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Summary
We construct a nonlinear predictor-feedback cooperative adaptive cruise control
(CACC) design for homogeneous vehicular platoons subject to actuators delays,
which achieves: (i) positivity of vehicles’ speed and spacing states, (ii) ∞ string
stability of the platoon, (iii) stability of each individual vehicular system, and
(iv) regulation to the desired reference speed (dictated by the leading vehicle)
and spacing. The design relies on a nominal, nonlinear adaptive cruise control
(ACC) law that we construct, which guarantees (i)–(iv) in the absence of actuator
delay, and nonlinear predictor feedback. We consider a classical (for ACC/CACC
design) third-order, nonlinear model subject to input delay, for the vehicles’
dynamics. The proofs of the theoretical guarantees (i)–(iv) rely on derivation
of explicit estimates on solutions (both during open-loop and closed-loop oper-
ation), capitalizing on the ability of predictor feedback to guarantee complete
delay compensation after the dead-time interval has elapsed, and derivation of
explicit conditions on initial conditions and parameters of the nominal control
law. We also present consistent simulation results, considering a platoon of ten
vehicles, which validate the design developed.
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1 INTRODUCTION

Delay compensation in vehicular platoons equipped with ACC and CACC capabilities is a significant objective of ACC/
CACC designs, in view of its potential in improvement of the safety and performance properties of platoons.1–10 Three
different types of delays are, typically, evident in such systems, namely, actuation, sensing, and communication delays.
Each delay type may have a negative effect in individual vehicle stability and string stability, when is left uncompen-
sated; while each of delay type requires specific treatment for its compensation. Here we address actuation delay, which,
typically, takes the largest values among the three types.10

ACC and CACC designs, aiming at delay compensation* in vehicular platoons, have been already developed.1,2,6,9–18

Almost all of these results utilize linear or linearized models for each individual vehicular system, for either control design
or stability and string stability analysis. Nevertheless, these models, in certain scenarios, may not be as realistic as nonlin-
ear vehicle models (for both control design and analysis) that may capture additional, lower-level vehicle dynamics.19–23
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Such linear vehicle models have been successfully utilized in these works for delay-compensating ACC/CACC design,
with derivation of theoretical guarantees and validation in experimental platforms. However, considering nonlinear
models of vehicle dynamics is important because a nominal (i.e., without a predictor structure), feedback linearizing
pre-compensator, which may be implicitly employed in control of vehicular platoons (to subsequently enabling linear,
ACC/CACC designs), may not result in a linear vehicle model, due to the presence of actuation delay. To the best of our
knowledge, the only result that is related to construction of a nonlinear predictor-feedback ACC (or CACC) design can
be found in the work of Molnar et al.13

In the present paper, complementing the results in Molnar et al.,13 we (a) consider a third-order model for the
vehicles’ dynamics; (b) construct a new nonlinear ACC law in the case in which there is no input delay; (c) design a
predictor-feedback CACC law relying on real-time measurements of the acceleration and control input of the preceding
vehicle (thus avoiding utilization of open-loop predictors, for the preceding vehicle’s states, which, potentially, may be
less robust); (d) provide the predictors formulae as explicitly as possible; (e) consider a platoon of vehicles; and (f) provide
explicit conditions on initial conditions and control parameters, which guarantee positivity of speed and spacing states, as
well as stability and regulation. In particular, we construct a nonlinear predictor-feedback CACC law, which aims at actua-
tion delay compensation for vehicular platoons in which each vehicle’s dynamics are described by a third-order, nonlinear
system with input delay. The design relies on two ingredients-a nominal (for the delay-free case) nonlinear ACC design of
constant time headway (CTH) type and states’ predictors. The nominal ACC law is constructed utilizing the design proce-
dure developed by Krstic and Bement (for strict-feedback nonlinear systems).24 Note that although the underlying, ACC
design in the delay-free case is inspired from the work of Krstic and Bement,24 contributions (a)–(f) described above are
novel. The reason is that the systems considered here involve input delay and describe the dynamics of platoons of con-
nected/automated vehicles. In more detail, due to the presence of input delay, we introduce a novel predictor-feedback
CACC design and a new analysis strategy for establishing stability and positivity of speed/spacing states. While due to
the fact that the system considered may describe the dynamics of vehicular platoons, we introduce a novel string stability
analysis strategy and a new, proper extension (see also the discussion in the paragraph below (6) for more technical details)
of the underlying, delay-free ACC law, for making it suitable for control of platoons of connected/automated vehicles.

In fact, because to predict the speed of the preceding vehicle (employed in the nominal ACC design), measurements
of the control input variable and acceleration of the preceding vehicle are required (obtained via vehicle-to-vehicle com-
munication), the resulting control law is of CACC type. Note that, differently from existing results on CACC, information
of the state and control input from only the preceding vehicle is required, for control implementation in the ego vehicle.
This minimum V2V (vehicle-to-vehicle) communication requirement also implies that the control strategy developed
here could be implemented in practical scenarios in which a single ego vehicle, which is connected and automated,
follows a vehicle that may be only connected, that is, able to transmit information via V2V communication, but not
necessarily automated.

The feedback law constructed guarantees the primary objectives of a CACC design, namely, (i) positivity of speed and
spacing states, (ii) ∞ string stability, (iii) stability of each individual vehicular system, and (iv) regulation to the desired
reference speed (dictated by the leading vehicle) and spacing. The proofs of guarantees (i)–(iv) rely on derivation of explicit
estimates on solutions, capitalizing on the ability of predictor feedback to achieve complete delay compensation after the
dead-time interval has elapsed, and derivation of explicit conditions on initial conditions and parameters of the nominal
controller. The conditions derived on the initial states are consistent with the practical requirement that there is no
finite-escape time phenomenon appearing and that the speed/spacing states remain positive during open-loop operation
(i.e., during the dead-time interval). The conditions on the control law parameters are consistent with the require-
ments needed to guarantee individual vehicle stability, regulation to the desired speed/spacing, as well as positivity
of speed/spacing states during closed-loop operation, in the nominal, delay-free case. While ∞ string stability is guaran-
teed by the specific structure of the nominal, nonlinear ACC law. No restriction on the delay size or the desired time head-
way are imposed, which is consistent with the fact that predictor feedback guarantees that, in closed loop, each individual
vehicular system inherits the properties of the respective, nominal (for the delay-free case) closed-loop system. We also
demonstrate the effectiveness of the design in simulation, considering a realistic scenario in which a vehicle cuts in a plat-
oon of nine vehicles (e.g., as result of lane changing) and it subsequently performs an acceleration/deceleration maneuver.
While, for the same scenario, we further illustrate the robustness properties of the design developed to delay uncertainties.

