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Significant advances have taken place in the last few years in the development of control designs for non-
linear infinite-dimensional systems. Such systems typically take the form of nonlinear ODEs (ordinary
differential equations) with delays and nonlinear PDEs (partial differential equations). In this article
we review several representative but general results on nonlinear control in the infinite-dimensional set-
ting. First we present designs for nonlinear ODEs with constant, time-varying or state-dependent input
delays, which arise in numerous applications of control over networks. Second, we present a design for
nonlinear ODEs with a wave (string) PDE at its input, which is motivated by the drilling dynamics in
petroleum engineering. Third, we present a design for systems of (two) coupled nonlinear first-order
hyperbolic PDEs, which is motivated by slugging flow dynamics in petroleum production in off-shore
facilities. Our design and analysis methodologies are based on the concepts of nonlinear predictor feed-
back and nonlinear infinite-dimensional backstepping. We present several simulation examples that
illustrate the design methodology.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation and historical background

The area of control design—most notably stabilization—for non-
linear finite-dimensional systems reached relative maturity
around year 2000. The method of backstepping (Krstic, Kanellako-
poulos, & Kokotovic, 1995), which played the central role in this
development, particularly for systems with modeling uncertain-
ties, then became the tool of interest for stabilization of infinite-
dimensional systems. However, for almost a decade, the success
in that direction remained limited to linear PDE (partial differential
equation) systems (Krstic & Smyshlyaev, 2008). It is not until the
last few years that this development has started yielding results
for nonlinear infinite-dimensional systems.

The turning point in the development of control designs for
nonlinear systems was the relatively little known two-part paper
by Vazquez and Krstic (2008a, 2008b) where nonlinear infinite-
dimensional operators of a Volterra type, with infinite sums of
integrals in the spatial variable (rather than in time, as has been
common in the input-output representation theory for ODEs for
decades), were introduced for stabilization of nonlinear PDEs of
the parabolic type. This design represents a proper infinite-dimen-
sional extension of backstepping (and feedback linearization) de-
signs for nonlinear ODEs. The design involves the construction of
the Volterra transformations whose kernel functions depend on
increasing numbers of spatial variables (which go to infinity),
and where the kernels are governed by PDEs in an increasing num-
ber of variables, on domains whose dimension goes to infinity,
with the solutions of lower-order kernels being inputs to the PDEs
for the higher-order kernels. This complex formulations turns out
to be constructive and provably convergent, with a well-defined
feedback law and a stability result in spatial norms that are appro-
priate for parabolic PDEs. All subsequent backstepping develop-
ments for infinite-dimensional nonlinear systems—whether for
other PDE systems (Krstic, Magnis, & Vazquez, 2008, 2009) or for
nonlinear delay systems (Krstic, 2010a)—are conceptually based
on the technique laid out in Vazquez and Krstic (2008a, 2008b),
although all such subsequent developments have been much less
complex as they have been for less broad classes of nonlinear infi-
nite-dimensional systems than parabolic PDEs with right-hand
sides that contain spatial Volterra nonlinear operators.

Though they carry with them a wealth of mathematical chal-
lenges, nonlinear infinite-dimensional systems are not artificial
mathematical inventions or esoteric generalizations of nonlinear
ODEs. They are as ubiquitous in applications as ODEs. In fact, in
numerous problems involving mechanics, fluids, thermal phenom-
ena, chemistry, or telecommunications, ODE models are merely
approximations of full models that incorporate PDEs and/or delay
effects.

The most elementary systems in the broad class of nonlinear
infinite-dimensional systems are nonlinear systems with input de-
lays. They arise in numerous applications such as networked con-
trol systems (Cloosterman, van de Wouw, Heemels, & Nijmeijer,
2009; Heemels, Teel, van de Wouw, & Nesic, 2010; Hespanha,
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Naghshtabrizi, & Xu, 2007; Montestruque & Antsaklis, 2004; Wi-
trant, Canudas-de-Wit, Georges, & Alamir, 2007), supply networks
(Sipahi, Lammer, Niculescu, & Helbing, 2006; Sterman, 2000), mill-
ing processes (Altintas, Engin, & Budak, 1999), irrigation channels
(Litrico & Fromion, 2004), engine cooling systems (Hansen, Stoust-
rup, & Bendtsen, 2011) and chemical processes (Kravaris & Wright,
1989; Mounier & Rudolph, 1998), to name only a few (see also the
survey by Richard (2003) for additional examples).

Although a nonlinear system with an input delay is as simple a
problem as it gets within the realm of infinite-dimensional nonlin-
ear systems, the design of stabilizing control laws for general nonlin-
ear systems, such as strict-feedback (Krstic et al., 1995) and strict-
feedforward (Krstic, 2004) systems and when the input delay is arbi-
trary large, is a highly non-trivial task (Krstic, 2010a). The situation is
even more intricate when the delay is time-varying (Krstic, 2010b;
Bekiaris-Liberis & Krstic, 2012), and becomes formidable when the
delay depends on the state of the system itself (Bekiaris-Liberis &
Krstic, 2013a). Several additional important results on the stabiliza-
tion of nonlinear systems with input and state delays have been
developed by Jankovic (2001, 2009), Karafyllis (2006, 2011), Karafyl-
lis and Krstic (2012), Mazenc and Bliman (2006), Mazenc, Mondie,
and Francisco (2004), and Mazenc and Niculescu (2011).

Once the designer is equipped with the capability to overcome a
delay at the input, i.e., the transport PDE process in the actuator
line, there is every reason to ask whether other types of infinite-
dimensional dynamics at the input can be compensated. This line
of pursuit for infinite-dimensional dynamics in the actuator line
of a linear ODE plant was pursued by Krstic (2009b) for diffu-
sion-dominated (parabolic) actuator dynamics and by Kzrstic
(2009c) for wave PDE actuator dynamics. Several extensions, all
considering linear ODE plants preceded by PDE actuator dynamics,
are presented by Bekiaris-Liberis and Krstic (2010), Bekiaris-Liberis
and Krstic (2011b), Krstic (2009a), Ren, Wang, and Krstic (2013),
Susto and Krstic (2010), and Tang and Xie (2011a, 2011b). Extend-
ing those results from the case where the plant is a linear ODE to
the case where the plant is a nonlinear ODE has proved much more
challenging than for the case where the actuator dynamics are of
the delay (transport PDE) type. Until recently, that is, as we show
in this article and discuss next.

A representative engineering application in which wave PDE
actuator dynamics are cascaded with a nonlinear ODE is oil dril-
ling. A common type of instability in oil drilling is the so-called
stick-slip oscillations (Jansen, 1993). This type of instability (which
is caused by a specific composition of the ground material) results
in torsional vibrations of the drillstring, which can in turn severely
damage the drilling facilities (see Fig. 1 taken from Sagert, Di Me-
glio, Krstic, & Rouchon (2013)). The torsional dynamics of an oil
Fig. 1. A drillstring used in oil drilling. The angular displacement u of the drillstring
is controlled through a torque U.
drillstring are modeled as a wave PDE (that describes the dynamics
of the angular displacement of the drillstring) coupled with a non-
linear ODE that describes the dynamics of the bottom angular
velocity of the drill bit (Saldivar, Mondie, Loiseau, & Rasvan,
2011). A control approach for the bottom angular velocity based
on the linearization of its dynamics is presented in Sagert et al.
(2013). In this article we present a design for general nonlinear
ODE plants with a wave PDE as its actuator dynamics. This design
solves the oil drilling problem (globally) as a special case. We also
specialize our general design for wave PDE-ODE cascades to the
case of a wave PDE whose uncontrolled end does not drive an
ODE but is instead governed by a nonlinear Robin boundary condi-
tion (a ‘‘nonlinear spring’’, as in the friction law in drilling).

