx(t, x) =∫ 1

0
Θ(x, y)u(t, x, y)dy + Ψ(x)v(t, x), (4b)

with boundary conditions 
u(t, 0, y) = Q(y)v(t, 0), (5a)
3

v(t, 1) = U(t), (5b)

for almost every y ∈ [0, 1]. Here we employ the matrix notation 
for v,U,M,Θ,Ψ,W, and Q for the sake of conciseness, that is, 
v =

(
vj
)m
j=1, U =

(
U j
)m
j=1, and the parameters are as follows. 

Assumption 1.  The parameters of (4), (5) are such that 
M = diag(µj)mj=1 ∈ C1([0, 1];Rm×m), (6a)

Θ =
(
θj
)m
j=1 ∈ C([0, 1]; L2([0, 1];Rm)), (6b)

Ψ =
(
ψi,j
)m
i,j=1 ∈ C([0, 1];Rm×m), (6c)

W =
[
W1 · · · Wm

]
∈ C([0, 1]; L2([0, 1];R1×m)), (6d)

Q =
[
Q1 · · · Qm

]
∈ L2([0, 1];R1×m), (6e)

with λ ∈ C1([0, 1]2;R) and σ ∈ C([0, 1]; L2([0, 1]2;R)). More-
over, λ(x, y) > 0 for all x, y ∈ [0, 1] and 
µ1(x) > µ2(x) > · · · > µm(x) > 0, (7)

for all x ∈ [0, 1]. Finally, ψj,j = 0 for all j = 1, . . . ,m.1

Remark 1.  Under Assumption 1, it can be shown by using 
the same arguments as in Humaloja and Bekiaris-Liberis (2025b, 
Prop. B.1) that the system (4), (5) is well-posed on Ec . That 
is, for any initial conditions u0 ∈ L2([0, 1]; L2([0, 1];R)), v0 ∈

L2([0, 1];Rm) and input U ∈ L2loc([0,+∞);Rm), there is a unique 
(weak) solution to (4), (5) satisfying (u, v) ∈ C([0,+∞); Ec).

2.2. Continuum backstepping kernel equations

The target system for the continuum Volterra backstepping 
transformation is essentially chosen as the n → ∞ continuum 
counterpart of the respective n + m target system in Hu et al. 
(2016, Sect. III.A), i.e., 

αt (t, x, y) + λ(x, y)αx(t, x, y) =∫ 1

0
σ (x, y, η)α(t, x, η)dη + W(x, y)βββ(t, x)

+

∫ 1

0

∫ x

0
C+(x, ξ , y, η)α(t, ξ , η)dξdη

+

∫ x

0
C−(x, ξ , y)βββ(t, ξ )dξ, (8a)

βββ t (t, x) − M(x)βββx(t, x) = G(x)βββ(t, 0), (8b)

with boundary conditions 
α(t, 0, y) = Q(y)βββ(t, 0), (9a)

βββ(t, 1) = 000, (9b)

for (almost) all y ∈ [0, 1], where C+
∈ L∞(T ; L2([0, 1]2;R)), 

C−
∈ L∞(T ; L2([0, 1];R1×m)), and G ∈ L∞([0, 1];Rm×m) is of the 

form 

G(x) =

⎡⎢⎢⎢⎢⎣
0 · · · · · · 0

G2,1(x)
. . .

. . .
...

...
. . .

. . .
...

Gm,1(x) · · · Gm,m−1(x) 0

⎤⎥⎥⎥⎥⎦ . (10)

The choice of the target system (8), (9) is guided by the fact that 
the βββ-part is decoupled from the α-part and, similarly to the n+m
case, tends to zero in finite time. Consequently, the remaining 

1 This comes without loss of generality, as such terms can be removed using 
a change of variables (see also, e.g., Hu et al. (2016, 2019)).
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dynamics for α are exponentially stable analogously to Alleaume 
and Krstic (2025, (33), (34)). In order to map (4), (5) into (8), (9), 
we employ the following continuum Volterra transformation 

α(t, x, y) = u(t, x, y) (11a)

βββ(t, x) = v(t, x) −

∫ x

0
L(x, ξ )v(t, ξ )dξ

−

∫ x

0

∫ 1

0
K(x, ξ , y)u(t, ξ , y)dydξ, (11b)

where L ∈ L∞(T ;Rm×m) and K ∈ L∞(T ; L2([0, 1];Rm)) are the 
backstepping kernels. We note that (11b) comprises a Volterra 
integral operator applied to the inner product in Ec of (K, L) and 
(u, v).

Derivation of the continuum kernels equations is provided in 
Appendix  A. We obtain that L and K need to satisfy the following 
kernel equations 

M(x)Kx(x, ξ , y) − Kξ (x, ξ , y)λ(ξ, y) − K(x, ξ , y)λξ (ξ, y) =

L(x, ξ )Θ(ξ, y) +

∫ 1

0
K(x, ξ , η)σ (ξ, η, y)dη, (12a)

M(x)Lx(x, ξ ) + Lξ (x, ξ )M(ξ ) + L(x, ξ )M′(ξ ) =

L(x, ξ )Ψ(ξ ) +

∫ 1

0
K(x, ξ , y)W(ξ, y)dy, (12b)

with boundary conditions 

M(x)L(x, x) − L(x, x)M(x) + Ψ(x) = 0, (13a)

K(x, x, y)λ(x, y) + M(x)K(x, x, y) + Θ(x, y) = 0, (13b)

L(x, 0)M(0) −

∫ 1

0
K(x, 0, y)λ(0, y)Q(y)dy = G(x), (13c)

for almost all 0 ≤ ξ ≤ x ≤ 1 and y ∈ [0, 1]. More precisely, (13c) 
splits into two parts, for i ≤ j and i > j, respectively, 

Li,j(x, 0) =
1

µj(0)

∫ 1

0
Ki(x, 0, y)λ(0, y)Qj(y)dy, (14a)

Gi,j(x) = Li,j(x, 0)µj(0) −

∫ 1

0
Ki(x, 0, y)λ(0, y)Qj(y)dy, (14b)

where (14a) acts as a boundary condition for (12) and (14b) 
defines the nonzero elements of G shown in (10). Similarly to Hu 
et al. (2016, 2019), we also impose additional, artificial boundary 
conditions, to ensure the well-posedness of the kernel equations, 
as follows 

∀j < i : Li,j(1, ξ ) = l(1)i,j (ξ ), (15)

where the functions l(1)i,j  are chosen such that a C0 compatibility 
condition2 is satisfied on (x, ξ ) = (1, 1).3 Thus, consistently with 
(13a), we impose 

l(1)i,j (1) = −
ψi,j(1)

µi(1) − µj(1)
, (16)

for all j < i. The well-posedness of the kernel equations (12)–(16) 
is considered in Section 3.

2 While C2 compatibility conditions (and higher regularity of parameters) are 
sought in Hu et al. (2019) for obtaining (piecewise) C2 kernels, for our purposes 
C0 compatibility conditions are enough.
3 For the L kernels, a compatibility condition cannot (generally) be satisfied 

on (x, ξ ) = (0, 0) due to (13a) and (13c), (13b).

4

2.3. Backstepping feedback law and stability result

The backstepping control law for j = 1, . . . ,m is given by

U j(t) =

∫ 1

0

∫ 1

0
Kj(1, ξ , y)u(t, ξ , y)dydξ

+

∫ 1

0

m∑
i=1

Lj,i(1, ξ )vi(t, ξ )dξ, (17)

which stabilizes (4), (5) by Theorem  1. 

Theorem 1.  Under Assumption  1, the control law (17) exponen-
tially stabilizes the system (4), (5) on Ec .

Proof.  Well-Posedness: We first establish that the target system 
(8), (9) has a well-posed solution on Ec , which we achieve by 
utilizing feedback results for the well-posed system (4), (5) (see 
Remark  1). By Tucsnak and Weiss (2009, Sect. 10.1), we can 
express the well-posed, boundary-controlled PDE (4), (5) as a 
well-posed abstract Cauchy problem ż(t) = Az(t) + BU(t) on 
the Hilbert space Ec , where z = (u, v), the system ż(t) = Az(t)
corresponds to (4) with the homogeneous boundary condition 
from (5) through the domain of A, and BU(t) corresponds to the 
boundary control in (5). (We skip the explicit expressions of A
and B as knowing that they exist suffices here.) Now, expressing 
the backstepping control law (17) as U(t) = Fz(t), the closed-
loop dynamics of (4), (5) under the control law (17) are given by 
ż(t) = (A + BF )z(t). As F  is a bounded linear operator from Ec to 
Rm, the operator A+ BF  is the generator of a strongly continuous 
semigroup by Tucsnak and Weiss (2009, Cor. 5.5.1), and hence, 
the dynamics ̇z(t) = (A+BF )z(t) have a well-posed solution on Ec . 
Now, by applying the linear, bounded state transformation (11) 
(see Theorem  2 in Section 3), we have that the target system (8), 
(9) has a well-posed solution on Ec as well.