We start in Section 2 presenting the third-order, nonlinear model of the vehicles’ dynamics, together with the
predictor-feedback CACC design. In Section 3 we state the main result of the paper, establishing properties (i)–(iv) for
the platoon, under the CACC law developed. We validate the design in simulation in Section 4 and provide concluding
remarks in Section 5. The proof of the main result is presented in Appendix A.
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2 NONLINEAR PREDICTOR-FEEDBACK CACC FOR HOMOGENEOUS
PLATOONS WITH ACTUATOR DELAY

2.1 Vehicle dynamics

We consider a homogeneous platoon of vehicles as shown in Figure 1.
Each vehicle’s dynamics are modeled by the following third-order, nonlinear system, with input delay

ṡi(t) = vi−1(t) − vi(t), (1)
v̇i(t) = −dvi(t)2 − g + cTi(t) (2)

̇Ti(t) = −
1
𝜏

Ti(t) +
1
𝜏

ui(t − D), (3)

i = 1, … ,N, where si is spacing between vehicles i and i − 1, vi is vehicle’s speed, Ti is engine torque, ui is the individual
vehicle’s control variable, D ≥ 0 is actuator delay, t ≥ 0 is time, and d, g, c, 𝜏 are positive coefficients depending on vehicle’s
characteristics.19–23,25 Vehicle dynamics (1)–(3) are considered as sufficiently reasonable for the purpose of illustrating
the delay compensation benefits of predictor feedback to individual vehicle stability and string stability, as well as to
safety of CACC platoons. In fact, such dynamic models are also viewed as extensions, of (classical) nonlinear vehicle
models employed for ACC/CACC design and analysis,19,21–23 to incorporate input delay, which may be more realistic in
practice.13,26,27

For the leading vehicle’s speed dynamics, adopting the notation vl ≡ v0, Tl ≡ T0, ul ≡ u0, we assume that v̇l(t) = Tl(t),
̇Tl(t) = − 1

𝜏

Tl(t) + 1
𝜏

ul(t − D), where ul acts to the platoon as exogenous input. We consider such dynamics for the leading
vehicle for simplicity as vl is viewed here more as a reference input, rather than as a state that has to be regulated. However,
there is no conceptual obstacle to re-design the predictor-feedback CACC law to account for different dynamics for the
speed of the leading vehicle (in particular, being identical to (2)), since the predictor states, which rely on the vehicles’
model, could be straightforwardly modified accordingly. This is the case as long as the control input of the leading vehicle
is subject to an input delay D. Note that a uniform equilibrium point of systems (1)–(3) is obtained when all vehicles have
the same, constant speed, dictated by a constant, leader’s speed, say v∗, corresponding to a constant control input value
u∗ = g+v∗2

c
(and with u∗ = T∗).

2.2 Delay-free control design

In the delay-free case, we seek for an ACC law of the form ui,nom = f (si, vi, vi−1,Ti). For implementation of such an ACC
law measurements of states si, vi, vi−1, and Ti are required, which can be obtained from on-board sensors. Without actuator
delay, in the present paper, we construct the following, nominal feedback laws of ACC type for i = 1, … ,N

ui,nom(t) =
𝜏

c
ūi,nom(t) (4)

ūi,nom(t) = c1c2c3si(t) − (c1c2 + c1c3 + c2c3)vi(t) +
c
𝜏

Ti(t) − (c1 + c2 + c3)
(

cTi(t) − g − dvi(t)2
)
+ 2dvi(t)

×
(

cTi(t) − g − dvi(t)2
)
+ c1c2vi−1(t), (5)

F I G U R E 1 Homogeneous platoon of N vehicles, with dynamics described by (1)–(3), following a leader. Each vehicle measures its
own speed, the relative speed with the preceding vehicle, and the spacing with respect to the preceding vehicle. Information about the
control input and engine torque of each vehicle is transmitted only to the following vehicle, via V2V communication.
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where c1, c2, c3 are positive design parameters, which satisfy

c2 =
c1

c1h − 1
, (6)

with c1 >

1
h

, where h > 0 is the desired time-headway. The construction of feedback law (5) relies on the design procedure
developed by Krstic and Bement24 for general, strict-feedback nonlinear systems. In more detail, the construction relies
on introduction of transformations (A2)–(A4), which transform the closed-loop system into (A5)–(A7). This procedure
results in a proper modification of the design in Krstic and Bement,24 to making it suitable as a CTH ACC design.

In fact, such a design in the nominal, delay-free case, may guarantee positivity of speed and spacing states, individual
vehicle stability, string stability, and tracking of the desired speed/spacing (this could be seen specializing the result stated
in Theorem 1 to the case D = 0). In more detail, these attributes are enabled by the design in Krstic and Bement,24 through
incorporating in the feedback law the speed of the preceding vehicle vi−1 and choosing the gain c2 as in (6), as well
as choosing si as an output that we require to remain positive only, without regulating it at the safety region (where
si > 0) boundary. In particular, the specific choice (6) is made in order to guarantee tracking of the desired spacing that
corresponds to a given time-headway, that is, to guarantee that the equilibrium spacing corresponding to a constant,
equilibrium speed v∗ is s∗ = hv∗. In fact, with the choice (6) (that implies c1 + c2 = hc1c2) the feedback laws (5) are of CTH
type, since they can be written as

ūi,nom(t) = c1c2c3(si(t) − hvi(t)) + c1c2(vi−1(t) − vi(t)) − (c1 + c2 + c3)
(

cTi(t) − g − dvi(t)2
)
+ 2dvi(t)

×
(

cTi(t) − g − dvi(t)2
)
+ c

𝜏

Ti(t). (7)

2.3 Predictor-feedback CACC design

One of the key design ideas of a predictor-feedback law is to construct an implementable formula for the future state
of the system considered; in the present case, for the future state of vehicles. This can be achieved utilizing a model for
the dynamics of each vehicle, together with measurements of its own control input history (over a horizon of D time
units), as well as of the history of the control input of its preceding vehicle. The predictor states are then employed in a
nominal, delay-free design. In the present case, this results in a control law of the form ui = f

(
qi,1, qi,2, qi,3, qi,4

)
, where

qi =
[
qi,1 qi,2 qi,3 qi,4

]T are the D-time units ahead predictor states of xi =
[
si vi vi−1 Ti

]T. Further details on
construction of predictor states for general nonlinear systems can be found, for example, in the book of Bekiaris-Liberis
and Krstic.28