Once PDE-ODE cascades are systematically addressed, it is rea-
sonable to ask a question whether interconnections of multiple
PDEs can be controlled, and not only in the cascade configuration
but in more general and strongly ‘‘interwoven’’ configurations. In
fact, such problems arise in numerous physical systems and have
been considered in the PDE control literature for at least a decade
(as it is explained in the next paragraph), albeit with limitations to
the degree of open-loop instability that is permissible in the plant
considered.

Systems of coupled, nonlinear first order hyperbolic PDEs model
a variety of physical systems. Specifically, 2 � 2 systems of first or-
der hyperbolic quasilinear PDEs model processes such as open chan-
nels (Dos Santos & Prieur, 2008; Gugat & Leugering, 2003; Gugat,
Leugering, & Schmidt, 2004; de Halleux, Prieur, Coron, d’Andréa-No-
vel, & Bastin, 2003), transmission lines (Curro, Fusco, & Manganaro,
2011), gas flow pipelines (Gugat & Dick, 2011) or road traffic models
(Goatin, 2006). They also have some resemblances with systems that
model the gas–liquid flow in oil production pipes (see Fig. 2 taken
from Di Meglio, Krstic, Vazquez, & Petit (2012b)). The problem of sta-
bilization for some classes of 2 � 2 systems of first order hyperbolic
quasilinear PDEs is considered by Coron, dAndrea-Novel, and Bastin
(2006), Dick, Gugat, and Leugering (2010), Dos Santos and Prieur
(2008), Greenberg and Li (1984), Gugat and Herty (2011), Prieur
(2009), Prieur, Winkin, and Bastin (2008).

1.2. Contents of the article

In this paper we present some recent results on the compensation
of input delays in nonlinear systems employing predictor-based
control laws. Predictor feedback was developed originally for unsta-
ble linear plants with input delays, see the early paper by Artstein
(1982) that conceptualizes the results of the preceding decade gen-
eralizes them in several mathematically interesting directions. Yet, a
nonlinear counterpart of predictor feedback was unavailable until
recently (Krstic, 2010a). The design by Krstic (2010a) is based on
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Fig. 2. An oil production pipe conveying oil and gas from a reservoir.
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the introduction of a nonlinear infinite-dimensional backstepping
transformation, which provides a Lyapunov functional for studying
the stability of the closed-loop system. Although for linear systems
with a time-varying input delay the formula of the predictor feed-
back law was provided by Nihtila (1991), for general nonlinear sys-
tems, predictor-based control laws were provided only recently by
Bekiaris-Liberis and Krstic (2012). One of the most challenging prob-
lems in delay systems is the control of systems with state-dependent
delays, as highlighted by Richard (2003). The first systematic ap-
proach for designing stabilizing controllers for nonlinear systems
with state-dependent delays was introduced by Bekiaris-Liberis
and Krstic (2013a). The design is based on predictor feedback. The
key challenge that is resolved in Bekiaris-Liberis and Krstic
(2013a) is the definition of the predictor state: The state-depen-
dence of the delay makes the prediction horizon dependent on fu-
ture values of the state which are unavailable.

We also consider finite-dimensional nonlinear plants which are
controlled through a string and we design a predictor-based feed-
back law that compensates the string (wave) dynamics in the input
of the plant. Our design is based on a preliminary transformation
which allows one to convert the problem of the compensation of
the wave PDE, to a problem of the compensation of a 2 � 2 system
of first order transport equations which convect in opposite direc-
tions (see, for example, Vazquez, Coron, & Krstic, 2011), for an aug-
mented (by one integrator) plant. We then introduce the infinite-
dimensional backstepping transformations for the two transport
states, which transform the new, augmented system to a target
system. With the aid of the backstepping transformations we prove
global asymptotic stability of the closed-loop system by construct-
ing a Lyapunov functional.

Finally, we review some recent results on the local exponential
H2 stabilization of a 2 � 2 system of first order hyperbolic quasilin-
ear PDEs using backstepping developed by Coron, Vazquez, Krstic,
and Bastin (submitted for publication) and Vazquez, Coron, Krstic,
and Bastin (2011). Specifically, we present the design of a control
law that stabilizes the linearized system using the recently devel-
oped backstepping technique of Vazquez et al. (2011) for 2 � 2 sys-
tems of linear hyperbolic PDEs (see also Di Meglio, Vazquez, &
Krstic (2012a) for an extension to n � n systems). We then prove
the local exponential stability of the closed-loop system in the H2

norm by constructing a strict Lyapunov functional with the aid of
the backstepping transformations.

This paper is an expanded version of Krstic and Bekiaris-Liberis
(2013).
1.3. Oganization

Section 2 is devoted to nonlinear systems with input delays. We
introduce the predictor-based design for constant delays in Sec-
tion 2.1 For time-varying delays the predictor feedback design is
presented in Section 2.2. State-dependent delays are treated in Sec-
tion 2.3. In Section 3 we present a design that compensates the
wave actuator dynamics in nonlinear systems. In Section 4 we
are dealing with a 2 � 2 system of first order quasilinear PDEs for
which we design a control law that achieves local exponential
stability.
1 The quantities P in (3) and P in (7) are identical. However, we use two distinct
mbols for the same quantity because, in one case, P is expressed in terms of X and U,
r the direct backstepping transformation, while, in the other case, P is expressed in

terms of X and W, for the inverse backstepping transformation.
2. Nonlinear systems with input delays

One of the main obstacles in designing globally stabilizing con-
trol laws for nonlinear systems with long input delays is the finite
escape phenomenon. The input delay may be so large that the con-
trol signal cannot reach the plant before its state escapes to infin-
ity. Therefore, in the following we assume that the plant
_X ¼ f ðX;xÞ is forward complete, that is, for every initial condition
and every bounded input signal the corresponding solution is de-
fined for all t P 0.

Our predictor-based designs are based on a (possibly time-vary-
ing) feedback law j(t,X(t)), which is assumed to be periodic in its
first argument and locally Lipschitz, that globally stabilizes the de-
lay-free plant, i.e., _XðtÞ ¼ f ðXðtÞ;jðt;XðtÞÞÞ is globally asymptoti-
cally stable.

2.1. Constant delay

In this section we focus on nonlinear systems with constant in-
put delay, i.e, systems of the form

_XðtÞ ¼ f ðXðtÞ;Uðt � DÞÞ: ð1Þ

The predictor-based control law for plant (1) is

UðtÞ ¼ jðt þ D; PðtÞÞ ð2Þ

PðtÞ ¼ XðtÞ þ
Z t

t�D
f ðPðhÞ;UðhÞÞdh; ð3Þ

where the initial condition for the integral equation for P(t) is de-
fined for all h 2 [t0 � D, t0] (t0 is the initial time which must be given
because the closed-loop system is time-varying) as

PðhÞ ¼ Xðt0Þ þ
Z h

t0�D
f ðPðrÞ;UðrÞÞdr: ð4Þ

The signal P(t) represents the D time-units ahead predictor
of X, i.e., P(t) = X(t + D). In the case of linear systems the predictor
P(t) is given explicitly using the variation of constants formula,
with the initial condition P(t � D) = X(t), as PðtÞ ¼ eADXðtÞþR t

t�D eAðt�hÞBUðhÞdh. For systems that are nonlinear, P(t) cannot be
written explicitly, for the same reason as a nonlinear ODE cannot
be solved explicitly. So we represent P(t) implicitly using the non-
linear integral Eq. (3). The computation of P(t) from (3) is straight-
forward with a discretized implementation in which P(t) is
assigned values based on the right-hand side of (3), which involves
earlier values of P and the values of the input U.