Lyapunov Stability: Now we show that the (weak; see Hu-
maloja and Bekiaris-Liberis (2025b, Rem. C.1) for details on the 
fact that existence and uniqueness of a weak solution suffices 
for making our Lyapunov-based arguments legitimate) solution to 
(8), (9) decays exponentially to zero, which by the invertibility of 
the transform (11) (see Lemma  8 in Appendix  B) implies that the 
system (4), (5) under the control law (17) is exponentially stable. 
Inspired by Hu et al. (2019, Prop. 2.1), the candidate Lyapunov 
functional with parameters δ,D = diag(D1, . . . ,Dm) > 0 is taken 
as

V (t) =

∫ 1

0

∫ 1

0
e−δx α

2(t, x, y)
λ(x, y)

dydx

+

∫ 1

0
eδxβββT (t, x)DM−1(x)βββ(t, x)dx. (18)

Computing V̇ (t) and integrating by parts in x gives

V̇ (t) =
[
−e−δx

∥α(t, x, ·)∥2
L2 + eδx∥βββ(t, x)∥2

D
]1
0

− δ

∫ 1

0

(
e−δx

∥α(t, x, ·)∥2
L2 + eδx∥βββ(t, x)∥2

D
)
dx

+2
∫ 1

0

∫ 1

0

∫ 1

0
e−δx α(t, x, y)

λ(x, y)
σ (x, y, η)α(t, x, η)dηdydx

+ 2
∫ 1

0

∫ 1

0
e−δx α(t, x, y)

λ(x, y)
W(x, y)βββ(t, x)dydx

+2
∫ 1

0

∫ 1

0

∫ 1

0

∫ x

0
e−δx α(t, x, y)

λ(x, y)
C+(x, ξ , y, η)α(t, ξ , η)dξdηdydx

+ 2
∫ 1 ∫ 1 ∫ x

e−δx α(t, x, y)C−(x, ξ , y)βββ(t, ξ )dξdydx

0 0 0 λ(x, y)
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+

∫ 1

0
eδxβββT (t, x)

(
DM−1(x)G(x)

+GT (x)M−1(x)D
)
βββ(t, 0)dx, (19)

where ∥ · ∥
2
D = ⟨·,D·⟩Rm  denotes the D-weighted inner product. 

Using the following bounds (that exist by Assumption  1 using 
Theorem  2 and Lemma  7 in Appendix  A) 
mλ = min

x,y∈[0,1]
λ(x, y), (20a)

mµ = min
j∈{1,...,m}

min
x∈[0,1]

µj(x), (20b)

Mσ = max
x∈[0,1]

∫ 1

0
σ (x, ·, η)dη


L2
, (20c)

MW = max
j={1,...,m}

max
x∈[0,1]

∥Wj(x, ·)∥L2 , (20d)

MC+ = esssup
(x,ξ )∈T

∫ 1

0
C+(x, ξ , ·, η)dη


L2
, (20e)

MC− = max
j∈{1,...,m}

esssup
(x,ξ )∈T

∥C−

j (x, ξ , ·)∥L2 , (20f)

MG = max
i,j∈{1,...,m}

esssup
x∈[0,1]

⏐⏐Gij(x)
⏐⏐ , (20g)

MQ = max
j=1,...,m

∥Qj∥L2 , (20h)

the boundary conditions (9), the Cauchy–Schwarz inequality, and 
2 ⟨f , g⟩L2 ≤ ∥f ∥2

L2
+ ∥g∥

2
L2
 for any f , g ∈ L2, we can estimate (19) 

as4

V̇ (t) ≤ −βββT (t, 0)
(
D − M2

Q Im×m
)
βββ(t, 0)

− δ

∫ 1

0

(
e−δx

∥α(t, x, ·)∥2
L2 + eδx∥βββ(t, x)∥2

D
)
dx

+ 2
∫ 1

0
e−δxMσ + MC+

mλ

∥α(t, x, ·)∥2
L2dx

+

∫ 1

0
e−δx

(
∥α(t, x, ·)∥2

L2

m2
λ

+ M2
W∥βββ(t, x)∥2

Rm

)
dx

+

∫ 1

0
e−δx

(
∥α(t, x, ·)∥2

L2

m2
λ

+ M2
C−∥βββ(t, x)∥2

Rm

)
dx

+ mMG

∫ 1

0
eδxβββT (t, x)DM−1(x)βββ(t, x)dx

+
mMGeδ

δmµ

βββT (t, 0)Fβββ(t, 0), (21)

where F = diag (F1, . . . , Fm) with 

Fj =

{∑m
i=j+1 Di, 1 ≤ j ≤ m − 1,

0, j = m,
(22)

where we employ the lower-triangular structure of G given in 
(10) on the last two lines of (21). Now, V̇ (t) can be guaranteed 
to be negative definite by choosing δ and D such that 

δ > max

{
2mλ(Mσ + MC+ ) + 2

m2
λ

,
M2

W + M2
C− + mMG

mµ

}
,

(23a)

Dj >

{
max

{
M2

Q , 1
}
, j = m,

max
{
M2

Q , 1
}

+
mMGeδ

δmµ

∑m
i=j+1 Di, j < m.

(23b)

4 We use the shorthand notation ∥α(t, x, ·)∥L2  instead of writing the integrals 
over y explicitly. While this is a slight abuse of notation (as α(t, x, ·) is not 
necessarily in L2), these expressions are valid appearing inside the integrals over 
x.
5

More specifically, by defining 

cV = δ − max

{
2mλ(Mσ + MC+ ) + 2

m2
λ

,
M2

W + M2
C− + mMG

mµ

}
,

(24)

we have 

V̇ (t) ≤ −
cV

max
{
Mµ,Mλ

}V (t), (25)

where 
Mλ = max

x,y∈[0,1]
λ(x, y), Mµ = max

j={1,...,m}

max
x∈[0,1]

µj(x), (26)

which shows that the target system (8), (9) is exponentially sta-
ble. Thus, due to the invertibility of the transform (11) established 
in Lemma  8 in Appendix  B, the control law (17) exponentially 
stabilizes (4), (5). □

3. Well-posedness of the continuum kernels

Theorem 2.  Under Assumption  1, the continuum kernel equa-
tions (12)–(16) have a well-posed solution K ∈ L∞(T ; L2([0, 1];Rm))
and L ∈ L∞(T ;Rm×m). Moreover, the solution is piecewise continu-
ous in (x, ξ ) ∈ T , where the set of discontinuities comprises finitely 
many continuously differentiable, monotone curves.

The proof is presented at the end of this section by utilizing 
the following lemmas. First, the kernels are split into subdomains 
to deal with the potential discontinuity in the Li,j kernels for i < j
stemming from (x, ξ ) = (0, 0) due to the boundary conditions 
(13a) and (13c), (13b). Once the kernels are split into subdomains, 
the resulting kernel equations can be solved by transforming 
them into integral equations along the characteristic curves and 
solving these integral equations by using the method of succes-
sive approximations combining Alleaume and Krstic (2025, Sect. 
VI) and Hu et al. (2016, Sect. VI). In particular, we need to ensure 
continuity of the characteristic curves such that the successive 
approximations for the Ki kernels, for i = 1, . . . ,m, are L2 in y for 
almost all (x, ξ ) ∈ T .

Lemma 1 (Splitting the Kernels into Subdomains of Continuity).  The 
kernel equations (12) can be equivalently written in
L∞(T ; L2([0, 1];Rm) × Rm×m) as 
µi(x)∂xK

p
i (x, ξ , y) − ∂ξK

p
i (x, ξ , y)λ(ξ, y) − K p

i (x, ξ , y)λξ (ξ, y) =

m∑
ℓ=1

Lpi,ℓ(x, ξ )θℓ(ξ, y) +

∫ 1

0
K p
i (x, ξ , η)σ (ξ, η, y)dη,

(27a)
µi(x)∂xL

p
i,j(x, ξ ) + µj(ξ )∂ξ L

p
i,j(x, ξ ) + µ′

j(ξ )L
p
i,j(x, ξ ) =

m∑
ℓ=1

Lpi,ℓ(x, ξ )ψℓ,j(ξ ) +

∫ 1

0
K p
i (x, ξ , y)Wj(ξ, y)dy,

(27b)

for 1 ≤ i ≤ p ≤ m and j = 1, . . . ,m, where Lpi,j, K
p
i  denote the 

restrictions of the kernels to T p
i  and Pp

i , respectively, defined as 

T p
i =

{
(x, ξ ) ∈ [0, 1]2 : ρ

p+1
i (x) ≤ ξ ≤ ρ

p
i (x)

}
, (28a)

Pp
i =

{
(x, ξ , y) ∈ [0, 1]3 : (x, ξ ) ∈ T p

i

}
, (28b)

where ρm+1
i = 0 for all i = 1, . . . ,m and 

ρ
p(x) = φ−1(φ (x)), (29)
i p i
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5 for 1 ≤ i ≤ p ≤ m with 

φi(x) =

∫ x

0

ds
µi(s)

, i = 1, . . . ,m. (30)

The boundary conditions for (27) are given by 

∀j ̸= i : Lii,j(x, x) = −
ψi,j(x)

µi(x) − µj(x)
, (31a)

∀i : K i
i (x, x, y) = −

θi(x, y)
λ(x, y) + µi(x)

, (31b)

∀i ≤ j : Lmi,j(x, 0) =
1

µj(0)

∫ 1

0
Km
i (x, 0, y)λ(0, y)Qj(y)dy,

(31c)

for i, j = 1, . . . ,m, with the artificial boundary conditions 
Lpij(1, ξ ) = l(1)i,j (ξ ), (32)

for all ξ ∈ [ρ
p+1
i (1), ρp

i (1)], p = i, . . . ,m, and 1 ≤ j < i ≤ m. 
Moreover, the segmented kernels K p

i , L
p
i,j are subject to continuity 

conditions 
∀i < p,∀j ̸= p : Lp−1

i,j (x, ρp
i (x)) = Lpi,j(x, ρ

p
i (x)), (33a)

∀i < p : K p−1
i (x, ρp

i (x), y) = K p
i (x, ρ

p
i (x), y), (33b)

for all i, j = 1, . . . ,m, i < p ≤ m, and x, y ∈ [0, 1].