Employing the nominal design (4), (5), the predictor-feedback laws for system (1)–(3) are thus given by (4), (5) with

ui(t) =
𝜏

c
ūi(t) (8)

ūi(t) = c1c2c3qi,1(t) − (c1c2 + c1c3 + c2c3)qi,2(t) +
c
𝜏

qi,4(t) − (c1 + c2 + c3)
(

cqi,4(t) − g − dqi,2(t)2
)
+ 2dqi,2(t)

×
(

cqi,4(t) − g − dqi,2(t)2
)
+ c1c2qi,3(t). (9)

The formulae of the predictor states are given, for i = 1, … ,N, by

qi,1(t) = si(t) +
∫

t

t−D

(
qi,3(s) − qi,2(s)

)
ds, (10)

qi,2(t) = vi(t) +
∫

t

t−D

(
−dqi,2(s)2 − g + cqi,4(s)

)
ds (11)

qi,4(t) = e−
D
𝜏 Ti(t) +

1
𝜏
∫

t

t−D
e−

t−𝜃
𝜏 ui(𝜃)d𝜃, (12)

and

qi,3(t) = vi−1(t) +
∫

t

t−D

(
−dqi,3(s)2 − g + cqi−1,4(s)

)
ds, i = 2, … ,N (13)
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BEKIARIS-LIBERIS 6687

q1,3(t) = vl(t) +
∫

t

t−D
ql,4(s)ds (14)

ql,4(t) = e−
D
𝜏 Tl(t) +

1
𝜏
∫

t

t−D
e−

t−𝜃
𝜏 ul(𝜃)d𝜃, (15)

with qi,1, qi,2, and qi,4, being initialized for 𝜃 ∈ [−D, 0) as

qi,1(𝜃) = si(0) +
∫

𝜃

−D

(
qi,3(s) − qi,2(s)

)
ds, (16)

qi,2(𝜃) = vi(0) +
∫

𝜃

−D

(
−dqi,2(s)2 − g + cqi,4(s)

)
ds (17)

qi,4(𝜃) = e−
𝜃+D
𝜏 Ti(0) +

1
𝜏
∫

𝜃

−D
e−

𝜃−s
𝜏 ui0(s)ds, (18)

for i = 1, … ,N and qi,3, ql,4 being initialized as

qi,3(𝜃) = vi−1(0) +
∫

𝜃

−D

(
−dqi,3(s)2 − g + cqi−1,4(s)

)
ds, i = 2, … ,N (19)

q1,3(𝜃) = vl(0) +
∫

𝜃

−D
ql,4(s)ds (20)

ql,4(𝜃) = e−
𝜃+D
𝜏 Tl(0) +

1
𝜏
∫

𝜃

−D
e−

𝜃−s
𝜏 ul0(s)ds. (21)

The predictor states (10)–(15) involved in control design (8) can be numerically computed via a numerical approximation
scheme.29 Note that the nominal, delay-free control design (4) is of ACC type. However, for constructing the predictor
state for the preceding vehicle’s speed, measurements of the control input ui−1 and torque Ti−1 of the preceding vehicle
have to be available. This is possible through V2V communication. The rest of the measurements required for implemen-
tation of (8), that is, si, vi, ui, vi−1, and Ti are obtained from on-board sensors. Note also that the controller of the ego
vehicle i computes (10)–(15), which, in fact, incorporates computation of five in total predictor states, as it also involves
computation of qi−1,4 (according to relations (12), (15)).

3 POSITIVITY OF SPEED/SPACING STATES AND STRING STABILITY
UNDER NONLINEAR PREDICTOR-FEEDBACK CACC

3.1 String stability definition

Definition 1. An interconnected system of vehicles, indexed by i = 1, … ,N, following each other in single
lane without passing, with dynamics described by (1)–(3), is ∞ string stable if the following hold for i =
1, … ,N (in the delay-free case, there also exist similar and more general definitions30–33)

||ṽi||∞ ≤ 𝛾0(||ṽi−1||∞) + 𝛾1
(||s̃i0

||
)
+ 𝛾2

(
||ṽi0

|| +
√

c
d

√
|| ̃Ti,0|| + sup

𝜃∈[−D,0]
||ũi0(𝜃)||

)

+ 𝛾3
(||ṽi−10

||

+
√

c
d

√
|| ̃Ti−1,0|| + sup

𝜃∈[−D,0]
||ũi−10(𝜃)||

)

, (22)

where ṽi = vi − v∗, ṽl = vl − v∗, ̃Tl = Tl, ̃Ti = Ti − u∗, s̃i = si − s∗, ũi = ui − u∗, ũl = ul, ||vi − v∗||∞ =
supt≥0 |vi(t) − v∗|, s∗ = hv∗, u∗ = g+v∗2

c
, and 𝛾0 ∶ [0,+∞)→ [0,+∞), with 𝛾0(r) ≤ r, 𝛾1 ∶ [0,+∞)→ [0,+∞),

and 𝛾2, 𝛾3 ∶
[
0, 1

dD

)
→ [0,+∞) are class functions.34
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Other definitions are also possible, in particular, which may involve studying disturbance propagation (upstream in
the platoon) of spacing errors or accelerations. For simplicity we provide definition of string stability with respect to speed
errors only and since this is the most commonly employed definition†.

In string stability definition (22), the last term appears due to the presence of input delay (this becomes clear within
the proof of Theorem 1 in Appendix A; see relations (A38), (A39)). This is explained by the fact that, during the dead-time
interval, according to (1)–(3) the speed dynamics of the ego vehicle depend on the initial conditions of its own speed,
torque, and actuator state. Whereas the respective spacing dynamics are also affected by the preceding vehicle’s speed
within an interval of D time units, which, in turn, depends on the initial conditions of the preceding vehicle’s speed,
torque, and respective actuator state. This gives rise to the last term in (22), which would not appear in the string sta-
bility definition if D = 0. In fact, string stability should be viewed more as a property related to the platoon only during
closed-loop operation (i.e., for t ≥ D) of each individual vehicular system (i.e., also consistent with the delay-free case).
This is attributed to the fact that, during the dead-time interval, each individual vehicle operates in open loop, and thus,
its speed dynamics are affected only by initial conditions.