Together with the predictor-based control law (2) we define the
infinite-dimensional backstepping transformation of the actuator
state given by

WðtÞ ¼ UðtÞ � jðt þ D; PðtÞÞ; ð5Þ

together with its inverse

UðtÞ ¼WðtÞ þ jðt þ D;PðtÞÞ; ð6Þ

where1

PðtÞ ¼
Z t

t�D
f ðPðhÞ;jðhþ D;PðhÞÞ þWðhÞÞ � dhþ XðtÞ; ð7Þ

with initial condition for all h 2 [t0 � D, t0]

PðhÞ ¼
Z h

t0�D
f ðPðrÞ;jðrþ D;PðrÞÞ þWðrÞÞ � drþ Xðt0Þ: ð8Þ

The backstepping transformation maps the original system (1)
into the ‘‘target system’’ given by

_XðtÞ ¼ f ðXðtÞ;jðt;XðtÞÞ þWðt � DÞÞ ð9Þ
WðtÞ ¼ 0; for t P t0: ð10Þ

We have the following result. Its proof can be found in Krstic
(2010a).
sy
fo
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Theorem 1. Let _X ¼ f ðX;xÞ be forward complete and
_XðtÞ ¼ f ðXðtÞ;jðt;XðtÞÞÞ globally uniformly asymptotically stable.
Consider the closed-loop system consisting of the plant (1) and the
control law (2) and (3). There exists a class KL function b such that for
all initial conditions Xðt0Þ 2 Rn;Uðt0 þ hÞ; h 2 ½�D;0� 2 L1½�D;0� the
following holds

XðtÞ 6 bðXðt0Þ; t � t0Þ ð11Þ
XðtÞ ¼ jXðtÞj þ sup

t�D6h6t
jUðhÞj; ð12Þ

for all t P t0 P 0.
If the global asymptotic stability assumption in Theorem 1 is

strengthened with an input-to-state stability assumption of the
plant _XðtÞ ¼ f ðXðtÞ;jðt;XðtÞÞ þxðtÞÞ with respect to x, one can
construct a Lyapunov functional2 for the closed-loop system. To-
wards that end we observe from the ‘‘target system’’ (9) and (10)
that W(t � D) vanishes in finite time (in D time-units). Hence, under
the input-to-state stability assumption on the plant
_XðtÞ ¼ f ðXðtÞ;jðt;XðtÞÞ þxðtÞÞ with respect to x one can construct
a Lyapunov functional for the system in the (X,W) variables. Using
Malisoff and Mazenc (2005) there exists a C1 function
S : Rþ � Rn ! Rþ and class K1 functions a1, a2, a3, a4 such that

a3ðjXðtÞjÞ 6 Sðt;XðtÞÞ 6 a4ðjXðtÞjÞ ð13Þ
_Sðt;XðtÞÞ 6 �a1ðjXðtÞjÞ þ a2ðjWðt � DÞjÞ ð14Þ

_Sðt;XðtÞÞ ¼ @Sðt;XðtÞÞ
@t

þ @Sðt;XðtÞÞ
@X

� f ðXðtÞ;jðt;XðtÞÞ þWðt � DÞÞ

ð15Þ

The Lyapunov functional for the ‘‘target system’’ is then

VðtÞ ¼ Sðt;XðtÞÞ þ 2
c

Z LðtÞ

0

a2ðrÞ
r

dr; ð16Þ

where a2ðrÞ
r is a class K function or a2 has been appropriately major-

ized so this is true (with no generality loss), c > 0 is arbitrary and

LðtÞ ¼ sup
t�D6h6t

jecðh�tþDÞWðhÞj: ð17Þ

Using the inverse backstepping transformation (6) one can then
prove stability in the original variables (X,U). The functional L can
be also written directly in terms of the original variables (X,U) as

LðtÞ ¼ sup
t�D6h6t

jecðh�tþDÞðUðhÞ � jðhþ D; PðhÞÞÞj; ð18Þ

where P is given in terms of (X,U) from (3). The two different repre-
sentations of the functional L, namely, representations (17) and
(18), reveal one of the benefits of the backstepping transformation:
If the construction of the functional L in terms of the transformed
actuator state W appears to be non-trivial, its form in terms of the
original variables (X,U), i.e., relation (18), is rather impossible to
guess without the backstepping and predictor transformations.

Robustness of linear predictor feedback laws to small delay mis-
matches and to additive disturbances is shown in Krstic (2008b).
Robustness of nonlinear predictor feedbacks to delay uncertainties
is shown in Bekiaris-Liberis and Krstic (2013b). For discrete-time
systems, robustness of predictor feedback laws to plant uncertain-
ties is studied in Karafyllis and Krstic (in press).

2.2. Time-varying delay

In this section we consider plants of the form

_XðtÞ ¼ f ðXðtÞ;Uðt � DðtÞÞÞ; ð19Þ
2 The availability of a Lyapunov functional enables one in principle, to study
robustness of the predictor feedback to parametric uncertainties, its disturbance
attenuation properties, and the inverse-optimal re-design problem.
,

where D is a positive-valued continuously differentiable function of
time. We define the functions

/ðtÞ ¼ t � DðtÞ ð20Þ
rðtÞ ¼ /�1ðtÞ; ð21Þ

and we refer to the quantity t � /(t) = D(t) as the delay time. This is
the time interval that indicates how long ago the control signal that
currently affects the plant was actually applied. The main goal of
this section is to determine the predictor state, i.e., the quantity P
such that X(r(t)) = P(t). From now on we refer to the quantity
r(t) � t as the prediction horizon. This is the time interval which
indicates after how long an input signal that is currently applied af-
fects the plant. In the constant delay case, the prediction horizon is
equal to the delay time, i.e., t � /(t) = D = r(t) � t. The predictor-
based control law is

UðtÞ ¼ jðrðtÞ; PðtÞÞ ð22Þ

PðtÞ ¼ XðtÞ þ
Z t

t�DðtÞ

f ðPðhÞ;UðhÞÞdh

/0ð/�1ðhÞÞ
; ð23Þ

with an initial condition for all h 2 [t0 � D(t0), t0] as

PðhÞ ¼ Xðt0Þ þ
Z h

t0�Dðt0Þ

f ðPðrÞ;UðrÞÞdr
/0ð/�1ðrÞÞ

ð24Þ

The fact that P(t) = X(r(t)) can be established by applying the
change of variables t = r(s) in (19).

From (23) one can observe that the function drðhÞ
dh ¼ 1

/0 ð/�1ðhÞÞ is

employed in the control law. Therefore, one has to appropriately
restrict the delay time D(t) such that /0(t) – 0 for all t P 0. Actually,
we impose the condition /0(t) > 0 for all t P 0. The reason is that if
/0(t) > 0 for all t P 0 then the control signal is able to reach the
plant and it does not change the direction of propagation of the
control signal (the plant keeps receiving control inputs that are
never older than the ones it has already received). Besides the con-
dition /0(t) > 0 for all t P 0, which can be also expressed in terms of
the delay function as _DðtÞ < 1, for all t P 0, we also assume that the
delay cannot disappear instantaneously, i.e., /0 (or _D) is bounded.
Also, the delay has to be positive (to guarantee the causality of
the system) and bounded (such that the control signal eventually
reaches the plant).

We are now ready to state the following theorem, the proof of
which can be found in Bekiaris-Liberis and Krstic (2012).

