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Abstract— Three filtering-based approaches to freeway traffic
state estimation are studied using measurements from connected
vehicles and also a minimum number of fixed detectors. These
approaches are: Method 1 based on EKF and the second-
order traffic flow model METANET, Methods 2 and 3 based
on KF and the conservation equation that is driven by mean
speed data of connected vehicles under a speed-uniformity
assumption. Each method is capable of estimating segment traffic
flow variables (speeds, densities, and flows) as well as segment
market penetration rates (MPRs) of connected vehicles. The three
methods are evaluated and compared in depth using NGSIM
data with respect to their traffic state estimator design, data
requirements, capabilities, limitations in the mixed sensing case.
Recommendations are given about the choice of methods over
the range of MPR.

Index Terms— Freeway traffic state estimation, traffic flow
modelling, connected vehicles, market penetration rate, mixed
sensing, filtering, speed-uniformity assumption.

I. INTRODUCTION

TRAFFIC state estimation (TSE) is essential for traffic sur-
veillance and control. TSE aims at real-time inference of

traffic flow variables on roadways with an adequate spatiotem-
poral resolution based on a limited amount of sensing data.
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TSE used to be performed using sensing data from spot sensors
(e.g. loops, radars, cameras) [1]–[6]. Nowadays, enabled by
V2X communication capabilities, connected vehicles (CVs)
can act as floating or mobile sensors to report in real time
their own positions, speeds, and accelerations as well as their
neighboring traffic state information, providing unprecedented
opportunities for significantly improved TSE. The market
penetration rate (MPR) of CVs is currently very low, and hence
fixed-sensing and mobile-sensing technologies are expected to
be used together for traffic surveillance and control in many
years to come, thus highlighting the importance of TSE with
mixed sensing. This paper addresses freeway TSE using mixed
sensing data.

A. State-of-the-Art

According to [7], freeway TSE works are classified into
three categories: model based, data based, and streaming data
based. This paper focuses on the model-based TSE. In this
category, typically the works are differentiated by traffic flow
models employed for the estimator design and by filtering
algorithms utilized.

A number of works have studied real-time freeway
TSE with mixed sensing data based on the first-
order Lighthill–Whitham–Richards (LWR) model or cell
transmission model (CTM) model, using filtering techniques
such as Kalman filter (KF) [8]–[10], extended Kalman filter
(EKF) [11], [12], ensemble Kalman filter (EnKF) [13],
[14], particle filters (PF) [15], [16], and heuristic smoothing
algorithms [17], [18]. In order to better reproduce traffic
phenomena such as capacity drop, scattering, hysteresis
effect, stop-and-go waves, higher-order models have also been
considered, such as the Payne-Whitham (PW) model [19], [20]
and the Aw-Rascle-Zhang (ARZ) model [21], [22]. EKF
was considered in [23], [24] to integrate mixed sensing data
based on a PW-like model, while EKF and PF were applied
respectively in [25], [26] based on the ARZ model. Recent
overviews on freeway TSE using mixed sensing data are
found in [7], [27].

Besides the works based on the first-order and higher
order traffic flow models, an alternative approach to freeway
TSE with mixed sensing data was recently developed by one
research group [9], [10], [28]–[30]. The approach relies on an
assumption that the average speed of regular vehicles in a road
section is equal to that of CVs within the same road section.
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TABLE I

TRAFFIC STATE ESTIMATION METHODS

This speed-uniformity assumption is logical [10], [26], and has
been validated with real data [8]. Following such assumption,
instead of employing a non-linear traffic flow model as in the
works mentioned above, a simplified model that considers only
a “data-driven” conservation equation can be utilized for the
traffic state estimator design, where a KF is applied to TSE.

In addition, despite a very significant task in the era of CVs,
to our best knowledge, only two works [10], [26] have studied
real-time estimation of MPR for connected/automated vehicles
on freeways.1 Firstly, again based on the speed-uniformity
assumption, [10] derives a dynamic equation for MPR from
the flow conservation equation of all vehicles and that of all
CVs, provided that the density and flow of CVs are measurable
for each freeway segment based on their regularly reported
positions. KF is applied to the MPR estimation.