3.2 Definition of comparison functions of initial conditions

In order to state the main result of the paper, which is presented in the next subsection, we need to define certain func-
tionals of the initial conditions. These explicitly given functionals are utilized in order to explicitly quantify the range of
allowable initial conditions (and control gains) that guarantee positivity of speed and spacing states both during open-
and closed-loop operation. We define the following functionals for i = 1, … ,N

𝛿i
(

Ti0 ,ui0

)
= max{0, g − c𝛿i

(
Ti0 ,ui0

)
} (23)

𝜁i
(

Ti0 ,ui0

)
= max{0, c𝜁 i

(
Ti0 ,ui0

)
− g} (24)

𝛿i
(

Ti0 ,ui0

)
= min

{
Ti0 ,Ti0 e−

D
𝜏

}
+
(

1 − e−
D
𝜏

)
min

{
inf

s∈[−D,0]
ui0(s), 0

}
(25)

𝛿l
(

Tl0 ,ul0

)
= min

{
Tl0 ,Tl0 e−

D
𝜏

}
+
(

1 − e−
D
𝜏

)
min

{
inf

s∈[−D,0]
ul0(s), 0

}
(26)

𝜁 i
(

Ti0 ,ui0

)
= max

{
Ti0 ,Ti0 e−

D
𝜏

}
+
(

1 − e−
D
𝜏

)
max

{
sup

s∈[−D,0]
ui0(s), 0

}
(27)

mi
(

vi0 ,Ti0 ,ui0

)
= −

√
𝛿i

√
d

tan

(
√

d𝛿iD − tan−1

(

vi0

√
d

√
𝛿i

))

(28)

m0
(

vl0 ,Tl0 ,ul0

)
= vl0 + D min

{
0, 𝛿l

(
Tl0 ,ul0

)}
(29)

Mi
(

vi0 ,Ti0 ,ui0

)
= max

⎧
⎪
⎨
⎪
⎩

vi0 ,

√
𝜁i

√
d

vi0 +
√
𝜁i√
d
+
(

vi0 −
√
𝜁i√
d

)
e−2

√
𝜁idD

vi0 +
√
𝜁i√
d
−
(

vi0 −
√
𝜁i√
d

)
e−2

√
𝜁idD

⎫
⎪
⎬
⎪
⎭

. (30)

3.3 Statement of main result

Theorem 1. Consider a platoon of vehicles with dynamics modeled by (1)–(3), under the control laws (8) with
(9)–(21). Assume that the leading vehicle satisfies m0 > 0, vl(t) > 0, for all t ≥ 0, vl ∈ ∞, and ul ∈ C[−D,+∞),
where m0 is defined in (29). Then for any D ≥ 0, h > 0, with the choice of control gains such that c1 >

1
h

, c2
satisfying (6), and c3 > 0, the closed-loop systems’ solutions satisfy for i = 1, 2, … ,N

si(t) > 0, vi(t) > 0, for all t ≥ 0, (31)
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BEKIARIS-LIBERIS 6689

provided that the initial conditions si0 , vi0 ∈ R+, Ti0 ∈ R, and ui0 ∈ C[−D, 0]‡, i = 1, 2, … ,N, satisfy

vi0 > tan
(√

d𝛿iD
)√

𝛿i
√

d
(32)

si0 >
Mi

c1
− D min {0,mi−1 −Mi} (33)

c1mi > −c𝛿i + g + dM2
i (34)

c𝜁 i < −
c2

1h
c1h − 1

Mi + g + dm2
i +

c2
1

c1h − 1
(

si0 + D min {0,mi−1 −Mi}
)

(35)

𝛿i <
𝜋

2

4D2d
, (36)

where 𝛿i, 𝜁i, 𝛿i, 𝜁 i, mi, and Mi are defined in (23)–(30). Furthermore, if, in addition, the initial conditions satisfy

||ṽi0
|| +

√
c
d

√
|| ̃Ti0

|| + sup
𝜃∈[−D,0]

||ũi0(𝜃)|| <
1

Dd
, (37)

for i = 0, … ,N§, then the platoon is ∞ string stable and, for constant leader’s speed v∗, each individual
vehicular system is asymptotically stable and zero steady-state tracking errors are achieved.

Proof. The proof can be found in Appendix A. ▪

It should be noted that we are not aware of an ACC design that capitalizes on the general design procedure
developed by Krstic and Bement24 even when D = 0. Because we employ predictor feedback (and thus, for t ≥ D the
delay is completely compensated), in combination with the procedure of Krstic and Bement,24 the closed-loop trans-
formed system is linear. In particular, it is such that the respective input-to-output map is linear, where vi−1 acts
as input and vi as output (this is the system consisting of (A7), (A11), and (A12)). Thus, one could (as long as the
initial conditions are at equilibrium) study also 2 string stability as well as string stability with respect to spacing
errors employing the corresponding transfer function. This transfer function is given as G(s) = c1c2

(s+c1)(s+c2)
, which sat-

isfies G(0) = 1 and has two negative, real poles, and thus, it corresponds to a non-negative impulse response with
sup

𝜔

|G(j𝜔)| ≤ 1.
It should be noted that the nonlinear, predictor-feedback CACC design methodology presented is flexible and

one could modify it to incorporate different, nominal (for the delay-free case) ACC designs and models for vehicles’
dynamics. For example, predictor feedback could be combined with nominal ACC laws constructed utilizing Con-
trol Barrier Functions,35 aiming, for example, at satisfying the safety condition si ≥ hvi (instead of si > 0 considered
here), and with other, nonlinear ACC designs.19,21,22,30,31 Note that in the former case, stabilization at the equilib-
rium si = hvi (i.e., at the boundary of the safety region) is achieved from initial conditions such that si0 ≥ hvi0 . While
in the present case, because in (33) 1

c1
< h and since (35) could possibly be satisfied with si0 < hvi0 , initial condi-

tions such that si0 < hvi0 could be considered. Nevertheless, this is dependent also on the initial conditions Ti0 and ui0

according to (35).
Predictor feedback could be also combined with other nonlinear models for vehicles’ dynamics, such as, for example,

with the model considered in the work of Ioannou and Chien.19 In such a case, one could, for example, modify the
CACC law developed by Bekiaris-Liberis11 to achieve, during closed-loop operation, linear closed-loop dynamics, adding
a feedback linearizing component in the original CACC law. This is possible because the nonlinearities in the model in
the work of Ioannou and Chien19 are matched with the control input. This would enable to subsequently employ the
results developed by Bekiaris-Liberis11 to study regulation, stability, string stability, and positivity of speed and spacing
states. The challenge would be to derive explicit estimates on open-loop solutions for the model in the work of Ioannou
and Chien,19 to guarantee positivity of speed/spacing states during open-loop operation and that the finite escape time
phenomenon is avoided.
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6690 BEKIARIS-LIBERIS