Theorem 2. Let _X ¼ f ðX;xÞ be forward complete and
_XðtÞ ¼ f ðXðtÞ;jðt;XðtÞÞÞ globally uniformly asymptotically stable. Let
the delay time D(t) = t � /(t) be positive and uniformly bounded from
above, and its rate _DðtÞ be smaller than one and uniformly bounded
from below. Consider the closed-loop system consisting of the plant
(19) and the control law (22) and (23). There exists a class KL
function bv such that for all initial conditions Xðt0Þ 2 Rn and
U(t0 + h);h 2 [�D(t0),0] 2 L1[�D(t0),0] the following holds

XvðtÞ 6 bvðXvðt0Þ; t � t0Þ ð25Þ
XvðtÞ ¼ jXðtÞj þ sup

t�DðtÞ6h6t
jUðhÞj; ð26Þ

for all t P t0 P 0.
The proof of this result is based on the following equivalent rep-

resentation of the plant (19) using a transport PDE representation
for the actuator state (see also Fig. 3) as
_XðtÞ ¼ f ðXðtÞ;uð0; tÞÞ ð27Þ
utðx; tÞ ¼ pðx; tÞuxðx; tÞ; x 2 ½0;1� ð28Þ
uð1; tÞ ¼ UðtÞ; ð29Þ

where



Fig. 3. Top: A nonlinear system with a delay in the input. Bottom: The equivalent
representation of the delay/nonlinear ODE cascade using a transport PDE for the
actuator state.
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pðx; tÞ ¼
1þ x dð/�1ðtÞÞ

dt � 1
� �

/�1ðtÞ � t
; ð30Þ

and /(t) is defined in (20). The choice of the transport speed p(x, t) is
guided by the fact that we seek a representation for the infinite-
dimensional actuator state u(x, t) such that relations (29) and

uð0; tÞ ¼ Uð/ðtÞÞ; ð31Þ

are satisfied. One can verify that u(x, t) is given by

uðx; tÞ ¼ Uð/ðt þ xð/�1ðtÞ � tÞÞÞ; ð32Þ

and consequently both (29) and (31) are satisfied. For a more de-
tailed discussion about the choice of the transport speed p(x, t) we
refer the reader to Krstic (2009a). Analogously with representation
(27)–(30) of the plant, an equivalent representation of the predictor
defined in (23) is as

pð1; tÞ ¼ ð/�1ðtÞ � tÞ
Z 1

0
f ðpðy; tÞ;uðy; tÞÞdyþ XðtÞ; ð33Þ

where for all x 2 [0,1]

pðx; tÞ ¼ Pð/ðt þ xð/�1ðtÞ � tÞÞÞ: ð34Þ

With this representation for the predictor state we are able to
define the backstepping transformation of the actuator state as

wðx; tÞ ¼ uðx; tÞ � jðt þ xð/�1ðtÞ � tÞ;pðx; tÞÞ: ð35Þ

Noting that the predictor state p(x, t) satisfies

pðx; tÞ ¼ ð/�1ðtÞ � tÞ
Z x

0
f ðpðy; tÞ; uðy; tÞÞdyþ XðtÞ; ð36Þ

and using the control law (22), system (27)–(29) is mapped to the
following ‘‘target system’’

_XðtÞ ¼ f ðXðtÞ;jðt;XðtÞÞ þwð0; tÞÞ ð37Þ
wtðx; tÞ ¼ pðx; tÞwxðx; tÞ; x 2 ½0;1� ð38Þ
wð1; tÞ ¼ 0: ð39Þ

One can then construct a Lyapunov functional for the target sys-
tem, as in the constant delay case, under the assumption that the
plant _XðtÞ ¼ f ðXðtÞ;jðt;XðtÞÞ þxðtÞÞ is input-to-state stable with
respect to x (instead of just globally asymptotically stable when
x = 0). The Lyapunov functional is given in terms of the trans-
formed actuator state as

VvðtÞ ¼ Sðt;XðtÞÞ þ 2b
c

Z LvðtÞ

0

a2ðrÞ
r

dr; ð40Þ

where c > 0 is arbitrary, b > 0 is a constant that depends on the delay
D, and S, a2 are defined in (14) and

LvðtÞ ¼ sup
x2½0;1�

jecxwðx; tÞj ¼ lim
n!1

Z 1

0
e2ncxw2nðx; tÞdx

� � 1
2n

: ð41Þ
2.3. State-dependent delay

In this section we concentrate on nonlinear systems with state-
dependent input delay, i.e.,

_XðtÞ ¼ f ðXðtÞ;Uðt � DðXðtÞÞÞÞ; ð42Þ

where D is a nonnegative-valued continuously differentiable func-
tion. The main challenge in the case of systems with state-depen-
dent delays is the determination of the predictor state. For
systems with constant delays, D = const, the predictor of the state
X(t) is simply defined as P(t) = X(t + D). For systems with state-
dependent delays finding the predictor P(t) is much trickier. The
time when U reaches the system depends on the value of the state
at that time, namely, the following implicit relationship holds
P(t) = X(t + D(P(t))) (and X(t) = P(t � D(X(t)))).

The predictor-based controller for the plant (42) is

UðtÞ ¼ jðrðtÞ; PðtÞÞ; ð43Þ

where the predictor state P and the prediction time r are

PðtÞ ¼
Z t

t�DðXðtÞÞ

f ðPðsÞ;UðsÞÞds
1�rDðPðsÞÞf ðPðsÞ;UðsÞÞ þ XðtÞ; ð44Þ

rðtÞ ¼ t þ DðPðtÞÞ; ð45Þ

respectively. The initial predictor P(h), h 2 [t0 � D(X(t0)), t0], is

PðhÞ ¼
Z h

t0�DðXðt0ÞÞ

f ðPðsÞ;UðsÞÞds
1�rDðPðsÞÞf ðPðsÞ;UðsÞÞ þ Xðt0Þ: ð46Þ

The fact that P(t) given in (44) is the r(t) � t = D(P(t)) time units
ahead predictor of X(t), i.e., P(t) = X(r(t)), can be established by per-
forming a change of variables t = r(s) in the ODE for X(t) given in
(42) and noting from relations /(t) = t � D(X(t)) and r(t) = /�1(t)
that D(X(r(t))) = r(t) � t, which implies in particular that

drðtÞ
dt
¼ 1

1�rDðPðtÞÞf ðPðtÞ;UðtÞÞ : ð47Þ

As in the case of time-varying delays /0 and D must be positive
and bounded. The positiveness of /0 (or equivalently of r0) is guar-
anteed by imposing the following condition on the solutions

F c : rDðPðhÞÞf ðPðhÞ;UðhÞÞ < c; for all h P t0 � DðXðt0ÞÞ;
ð48Þ

for c 2 (0,1]. We refer to F 1 as the feasibility condition of the control-
ler (43)–(45). Due to this condition, we obtain a local result. Bound-
ness of /0 and D is then guaranteed by the boundness of the
system’s norm. We obtain the following result. Its proof can be
found in Bekiaris-Liberis & Krstic (2013a).

Theorem 3. Let _X ¼ f ðX;xÞ be forward complete and
_XðtÞ ¼ f ðXðtÞ;jðt;XðtÞÞÞ globally uniformly asymptotically stable.
Consider the closed-loop system consisting of the plant (42) and the
control law (43)–(45). There exist a class K function wRoA and a class
KL function bs such that for all initial conditions Xðt0Þ 2 Rn such that
U is locally Lipschitz on the interval [t0 � D(X(t0)), t0) and which satisfy

Xsðt0Þ < wRoAðcÞ; ð49Þ

for some 0 < c < 1, where

XsðtÞ ¼ jXðtÞj þ sup
t�DðXðtÞÞ6h6t

jUðhÞj; ð50Þ

the following holds

XsðtÞ 6 bsðXsðt0Þ; t � t0Þ; ð51Þ

for all t P t0 P 0. Furthermore, there exists a class K function d⁄ such
that, for all t P t0 P 0,
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6 h 6 0 and four different initial conditions for the state
X(0) = 0.15, 0.25, 0.35, 0.43.
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DðXðtÞÞ 6 Dð0Þ þ d�ðcÞ; ð52Þ
j _DðXðtÞÞj 6 c: ð53Þ

A Lyapunov functional for the closed-loop system consisting of
the plant (42) and the control law (43)–(45) is

V sðtÞ ¼ Sðt;XðtÞÞ þ 2
g

Z LsðtÞ

0

a2ðrÞ
r

dr; ð54Þ

where g > 0 is arbitrary, S, a2 are defined in (14) and

LsðtÞ ¼ sup
t�DðXðtÞÞ6h6t

jegðhþDðPðhÞÞ�tÞWðhÞj; ð55Þ

WðhÞ ¼ UðhÞ � jðhþ DðPðhÞÞ; PðhÞÞ; ð56Þ

where P is given in terms of (X; U) in (44).
Note that there might be cases in which Vs(t) is not continu-

ously differentiable along the trajectories of the closed-loop sys-
tem. For example, in the case in which the solution X(t) is not
continuously differentiable for all t P t0.