Exploiting the same speed-uniformity assumption, [26]
establishes a connection between a two-class traffic flow
model (for automated vehicles and human-driven vehicles)
and a generalization of the ARZ model, then applying PF
to estimate all traffic flow variables and MPR of auto-
mated vehicles. It was not explicitly stated what information
is required of automated vehicles in order to deliver the
MPR estimate.

B. This Work

Among the higher-order traffic flow models, the Payne-
Whitham model [19], [20] was extended in [31] to deliver
a second-order time-space-discretized traffic flow model
METANET [32], which was shown to outperform a number of
first-order models in some aspects [33]. Based on fixed sens-
ing, METANET has been successfully applied with EKF to
freeway TSE in simulation [1], [2], using real data [3]–[5], and
for large-scale field applications [6]. So far, this METANET-
EKF-based approach to freeway TSE has not been extended
to the mixed sensing case, so it is unknown if the traffic
state estimator so designed still keeps its capability and
proper features demonstrated already in the fixed sensing case.
This paper intends to address this issue, and refers to the
METANET-EKF-based TSE approach as Method 1, see also
Table I.

One alternative approach to freeway TSE [9, 10, 28-30] is
to design a traffic state estimator based on a speed-uniformity
assumption, which allows to formulate a model based on the
vehicular conservation equation only, without resort to any
speed equation. Consequently, the estimator design is largely

1A bit more studies on the same subject can be found for the urban
case, typically relating to queue estimation at signalized intersections, see
e.g. [34]–[36].

simplified, leading to an easily implementable estimator. This
approach is referred to as Method 2 in this paper, see also
Table I.

Yet another approach [10] first handles the MPR estimation
for CVs on freeway, and further delivers the traffic state
estimates for entire traffic flow using traffic measurements
of CVs and MPR estimates. This approach is referred to as
Method 3 in this paper, see also Table I. In terms of direct MPR
estimation for CVs, Method 3 is so far unique in the literature
of TSE. On the other hand, the MPR estimates could also be
indirectly derived by Methods 1 and 2, but such a function of
either Method 1 or 2 was not investigated before. In any case,
the study of the MPR estimation for freeway traffic (and also
urban traffic) is much lacking.

Both Methods 2 and 3 are novel also in that the involved
dynamic systems can be formulated as linear parameter-
varying ones by use of speed/flow/density measurements
of CVs, and hence KF is sufficient for TSE. As reported
in [37]–[40], among filtering algorithms, KF/EKF is the most
efficient one in computation time, UKF’s computation time
may be of the same order as KF/EKF, but PF’s and EnKF’s
computation times are much higher than KF/EKF’s. Thus,
PF and EnKF may have problems in real-time applications,
while KF and EKF stand out in this aspect. Methods 1-3 are
all suitable for real-time applications.

Methodologically, the three methods represent different
lines of thoughts, which are all generic and cover much of the
“territory” of freeway TSE using mixed sensing data in the
Eulerian scheme [27]. Method 1 has not been applied to the
mixed sensing case at all, and Method 3 has only been studied
so far in simulation with fictitious traffic data. Thus, it is highly
interesting to further study their properties of traffic state and
MPR estimation in the mixed sensing case, and also evaluate
their performance with respect to the same test example of
real data.

The major contributions of this paper are as follows:
(1) developing Method 1 to incorporate mixed sensing data;
(2) developing two alternative approaches (in addition to

Method 3) to real-time MPR estimation based on
Methods 1 and 2;

(3) evaluating using NGSIM data Methods 1-3 systemati-
cally for their traffic state estimator design, operating
principles, data requirements, and capabilities for traffic
state and MPR estimation as well as possible limitations,
along with recommendations in consideration of the
gradual increase of MPR.

The remainder of the paper is organized as follows.
Section II formulates Methods 1-3 along with their traffic
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flow modeling and traffic state estimator design. Section III
describes the evaluation setup and presents the evaluation
results. Section IV presents further discussions. Section V
concludes the paper.

II. THREE APPROACHES TO FREEWAY TRAFFIC STATE

ESTIMATION

A. Mixed Sensing for Traffic State Estimation

Fixed sensors are able to provide complete information of
passing vehicles at sensor locations, which, however, suffers
from being local and sparse; while CVs as mobile sensors are
advantageous in the spatial provision of speed information, but
they cannot deliver accurate information of traffic volume and
density, unless MPR reaches 100%.