3.4 Discussion on conditions (32)–(37) of theorem 1

Requirements (32)–(37) on initial conditions may be, in practice, restrictive. Nevertheless, they are necessary to theoreti-
cally establish positivity and boundedness of speed and spacing states, in view of the nonlinear vehicle model (1)–(3) and
the presence of input delay considered. In particular, since within open-loop operation, during the dead-time interval,
each individual, feedback control input does not affect the respective vehicular system, one should necessarily impose
conditions on initial conditions to guarantee both positivity of speed/spacing states and that there is no finite-escape
time phenomenon arising (conditions (32), (33), and (36)). The latter may be viewed more as a theoretical property,
in view of the practical aspect of the vehicular systems considered. To guarantee positivity of speed and spacing states
during closed-loop operation the initial conditions should satisfy restrictions (33)–(35). In particular, conditions (33) and
(35) could be satisfied for a sufficiently large si0 ; while (34) could be satisfied further restricting the initial conditions
vi0 , Ti0 , and ui0 . In fact, in practice, conditions (33) and (34) could be also satisfied with a sufficiently large choice for
the control gain c1

¶, possibly depending on initial conditions#. Condition (37) (that can be satisfied restricting the ini-
tial conditions) arises when deriving estimates on open-loop solutions, with respect to their deviation from the desired
equilibrium, and thus, it may be viewed as a condition for stabilization and string stability. We further illustrate in sim-
ulation both the theoretical guarantees derived and the imposed conditions, as well as the practical significance of the
CACC design.

Even though conditions (32)–(37) may appear as more of theoretical nature, they are also reasonable from a prac-
tical viewpoint. For example, condition (33) implies that the initial condition for spacing should be sufficiently large,
depending on the respective initial condition for speed. This is a reasonable requirement from the viewpoint of collision
avoidance; see also, for instance, the work of Molnar et al.35 While condition (34) implies that the initial speed (or the
control gain c1) should be sufficiently large, depending on the maximum possible deceleration (during the dead-time
interval). This is a reasonable requirement from the viewpoint of guaranteeing non-negativity of speed in practice, despite
potentially large decelerations.

4 SIMULATION RESULTS

We illustrate here the safety, stability, and string stability properties of the nonlinear, predictor-feedback CACC design
with a platoon of ten vehicles. We consider a scenario in which D = 0.5, h = 0.75, while for the vehicles we set
d = 0.00025, c = 0.0005, g = 0.002, and 𝜏 = 0.3, which are realistic values for vehicles.10,13,19 We choose c1 = 3, c2 =

c1
c1h−1

,
and c3 = 0.5. We consider a scenario in which a vehicle cuts in the platoon, which is demonstrated assuming initial

conditions for the torques and control inputs at equilibrium, namely, Ti0 =
dv2

i0
+g

c
, i = 1, … , 9, Tl0 = 0, ui0(s) = Ti0 , for

s ∈ [−D, 0) and i = 0, … , 9; whereas for the speeds we set vi0 = 15, i = 1, … , 9, vl0 =
2
3

v10 and for the spacings we set
si0 = hvi0 , i = 2, … , 9, and s10 =

4
5

hv10 . We further consider that the leading vehicle performs a deceleration/acceleration
maneuver. Thus, this scenario illustrates the effectiveness of the proposed design with respect to both initial conditions
deviations from equilibrium and leading vehicle’s maneuvers. As it is shown in Figure 2, positivity of speed and spacing
states is achieved, while the responses to the leading vehicle’s maneuvers feature no overshoot, as result of the achieved
∞ string stability. Furthermore, regulation of speed and spacing states at the desired, reference values is also achieved,
as a result of the achieved asymptotic stability.

For the same scenario we also perform simulations in the case in which the delay value is uncertain. In Figure 3
we show the responses of the vehicles when the actual actuator delay is Dr = 0.6, whereas the delay value avail-
able to the designers (and employed in the predictor-feedback CACC laws) is D = 0.5. One can observe that per-
formance is still satisfactory, despite, in general, the responses being more oscillatory. This is consistent with the
delay-robustness properties of general, nonlinear predictor feedbacks36 and of predictor-feedback CACC designs,11

which guarantee that stability and regulation are still achieved. Note that in the work of Bekiaris-Liberis11 it is shown
that string stability in 2, under uncertainty in the value of actuators delays, is preserved; nevertheless, this result
concerns linear vehicle dynamics. In the present case, it is not straightforward to obtain a respective result because
both the vehicles’ model and CACC design are nonlinear. We also note that, in the case in which the actual input
delay is Dr = 0.5, whereas the designer presumes that there is no delay, that is, D = 0, thus, essentially, the nominal,
delay-free ACC law is employed without predictor feedback, stabilization is not possible leading to unrealistic vehicles’
responses.
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BEKIARIS-LIBERIS 6691

F I G U R E 2 Acceleration (top-left), speed (top-right), and spacing (bottom) of nine vehicles, with dynamics described by (1)–(3),
following a leader that cuts in the platoon and, subsequently, it performs an acceleration/deceleration maneuver, under the nonlinear
predictor-feedback CACC laws (8). Accelerations are given by the right-hand side of (2) for i = 1, … ,N and by the right-hand side of
equation v̇l = Tl, where ̇Tl(t) = − 1

𝜏

Tl(t) + 1
𝜏

ul(t − D), for the leading vehicle.

5 CONCLUSIONS AND DISCUSSION

We presented a nonlinear predictor-feedback CACC design for homogeneous vehicular platoons in which each individ-
ual vehicular system is described by a third-order, nonlinear system with input delay. The delay-compensating property
of the design results in positivity of speed and spacing states, as well as asymptotic stability of each individual vehicular
system and string stability of the platoon. All of which are important requirements for safe and efficient operation of vehic-
ular platoons. The guarantees are proved deriving explicit estimates on solutions and utilizing the delay-compensating
property of predictor feedback as well as the safety properties of the underlying, nominal (for the delay-free case) design.

