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Lyapunov Stability of Linear Predictor
Feedback for Distributed Input Delays

Nikolaos Bekiaris-Liberis and Miroslav Krstic

Abstract—Compensation of distributed delays in MIMO, LTI systems is
achieved using Artstein’s reduction method. In this technical note, we con-
struct a Lyapunov functional for the resulting closed-loop system and estab-
lish exponential stability. The key element in our work is the introduction
of an infinite-dimensional forwarding-backstepping transformation of the
infinite-dimensional actuator states. We illustrate the construction of the
Lyapunov functional with a detailed example of a single-input system, in
which the input is entering through two individual channels with different
delays. Finally, we develop an observer equivalent to the predictor feedback
design, for the case of distributed sensor delays and prove exponential con-
vergence of the estimation error.

Index Terms—Delays, distributed parameter systems, linear systems.

I. INTRODUCTION

Delay compensation for linear [1], [2], [8], [10], [11], [15], [16]
and nonlinear [5], [6], [12] systems is achieved using predictor-based
techniques [4], [13]. In [1] (see also [11]) the following system is
considered:

(1)

where , and . Such systems can ap-
pear in population dynamics [1], in networked control systems [14], or
in liquid mono-propellant rocket motors (see [16] and the references
therein). For this system and under the controllability condition of the
pair

(2)

the following controller was developed which achieves asymptotic sta-
bility for any :

(3)

where the control gain may be designed by a LQR/Riccati
approach, pole placement, or some other method that makes

Hurwitz. The above approach (although
neither explicitly stated in [1] nor in [11]) works in the case of multi-
input systems with different delays in each individual input channel.
To see this, one can consider for example the case where

, with

(4)

Manuscript received April 04, 2010; revised August 13, 2010; accepted Oc-
tober 29, 2010. Date of publication November 15, 2010; date of current version
March 09, 2011. Recommended by Associate Editor K. Morris.

The authors are with the Department of Mechanical and Aerospace
Engineering, University of California, La Jolla, CA 92093 USA (e-mail:
nikos.bekiaris@gmail.com; nbekiari@ucsd.edu, krstic@ucsd.edu).

Digital Object Identifier 10.1109/TAC.2010.2092030

In this case system (1) becomes

(5)

where .
However, a Lyapunov functional for the closed-loop systems (1) and

(3) is not available. The benefits of constructing a Lyapunov functional
for predictor feedback controllers was highlighted in [7]. Having a
Lyapunov functional available, one can derive an inverse-optimal con-
troller, prove robustness of the predictor feedback to a small mismatch
in the actuator delay or study the disturbance attenuation properties
of the closed-loop system. In [7], the following single-input system is
considered:

(6)

together with the predictor-based controller

(7)

from [1], [10], [11]. Inverse optimality and robustness to delay
mismatch is then proved for the closed-loop systems (6) and (7),
using a Lyapunov functional. In addition, a time-varying Lyapunov
functional is constructed in [9] for the case of system (6) but when the
delay is a function of time i.e., . The Lyapunov functionals
in [7], [9] are constructed based on the backstepping method for
PDEs [8].

Yet, the backstepping method is not applicable neither in the case
of single-input systems with distributed input delay nor in the case
of multi-input systems with different delays in each individual input
channel. This is since the system that is comprised of the finite-dimen-
sional state and the infinite-dimensional actuator states

, , are not in the strict-feedback form. In this tech-
nical note, a novel forwarding-backstepping transformation of the infi-
nite-dimensional actuator states is introduced to transform the system
to an exponentially stable system, whose stability properties can be
studied using a quadratic Lyapunov functional. By explicitly finding
the inverse transformations, exponential stability of the system in the
original variables is established.

We start in Section II with an introduction of the predictor feedback
under multiple distributed input delays, and present a transformation
of the finite-dimensional state from [1], [11]. Then, we establish
exponential stability of the closed-loop system using our novel infinite-
dimensional transformations of the actuator states. In Section III we
develop a dual of the predictor-based controller and design an infinite-
dimensional observer which compensates the sensor delays. Finally,
in Section IV we present an example that is worked out in detail to
demonstrate the construction of the Lyapunov functional.