Proof.  After splitting the kernels into the T p
i  and Pp

i  segments, 
the transformation (11b) can be rewritten componentwise for 
i = 1, . . . ,m as

βi(t, x) = vi(t, x) −

m∑
j=1

m∑
p=i

∫ ρ
p
i (x)

ρ
p+1
i (x)

Lpi,j(x, ξ )vj(t, ξ )dξ

−

m∑
p=i

∫ ρ
p
i (x)

ρ
p+1
i (x)

∫ 1

0
K p
i (x, ξ , y)u(t, ξ , y)dydξ . (34)

The kernel equations (27) are obtained by inserting (34) to (8b) 
and integrating by parts once (similarly to Appendix  A). In fact, 
the kernel equations (27) are exactly of the same form as (12) 
(written componentwise), and the boundary conditions (31), (32) 
correspond to (13a), (13b), (14a), and (15) along the respective 
boundaries (see Fig.  1 for an illustration of the T p

i  segments). 
Thus, the only difference to (12)–(15) are the continuity con-
ditions (33), which arise due to the segmentation of T  when 
differentiating (34) in x and integrating by parts once. □

The kernel equations (27) for Lpi,j and K
p
i  on the segments T p

i
and Pp

i  with boundary conditions (31)–(33) can be transformed 
into integral equations. In order to do this, in Lemma  2 we solve 
the characteristic projections for (27).

Lemma 2 (Continuity of Characteristic Projections).  The character-
istic projections for the kernel equations (27) are continuous on T p

i
and Pp

i  for all 1 ≤ i ≤ p ≤ m.

Proof.  As λ is assumed to be in C1([0, 1]2;R), we can argue 
pointwise in y ∈ [0, 1] and solve the characteristic projections 
for the K p

i  kernels from the following Cauchy problems on s ∈

[0, sfi,p(y)] for arbitrary, fixed y ∈ [0, 1] and 1 ≤ i ≤ p ≤ m

d
ds

x̂i,p(s, y) = −µi(x̂i,p(s, y)), (35a)

5 These are the characteristic curves of (27b), which are strictly increasing 
in x and satisfy 0 = ρm+1

i (x) < ρm
i (x) < · · · < ρ i

i (x) = x for all 1 ≤ i ≤ m and 
x ∈ (0, 1] by (7) (see, e.g., Hu et al. (2019, (A.3))).
6

Fig. 1. Illustration of the segments T p
i  for 1 ≤ i ≤ p ≤ m. The dashed lines are 

the characteristic curves ξ = ρ
p
i (x) for i < p ≤ m.

d
ds
ξ̂i,p(s, y) = λ(ξ̂i,p(s, y), y), (35b)

with boundary conditions x̂i,p(0, y) = x, x̂i,p
(
sfi,p, y

)
=

x̂fi,p(y), ξ̂i,p(0, y) = ξ, ξ̂i,p

(
sfi,p, y

)
= ξ̂

f
i,p(y). Since µi and λ(·, y)

are continuously differentiable and positive by Assumption  1, (35) 
has a unique (local in s) solution for any (x, ξ ) ∈ T p

i  (and each y) 
by Picard–Lindelöf theorem (Teschl, 2012, Thm 2.2), where x̂i,p
is strictly decreasing in s and ξi,p is strictly increasing in s. Thus, 
for any initial condition (x, ξ ) ∈ T p

i , the solution to (35) tends 
towards the boundary ξ = ρ

p
i (x), where it terminates at s = sfi,p(y)

with the terminal condition 
(
x̂fi,p, ξ̂

f
i,p

)
, and the corresponding 

boundary condition is given by (31b) for i = p, or by (33b) for i <
p. Considering that we have only split the domain of the kernel 
equations in the (x, ξ ) plane, we can employ the same continuity 
arguments, not only in y but also in x and ξ , as in Alleaume and 
Krstic (2025, Lem. 4) on each Pp

i  for all 1 ≤ i ≤ p ≤ m. Thus, 
the characteristic projections solving (35) are continuous on each 
Pp

i , particularly as λ and µi are continuously differentiable by 
Assumption  1.

The characteristic projections for the Lpi,j kernels are analogous 
to the ℓpi,j kernels encountered in the n + m case. Thus, this 
observation allows us to study continuity of the characteristic 
projections for the Lpi,j kernels similarly to Hu et al. (2019, Thm 
A.1) and Hu et al. (2016, Sect. VI.A.2). To elaborate, for all i, j =

1, . . . ,m and p = i, . . . ,m, the characteristic projections for the 
Lpi,j kernels are solutions of the following Cauchy problems on 
s ∈ [0, sfi,j,p]

d
ds

x̂i,j,p(s) = ϵi,jµi(x̂i,j,p(s)), (36a)

d
ds
ξ̂i,j,p(s) = ϵi,jµj(ξ̂i,j,p(s)), (36b)

with boundary conditions x̂i,j,p(0) = x, x̂i,j,p
(
sfi,j,p

)
= x̂fi,j,p, 

ξ̂i,j,p(0) = ξ, ξ̂i,j,p

(
sfi,j,p

)
= ξ̂

f
i,j,p,, and ϵi,j defined as 

ϵi,j =

{
1, i > j

(37)

−1, i ≤ j.
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For initial condition (x, ξ ) ∈ T p
i , the location of the terminal 

condition 
(
x̂fi,j,p, ξ̂

f
i,j,p

)
 depends on i, j and p (cf. Hu et al. (2016, 

Figs. 4–6)) as follows.

• For i > j, the terminal condition is located either on x = 1
with boundary condition (32) for i ≤ p ≤ m, or on ξ = x
with boundary condition (31a) for p = i, or on ξ = ρ

p
i (x)

with boundary condition (33a) for i < p ≤ m.
• For i = j, the terminal condition is located on ξ = 0 for 

p = m with boundary condition (31c), and on ξ = ρ
p+1
i (x)

for i ≤ p < m with boundary condition (33a) (for p → p+1).
• For i < j, the terminal condition is located on ξ = x for p = i

with boundary condition (31a), on ξ = ρ
p
i (x) for i < p < j

with boundary condition (33a), on ξ = 0 for p = m with 
boundary condition (31c), and on ξ = ρ

p+1
i (x) for j ≤ p < m

with boundary condition (33a) (for p → p + 1).

Thus, there exist unique, continuous characteristic projections as 
the solutions to (36) on s ∈ [0, sfi,j,p], as every µi is continuously 
differentiable by Assumption  1. □

As the final step, we transform the kernel equations (27) into 
integral equations along the characteristic curves. By virtue of 
Lemma  2, we can then proceed with the method of successive 
approximations to obtain the unique continuous kernels K p

i , L
p
i,j

solving (27)–(33) on each T p
i  by Lemma  3. Towards this end, 

integrating (27) along the characteristic curves and plugging in 
the boundary conditions (31)–(33) gives 

K p
i (x, ξ , y)− B1

i,p

(
xfi,p (y) , y

)
=

−

∫ sfi,p(y)

0

(
K p
i

(
x̂i,p (s, y) , ξ̂i,p (s, y) , y

)
λξ

(
ξ̂i,p (s, y) , y

)
+

∫ 1

0
K p
i

(
x̂i,p (s, y) , ξ̂i,p (s, y) , η

)
σ

(
ξ̂i,p (s, y) , η, y

)
dη

+

m∑
ℓ=1

Lpi,ℓ
(
x̂i,j,p (s) , ξ̂i,j,p (s)

)
θℓ

(
ξ̂i,j,p (s) , y

))
ds, (38a)

Lpi,j (x, ξ)− B2
i,j,p

(
⋆̂i,j,p

(
sfi,j,p

))
=

+ϵi,j

∫ sfi,j,p

0

(
µ′

j

(
ξ̂i,j,p (s)

)
Lpi,j
(
x̂i,j,p (s) , ξ̂i,j,p (s)

)
−

∫ 1

0
K p
i

(
x̂i,j,p (s) , ξ̂i,j,p (s) , y

)
Wj

(
ξ̂i,j,p (s) , y

)
dy

−

m∑
ℓ=1

Lpi,ℓ
(
x̂i,j,p (s) , ξ̂i,j,p(s)

)
ψℓ,j

(
ξ̂i,j,p(s)

))
ds, (38b)

where, for j = 1, . . . ,m and 1 ≤ i ≤ p ≤ m, 

B1
i,p(x, y) =

{
−

θi(x,y)
λ(x,y)+µi(x)

, p = i
K p−1
i (x, ρp

i (x), y), p > i,
(39a)

B2
i,j,p(⋆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
ψi,j(x)

µi(x)−µj(x)
, p = i, i ̸= j

l(1)i,j (ξ ), p ≥ i > j
Lp−1
i,j (x, ρp

i (x)), p > i > j
Lp−1
i,j (x, ρp

i (x)), i < p < j
1

µj(0)

∫ 1
0 Km

i (x, 0, y)λ(0, y)Qj(y)dy, p = m, i ≤ j
Lp+1
i,j (x, ρp+1

i (x)), i ≤ j ≤ p < m,

(39b)

denote the boundary conditions according to the terminal con-
ditions of the characteristic projections solved in Lemma  2. The 
integral form (38) of the kernel equations can then be employed 
in constructing the series of successive approximations, by first 
7

inserting (arbitrary) initial guesses for K p
i  and L

p
i,j. The conver-

gence of such successive approximations is established in Lemma 
3.