To avoid burying the key contribution of the paper, which is delay compensation for vehicular platoons via nonlinear
predictor-feedback CACC, in technical details, we consider homogeneous platoons, which have been successfully used
for ACC/CACC design and analysis under delay effects in existing works.2,6,9,10,15,16,17 There is no conceptual obstacle to
extend the results presented to the case of non-homogeneous platoons, as long as the actuator delay is identical in all
vehicles (and the parameters d, g, 𝜏, c of the preceding vehicle are communicated to the ego vehicle). Addressing the case
in which the input delay in each individual vehicular system is different, it is a quite different problem. The reason is that
it requires development of a new predictor-feedback CACC design, which employs (exact) predictor states over different
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6692 BEKIARIS-LIBERIS

F I G U R E 3 Acceleration (top-left), speed (top-right), and spacing (bottom) of nine vehicles, with dynamics described by (1)–(3) and a
+20% uncertainty in the delay value available to the designers, following a leader that cuts in the platoon and, subsequently, it performs an
acceleration/deceleration maneuver, under the nonlinear predictor-feedback CACC laws (8). Accelerations are given by the right-hand side
of (2) for i = 1, … ,N and by the right-hand side of equation v̇l = Tl, where ̇Tl(t) = − 1

𝜏

Tl(t) + 1
𝜏

ul(t − D), for the leading vehicle.

prediction horizons (corresponding to different delay values). Thus, it cannot be obtained in a straightforward manner
from the design presented here. Such a design would be more complex and would, potentially, require additional V2V
communication capabilities. In particular, it would require communication with more than one vehicle ahead, because
for constructing the predictors for the states of the preceding vehicle, not only its model but also its CACC law would
be needed. The starting point for the construction of such a CACC law may be the results developed by Bekiaris-Liberis
and Krstic,37 which provide the predictor-feedback design for general, multi-input nonlinear systems with distinct input
delays. As an alternative, one could still apply the CACC design developed here, employing a single delay value, to the
case of distinct input delays. Since nonlinear predictor feedbacks are robust to delay uncertainties,36 it is expected that
such a design may still exhibit a satisfactory performance.

In the present paper we do not address communication delay that may appear due to V2V communication. The reason
is that, in such a case, it is not clear how to construct the predictor state for the speed of the preceding vehicle, which would
require transmission of the current control input history and acceleration information, from the preceding vehicle to the
ego vehicle. The latter is not possible under communication delay. However, in the work of Samii and Bekiaris-Liberis38

we establish that, for the linear case under input delay, asymptotic stability and string stability of predictor-feedback CACC
are robust to the presence of communication delay. Simultaneous compensation of input and communication delays, in
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BEKIARIS-LIBERIS 6693

platoons with vehicles featuring nonlinear dynamics, is a theoretically and practically significant problem, which we are
currently investigating.
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ENDNOTES
∗Here we review only papers dealing with delay compensation by design and not with studying robustness to small delay values.
†However, string stability with respect to spacing errors and2 string stability can be also established in a straightforward manner as byproduct
of the predictor-feedback CACC design developed (see the discussion in the paragraph immediately after the statement of Theorem 1 in
Section 3.3).
‡In fact, ui0

∈ C[−D, 0] being compatible with the feedback laws (8).
§The fact that condition (37) also includes the leading vehicle is made only for consistency, between the string stability definition and the
respective proof, and it could be removed. However, if we do not include i = 0, then definition (22) should be modified such that 𝛾3 is different
for i = 1. Since the paper may already appear as being technically cumbersome and given that it addresses a specific application, we do not
modify the string stability definition to reduce technical burden, sacrificing some generality degree.

¶This is not true for (35) because one has a degree of freedom less, for satisfying (35), because the gain c2 is chosen as function of c1, according
to (6).
#Even though, theoretically, in such a case, 𝛾1, 𝛾2, and 𝛾3 in (22) may not be of class anymore, but rather only nonnegative-valued, continuous
functionals of initial conditions that are zero at equilibrium; while the convergence rate to the desired equilibrium may not be uniform, with
respect to initial conditions, anymore.

||In the subsequent analysis, for simplicity of presentation of the explicit solutions and their estimates derived, we consider the case in which
relation c1 ≠ c2 ≠ c3 holds. This is without loss of generality and the analysis still holds (with simple modifications) in the case in which two,
among the control gains, may be chosen as equal to each other.
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APPENDIX A. PROOF OF THEOREM 1

A.1 Proof of positivity of speed and spacing states
The signals qi =

[
qi,1 qi,2 qi,3 qi,4

]T in (10)–(15), initialized according to (16)–(21), satisfy qi(t) = xi(t + D), with xi =[
si vi vi−1 Ti

]T, for all t ≥ 0.28 Therefore, under the feedback laws (8), (9) for t ≥ D the closed-loop systems satisfy (1),
(2), and

̇Ti(t) = −
1
𝜏

Ti(t) +
1
𝜏

ui,nom(t), i = 1, … ,N, (A1)
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where ui,nom is defined in (4), (5). Defining for i = 1, … ,N the transformations (see the work of Krstic and Bement24)

zi,1 = −si (A2)
zi,2 = vi − c1si (A3)
zi,3 = cTi + (c1 + c2)vi − g − dv2

i − c1c2si, (A4)

we get that for t ≥ D the following hold

żi,1(t) = −c1zi,1(t) + zi,2(t) − vi−1(t) (A5)

żi,2(t) = −c2zi,2(t) + zi,3(t) − c1vi−1(t) (A6)

żi,3(t) = −c3zi,3(t), (A7)

for i = 1, … ,N. In order to guarantee positivity of spacing and speed states for t ≥ D it should hold that zi,1(t) < 0 and
zi,2(t) − c1zi,1(t) > 0, respectively, for all t ≥ D and i = 1, … ,N. By induction and under assumption vl(t) > 0, for all t ≥
0, the form of the closed-loop, transformed systems (A5)–(A7) guarantees that zi,j(t) < 0, for all t ≥ D, j = 1, 2, 3, and
i = 1, … ,N, hold provided that

zi,j(D) < 0, j = 1, 2, 3, i = 1, … ,N. (A8)

Furthermore, relations vi(t) = zi,2(t) − c1zi,1(t) > 0, i = 1, … ,N, hold for all t ≥ D provided that

zi,3(D) > c2zi,2(D), i = 1, … ,N (A9)

zi,2(D) > c1zi,1(D), i = 1, … ,N. (A10)

This can be seen as follows. The speed states vi = zi,2 − c1zi,1, i = 1, … ,N, satisfy

v̇i(t) = −c1vi(t) + gi(t), (A11)

where gi = zi,3 − c2zi,2, which follows from (A5), (A6). Hence, the speed states vi remain positive for t ≥ D provided that
(A10) and zi,3(t) − c2zi,2(t) > 0, t ≥ D, hold. The latter holds by induction in view of (A9) and the fact that zi,3(t) < 0, t ≥ D
(in view of (A7), (A8)), because the signals gi(t) = zi,3(t) − c2zi,2(t), i = 1, … ,N, satisfy