II. PREDICTOR FEEDBACK FOR DISTRIBUTED INPUT DELAYS

We consider the system

(8)

where , , and , . For nota-
tional simplicity we consider a two-input case. The same analysis
can be carried out for an arbitrary number of inputs with different
delays in each individual input channel. For this system, controller
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(3) achieves asymptotic stability for any , under the
controllability condition of the pair , where

, , 2. The predictor feedback (3) can
be written as

(9)

(10)

transformation (10) can be found in [1] and [11]. We are now ready to
state the main result of this section.

Theorem 1: Consider the closed-loop systems consisting of the
plant (8) and the controller (9). Let the pair
be completely controllable and choose and such that

is Hurwitz. Then for any ini-
tial conditions , , 2 the closed-loop
system has a unique solution

which is exponentially stable in the
sense that there exist positive constants and , such that

(11)

(12)

Moreover, if the initial conditions , , 2 are compat-
ible with the control law (9) and belong to , , 2,
then

is the
classical solution of the closed-loop system.

Remark 2.1: Before we start the proof of Theorem 1 we give
some insight into the main challenges that one faces by considering
the problem of constructing a Lyapunov functional for system (5)
instead of system (6) that was considered in [7]. System (6) is
an ODE-PDE cascade in the strict-feedback form. To see this we
re-write (6) as , where satisfies

and . One can now observe that
the finite-dimensional state and the infinite-dimensional state

, are in the strict-feedback form since affects
the block only through . On the other hand in (5) it is clear
that affects the block through all of the spatial domain

and hence the overall system is not in the strict-feedback
form. For this reason, a spatially casual backstepping transformation
of the infinite-dimensional actuator state which employs a Volterra
integral, as the one in [7] and [8], does not apply.

Proof: We first rewrite the plant (8) as

(13)

(14)

(15)

(16)

(17)

where and . Note that
and . Note also that the transformation

(10) can be written as

(18)

Consider the transformations of the infinite-dimensional actuator
states and

(19)

(20)

where the kernels , , and for , 2 are to be
specified. Using transformations (18)–(20) and relations (9)–(10) we
transform the plant (13)–(17) into the “target system”

(21)

(22)

(23)

(24)

(25)

We first prove (21). Differentiating with respect
to time (18) and using (13)–(14), (16) we obtain

. Using integration by parts

together with (9), (15), (17) and Leibniz’s differentiation rule, we
obtain (21). We next prove (22)–(23) (the proof of (24)–(25) follows
exactly the same pattern). To obtain (22) we differentiate (19)
with respect to and . Using relations (14), (16) and integration
by parts, after subtracting the resulting expressions for the time
and spatial derivatives of (19) in order to get (22), we obtain a
system of ODEs and PDEs which is well posed and can be solved
explicitly to give

(26)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 3, MARCH 2011 657

(27)

(28)

(29)

Using (9) we get (22)–(23). Similarly, one obtains the kernels of (20)
which can be derived from (26)–(29) by changing the index 1 into 2
and the spatial variable into . The next step is deriving the inverse
transformations of (19)–(20). We postulate the inverse transformation
of (19) in the form

(30)

Taking the time and the spatial derivatives of the above transfor-
mation, using integrations by parts together with (21)–(23) and
the fact that , after subtracting the re-
sulting expressions for the time and spatial derivatives, we conclude
that relations (14)–(15) hold (by taking into account also (9)) if

,
, . To

establish that (30) is indeed the inverse transformation of (19) one has
to uniquely determine . We find next an explicit expression
for . To do so, we substitute and from (18)
and (19) respectively, into (30). Matching the terms for ,
and and after some algebraic manipulations we conclude that

must satisfy for all

(31)

(32)

We can now substitute the expression for into (31)–(32) and
then find that satisfies conditions (31)–(32). Instead, as-

suming for the moment that and satisfy (31) we remain
with the following condition for all ,

(33)

where . Assuming a form for as
, we conclude that (33) is satisfied if

together with . Therefore

(34)