2.4. Examples

The first example illustrates the fact that global stabilization is
not possible even for linear systems.

Example 2.1. We consider a scalar unstable system with a
Lyapunov-like delay

_XðtÞ ¼ XðtÞ þ Uðt � XðtÞ2Þ: ð57Þ

The delay-compensating controller is

UðtÞ ¼ �2PðtÞ; ð58Þ

where

PðtÞ ¼
Z t

t�XðtÞ2

ðPðsÞ þ UðsÞÞds
1� 2PðsÞðPðsÞ þ UðsÞÞ þ XðtÞ: ð59Þ

In Fig. 4 we show the response of the system and the function /
(t) = t � X(t)2 for four different initial conditions of the state and
with the initial conditions for the input chosen as U(h) = 0, �X(0)2 -
6 h 6 0. We choose X(0) = 0.15, 0.25, 0.35, X⁄. With X⁄ we denote
the critical value of X(0) for the given initial condition of the
input, such that, for any X(0) P X⁄, the control inputs produced
by the feedback law (58) and (59) for positive t never reach the
plant. We calculate this time as follows: The function /

(t) = t � X(0)2e2t has a maximum at t⁄ if log 1ffiffiffiffiffiffiffiffiffiffi
2Xð0Þ2
p
� �

¼ t� > 0.

Since /ðt�Þ ¼ log 1ffiffiffiffiffiffiffiffiffiffi
2Xð0Þ2
p
� �

� 1
2 has to be positive for the control to

reach the plant, it follows X� ¼ 1ffiffiffiffi
2e
p ¼ 0:43.

In the following example we consider the stabilization problem
of a mobile robot with an input delay that grows with the distance
of the robot from then reference position.

Example 2.2. We consider the problem of stabilizing a mobile
robot modeled as

_xðtÞ ¼ vðt � DðxðtÞ; yðtÞÞÞ cosðhðtÞÞ ð60Þ
_yðtÞ ¼ vðt � DðxðtÞ; yðtÞÞÞ sinðhðtÞÞ ð61Þ
_hðtÞ ¼ xðt � DðxðtÞ; yðtÞÞÞ; ð62Þ

subject to an input delay that grows with the distance relative to
the reference position as

DðxðtÞ; yðtÞÞ ¼ xðtÞ2 þ yðtÞ2; ð63Þ
where (x(t),y(t)) is position of the robot, h(t) is heading, v(t) is speed
and x(t) is turning rate. When D = 0 a time-varying stabilizing con-
troller is proposed in Pomet (1992) as

xðtÞ ¼ �5PðtÞ2 cosð3/�1ðtÞÞ � PðtÞQðtÞ � ð1þ 25 cos2ð3/�1ðtÞÞÞ �HðtÞ ð64Þ
vðtÞ ¼ �PðtÞ þ 5QðtÞðsinð3/�1ðtÞÞ � cosð3/�1ðtÞÞÞ þ QðtÞxðtÞ ð65Þ
PðtÞ ¼ XðtÞ cosðHðtÞÞ þ YðtÞ sinðHðtÞÞ ð66Þ
QðtÞ ¼ XðtÞ sinðHðtÞÞ � YðtÞ cosðHðtÞÞ; ð67Þ

with

X ¼ x; Y ¼ y; H ¼ h; /�1ðtÞ ¼ t: ð68Þ

The proposed method replaces (68) with

XðtÞ ¼
Z t

t�DðxðtÞ;yðtÞÞ

drðsÞ
ds

vðsÞ cosðHðsÞÞdsþ xðtÞ ð69Þ

YðtÞ ¼
Z t

t�DðxðtÞ;yðtÞÞ

drðsÞ
ds

vðsÞ sinðHðsÞÞdsþ yðtÞ ð70Þ

HðtÞ ¼ hðtÞ þ
Z t

t�DðxðtÞ;yðtÞÞ

drðsÞ
ds

xðsÞds ð71Þ

rðtÞ ¼ t þ DðXðtÞ;YðtÞÞ ð72Þ

_rðsÞ ¼ 1
1� 2vðsÞgðsÞ ð73Þ

gðsÞ ¼ XðsÞ cosðHðsÞÞ þ YðsÞ sinðHðsÞÞ: ð74Þ

The initial conditions are chosen as x(0) = y(0) = h(0) = 1 and
x(s) = v(s) = 0 for all �x(0)2 � y(0)2

6 s 6 0. From the given initial
conditions we get the initial conditions for the predictors
(69)–(71) as X(s) = Y(s) = H(s) = 1 for all �2 6 s 6 0. From the above
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Fig. 7. Top: A nonlinear system with a wave PDE in the input. Bottom: The
equivalent representation of the wave PDE/nonlinear ODE cascade using the change
of variables (79) and (80).
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initial conditions for the predictors one can verify that the system
initially lies inside the feasibility region. The controller ‘‘kicks in’’
at the time instant t0 at which t0 = x(t0)2 + y(t0)2. Since
v(s) = x(s) = 0 for s < 0 we conclude that x(t) = y(t) = h(t) = 1 for all
0 6 t 6 t0 and hence, t0 = 2. In Fig. 5 we show the trajectory of
the robot in the xy plane, whereas in Fig. 6 we show the resulting
state-dependent delay and the controls v(t) and x(t). In the case
of the uncompensated controller (64)–(68), the system is unstable,
the delay grows approximately linearly in time, and the vehicle’s
trajectory is a divergent Archimedean spiral. The compensated con-
troller (64)–(67), (69)–(74) recovers the delay-free behavior after 2
seconds. From Fig. 5 one can also conclude that the heading h(t) in
the case of the compensated controller converges to zero with
damped oscillations, whereas in the case of the uncompensated
controller it increases towards negative infinity (the robot moves
clockwise on a spiral).
3. Nonlinear systems with a wave PDE in the input

In this section we consider the following system

_XðtÞ ¼ f ðXðtÞ;uð0; tÞÞ ð75Þ
uttðx; tÞ ¼ uxxðx; tÞ ð76Þ
uxð0; tÞ ¼ hðXðtÞ;uð0; tÞÞ ð77Þ
uxð1; tÞ ¼ UðtÞ; ð78Þ
where X 2 Rn;U 2 R; t 2 Rþ; f : Rn � R! Rn is locally Lipschitz with
f(0,0) = 0, and h : Rnþ1 ! R is continuously differentiable with
h(0,0) = 0. Our controller design is based on converting the wave
equation to a 2 � 2 system of first order transport equations which
convect in opposite directions (see Fig. 7). To achieve this we define
the following transformations

fðx; tÞ ¼ utðx; tÞ þ uxðx; tÞ ð79Þ
xðx; tÞ ¼ utðx; tÞ � uxðx; tÞ; ð80Þ

together with their inverses given by



3 Another way to see this is as follows. Construct first the standard 1-time uni
ahead predictor for Z satisfying (84) as PðtÞ ¼ ZðtÞ þ

R t
t�1 g PðhÞ;NðhÞð Þdh, where

Nðt þ x� 1Þ ¼ fðx; tÞ (see Krstic, 2009a). Defining Pðt þ x � 1Þ ¼ pðx; tÞ we rewrite
the predictor as pð1; tÞ ¼ ZðtÞ þ

R 1
0 g pðx; tÞ; fðx; tÞð Þdx. Using definitions (89) and (90

and noting that p2ð1; tÞ ¼ uð0; tÞþ
R 1

0 uxðx; tÞdxþ
R 1

0 utðx; tÞdx�
R 1

0 h p1ðx; tÞ; p2ðx; tÞð Þdx
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utðx; tÞ ¼
fðx; tÞ þxðx; tÞ