̇gi(t) = −c2gi(t) − c3zi,3(t) + c1c2vi−1(t). (A12)

Therefore, it remains to establish (A8)–(A10), which can be written using (6) and (A2)–(A4) as

si(D) > 0 (A13)

vi(D) > 0 (A14)

c1si(D) > vi(D) (A15)

c1vi(D) > −cTi(D) + g + dvi(D)2 (A16)

cTi(D) < −
c2

1h
c1h − 1

vi(D) + g + dvi(D)2 +
c2

1

c1h − 1
si(D), (A17)

for i = 1, … ,N. To satisfy (A13)–(A17) one should restrict the initial conditions, although (A15), (A16) could be also
satisfied (under (A13), (A14)) with a sufficiently large choice for the control gain c1. For either case, we proceed next in
establishing (A13)–(A17) together with positivity of speed and spacing states during the dead-time interval. During the
dead-time interval, from (3) we get for i = 1, … ,N that

Ti(t) = e−
t
𝜏 Ti0 +

1
𝜏
∫

t

0
e−

t−s
𝜏 ui0(s − D)ds. (A18)
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6696 BEKIARIS-LIBERIS

Hence, it holds that 𝛿i ≤ Ti(t) ≤ 𝜁 i, t ∈ [0,D], where 𝛿i and 𝜁 i are defined in (25) and (27), respectively. With definitions
(23), (24) and defining vi = −yi, we get from (2) that

ẏi(t) ≤ dyi(t)2 + 𝛿i, i = 1, … ,N. (A19)

Thus, under assumptions (32) and (36), using the comparison principle (see, e.g., Lemma 3.4 in the book of Khalil34) we
obtain

vi(t) ≥ −
√
𝛿i

√
d

tan

(
√

d𝛿it − tan−1

(

vi0

√
d

√
𝛿i

))

. (A20)

Note that under assumptions (32) and (36) we obtain that vi(t) > 0, for all 0 ≤ t ≤ D, because − 𝜋

2
<

√
d𝛿it −

tan−1
(

vi0

√
d√
𝛿i

)
< 0, for all 0 ≤ t ≤ D, and hence relation (A14) is established. Similarly, with definition (24) we get from

(2) that v̇i(t) ≤ −dvi(t)2 + 𝜁i, i = 1, … ,N, and hence, from the comparison principle we get for all t ∈ [0,D] that

vi(t) ≤
√
𝜁i

√
d

vi0 +
√
𝜁i√
d
+
(

vi0 −
√
𝜁i√
d

)
e−2

√
𝜁idt

vi0 +
√
𝜁i√
d
−
(

vi0 −
√
𝜁i√
d

)
e−2

√
𝜁idt

. (A21)

Note that, for all 0 ≤ t ≤ D, the right-hand side of (A21) is always positive and finite. Moreover, from the dynamics of the
leading vehicle, we also have that vl(t) ≥ vl0 + D min

{
0, 𝛿l

(
Tl0 ,ul0

)}
> 0 (by assumption), t ∈ [0,D]. Using (1) we obtain

for 0 ≤ t ≤ D

si(t) = si(0) +
∫

t

0
(vi−1(s) − vi(s))ds. (A22)

Thus, using (A20), (A21) we get that for all 0 ≤ t ≤ D the following hold for i = 1, … ,N

si(t) ≥ si0 + t
(

mi−1
(

vi−10 ,Ti−10 ,ui−10

)

−Mi
(

vi0 ,Ti0 ,ui0

))
, (A23)

where mi−1 and Mi are defined in (28) and (30), respectively. Thus, since si0 + t(mi−1 −Mi) ≥ si0 + D min {0,mi−1 −Mi}, for
all t ∈ [0,D], we have, under condition (33), both that si(t) > 0 for all t ∈ [0,D] (and hence, relation (A13) is established),
as well as that condition (A15) holds (because from (A21), condition (33) also implies that c1si(D) > Mi ≥ vi(D)). Using
(A20), (A21), and the fact that 𝛿i ≤ Ti(D) ≤ 𝜁 i, relations (A16) and (A17) are established under assumptions (34) and (35),
respectively.

A.2 Proof of stability and string stability
To prove ∞ string stability and asymptotic stability, we capitalize on the specific form of the transformed, closed-loop
systems given in (A5)–(A7). This is a result of employment of predictor-feedback in combination with the control design
procedure developed by Krstic and Bement.24 We recall the differences of the speed, spacing, and torque states from
their respective equilibrium values, which are obtained for a constant equilibrium for speed states (dictated by a con-
stant leader’s speed), say v∗, as s̃i = si − s∗, ṽi = vi − v∗, and ̃Ti = Ti − T∗, with s∗ = hv∗, T∗ = dv∗2+g

c
, corresponding to an

equilibrium control input u∗i = T∗, for vehicles i = 1, … ,N. It follows from (A5) to (A7) that for t ≥ D it holds that||

z̃i,1(t) = e−c1(t−D)z̃i,1(D) +
∫

t

D
e−c1(t−s)z̃i,2(s)ds −

∫

t

D
e−c1(t−s)ṽi−1(s)ds (A24)

z̃i,2(t) = e−c2(t−D)z̃i,2(D) +
1

c2 − c3

(
e−c3(t−D) − e−c2(t−D))zi,3(D) − c1

∫

t

D
e−c2(t−s)ṽi−1(s)ds (A25)

zi,3(t) = e−c3(t−D)zi,3(D), (A26)
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BEKIARIS-LIBERIS 6697

where we used definitions

z̃i,1 = zi,1 + hv∗ (A27)
z̃i,2 = zi,2 − v∗ + c1hv∗, (A28)

and the fact that the z̃i,1, z̃i,2 states also satisfy (A5)–(A7). From (A24)–(A26) it follows by induction (starting from i = 1
with ṽ0 ≡ 0, for a constant leading vehicle’s speed) that the closed-loop system is asymptotically stable, provided that
z̃i,1(D), z̃i,2(D), and z̃i,3(D) are bounded. While for a constant, leading vehicle’s speed, that is, ṽ0 ≡ 0, we conclude combin-
ing (A2), (A3) with (A27), (A28) that tracking of the desired speed and spacing is achieved. We derive next estimates on
solutions for the system in zi,j variables during open-loop operation. Towards this end, it turns out that it is more straight-
forward to utilize system (1)–(3) in the original variables. The reason is that, using (A2)–(A4), it can then be shown that z̃i,1,
z̃i,2, and zi,3 remain bounded during open-loop operation, provided that s̃i, ṽi, and ̃Ti remain bounded. We start estimating
ṽi(t) for t ∈ [0,D], re-writing (2), (3) as