Using (34) we can simplify . After some algebra we rewrite
as

(35)

Finally, after some algebra one can verify that indeed relations
(34)–(35) satisfy condition (31). Similarly, the inverse transformation
of (20) is given by

(36)

and ,
,

Using (18) together with (30) and (36) we get as a function of
and . We have

(37)

Consider now the Lyapunov functional for the target system (21)–(25)

(38)

where the positive parameters , are to be chosen later and
is the solution to the following Lyapunov equation:

(39)

for some , , and . For the time derivative of
along (21)–(25) we obtain

,
where is the smallest eigenvalue of in (39). Applying
Young’s inequality we get
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,
where and

. Hence by choosing
and , and by setting

,
where is the largest eigenvalue of in (39) we
get . Using the comparison principle we get

. To prove stability in the original variables
and , it is sufficient to show that

(40)

for some positive and , since then ,
and Theorem 1 is proved with . Using (18), and
applying Young and Cauchy-Schwartz’s inequalities we get

,

where

. Moreover, using (19)–(20)
together with Young and Cauchy-Schwartz’s inequal-
ities we obtain

, , 2, where
, ,

,
and , , 2, . With

the upper bound in (40) is proved. Similarly using (30), (36),
(37) we get , where

and

,

and

. Finally,
, , 2, with

and .
Moreover, from (21) we conclude that is bounded and
converges exponentially to zero. From (19)–(20) one can conclude
that , , 2 and thus it follows from
(22)–(25) that , , , 2. Using
the inverse transformations (30) and (36) we can conclude that

, , , 2. The uniqueness of
weak solution is proved using the uniqueness of weak solution
to the boundary problems (22)–(25) (see, e.g., [3]). Similarly,
when , , 2 are compatible with the control law (9)
and belong to , , 2, from (19)–(20) we have that

, , 2 and therefore using (22)–(25) that
, ,

2. Using relations (30), (36) with [3] (section 2.1 and section 2.3) the
theorem is proved.

III. OBSERVER DESIGN WITH DISTRIBUTED SENSOR DELAYS

We consider the system

(41)

(42)

(43)

which can be written equivalently as ,
, ,

, , and
. Next we state a new observer that compensates

the sensor delays and prove exponential convergence of the resulting
observer error system.

Theorem 2: Consider the system (41)–(43) and let the pair

be observable, where

(44)

Define the observer

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

where and are chosen such that the matrix
is Hurwitz. Then for any ,

, 2 the observer error system has a unique solution

which is exponentially stable in the
sense that there exist positive constants and such that

(54)

(55)

Proof: Introducing the error variables ,
and

, we obtain ,

, ,
, .

With the transformations

(56)

(57)

and by noting that and in (52)–(53) are the solutions of
the boundary value problems together with

and together with ,
we get

(58)

(59)

(60)
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(61)

(62)

To establish exponential stability of the error system we use the fol-
lowing Lyapunov functional

(63)

where the positive parameters , are to be chosen later
and satisfies the Lyapunov equation

,
for some , and . Taking the time derivative of

, using integration by parts in the integrals in (63) and relations
(58)–(62) we get

. Applying Young’s inequality
we get

, where ,
and

. Similarly to the proof of Theorem 1, in
order to establish exponential stability of the observer estimation
error it is sufficient to show that for
some positive and . Using (56)–(57) with Young’s inequality
we get

and
.

From (56)–(57) one can conclude that , ,
2 and thus it follows from (59)–(62) that ,

, 2. Thus from (58) it follows that is bounded. Using
the inverse transformations of (56)–(57) we can conclude that

, , 2. The uniqueness of weak solution
is proved using the uniqueness of weak solution to the boundary
problems (59)–(62) (see, e.g., [3]).