2
ð81Þ

uxðx; tÞ ¼
fðx; tÞ �xðx; tÞ

2
: ð82Þ

Noting from (77) that it holds that f(0, t) = ut(0, t) + h(X(t),n(t))
and defining

nðtÞ ¼ uð0; tÞ; ð83Þ

system (75)–(78) is written as

_ZðtÞ ¼ gðZðtÞ; fð0; tÞÞ ð84Þ
xtðx; tÞ ¼ �xxðx; tÞ ð85Þ
xð0; tÞ ¼ fð0; tÞ � 2hðZðtÞÞ ð86Þ
ftðx; tÞ ¼ fxðx; tÞ ð87Þ
fð1; tÞ ¼ UðtÞ þ utð1; tÞ; ð88Þ

where

Z ¼
X

n

� �
ð89Þ

gðZ;vÞ ¼
f ðX; nÞ

�hðX; nÞ þ v

� �
: ð90Þ

Our feedback design, that compensates the wave actuator
dynamics, is based on applying the predictor approach to a nomi-
nal feedback law l� : Rnþ1 ! R that stabilizes the plant _Z ¼ gðZ;UÞ
defined in (84), i.e., a nominal feedback law for the following
system

_XðtÞ ¼ f ðXðtÞ; nðtÞÞ ð91Þ
_nðtÞ ¼ �hðXðtÞ; nðtÞÞ þ UðtÞ: ð92Þ

Note that such a nominal control law for the augmented system
(91) and (92) can be constructed, using one step of backstepping, if
there exists a control law j that stabilizes the plant _X ¼ f ðX;UÞ, i.e.,
such that _X ¼ f ðX;jðXÞÞ is globally asymptotically stable. A choice
of the feedback law l⁄ is then

l�ðXðtÞ; nðtÞÞ ¼ lðXðtÞ; nðtÞÞ þ hðXðtÞ; nðtÞÞ ð93Þ

lðXðtÞ; nðtÞÞ ¼ �c1ðnðtÞ � jðXðtÞÞÞ þ @jðXðtÞÞ
@X

f ðXðtÞ; nðtÞÞ: ð94Þ

Noting that the input to the Z system is the delayed version of
the signal f(1, t) = U(t) + ut(1, t) we conclude that our control law
has to employ the prediction of Z.

The predictor-based control law that compensates the wave
dynamics is chosen as U(t) = �ut(1, t) + l⁄(X(t + 1),n(t + 1)) and is
given by

UðtÞ ¼ �utð1; tÞ � c1ðp2ð1; tÞ � jðp1ð1; tÞÞÞ

þ @jðp1ð1; tÞÞ
@p1

f ðp1ð1; tÞ;p2ð1; tÞÞ þ hðp1ð1; tÞ;p2ð1; tÞÞ; ð95Þ

where c1 > 0 is arbitrary, and p1 2 Rn and p2 2 R, the predictors of
X(t) and u(0, t), respectively, are defined for all x 2 [0,1] as

p1ðx; tÞ ¼ XðtÞ þ
Z x

0
f ðp1ðy; tÞ; p2ðy; tÞÞdy ð96Þ

p2ðx; tÞ ¼ uðx; tÞ þ
Z x

0
utðy; tÞdy�

Z x

0
hðp1ðy; tÞ;p2ðy; tÞÞdy; ð97Þ

with initial conditions for all x 2 [0,1]

p1ðx;0Þ ¼ Xð0Þ þ
Z x

0
f ðp1ðy;0Þ;p2ðy; 0ÞÞdy ð98Þ

p2ðx;0Þ ¼ uðx;0Þ þ
Z x

0
utðy;0Þdy�

Z x

0
hðp1ðy;0Þ;p2ðy; 0ÞÞdy: ð99Þ
The name ‘‘predictors’’ for p1 and p2 is chosen to emphasize that
p1ð1; tÞ and p2ð1; tÞ are actually the 1-time unit ahead predictors of
XðtÞ and uð0; tÞ respectively, i.e., it holds that p1ð1; tÞ ¼ Xðt þ 1Þ and
p2ð1; tÞ ¼ uð0; t þ 1Þ. This fact is shown in the next section.3 Note
that the control law (95) is implementable (see Karafyllis (2011)
and Karafyllis & Krstic (2012) for a discussion on the implementation
of nonlinear predictors).

Defining for any v 2 H1(0,1)

kvðtÞkH1
¼

Z 1

0
vðx; tÞ2dx

� �1
2

þ
Z 1

0
vxðx; tÞ2dx

� �1
2

; ð100Þ

we are ready to state the following result.

Theorem 4. Consider the closed-loop system consisting of the plant
(75)–(78) and the control law (95)–(97). Let the system _Z = g(Z,v) be
forward complete, and the system _X ¼ f ðX;jðXÞ þ vÞ input-to-state
stable (ISS) with respect to v. Then, for any initial condition
u(�, 0) 2 H2(0,1), ut(�, 0) 2 H1(0,1) which is compatible with the feed-
back law(95) and is such that ux(0,0) = h(X(0),u(0,0)), there exist a
class KL function b such that for all t P 0
XðtÞ 6 bðXð0Þ; tÞ ð101Þ
XðtÞ ¼ jXðtÞj þ kuðtÞk1 þ kutðtÞkH1

þ kuxðtÞkH1
: ð102Þ

The proof of Theorem 4 is based on the introduction of the fol-
lowing backstepping transformation of f defined through (87) and
(88)

zðx; tÞ ¼ fðx; tÞ � lðpðx; tÞÞ � hðpðx; tÞÞ; ð103Þ

for all x 2 [0,1], where for all x 2 [0,1]

pðx; tÞ ¼ ZðtÞ þ
Z x

0
gðpðy; tÞ; fðy; tÞÞdy; ð104Þ

and l is defined in (94). Transformation (103) and (104) and the
control law (95)–(97) transform system (84)–(88) to the target sys-
tem given by (see also Fig. 8)

_ZðtÞ ¼ gðZðtÞ;l�ðZðtÞÞ þ zð0; tÞÞ ð105Þ
xtðx; tÞ ¼ �xxðx; tÞ ð106Þ
xð0; tÞ ¼ zð0; tÞ þ lðZðtÞÞ � hðZðtÞÞ ð107Þ
ztðx; tÞ ¼ zxðx; tÞ ð108Þ
zð1; tÞ ¼ 0: ð109Þ

One can then construct the following Lyapunov functional for
the target system (105)–(109)

VðtÞ ¼ ~q1ðV1ðtÞÞ þ ~q2ðV2ðtÞÞ ð110Þ

V1ðtÞ ¼
Z 1

0
ecð1�xÞxðx; tÞ2dxþ

Z 1

0
ecð1�xÞxxðx; tÞ2

� dxþ 2
Z 1

0
ecð1þxÞzxðx; tÞ2dx; ð111Þ

V2ðtÞ ¼ SðZðtÞÞ þ 2
c

Z kzðtÞkc;H1

0

a2ð
ffiffiffi
2
p

rÞ
r

dr ð112Þ

where ~q1; ~q2 are some appropriately defined class K1 functions,
c > 0 is arbitrary, kzðtÞkc;H1

¼
R 1

0 ecð1þxÞzðx; tÞ2dx
� �1

2þR 1
0 ecð1þxÞzxðx; tÞ2dx

� �1
2
. and S and a2 are defined in (14). Using the
we get after integrating ux relations (96) and (97) for x ¼ 1.
t