Lemma 3 (Convergence of Successive Approximations).  Let j =

1, . . . ,m and 1 ≤ i ≤ p ≤ m be arbitrary, and denote the 
sequences of successive approximations for the respective kernels K p

i
and Lpi,j corresponding to (38), (39) by (Kℓ)∞ℓ=0 and (Lℓ)∞ℓ=0, respec-
tively, where we initialize K0 and L0 to zero. Then, the sequences of 
successive approximations converge such that 
lim
ℓ→∞

max
(x,ξ )∈T p

i

Kℓ(x, ξ , ·) − K p
i (x, ξ , ·)


L2 = 0, (40a)

lim
ℓ→∞

max
(x,ξ )∈T p

i

⏐⏐Lℓ(x, ξ ) − Lpi,j(x, ξ )
⏐⏐ = 0. (40b)

Proof.  Denote the differences of successive approximations by 
∆Kℓ = Kℓ+1 − Kℓ and ∆Lℓ = Lℓ+1 − Lℓ for ℓ ≥ 0. As K0 and L0
were initialized to zero, the terms in the sequences of successive 
approximations for ℓ ≥ 0 can be written as 

Kℓ =

ℓ∑
l=0

∆Kl, Lℓ =

ℓ∑
l=0

∆Ll. (41)

Now, the statement of the lemma is equivalent to the conver-
gence of the series of differences (41) in the stated sense, which 
follows by showing that ∆Kℓ and ∆Lℓ, for any ℓ ≥ 0, satisfy6

∥∆Kℓ(x, ξ , ·)∥L2 ≤ M
Mℓ

K ,L (φi(x) − ϵφi(ξ ))ℓ

ℓ!
, (42a)

|∆Lℓ(x, ξ )| ≤ M
Mℓ

K ,L (φi(x) − ϵφi(ξ ))ℓ

ℓ!
, (42b)

uniformly on any T p
i , where M,MK ,L > 0 are given by 

M = MB +
(
1 + M1

Q

)
max

x,y∈[0,1]
max

j={1,...,m}

∥θj(x, ·)∥L2

λ(x, y) + µj(x)
,

(43a)

MK ,L = m(1 + M1
Q )
(
M1
λ + M1

σ + Mθ

)
Mϵ

+ m
(
M1
µ + MW + Mψ

)
Mϵ, (43b)

where MB = max
{
M1

B ,M
2
B

}
 with 

M1
B = max

1≤i̸=j≤m
max
x∈[0,1]

⏐⏐⏐⏐ ψi,j(x)
µi(x) − µj(x)

⏐⏐⏐⏐ , (44a)

M2
B = max

1≤j<i≤m
max
ξ∈[0,1]

⏐⏐⏐ℓ(1)i,j (ξ )
⏐⏐⏐ , (44b)

MW  and Mλ,Mµ are given by (20d), and (26), respectively, 

M1
λ = max

x,y∈[0,1]
|λx(x, y)| , (45a)

M1
µ = max

j={1,...,m}

max
x∈[0,1]

⏐⏐µ′

j(x)
⏐⏐ , (45b)

M1
σ = max

x∈[0,1]

∫ 1

0
σ (x, η, ·)dη


L2
, (45c)

Mθ =

m∑
j=1

max
x∈[0,1]

∥θj(x, ·)∥L2 , (45d)

Mψ = max
x∈[0,1]

∥Ψ(x)∥1, (45e)

M1
Q = max

j={1,...,m}

max
y∈[0,1]

λ(0, y)
µj(0)

∥Qj∥L2 , (45f)

6 Note that the estimates (42) depend on i, while the functions φi(x)−ϵφi(ξ )
are non-negative for (x, ξ ) ∈ T .
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where the parameter 0 < ϵ < 1 is chosen such that 

max
1≤j<i≤m

max
x∈[0,1]

µi(x)
µj(x)

< ϵ < 1, (46)

7 and Mϵ = max{Mλ,ϵ,M1
µ,ϵ,M

2
µ,ϵ} with 

Mλ,ϵ = max
i∈{1,...,m}

max
x,y∈[0,1]

µi(x)
µi(x) + ϵλ(x, y)

, (47a)

M1
µ,ϵ = max

1≤j<i≤m
max
x∈[0,1]

µi(x)
ϵµj(x) − µi(x)

, (47b)

M2
µ,ϵ = max

1≤i≤j≤m
max
x∈[0,1]

µi(x)
µi(x) − ϵµj(x)

. (47c)

Due to linearity, the integral equations and boundary condi-
tions for ∆Kℓ and ∆Lℓ are of the same form as (38) and (39), but 
with K  and L replaced by ∆Kℓ and ∆Lℓ. Hence, the estimates (42) 
can be proved by induction based on (38) and (39). Firstly, the 
constant M (and the initialization of K0, L0 to zero) guarantees 
that the estimates (42) are satisfied for ℓ = 0, and for any 
arbitrary ℓ > 0 we have (42) by the induction assumption. To 
show that (42) then holds for ℓ → ℓ+ 1, we insert the estimates 
(42), (45), and (20), into the integral equations for ∆Kℓ and ∆Lℓ. 
The following estimates for Φi(x, ξ ) = φi(x)−ϵφi(ξ ) are key to the 
induction step, and can be proved analogously to Hu et al. (2016, 
Lem. 6.2) (see also Coron, Hu, Olive, and Shang (2021, Rem. 3.8)), 
for all i, j = 1, . . . ,m, p = i, . . . ,m, and any ℓ ≥ 0∫ sfi,p(y)

0
Φi

(
x̂i,p(s, y), ξ̂i,p(s, y)

)ℓ
ds ≤ Mϵ

Φi (x, ξ)ℓ+1

ℓ+ 1
, (48a)∫ sfi,j,p

0
Φi

(
x̂i,j,p(s), ξ̂i,j,p(s)

)ℓ
ds ≤ Mϵ

Φi (x, ξ)ℓ+1

ℓ+ 1
, (48b)

where (x, ξ ) ∈ T p
i  is the (arbitrary) initial point of the respective 

characteristic curve on the xξ -plane.
Using (48) together with (42) and the induction assumption, 

the induction step follows after similar computations as in Al-
leaume and Krstic (2025, Sect. VI.C), albeit some additional care 
is required due to splitting the domain into the T p

i  segments, 
as some boundary conditions depend on ∆Kℓ and ∆Lℓ, which 
are unknown. However, as the boundary condition for ∆Kℓ on 
every T i

i  is known (due to (39a)), we can solve (38a) first on 
every T i

i , and then utilize the obtained values to solve (38a) on 
T i+1
i , and so on, up to T m

i  (this process is described in detail 
in Di Meglio et al. (2018, Sect. 3.2)). As the domain T  is split 
into at most m segments, we need to solve (38a) at most m
times over the different segments to compute the next successive 
approximation. Hence, an adequate value for MK ,L corresponding 
to the estimate for ∆Kℓ would be m(M1

λ + M1
σ + Mθ )Mϵ , which 

gives the first term of (43b).
Deriving the estimate for ∆Lℓ follows similar steps, where 

we again need to traverse through the segments T p
i  (depending 

also on j) to have known boundary conditions for the integral 
Eq. (38b). That is, for all i ̸= j, we begin from T i

i  with known 
boundary condition on ξ = x or x = 1, and then utilize the 
continuity conditions in (39b) up to T m

i  if i > j, or up to T j−1
i  if 

i < j. For i ≤ j, the remaining segments are reached by beginning 
from T m

i  with the boundary condition on ξ = 0, and then utilizing 
the continuity conditions up to T j

i . As in the case of ∆Kℓ, this 
results in having to solve (38b) at most m times, which results in 
the last term of (43b). Moreover, the boundary condition on ξ = 0
depends on ∆Kℓ, which can be dealt with using the estimate 
derived in the previous paragraph, which results in the remaining 
term mM1

Q (M
1
λ + M1

σ + Mθ )Mϵ in (43b). Thus, the estimate (42) 

7 Such ϵ exist by (7).
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follows by induction. Hence the series (41) and, equivalently, the 
sequences of successive approximations converge in the stated 
sense (40). □

Proof of Theorem  2.  By Lemma  3, the sequences of succes-
sive approximations for any K p

i  and L
p
i,j converge uniformly on 

T p
i  (K p

i  in the L2 sense in y), which shows the existence (and 
well-posedness) of the solutions K p

i , L
p
i,j to the kernel equations

(27)–(33). To conclude the proof of Theorem  2, we note that any 
two T p

i  and T s
i  with p ̸= s may only intersect along a common 

boundary ξ = ρr
j (x) for r = p or r = s (if the segments are 

adjacent), which is a continuously differentiable curve. Thus, as 
the kernels Lpi,j and K

p
i  are continuous on each (x, ξ ) ∈ T p

i , and 
the intersections of these segments comprise a finite number 
of continuously differentiable curves, the discontinuities of the 
kernels Ki and Li,j may only occur on finitely many continu-
ously differentiable curves, which are additionally monotone.8 
In particular, the kernels Ki, Li,j solving (12)–(16) are uniquely 
determined by K p

i , L
p
i,j, almost everywhere on T  and P .

4. Stabilization of large-scale n + m systems by continuum 
kernels

In this section, we construct a stabilizing control law for large-
scale n+m systems based on the ∞+m continuum kernels. The 
core idea is to establish that, for large n, the exact control kernels 
constructed based on the n + m system (see Appendix  C) can be 
approximated to any desired accuracy by the continuum kernels 
computed on the basis of the ∞ + m system.

4.1. Large-scale n + m systems of hyperbolic PDEs

Consider a system of n + m hyperbolic PDEs9

ut (t, x) + Λ(x)ux(t, x) =
1
n
Σ(x)u(t, x) + W(x)v(t, x), (49a)

vt (t, x) − M(x)vx(t, x) =
1
n
Θ(x)u(t, x) + Ψ(x)v(t, x), (49b)

with boundary conditions 
u(t, 0) = Qv(t, 0), v(t, 1) = U(t), (50)

where Λ(x) = diag(λ1(x), . . . , λn(x)),Σ(x) = (σi,j(x))ni,j=1, W(x) =

(wi,j(x))ni=1,
m
j=1,Θ(x) = (θj,i(x))mj=1,

n
i=1,Q = (qi,j)ni=1,

m
j=1,u =

(
ui
)n
i=1, 

and M,Ψ correspond to the respective parameters in (4b). As 
in Anfinsen and Aamo (2019), Auriol and Di Meglio (2016) and 
Hu et al. (2016, 2019), we make the following assumptions on 
the parameters.