IV. EXAMPLE

We consider the case where , and
, where is the Dirac function. In this case

system (13)–(17) can be represented as

(64)

(65)

(66)

with and . The transformation of the finite-
dimensional state in relation (18) becomes

(67)

Moreover, the infinite-dimensional transformation of the actuator state
in (19) together with the kernels (27)–(29) give

(68)

Using (67) and (68) and since the system has a single input (that is,
in (22) is zero since it is given by (29)) we get

and . With

(69)

we get

(70)

(71)

(72)

Relation (30) together with the facts
and

, where ,
yield the inverse transformation of (68) as

(73)

with . Finally, we express in terms of
and as

(74)

Now one can use the Lyapunov functional (38) to establish exponential
stability of the closed-loop system (64)–(66), (69). Instead, we will use
the following Lyapunov functional

(75)

where is an arbitrary positive constant. Observe here that the
above Lyapunov functional depends on directly and through

, while the Lyapunov functional defined in (38) depends on
through and . Hence, in order to prove exponential

stability of the closed-loop system (64)–(66), (69), using (75), we have
to derive a relation for the cascade.

To see this one has to solve (74) for (assuming that the ma-
trix that multiplies is invertible) and then plugging the resulting
expression into (73) and (69). Then, having on the right hand side of
(73) and (69) only and one can find and
only as a function of and . Plugging into (64) and

we get the cascade. One can show using (75) that this
cascade is exponentially stable.

We prove here this result for a simpler case. We set
. Then (64)–(66) become

, , . Conse-
quently, by adding (69) and (73) for we have

. Multiplying (74) on the left with

, using the facts that

, and changing the order
of integration in the last integral in (74) we have

. Since
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is Hurwitz, the matrix that multiplies in the pre-
vious relation is invertible. Hence, by solving the previous relation for

we get .
Hence

(76)

(77)

(78)

One can now show exponential stability of the closed-loop system
(76)–(78) using (75). Exponential stability in the original vari-
ables can be then proved by following a similar pattern of cal-
culations as in Section II. In the present case (75) has the form

,

where . Observe here that
in order to choose in (76) such that is Hurwitz,
the pair has to be controllable and the matrix invert-
ible. Since the matrices and commute, this is equivalent
with the controllability condition of the pair ,
which is the controllability condition in [1]. An example where the
controllability condition from [1] fails, is when the matrix
is identically zero. This is the case for example of a second order
oscillator with frequency and input delay .

V. CONCLUSION

In this work, we prove exponential stability of predictor feedback
in multi-input systems with distributed input delays. We reach our re-
sult by constructing a Lyapunov functional for the closed-loop system,
based on novel transformations of the actuator states. Furthermore, we
design an observer for multi-output systems with distributed sensor de-
lays and prove exponential convergence of the estimation error. Finally,
a detailed example is presented that illustrates the construction of the
Lyapunov functional.
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Dissipativity-Based Switching Adaptive Control

Tengfei Liu, David J. Hill, and Cong Wang

Abstract—This technical note introduces a new dissipativity-based
switching adaptive control strategy for uncertain systems. In this ap-
proach, the parametric uncertainties in systems are not considered on
continuums but studied on finite discrete sets. Differently to multiple
model supervisory control, dissipativity-based switching adaptive control
needs no estimation errors for each switching decision. The switching
logic is designed based on the relationship between dissipativity/passivity
and adaptive systems, such that in the process of switching control, a
transient boundary can be guaranteed by appropriately switching the
parameter estimates. This makes it possible to apply the strategy for
nonlinear systems modeled in local regions in the state space. We also
discuss the implementation of the new idea to general dissipative systems
and feedback passive systems. An example with simulation is employed to
show the effectiveness of the approach.

Index Terms—Convergence, dissipativity/passivity, switching adaptive
control, transient boundary, uncertain nonlinear systems.

I. INTRODUCTION

Transient boundedness is important for both theoretical systems syn-
thesis and practical implementation of the controllers in applications.
For instance, in nonlinear systems identification and modeling, because
of the inherent nonlinear property, it is usually hard to completely iden-
tify the uncertainties. So, the models of nonlinear systems we often use
for control design are locally valid along the experienced trajectories in
state space and sometimes depend on the operating situation and envi-
ronments [27]. If the model is only valid in the region in state space,
the controlled state trajectory should not leave . More examples
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