)
,



Fig. 8. The target system (105)–(109) used in the stability analysis of Theorem 4,
where Z, g are defined in (89) and (90), and l⁄ in (93).
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� u(0, t) (left), under the control law (120) and (121) (right) for initial conditions
u(x,0) = ut(x,0) = 1, for all x 2 [0,1].
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fact that the inverse backstepping transformation of f is defined for
all x 2 [0,1] as4

fðx; tÞ ¼ zðx; tÞ þ lðpðx; tÞÞ þ hðpðx; tÞÞ; ð113Þ

where for all x 2 [0,1]

pðx; tÞ ¼ ZðtÞ þ
Z x

0
gðpðy; tÞ;lðpðy; tÞÞ þ hðpðy; tÞÞ

þ zðy; tÞÞdy; ð114Þ

one can then show stability of the original system.
Theorem 4 is new even for the case of a lone wave PDE (i.e., not

coupled with an ODE) with anti-collocated nonlinear stiffness, i.e.,
the system

uttðx; tÞ ¼ uxxðx; tÞ ð115Þ
uxð0; tÞ ¼ hðuð0; tÞÞ ð116Þ
uxð1; tÞ ¼ UðtÞ: ð117Þ

The control law for (115)–(117) is derived from the original
control law (95)–(97) as

UðtÞ ¼ �utð1; tÞ � c1p2ð1; tÞ þ hðp2ð1; tÞÞ; ð118Þ

where for all x 2 [0,1]

p2ðx; tÞ ¼ uðx; tÞ þ
Z x

0
utðy; tÞdy�

Z x

0
hðp2ðy; tÞÞdy: ð119Þ

The control law (118) and (119) globally asymptotically stabi-
lizes the plant (115)–(117) under a forward completeness assump-
tion for the system _n ¼ �hðnÞ þ v with respect to the input v.

3.1. Examples

We illustrate the control design for the special case of a lone
wave PDE in the following example.

Example 3.1. Consider system (115)–(117) with h(u(0, t)) =
u(0, t)3 � u(0, t). Hence, system _nðtÞ ¼ �nðtÞ3 þ nðtÞ þ UðtÞ is for-
ward complete. The predictor-based feedback law (118) is

UðtÞ ¼ �utð1; tÞ � 2p2ð1; tÞ þ p2ð1; tÞ
3; ð120Þ

where

p2ð1; tÞ ¼ uð1; tÞ þ
Z 1

0
utðx; tÞdx�

Z 1

0
ðp2ð1; tÞ

2

� p2ð1; tÞÞdx: ð121Þ
4 To see this first observe that p(0, t) = Z(t), and hence, combining (107) and (113)
we get (86). Since p satisfies the initial value problem px(x, t) = g(p(x, t),
l(p(x, t)) + h(p(x, t)) + z(x, t)), p(0, t) = Z(t), using (103) and (104) and the fact that
p(0, t) = Z(t) we conclude that p and p satisfy the same initial value problem. From the
uniqueness of solutions we conclude that p � p, and hence, pt(x,t) = px(x,t). Therefore,
f in (113) satisfies (87).
In Fig. 9 we show the response of the closed-loop system con-
sisting of (115)–(117) withh(u(0, t)) = u(0, t)3 � u(0, t) and the con-
trol law (120) and (121), and the control effort for initial
conditions as u(x,0) = ut(x,0) = 1 for all x 2 [0,1]. As one can observe
the proposed control law achieves stabilization.
4. Systems of nonlinear hyperbolic PDEs

In this section we present the results developed by Coron et al.
(submitted for publication) and Vazquez, Coron, Krstic, and Bastin
(2011). We consider the following system

0 ¼ ztðx; tÞ þKðzðx; tÞ; xÞzxðx; tÞ þ f ðzðx; tÞ; xÞ; ð122Þ

with the following boundary conditions

z1ð0; tÞ ¼ G0ðz2ð0; tÞÞ ð123Þ
z2ð1; tÞ ¼ UðtÞ; ð124Þ

where x 2 ½0;1�; z : ½0;1� � ½0;1Þ ! R2;K : R2 �½0;1� ! M2;2ðRÞ; f
: R2 � ½0;1� ! R2, withM2;2 denoting the set of 2 � 2 real matrices.
We further assume that K(z,x) is twice continuously differentiable
with respect to z and x, and we assume that (possibly after an
appropriate state transformation) K(0,x) is a diagonal matrix with
nonzero eigenvalues K1(x), K2(x) which are, respectively, positive
and negative, i.e., for all x 2 [0,1]

Kð0; xÞ ¼ diagðK1ðxÞ;K2ðxÞÞ;
K1ðxÞ > 0;K2ðxÞ < 0;

ð125Þ

where diag(K1,K2) denotes the diagonal matrix with K1 in the first
position of the diagonal and K2 in the second. We also assume that
f(0,x) = 0, implying that there is an equilibrium at the origin, and
that f is twice continuously differentiable with respect to z. Denote



Fig. 10. Top: A 2 � 2 quasilinear system of transport PDEs. Bottom: An equivalent
representation of the system as a nonlinear transport PDE/nonlinear transport PDE
cascade with boundary and in domain coupling.
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@f
@z
ð0; xÞ ¼

f11ðxÞ f12ðxÞ
f21ðxÞ f22ðxÞ

� �
ð126Þ

and assume that fij 2 C1([0,1]). Finally, we assume that G0(x) is twice
differentiable and vanishes at the origin. We seek a control law U(t)
that makes the origin of (122)–(124) locally exponentially stable.
Our control design is based on the linearization of system (122)–
(124). Before we linearize system (122)–(124) around the origin
we rescale the variable z so that we make the linear part of f antidi-
agonal since we present our linear design for the case of an antidi-
agonal linear f (with no generality loss). Defining the new variable w
as

w ¼ UðxÞz ð127Þ
UðxÞ ¼ diagð/1ðxÞ;/2ðxÞÞ; ð128Þ

where

/1ðxÞ ¼ e
R x

0

f11 ðyÞ
K1 ðyÞ

dy ð129Þ

/2ðxÞ ¼ e�
R x

0

f22ðyÞ
K2 ðyÞ

dy
; ð130Þ

we rewrite system (122)–(124) in the new variables as (see Fig. 10)

0 ¼ wtðx; tÞ � RðxÞwxðx; tÞ � CðxÞwðx; tÞ
þKNLðwðx; tÞ; xÞwxðx; tÞ þ fNLðwðx; tÞ; xÞ; ð131Þ

with boundary conditions as

w1ð0; tÞ ¼ qw2ð0; tÞ þ GNLðw2ð0; tÞÞ ð132Þ
w2ð1; tÞ ¼ VðtÞ; ð133Þ

where

RðxÞ ¼ �Kð0; xÞ ð134Þ

CðxÞ ¼
0 �f12ðxÞ

�f21ðxÞ 0

� �
ð135Þ

VðtÞ ¼ /2ð1ÞUðtÞ ð136Þ

q ¼ dG0ð0Þ
dz

; ð137Þ

and the nonlinear perturbation terms KNL and fNL are such that
KNLð0; xÞ ¼ 0; fNLð0; xÞ ¼ @fNL

@w ð0; xÞ ¼ 0;GNLð0Þ ¼ 0.
Our design is based on a backstepping design for the linear part

of system (131). Defining w ¼ u v½ �T ;K1 ¼ �1;K2 ¼ ��2; f12 ¼ �c1

and f21 = �c2 we rewrite the linear part of system (131) as

utðx; tÞ ¼ ��1ðxÞuxðx; tÞ þ c1ðxÞvðx; tÞ ð138Þ
v tðx; tÞ ¼ �2ðxÞvxðx; tÞ þ c2ðxÞuðx; tÞ ð139Þ
uð0; tÞ ¼ qvð0; tÞ ð140Þ
vð1; tÞ ¼ VðtÞ: ð141Þ