Assumption 2.  The transport velocities in (49) are continuously 
differentiable with λi(x) > 0 for all x ∈ [0, 1] and i = 1, . . . , n, 
and µj satisfying (7). The parameters Σ,W, Θ,Ψ are continuous 
with ψj,j = 0 for all j = 1, . . . ,m.

Remark 2.  Under Assumption  2, it can be shown by using 
the same arguments as in Humaloja and Bekiaris-Liberis (2025b, 
Prop. A.1) that the system (49), (50) is well-posed on the Hilbert 
space E.

8 In fact, the discontinuities may only occur in the Li,j kernels for 1 ≤ i <
j ≤ m along the curves ξ = ρ

j
i (x) due to (33).

9 We scale the sums involving the n-part states ui, i = 1, . . . , n by 1/n in 
order to make the considerations in the limit n → ∞ more natural, as discussed 
in Humaloja and Bekiaris-Liberis (2025b, Rem. 2.2). Thus, under continuity of 
the continuum parameters and (51), e.g., the sum/vector 1

n
Θ(x)u(t, x) tends to ∫ 1

0
Θ(x, y)u(t, x, y)dy as n → ∞ (provided that u and u are also connected 

appropriately, as in Theorem  4).
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4.2. Control design and stability result

Consider any continuous functions θj,Wj,Qj, λ, and σ  satisfy-
ing Assumption  1 with 

θj(x, i/n) = θj,i(x), (51a)

Wj(x, i/n) = wi,j(x), (51b)

Qj(i/n) = qi,j, (51c)

λ(x, i/n) = λi(x), (51d)

σ (x, i/n, l/n) = σi,l(x), (51e)

for all x ∈ [0, 1], i, l = 1, . . . , n and j = 1, . . . ,m. It follows 
by Theorem  2 that the corresponding continuum kernel equa-
tions (27)–(33) have well-posed solution K p

i ∈ C(T p
i ; L2([0, 1];R)),

Lpi,j ∈ C(T p
i ;R) for all j = 1, . . . ,m and 1 ≤ i ≤ p ≤ m. 

Thus, construct the following functions for all (x, ξ ) ∈ T p
i  with 

1 ≤ i ≤ p ≤ m,10

kpi,l(x, ξ ) = n
∫ l/n

(l−1)/n
K p
i (x, ξ , y)dy, l = 1, . . . , n, (52a)

ℓ
p
i,j(x, ξ ) = Lpi,j(x, ξ ), j = 1, . . . ,m. (52b)

We have the following stabilization result. 

Theorem 3.  Consider (49), (50) satisfying Assumption  2. Let 
(continuum) parameters θj,Wj,Qj for j = 1, . . . ,m and σ , λ satisfy 
Assumption  1 and relations (51). Define the feedback laws

U i(t) =

n∑
l=1

m∑
p=i

∫ ρ
p
i (1)

ρ
p+1
i (1)

1
n
k̃pi,l(1, ξ )u

l(t, ξ )dξ

+

m∑
j=1

m∑
p=i

∫ ρ
p
i (1)

ρ
p+1
i (1)

ℓ̃
p
i,j(1, ξ )v

j(t, ξ )dξ, (53)

for i = 1, . . . ,m, where ρp
i  are given in (29) and ̃k

p
i,l, ℓ̃

p
i,j are given 

by (52) for all j = 1, . . . ,m and 1 ≤ i ≤ p ≤ m. The control law 
(53) exponentially stabilizes system (49), (50) on E, provided that n
is sufficiently large.

4.3. Proof of Theorem  3

The proof of Theorem  3 is presented at the end of this section 
based on the following lemmas.

Lemma 4 (Transforming n + m Kernels from E to Ec).  Consider 
the n + m kernel equations (C.1)–(C.5) with parameters satisfying 
Assumption  2 and define the following functions for all x ∈ [0, 1], 
piecewise in y for i, l = 1, . . . , n and j = 1, . . . ,m

λn(x, y) = λi(x), y ∈ ((i − 1)/n, i/n], (54a)
σ n(x, y, η) = σi,l(x), y ∈ ((i − 1)/n, i/n],

η ∈ ((l − 1)/n, l/n], (54b)

W n
j (x, y) = wi,j(x), y ∈ ((i − 1)/n, i/n], (54c)

θnj (x, y) = θj,i(x), y ∈ ((i − 1)/n, i/n], (54d)

Q n
j (y) = qi,j, y ∈ ((i − 1)/n, i/n]. (54e)

Construct the following functions for (x, ξ ) ∈ T p
i  with 1 ≤ i ≤ p ≤

m, piecewise in y for l = 1, . . . , n

K n
i,p(x, ξ , y) = kpi,l(x, ξ ), y ∈ (l − 1)/n, l/n], (55)

10 If K p
i (x, ξ , ·) is continuous, the mean-value sampling in (52a) can be

replaced with pointwise evaluation, e.g., at y = 1/n, . . . , 1.
9

where kpi,l is the solution to (C.1a) on T
p
i . Then, K n

i,p together with ℓpi,j
for j = 1, . . . ,m (the solution to (C.1b) on T p

i ) satisfy the continuum 
kernel equations (27), (31)–(33) with parameters defined in (54) 
and the original µj, ψi,j, li,j, for i, j = 1, . . . ,m.

Proof.  We define the linear transform F = diag(Fn, Im) where 
Fnei = χ((i−1)/n,i/n] with χ((i−1)/n,i/n] being the indicator function 
of the interval ((i−1)/n, i/n] and (ei)ni=1 being the Euclidean basis 
of Rn. Thus, the transform maps any b = (bi)n+m

i=1 ∈ Rn+m into 
L2 ([0, 1];R)× Rm as 

Fb =

[∑n
i=1 biχ((i−1)/n,i/n]
(bj)n+m

j=n+1.

]
. (56)

For any g ∈ L2([0, 1];R), the adjoint F∗
n  satisfies 

⟨Fneℓ, g⟩L2([0,1];R) =

∫ ℓ/n

(ℓ−1)/n
g(y)dy =

1
n

⟨
eℓ,F∗

n g
⟩
Rn , (57)

that is, F∗
n  is given by 

F∗

n g =

(
n
∫ i/n

(i−1)/n
g(y)dy

)n

i=1

, (58)

where each component is the mean value of g over the interval 
[(i − 1)/n, i/n]. Thus, F has the adjoint F∗

= diag
(
F∗

n , Im
)
, 

which additionally satisfies F∗F = In+m, i.e., F (and Fn) are 
isometries, and thus, norm preserving from their domain to their 
co-domain. Now, the claim follows similarly to Humaloja and 
Bekiaris-Liberis (2025b, Lem. 4.2) after applying F to (C.1) from 
the left (pointwise in (x, ξ ) ∈ T p

i  for every 1 ≤ i ≤ p ≤

m), using the fact that F∗F = In+m and the definitions (54), 
(55). Moreover, one needs to verify that the boundary conditions 
(31)–(33) are satisfied, which is trivially true for (31a), (32), (33a) 
as the F transform is identity in the second component, and the 
remaining (31b), (31c), (33b) are verified utilizing the fact that 
K n
i,p are piecewise constant in y. □

Lemma 5 (Approximating n + m Kernels by Continuum).  Consider 
the solutions K n

i,p, ℓ
p
i,j for j = 1, . . . ,m, 1 ≤ i ≤ p ≤ m to the 

kernel equations (27), (31)–(33) for any n ∈ N with parameters 
λn, µj, σ

n,W n
j , θ

n
j ,Q

n
j , ψi,j, li,j, for i, j = 1, . . . ,m, from Lemma  4. 

There exist continuum parameters λ, σ ,Wj, θj,Qj constructed such 
that they satisfy (51) and together with the original parameters 
µj, ψi,j they satisfy Assumption  1. For any such parameters, the 
solution K p

i , L
p
i,j for j = 1, . . . ,m, 1 ≤ i ≤ p ≤ m to the continuum 

kernel equations (27), (31)–(33), where l(1)i,j = li,j, exists and satisfies 
the following implications. For any δ1 > 0, there exists an nδ1 ∈ N
such that for all n ≥ nδ1  we have 

max
1≤i≤p≤m

max
(x,ξ )∈T p

i

∥K p
i (x, ξ , ·) − K n

i,p(x, ξ , ·)∥L2 ≤ δ1, (59a)

max
j={1,...,m}

max
1≤i≤p≤m

max
(x,ξ )∈T p

i

|Lpi,j(x, ξ ) − ℓ
p
i,j(x, ξ )| ≤ δ1. (59b)

Proof.  Following the same steps as in the proof of Humaloja and 
Bekiaris-Liberis (2025b, Lem. 4.3), we first note that the kernel 
Eqs. (27), (31)–(33) have well-posed solutions for the two sets 
of parameters considered in the statement of the lemma. Thus, 
K n
i,p, ℓ

p
i,j depend continuously on λn, µj, σ

n,W n
j , θ

n
j ,Q

n
j , ψi,j, and 

li,j by Hu et al. (2019, Thm A.1) and Lemma  4, and K p
i , L

p
i,j depend 

continuously on λ,µj, σ ,Wj, θj, Qj, ψi,j, and li,j by Theorem  2, 
for i, j = 1, . . . ,m with i ≤ p ≤ m. As the parameters 
µj, ψi,j, li,j coincide, the claim follows after showing that the 
parameters λn, σ n,W n

j , θ
n
j ,Q

n
j  converge to λ, σ ,Wj, θj,Qj (for all 

j = 1, . . . ,m) as n → ∞. This convergence is established under 
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(54) by Tao (2011, Sect. 1.3.5) in the sense that, for any ε1 > 0, 
the following estimates are satisfied for any sufficiently large n

max
x∈[0,1]

∥λ(x, ·) − λn(x, ·)∥L2([0,1];R) ≤ ε1, (60a)

max
x∈[0,1]

∥σ (x, ·) − σ n(x, ·)∥L2([0,1]2;R) ≤ ε1, (60b)

max
j=1,...,m

max
x∈[0,1]

∥θj(x, ·) − θnj (x, ·)∥L2([0,1];R) ≤ ε1, (60c)

max
j=1,...,m

max
x∈[0,1]

∥Wj(x, ·) − W n
j (x, ·)∥L2([0,1];R) ≤ ε1, (60d)

max
j=1,...,m

∥Qj − Q n
j ∥L2([0,1];R) ≤ ε1. □ (60e)

Remark 3.  As noted in Humaloja and Bekiaris-Liberis (2025b, 
Rem. 4.4), the step functions λn, σ n, θnj ,W

n
j ,Q

n
j  could be con-

structed in various, alternative ways to (54), but the result of 
Lemma  5 remains valid as long as the step functions approxi-
mate the continuous functions λ, σ , θj,Wj,Qj (satisfying (51)) to 
arbitrary accuracy as n → ∞ as in (60).