̇ṽi(t) = −dṽi(t)2 − 2dṽi(t)v∗ + c ̃Ti(t) (A29)
̇

̃Ti(t) = −
1
𝜏

̃Ti(t) +
1
𝜏

ũi0(t − D), (A30)

where ũi0(t − D) = ui0(t − D) − T∗. Defining ri(t) = |ṽi(t)| +
√

c
d

sup
𝜃∈[0,D]

|| ̃Ti(𝜃)||, we obtain from (A29) that

1
d

ṙi(t) ≤ ṽi(t)2 − 2|ṽi(t)|v∗ +
c
d

sup
𝜃∈[0,D]

|| ̃Ti(𝜃)||. (A31)

Hence, with ri(t) = |ṽi(t)| +
√

c
d

sup
𝜃∈[0,D]

|| ̃Ti(𝜃)|| we get

ṙi(t) ≤ dri(t)2. (A32)

Thus, under (37), from the comparison principle we get

|ṽi(t)| ≤
ri0

1 − dri0 t
, (A33)

where

ri0 = ||ṽi0
|| +

√
c
d

sup
𝜃∈[0,D]

|| ̃Ti(𝜃)||. (A34)

Using (A30) we obtain that ̃Ti(t) = e−
t
𝜏

̃Ti0 +
1
𝜏

∫
t

0 e−
t−s
𝜏 ũi0(s − D)ds, and hence,

sup
t∈[0,D]

|| ̃Ti(t)|| ≤ || ̃Ti0
|| + sup

𝜃∈[−D,0]
||ũi0(𝜃)||. (A35)

Thus, combining (A33) with (A35) we arrive at

sup
t∈[0,D]

|ṽi(t)| ≤
r̃i0

1 − dr̃i0 D
, (A36)

where

r̃i0 = ||ṽi0
|| +

√
c
d

√
|| ̃Ti0

|| + sup
𝜃∈[−D,0]

||ũi0(𝜃)||. (A37)
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6698 BEKIARIS-LIBERIS

We next estimate s̃i(D). Using the fact that ̇s̃i(t) = ṽi−1(t) − ṽi(t) we get from (A36) that for t ∈ [0,D] and i = 2, … ,N it
holds that

sup
t∈[0,D]

|s̃i(t)| ≤ ||s̃i0
|| +

Dr̃i0

1 − dr̃i0 D
+

Dr̃i−10

1 − dr̃i−10 D
, (A38)

whereas for i = 1 it holds that

sup
t∈[0,D]

|s̃i(t)| ≤ ||s̃i0
|| +

Dr̃i0

1 − dr̃i0 D
+ D||ṽl0

|| + D2|| ̃Tl0
|| + D2 sup

𝜃∈[−D,0]
||ũl0(𝜃)||. (A39)

From definitions (A2)–(A4) it follows that

||z̃i,1(D)|| ≤ |s̃i(D)| (A40)
||z̃i,2(D)|| ≤ |ṽi(D)| + c1|s̃i(D)| (A41)
||z̃i,3(D)|| ≤ c|| ̃Ti(D)|| + (c1 + c2 + 2dv∗)|ṽi(D)| + d|ṽi(D)|2 + c1c2|s̃i(D)|, (A42)

for i = 1, … ,N. Thus, asymptotic stability follows from (A35) to (A42) combining (A24)–(A26) with the inverse
transformation to (A2)–(A4).

We next establish ∞ string stability, estimating ||ṽi||∞. Using the fact that supt∈[0,+∞) |ṽi(t)| ≤ supt∈[0,D] |ṽi(t)| +
supt∈[D,+∞) |ṽi(t)| and (A36), (A37) it remains to estimate supt∈[D,+∞) |ṽi(t)|. Since ṽi = z̃i,2 − c1z̃i,1, we obtain from (A24) to
(A26) and using triangular inequality that for t ≥ D and i = 1, … ,N the following hold

|ṽi(t)| ≤ k
(||z̃i,1(D)|| + ||z̃i,2(D)|| + ||zi,3(D)||

)
e−𝜆(t−D) + c1c2

∫

t

D

||||
e−c2(t−s) − e−c1(t−s)

c1 − c2

||||
dssup

t≥D
|ṽi−1(t)|, (A43)

for some k, 𝜆 > 0 (dependent on c1, c2, c3), where we used the fact that c2
1∫

t
De−c1(t−s)

∫
s

De−c2(s−r)ṽi−1(r)drds =
c2

1
c1−c2
∫

t
De−c2(t−s)ṽi−1(s)ds − c2

1
c1−c2
∫

t
De−c1(t−s)ṽi−1(s)ds. Thus, since for all t ≥ s ≥ D it holds that e−c2(t−s)−e−c1(t−s)

c1−c2
≥ 0, we obtain

|ṽi(t)| ≤ k
(||z̃i,1(D)|| + ||z̃i,2(D)|| + ||zi,3(D)||

)
+ ||ṽi−1||∞

c1 − c2 − c1e−c2(t−D) + c2e−c1(t−D)

c1 − c2
. (A44)

The function 1 − c1e−c2(t−D)−c2e−c1(t−D)

c1−c2
is increasing for all t ≥ D, and hence, 1 − c1e−c2(t−D)−c2e−c1(t−D)

c1−c2
≤ 1 for all t ≥ D. Therefore,

it follows from (A44) that for i = 1, … ,N

sup
t≥D

|ṽi(t)| ≤ k
(||z̃i,1(D)|| + ||z̃i,2(D)|| + ||zi,3(D)||

)
+ ||ṽi−1||∞, (A45)

which, in combination with (A35)–(A42), establishes string stability in ∞. In particular, using (A36) we arrive at

sup
t∈[0,+∞)

|ṽi(t)| ≤
r̃i0

1 − dr̃i0 D
+ sup

t∈[D,+∞)
|ṽi(t)|, (A46)

and hence, combining (A46) with (A45) and (A40)–(A42), we obtain (22) with

𝛾0(y) = y (A47)
𝛾1(y) = k(1 + c1 + c1c2)y (A48)

𝛾2(y) = (1 + kD + kc1 + kc1D + kc1c2D + kc2 + 2kdv∗ + k)
y

1 − dyD
+ kd

(
y

1 − dyD

)2

+ dky2 (A49)

𝛾3(y) = k(1 + c1 + c1c2)D
(

y
1 − dyD

+ y + Dd
c

y2
)
, (A50)

using (A35)–(A39).
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