System (138)–(141) is mapped to the following ‘‘target system’’

atðx; tÞ ¼ ��1ðxÞaxðx; tÞ ð142Þ
btðx; tÞ ¼ �2ðxÞbxðx; tÞ ð143Þ
að0; tÞ ¼ qbð0; tÞ ð144Þ
bð1; tÞ ¼ 0; ð145Þ

using the invertible backstepping transformation

aðx; tÞ ¼ uðx; tÞ �
Z x

0
Kuuðx; nÞuðn; tÞdn�

Z x

0
Kuv ðx; nÞvðn; tÞdyn ð146Þ

bðx; tÞ ¼ vðx; tÞ �
Z x

0
Kvuðx; nÞuðn; tÞdn�

Z x

0
Kvv ðx; nÞvðn; tÞdn; ð147Þ

and the control law

VðtÞ ¼
Z 1

0
Kvuð1; xÞuðx; tÞdxþ

Z 1

0
Kvvð1; xÞvðx; tÞdx: ð148Þ
The kernels of the backstepping transformation satisfy the
following 2 � 2 system of linear hyperbolic PDEs on the triangular
domain T ¼ fðx; nÞ : 0 6 n 6 x 6 1gwhich can be shown to be well-
posed (Vazquez et al. (2011))

�1ðxÞKuu
x þ �1ðnÞKuu

n ¼ ��01ðnÞK
uu � c2ðnÞKuv ð149Þ

�1ðxÞKuv
x � �2ðnÞKuv

n ¼ �02ðnÞK
uv � c1ðnÞKuu ð150Þ

�2ðxÞKvu
x � �1ðnÞKvu

n ¼ �01ðnÞK
vu þ c2ðnÞKvv ð151Þ

�2ðxÞKvv
x þ �2ðnÞKvv

n ¼ ��02ðnÞK
vv þ c2ðnÞKvu; ð152Þ

with boundary conditions

Kuuðx;0Þ ¼ �2ð0Þ
q�1ð0Þ

Kuvðx;0Þ ð153Þ

Kuvðx; xÞ ¼ c1ðxÞ
�1ðxÞ þ �2ðxÞ

ð154Þ

Kvuðx; xÞ ¼ � c2ðxÞ
�1ðxÞ þ �2ðxÞ

ð155Þ

Kvvðx;0Þ ¼ �1ð0Þ
q�2ð0Þ

Kvuðx;0Þ: ð156Þ

Using definition (127) and (136), the control law for the original
nonlinear system (122)–(124) is

UðtÞ ¼ 1
/2ð1Þ

Z 1

0
Kvuð1; xÞ/1ðxÞz1ðx; tÞdxþ 1

/2ð1Þ

�
Z 1

0
Kvvð1; xÞ/2ðxÞ � z2ðx; tÞdx: ð157Þ

With the control law (157) the boundary condition (124) for the
closed-loop system is written as

z1ð1; tÞ ¼
1

/2ð1Þ

Z 1

0
Kvuð1; xÞ/1ðxÞz1ðx; tÞdxþ 1

/2ð1Þ

�
Z 1

0
Kvvð1; xÞ/2ðxÞ � z2ðx; tÞdx: ð158Þ

Defining the H2 norm of z ¼ z1 z2½ �T as

kzðtÞkH2
¼
Z 1

0
zðx; tÞT zðx; tÞdxþ

Z 1

0
zxðx; tÞT zxðx; tÞdx

þ
Z 1

0
zxxðx; tÞT zxxðx; tÞdx; ð159Þ

and imposing the following compatibility conditions
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0 ¼ z1ð0; 0Þ � G0ðz2ð0;0ÞÞ ð160Þ

0 ¼ z2ð1;0Þ �
1

/2ð1Þ

Z 1

0
Kvuð1; xÞ/1ðxÞ � z1ðx; 0Þdx

� 1
/2ð1Þ

Z 1

0
Kvvð1; xÞ/2ðxÞ � z2ðx;0Þdx ð161Þ

0 ¼ �K1ðzð0;0Þ;0Þz1;xð0;0Þ � f1ðzð0; 0Þ;0Þ
þ G00ðz2ð0;0ÞÞðK2ðzð0; 0Þ; 0Þz2;xð0; 0Þ þ f2ðzð0; 0Þ;0ÞÞ ð162Þ

0 ¼
Z 1

0

Kvuð1; xÞ/1ðxÞ
/2ð1Þ

K1ðzðx;0Þ; xÞz1;xðx;0Þdx

þ
Z 1

0

Kvuð1; xÞ/1ðxÞ
/2ð1Þ

f1ðzðx; 0Þ; xÞdx

þ
Z 1

0

Kvvð1; xÞ/2ðxÞ
/2ð1Þ

ðK2ðzðx;0Þ; xÞ � z2;xðx; 0Þ

þ f2ðzðx;0Þ; xÞÞdx�K2ðzð1;0Þ;1Þz2;xð1;0Þ � f2ðzð1;0Þ;1Þ;
ð163Þ

we obtain the following result.

Theorem 5. Consider the closed-loop system (122), (123), (158).
Under the assumptions that K 2 C2ðR2 � ½0;1�Þ; f ð�; xÞ
2 C2ðR2Þ; @f ð0;�Þ

@z 2 C1ð½0;1�Þ;G0 2 C2ðRÞ, for all initial condition
z0 2 H2([0,1]) that satisfy the compatibility conditions (161)–(163),
there exist d > 0, k > 0 and c > 0 such that if kzð0ÞkH2

< d, then for all
t P 0

kzðtÞkH2
6 ce�ktkzð0ÞkH2

: ð164Þ
Note that the compatibility conditions (161) and (163) depend

on our feedback laws and therefore are not natural. They can be
omitted by considering a dynamical extension (see Coron et al.
(submitted for publication)). The proof of Theorem 5 is based on
employing the linear backstepping transformation (146) and
(147) on the rescaled nonlinear system (131), which results in
the following target system

ct � RðxÞcx þ F3½c; cx� þ F4½c� ¼ 0; ð165Þ

where c ¼ a b½ �T and F3, F4 are nonlinear functionals of c and cx

(see Coron et al. (submitted for publication) for details). The H2 local
exponential stability of the target system can be then studied with
the following Lyapunov functional

SðtÞ ¼ UðtÞ þ VðtÞ þWðtÞ ð166Þ

UðtÞ ¼
Z 1

0
cTðx; tÞDðxÞcðx; tÞdx ð167Þ

VðtÞ ¼
Z 1

0
cT

t ðx; tÞR½c�ðxÞctðx; tÞdx ð168Þ

WðtÞ ¼
Z 1

0
cT

ttðx; tÞR½c�ðxÞcttðx; tÞdx; ð169Þ

where D(x) = diag(D1(x),D2(x)) is positive definite for all x 2 [0,1]
and R[c] is a symmetric and positive definite matrix for all
supx2[0,1]jc(x, t)j < d.

5. Conclusions

In our development we assume that the nonlinear plant under
consideration is forward complete and globally stabilizable. How-
ever, our predictor-based design can be applied to systems that
are not forward complete (but they are globally stabilizable in
the absence of the input delay) Krstic (2008) and to systems that
are only locally stabilizable Bekiaris-Liberis and Krstic (2013a).
One of the topics of ongoing research is to extend the predictor
idea to nonlinear systems with distributed input and state delays
(see Bekiaris-Liberis and Krstic (2011a) and Bekiaris-Liberis and
Krstic (2011b) for linear results) and to systems with input-depen-
dent delay.

Although we focus on the stabilization of a wave PDE/nonlinear
ODE cascade, our results opens an opportunity to tackle stabiliza-
tion problems of other PDE/nonlinear ODE cascades, for example,
when the PDE is of diffusive type.

We present results on the stabilization of 2 � 2 systems of first
order hyperbolic quasilinear PDEs assuming measurement of the
full state. Yet, we remove this requirement in Vazquez, Krstic, Cor-
on, and Bastin (2012) where we design an output feedback control
law. In the future we would like to extend the present methodol-
ogy to the case of n � n systems. For the linear case an extension
to n � n systems is presented in Di Meglio et al. (2012a) for system
that have n positive and one negative transport speeds, with actu-
ation only on the state corresponding to the negative velocity.
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