Lemma 6 (Representation of (53) as Perturbation of Exact Con-
troller).  The control law (53) can be written as

U i(t) =

n∑
l=1

m∑
p=i

∫ ρ
p
i (1)

ρ
p+1
i (1)

1
n
kpi,l(1, ξ )u

l(t, ξ )dξ

+

m∑
j=1

m∑
p=i

∫ ρ
p
i (1)

ρ
p+1
i (1)

ℓ
p
i,j(1, ξ )v

j(t, ξ )dξ

+

n∑
l=1

m∑
p=i

∫ ρ
p
i (1)

ρ
p+1
i (1)

1
n
∆kpi,l(1, ξ )u

l(t, ξ )dξ

+

m∑
j=1

m∑
p=i

∫ ρ
p
i (1)

ρ
p+1
i (1)

∆ℓ
p
i,j(1, ξ )v

j(t, ξ )dξ, (61)

where kpi,l, ℓ
p
i,j is the (exact) solution to the n + m kernel equa-

tions (C.1)–(C.5) and ∆kpi,l,∆ℓ
p
i,j are the approximation error terms 

that become arbitrarily small, uniformly in ξ ∈ [ρ
p+1
i (1), ρp

i (1)], for 
all l = 1, . . . , n and i, j = 1, . . . ,m with i ≤ p ≤ m, when n is 
sufficiently large.

Proof.  Transform the functions ̃kpi,l from (52) into step functions 
in y as 
K n
i,p(x, ξ , y) = k̃pi,l(x, ξ ), y ∈ ((l − 1)/n, l/n], (62)

for all (x, ξ ) ∈ T p
i  and 1 ≤ i ≤ p ≤ m, piecewise for y

for l = 1, 2, . . . , n. By (52) and (62), we have K̃ n
i,p(x, ξ , ·) =

FnF∗
nK

p
i (x, ξ , ·), which is the mean-value approximation of

K p
i (x, ξ , ·) for all (x, ξ ) ∈ T p

i  and 1 ≤ i ≤ p ≤ m. By Tao (2011, 
Sect. 1.6), the mean-value approximation becomes arbitrarily 
accurate for sufficiently large n, i.e., for any ε2 > 0 there exists 
some nε2 ∈ N such that 

max
1≤i≤p≤m

max
(x,ξ )∈T p

i

∥K p
i (x, ξ , ·) − K̃ n

i,p(x, ξ , ·)∥L2 ≤ ε2, (63)

for any n ≥ nε2 . Combining (63) with the estimate (59a) and using 
the triangle inequality, we have for any n ≥ max

{
nδ1 , nε2

}
max

1≤i≤p≤m
max

(x,ξ )∈T p
i

∥K n
i,p(x, ξ , ·) − K̃ n

i,p(x, ξ , ·)∥L2 ≤

max
1≤i≤p≤m

max
(x,ξ )∈T p

i

∥K p
i (x, ξ , ·) − K n

i,p(x, ξ , ·)∥L2

+ max
1≤i≤p≤m

max
p
∥K p

i (x, ξ , ·) − K̃ n
i,p(x, ξ , ·)∥L2 ≤
(x,ξ )∈Ti

10
δ1 + ε2, (64)

where both δ1 and ε2 can be made arbitrarily small by increasing 
n, which follows from Lemma  5 and (62), respectively. As the 
estimate is uniform on every T p

i , it particularly applies on x = 1.
Moreover, the step functions ̃K n

i,p and K n
i,p constructed in (55) 

and (62), respectively, are obtained through applying the trans-
form Fn, introduced in the proof of Lemma  4, to 

(̃
kpi,l
)n
l=1

 and (
kpi,l
)n
l=1

, respectively, for all i = 1, . . . ,m. Thus, as Fn is an 
isometry, the estimate (64) also holds for these functions, i.e.,

max
1≤i≤p≤m

max
(x,ξ )∈T p

i

1
√
n

(kpi,l(x, ξ ))nl=1
−
(̃
kpi,l(x, ξ )

)n
l=1


Rn

≤

δ1 + ε2.

(65)

In addition, from (59b) in Lemma  5 we already have for n ≥ nδ1

max
1≤i≤p≤m

max
(x,ξ )∈T p

i

(ℓpi,j(x, ξ ))mj=1
−
(̃
ℓ
p
i,j(x, ξ )

)m
j=1


Rm

≤
√
mδ1.

(66)

Now, setting ∆kpi,l = k̃pi,l − kpi,l and ∆ℓ
p
i,j = ℓ̃

p
i,j − ℓ

p
i,j, we have 

written (53) as (61), where the error term can be estimated using 
(65), (66), triangle inequality, and Cauchy–Schwarz inequality, for 
all i = 1, . . . ,m, as

n∑
l=1

m∑
p=i

∫ ρ
p
i (1)

ρ
p+1
i (1)

1
n
∆kpi,l(1, ξ )u

l(t, ξ )dξ

+

m∑
j=1

m∑
p=i

∫ ρ
p
i (1)

ρ
p+1
i (1)

∆ℓ
p
i,j(1, ξ )v

j(t, ξ )dξ ≤

(δ1 + ε2 +
√
mδ1)

( u(t,·)
v(t,·)

)
E
, (67)

where δ1 and ε2 become arbitrarily small when n is sufficiently 
large. □

Proof of Theorem  3. By Lemma  6, the control law (53) splits into 
two parts as shown in (61), where the first part exponentially 
stabilizes the system (49), (50) by Hu et al. (2019, Thm 2.1), while 
the second one becomes arbitrarily small when n is arbitrarily 
large. Thus, the exponential stability of the closed-loop system 
(49), (50) under control law (61), when n is sufficiently large, 
follows directly from the well-posedness of (49), (50) (see Remark 
2) and Humaloja and Bekiaris-Liberis (2025b, Prop. A.2).

Remark 4.  In order to quantify an upper bound on δ1 and ε2
in (67), one can employ Lyapunov-based arguments similarly 
to Humaloja and Bekiaris-Liberis (2025b, App. C.4). A Lyapunov 
functional for (49), (50) under the control law (61) can be con-
structed similarly to (18) for u(t, ·) ∈ L2([0, 1];Rn) (see also Hu 
et al. (2019, Prop. 2.1)), i.e., 

V (t) =

∫ 1

0

(
e−δ̃x

∥u(t, x)∥2
Λ−1 + eδ̃x∥βββ(t, x)∥2

D̃M−1

)
dx, (68)

where βββ is defined for u(t, ·) ∈ L2([0, 1];Rn) in Hu et al. (2016, 
(28)) and satisfies (8b), (9b). The stability analysis follows the 
same steps as in the proof of Theorem  1, which results in 

̇V (t) ≤ −
c̃V

max
{
M̃µ, M̃λ

} Ṽ (t) + eδ̃x∥βββ(1, t)∥2
D̃, (69)

for some ̃cV , M̃µ, M̃λ > 0, where the boundary condition in βββ(t, 1)
is not zero but it is given by the error terms in the control law 
(61). Given the estimate (67) and since by Hu et al. (2016, Thm. 
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3.4) the n + m backstepping transformation (of βββ) is invertible, 
we can estimate from (61)

∥βββ(t, 1)∥2
D̃ ≤

D̃
∞

m2(δ1 + ε2 +
√
mδ1)2M2

V

( u(t,·)
βββ(t,·)

)2
E
, (70)

where MV  is a bound on the inverse backstepping transformation 
of βββ for the n+m case (see Hu et al. (2016, (45))). Now, if ̃δ, D̃ > 0
have been fixed such that (69) holds for βββ(1, t) = 0, for δ1, ε2 > 0
sufficiently small, given a sufficiently large n, ̇̃V  remains negative 
definite also when βββ(1, t) is estimated with (70).

5. Convergence of the large-scale system to a continuum

While in Section 4 we present an approximation result that 
concerns backstepping kernels, in the present section we provide 
a formal proof that the actual solutions of the PDE system (49), 
(50) converge to the solutions of the continuum PDE system (4), 
(5), as n → ∞. The following result is of interest itself as it 
provides a formal connection between the solutions of the n+m
system and the solutions of its continuum counterpart. 

Theorem 4.  Consider an n+m system (49), (50) with parameters 
µj, ψj,ℓ, θj,i, wi,j, qi,j, λi, and σi,l for i, l = 1, . . ., n and j, ℓ =

1, . . . ,m, satisfying Assumption  2, initial conditions (u0, v0) ∈ E, 
and input U ∈ L2loc([0,+∞);Rm). Construct a continuum system 
(4), (5) with parameters λ,µj, σ , θj,Wj,Qj, ψj,ℓ for j, ℓ = 1, . . . ,m
that satisfy Assumption  1 and (51), and equip (4), (5) with initial 
conditions u0, v0 and input U, such that u0 is continuous in y and 
satisfies 
u0(x, i/n) = ui

0(x), i = 1, . . . , n. (71)

Sample the solution (u, v) to the resulting PDE system (4), (5) 
for these data into a vector-valued function (̃u, ṽ) as ũ(t, x) =

F∗
nu(t, x, ·) (see (58)) and ̃v(t, x) = v(t, x), pointwise for all t ≥ 0

and almost all x ∈ [0, 1]. On any compact interval t ∈ [0, T ], for 
any given T > 0, we have 

max
t∈[0,T ]

( u(t)
v(t)
)
−

(
ũ(t)
ṽ(t)

)
E

≤ ε3, (72)

where ε3 > 0 becomes arbitrarily small when n is sufficiently large.

Proof.  The statement follows applying the same steps as in the 
proof of Humaloja and Bekiaris-Liberis (2025b, Thm 6.1). In a 
nutshell, as the systems (49), (4) and (50), (5) have well-posed 
solutions under the assumptions of the theorem by Remark  2 
and Remark  1, respectively, the solutions in particular depend 
continuously on the parameters, initial conditions, and inputs of 
the respective PDEs. Now, as the input to (49), (4) and (50), (5) 
is the same, while the respective parameters converge as in (60) 
and u0 can be approximated to arbitrary accuracy by Fnu0 due to 
(71), we have that F

( u(t)
v(t)
)
 approximates 

( u(t)
v(t)
)
 arbitrary accuracy 

on Ec , when n is sufficiently large. Since ũ(t, x) = F∗
nu(t, x, ·)

and ̃v(t, x) = v(t, x), while Fn (and F) is an isometry and the 
mean-value approximation FnF∗

nu(t) of the solution u(t) (which 
is bounded on t ∈ [0, T ]) is convergent (in L2; see Tao (2011, 
Sect. 1.6)), the estimate (72) follows by the triangle inequality as 
in Humaloja and Bekiaris-Liberis (2025b, (C.43)). □

6. Numerical example and simulation results

Consider the parameters for x, y, η ∈ [0, 1]

λ(x, y) = 1, µ1(x) = 2, µ2(x) = 1, (73a)

σ (x, y, η) = x3(x + 1)
(
y −

1
)(

η −
1
)
, (73b)
2 2
11
W1(x, y) = W2(x, y) = x(x + 1)ex
(
y −

1
2

)
, (73c)

θ1(x, y) = −3y(y − 1), θ2(x, y) = −2y(y − 1), (73d)

ψi,j(x) = 0, i, j ∈ {1, 2}, (73e)

Q1(y) = 8
(
y −

1
2

)
, Q2(y) = −8(y − 2), (73f)

corresponding to an ∞ + m system for m = 2, which can be 
viewed as a continuum approximation of an n + m system (for 
large n) based on (51) with respective parameters 
λi(x) = 1, (74a)

σi,l(x) = x3(x + 1)
(

i
n

−
1
2

)(
l
n

−
1
2

)
, (74b)

θ1,i(x) = −3
i
n

(
i
n

− 1
)
, θ2,i(x) = −2

i
n

(
i
n

− 1
)
, (74c)

wi,1(x) = wi,2(x) = x(x + 1)ex
(

i
n

−
1
2

)
, (74d)

qi,1 = 8
(

i
n

−
1
2

)
, qi,2 = −8

(
i
n

− 2
)
, (74e)

for i, l = 1, . . . , n. For the parameters (73), the solution to the 
continuum kernel equations (27), (31)–(33), where we choose 
l(1)2,1 = ψ2,1 = 0, is explicitly given by 

K 1
1 (x, ξ , y) = y(y − 1), (75a)

K 2
1 (x, ξ , y) = ex−2ξy(y − 1), (75b)

K 2
2 (x, ξ , y) = e2(x−ξ )y(y − 1), (75c)

L11,1(x, ξ ) = L21,1(x, ξ ) = 0, (75d)

L11,2(x, ξ ) = 0, L21,2(x, ξ ) = −2ex−2ξ , (75e)

L22,1(x, ξ ) = 0, L22,2(x, ξ ) = −2e2(x−ξ ), (75f)

where K ⋆1 (·, y), L⋆1,1, and L⋆1,2 are defined on T 1
1 = {(x, ξ ) ∈ [0, 1]2 :

1
2x ≤ ξ ≤ x} and T 2

1 = {(x, ξ ) ∈ [0, 1]2 : ξ ≤
1
2x} for the 

respective superindex ⋆ = 1, 2, while K 2
2 (·, y), L

2
2,1 and L22,2 are 

defined on T 2
2 = T , for each y ∈ [0, 1]. Note the discontinuity 

in L1,2 along ξ =
1
2x. In case the explicit solution is not avail-

able, one could employ, e.g., the methods of characteristics and 
successive approximations, as in Section 3, or a power series-
based approach (as in Humaloja and Bekiaris-Liberis (2025a)) to 
numerically evaluate the solution.

We implement the control law (53) with (52) for n+m systems 
with parameters (74) for n = 2, 6, 10 (and the same µ,Ψ  as 
in (73)). As the continuum kernels (75) are continuous in y, we 
approximate the exact n + m kernels by sampling pointwise 
K 1
1 , K

2
1 , and K 2

2  at y = 1/n, 2/n, . . . , 1 instead of using (52a) (see 
Footnote 10).

For the simulation, the n+m system (49), (50) is approximated 
by finite differences with 256 grid points in x ∈ [0, 1]. The ODE 
resulting from the finite-difference approximation is solved using
ode45 in MATLAB. The initial conditions are ui

0(x) = qi,1 + qi,2, 
for i = 1, . . . , n, and v10(x) = v20(x) = 1, for all x ∈ [0, 1]. 
The simulation results for t ∈ [0, 5] are shown in Figs.  2 and
3, which show the controls (53) for n = 2, 6, 10 along with 
the exact controls for n = 10 (computed using the kernels in 
Appendix  C) and the solution components un and v1 for n = 10, 
respectively. We note that the controls shown in Fig.  2 act as 
weighted averages of the solution components, but since K 1

1 , K
2
1 , 

and K 2
2  vanish at y = 1 and L1,1 = L2,1 = 0, the solution 

components un and v1 do not affect the control law and are hence 
displayed separately in Fig.  3 for n = 10.

Based on Figs.  2 and 3, we conclude that the control law (53) 
based on the continuum kernels (75) exponentially stabilizes the 
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ββ

ββ
Fig. 2. The controls U(t) based on the approximate control law (53) for n =

2, 6, 10 and the respective exact control law for n = 10.

Fig. 3. The solution components un(t, x) and v1(t, x) for n = 10.

n + m system for n = 2, 6, 10 (and m = 2),11 with improved 
performance for larger n. This verifies the theoretical results. Fur-
thermore, based on Fig.  2, the continuum kernels-based control 
law tends close to the exact control law computed based on the 
n + m kernels, as n increases. We note that the n + m kernels 
are computed based on a finite-difference approximation of the 
n+m kernel equations in Appendix  C, since we were not able to 
find the solution in closed form.

7. Conclusions and discussion

We introduced a backstepping control design methodology for 
a class of continua of hyperbolic PDE systems. Well-posedness 
of the derived kernel equations was established, together with 
exponential stability of the closed-loop system. We then utilize 
the continuum backstepping kernels for stabilization of a large-
scale system counterpart, establishing that, as n → ∞, the 
continuum kernels can approximate (to arbitrary accuracy) the 
exact backstepping kernels (constructed via applying backstep-
ping to the large-scale system). This allowed us to prove that 
the control design constructed on the basis of the continuum 
PDE system can stabilize the respective large-scale system, which 
may be particularly useful, as, with this approach, complexity of 
computation of stabilizing kernels may not grow with the number 
n of PDE systems components. This was also demonstrated in 
a numerical example for which the continuum kernels were 
obtained in closed form, but for which the respective, large-scale 
kernels did not exhibit a closed-form solution. We also provided a 
formal convergence result of the solutions of the large-scale PDE 
system to the solutions of the respective continuum.

The case m → ∞ requires a quite different treatment through 
development of new analysis tools that cannot be obtained in an 
obvious manner via extending the tools developed here. Some 

11 Based on numerical simulations, the n + 2 system with parameters (74) is 
unstable for any n ≥ 2.
12
of the main reasons for this are the following. As m → ∞ the 
input space changes from Rm to, e.g., L2([0, 1];R), which may 
impose important changes in the present analysis and results. In 
particular, as the exact, control inputs themselves (rather than the 
respective control kernels) would have to be approximated (in a 
certain sense), it is neither clear what are the stability properties 
of the closed-loop system one would obtain nor how to translate 
the analysis performed for finite m to the case m → ∞. In fact, 
in contrast to the present paper that deals with approximation 
of the control kernels, which gives rise to a bounded, vanishing 
perturbation that preserves exponential stability, in the case of 
control inputs approximation one may have to prove a type of 
practical stability with a residual value that tends to zero as 
m → ∞, which would require introduction of a different, stability 
proof strategy (in particular, a respective result to Theorem  4 
of solutions’ convergence may be essential). Furthermore, the 
characteristic curves would become 3-D regions, which makes 
the respective well-posedness analysis of the kernels much more 
involved. In particular, it is not obvious how one would then 
have to split the 4-D domain of evolution of the kernels into 
subdomains in which the kernels are continuous, which involves 
deriving 3-D discontinuity regions. In addition, the case m →

∞ may impose important challenges in the purely technical 
steps. In particular, as the transport speeds µj would become 
a function of two variables, namely µ(x, η), it is not obvious 
how the assumptions made here (e.g., (7)) would have to be 
translated. In turn, this imposes challenges on how the well-
posedness analysis of the kernels would have to be carried out, 
as, for example, one may have to properly translate the boundary 
conditions (e.g., (31a)), as well as to re-derive from scratch certain 
bounds (e.g., corresponding to (44a), (46)), specifically for the case 
m → ∞.
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Appendix A. Derivation of continuum kernel equations (12)

Let us first differentiate (11b) with respect to x and use the 
Leibniz rule to get 

βx(t, x) = vx(t, x) − L(x, x)v(t, x) −

∫ 1

0
K(x, x, y)u(t, x, y)dy

−

∫ x

0
Lx(x, ξ )v(t, ξ )dξ −

∫ x

0

∫ 1

0
Kx(x, ξ , y)u(t, ξ , y)dydξ .

(A.1)

Moreover, differentiating (11b) with respect to t and using (4b) 
gives

β t (t, x) = M(x)vx(t, x) +

∫ 1

0
Θ(x, y)u(t, x, y)dy

+ Ψ(x)v(t, x) −

∫ x

0
L(x, ξ )M(ξ )vξ (t, ξ )dξ

−

∫ x

0
L(x, ξ )

∫ 1

0
Θ(ξ, y)u(t, ξ , y)dydξ

−

∫ x

L(x, ξ )Ψ(ξ )v(t, ξ )dξ

0
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ββ
+

∫ x

0

∫ 1

0
K(x, ξ , y)λ(ξ, y)uξ (t, ξ , y)dydξ

−

∫ x

0

∫ 1

0
K(x, ξ , y)

∫ 1

0
σ (ξ, y, η)u(t, ξ , η)dηdydξ

−

∫ x

0

∫ 1

0
K(x, ξ , y)W(ξ, y)v(t, ξ )dydξ, (A.2)

where integration by parts further gives∫ x

0
L(x, ξ )M(ξ )vξ (t, ξ )dξ =

L(x, x)M(x)v(t, x) − L(x, 0)M(0)v(t, 0)

−

∫ x

0

(
Lξ (x, ξ )M(ξ ) + L(x, ξ )M′(ξ )

)
v(t, ξ )dξ, (A.3)

and ∫ x

0
K(x, ξ , y)λ(ξ, y)uξ (t, ξ , y)dξ =

K(x, x, y)λ(x, y)u(t, x, y) − K(x, 0, y)λ(0, y)u(t, 0, y)

−

∫ x

0
(Kξ (x, ξ , y)λ(ξ, y) + K(x, ξ , y)λξ (ξ, y))u(t, ξ , y)dξ . (A.4)

Thus, in order for (8) to hold, the kernels L and K need to satisfy 
(12), (13), where we also used (9a) with α(t, 0, ·) = u(t, 0, ·) and 
β(t, 0) = v(t, 0) for all t ≥ 0. Moreover, inserting (11) into (8a) 
gives that C− and C+ need to satisfy 

C−(x, ξ , y) = W(x, y)L(x, ξ ) +

∫ x

ξ

C−(x, ζ , y)L(ζ , ξ )dζ , (A.5a)

C+(x, ξ , y, η) = W(x, y)K(x, ξ , η)

+

∫ x

ξ

C−(x, ζ , y)K(ζ , ξ, η)dζ , (A.5b)

for almost all 0 ≤ ξ ≤ x ≤ 1 and y, η ∈ [0, 1] (when applicable). 
Once L and K are solved from the kernel Eqs. (12), (13), then 
(A.5a) is a Volterra equation of second kind, and well-studied in 
the literature. We show in Lemma  7 that (A.5a) has a well-posed 
solution C−

∈ L∞(T ; L2([0, 1];R1×m)). Once C− is solved from 
(A.5a), C+ is explicitly given as a function of W,K and C− by 
(A.5b), by which C+

∈ L∞(T ; L2([0, 1]2;R)) follows.

Lemma 7.  Under Assumption  1, Eq.  (A.5a) admits a unique solution 
C−

∈ L∞(T ; L2([0, 1];R1×m)).

Proof.  Utilizing similar tools as in Hochstadt (1989, Thm 2.3.5) 
and Hu et al. (2019, Thm. A.2), we show that C− is given by the 
series 

C−(x, ξ , y) =

∞∑
k=0

∆C−

k (x, ξ , y), (A.6)

where ∆C−

0 (x, ξ , y) = W(x, y)L(x, ξ ), so that
∆C0 ∈ C(T p

i ; L2([0, 1];R)) for any 1 ≤ i ≤ p ≤ m by Theorem  2, 
and ∆C−

k  for k ≥ 1 is defined recursively by 

∆C−

k (x, ξ , y) =

∫ x

ξ

∆C−

k−1(x, ζ , y)L(ζ , ξ )dζ , (A.7)

by which ∆C−

k ∈ C(T p
i ; L2([0, 1];R)) for k ≥ 1. By induction, it 

immediately follows that ∆Ck satisfy

max
j∈{1,...,m}

esssup
(x,ξ )∈T

∥
(
∆C−

j

)
k
(x, ξ , ·)∥L2 ≤

MW
(ML)k+1(x − ξ )k

k!
, (A.8)
13
where 
ML = max

i,j∈{1,...,m}

esssup
(x,ξ )∈T

⏐⏐Li,j(x, ξ )⏐⏐ , (A.9)

and MW  is given in (20d). Thus, the series (A.6) converges on 
L∞(T ; L2([0, 1];R)) to the stated solution to (A.5a). □

Appendix B. Invertibility of (11)

Lemma 8.  Under Assumption  1, the transformation (11) is bound-
edly invertible on Ec .

Proof.  The claim follows after solving for (u, v) from (11). Since 
u = α, inserting this to (11b) gives 

v(t, x) −

∫ x

0
L(x, ξ )v(t, ξ )dξ =∫ x

0

∫ 1

0
K(x, ξ , y)α(t, ξ , y)dydξ − βββ(t, x), (B.1)

which is a Volterra equation of second kind for v(t, ·) in terms 
of α(t, ·),βββ(t, ·), L, and K, for any (fixed) t ≥ 0. Since (α,βββ) ∈

C([0,+∞); Ec), being the solution to (8), (9) (by Theorem  1), and 
as K ∈ L∞(T ; L2([0, 1];Rm)), L ∈ L∞(T ;Rm×m) by Theorem  2, Eq. 
(B.1) has a unique solution v(t, ·) ∈ L2([0, 1];Rm) for all t ≥ 0
by Hochstadt (1989, Thm 2.3.6). □

Appendix C. Kernel equations for linear hyperbolic n+m PDEs

Denote kp
i =

(
kpi,l
)n
l=1

 and ℓℓℓpi =
(
ℓ
p
i,j

)m
j=1

, where kpi,l, ℓ
p
i,j for 

l = 1, . . . , n, j = 1, . . . ,m, and 1 ≤ i ≤ p ≤ m denote the n + m
kernels restricted to T p

i . Using the notation of (49), (50), these 
satisfy the kernel equations (cf. Hu et al. (2019, (A.19)–(A.23))) 
µi(x)∂xk

p
i (x, ξ ) − Λ(ξ )∂ξk

p
i (x, ξ ) − Λ′(ξ )kp

i (x, ξ ) =

1
n
ΣT (ξ )kp

i (x, ξ ) + ΘT (ξ )ℓℓℓpi (x, ξ ), (C.1a)

µi(x)∂xℓℓℓ
p
i (x, ξ ) + M(ξ )∂ξℓℓℓ

p
i (x, ξ ) + M′(ξ )ℓℓℓpi (x, ξ ) =

1
n
WT (ξ )kp

i (x, ξ ) + ΨT (ξ )ℓℓℓpi (x, ξ ), (C.1b)

on T p
i , 1 ≤ i ≤ p ≤ m, with boundary conditions 

µi(x)ki
i(x, x) + Λ(x)ki

i(x, x) = −ΘT
i,·(x), (C.2a)

µi(x)ℓℓℓii(x, x) − M(x)ℓℓℓii(x, x) = −ΨT
i,·(x), (C.2b)

1
n
QTΛ(0)km

i (x, 0) − M(0)ℓℓℓmi (x, 0) = gi(x), (C.2c)

where gi =
(
gi,j
)m
j=1 satisfies gi,j = 0 for i ≤ j. Additionally, an arti-

ficial boundary condition is imposed to guarantee well-posedness 
of the kernel equations as follows 
∀j < i : ℓ

p
i,j(1, ξ ) = li,j(ξ ), (C.3)

where the functions li,j can be chosen arbitrarily. However, we 
choose li,j such that 

li,j(1) = −
ψi,j(1)

µi(1) − µj(1)
, (C.4)

in order for (C.3) to coincide with (C.2b) at x = 1 (see Hu et al. 
(2016, Rem. 6)). Finally, the segmented kernels are subject to 
continuity conditions 
∀i < p,∀j ̸= p : ℓ

p−1(x, ρp(x)) = ℓ
p (x, ρp(x)), (C.5a)
i,j i i,j i
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∀i < p : kp−1
i (x, ρp

i (x)) = kp
i (x, ρ

p
i (x)), (C.5b)

for 1 ≤ i ≤ p ≤ m and j = 1, . . . ,m. It follows by Hu et al. (2019, 
Thm A.1) that the kernel equations (C.1)–(C.5) have well-posed 
solutions, which are additionally continuous on every T p

i .
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