1) Fixed Sensor Configuration: Flow observability of a road
network refers to the capability that unmeasured traffic flows
at the locations of no sensors can be inferred from measured
traffic flows at locations with sensors. Flow observability is
a pre-requisite for network traffic flow estimation. Unless the
MPR of CVs is 100%, the flow observability of a road network
depends on the configuration of fixed sensors.

A long freeway stretch is essentially a combination of a
number of unit stretches, each with a pair of on/off-ramps.
Given a unit stretch, there exist four configurations of fixed
sensors, each securing the flow observability and hence allow-
ing for TSE [2]. Since three methods are evaluated in this
paper for TSE, without loss of generality and also for the
ease of comparison and presentation, we stipulate that all
three methods consider the same fixed sensor configuration for
any unit stretch (Fig. 1), which includes three sensors in the
freeway mainstream, at the upstream and downstream of the
unit stretch, and also between the on/off-ramps (i.e. no sensor
is installed at any on/off-ramp).

2) Fusion of Mixed Sensing Data: Following fluid mechan-
ics, there are two schemes to formulate traffic flow mod-
eling and model-based TSE: Eulerian and Lagrangian [27].
Accordingly, fixed (location-based) sensing and mobile
(vehicle-based) sensing are also referred to as Eulerian
and Lagrangian sensing, respectively. This paper addresses
Eulerian traffic flow modeling and Eulerian TSE with mixed
sensing data; in this case, the Lagrangian sensing data needs
first to be converted into data in Eulerian coordinates and then
used for TSE.

Specifically, the fundamental information from Lagrangian
sensing data is regularly reported positions of CVs obtained
via GPS or other similar systems. Based on this information,
a number of “virtual” fixed sensors can be mimicked so as
to deliver aggregated traffic flow data for TSE along with
measurements from genuine fixed sensors.

B. Method 1 Based on METANET

For the formulation of all traffic flow models and TSE
methods 1-3 reported in this paper, a common notation is
employed, and summarized in Table II for the convenience
of readers.

To facilitate the digital computation, spatiotemporal dis-
cretization is conducted with the following elements (see e.g.
Fig. 1):

• a number N of segments, with segment length �i , i =
1, 2, . . . , N ;

• a number λi of lanes;
• a time step T and the discrete time indices k = 0, 1, 2, . . .
• density ρi (k) in veh/km/lane;
• space mean speed vi (k) in km/h;
• flow qi (k) in veh/h;
• on-ramp inflow ri (k) and off-ramp outflow si (k), if any,

in veh/h.

For segment i , the model equations are as follows:

ρi (k + 1) = ρi (k) + T

�i × λi

× [
qi−1 (k) − qi (k) + ri (k) − si (k)

]
, (1)

qi (k) = λiρ i (k) vi (k) + ξ
q
i (k) , (2)

vi (k + 1) = vi (k) + T

τ
(V (ρi (k)) − vi (k))

+ T

�i
vi (k)

[
vi−1 (k) − vi (k)

]

−υT
[
ρi+1 (k) − ρi (k)

]
τ�i (ρi (k) + κ)

(
δT

�i × λi

)

×
[

ri (k) vi (k)

(ρi (k) + κ)

]
+ ξv

i (k) , (3)

V (ρi (k)) = v f ex p

[
− 1

a

(
ρi (k)

ρcr

)a]
. (4)

Besides segment variables ρ1, . . . , ρN , v1, . . . , vN , the
model also includes model parameters v f , ρcr , a, and bound-
ary variables q0, v0, ρN+1, r i1 , . . . , rim , si1 , . . . , sim , with i1
and im denoting the indices of the first and last segments
where on/off-ramps are present, assuming that on/off-ramps
appear in pairs, i j ∈ {1, 2, . . . , N} , j = 1, 2, . . . , m, m ≤ N .
In addition, τ , υ, δ, and κ are constant parameters included in
the dynamic speed equation (3), ξ

q
i and ξv

i denote modeling
noise of flow and speed in segment i.

The dynamics of the model parameters and boundary vari-
ables are unknown; therefore, as introduced in [1]–[6], the
random walk equation is applied to their modeling:

θ (k + 1) = θ (k) + γ (k) , (5)

where θ addresses a model parameter or boundary variable to
be modeled, and γ is a zero-mean Gaussian white noise. Thus,
equations (1)-(5) can be written in a compact state-space form:

x1 (k + 1) = f1 [x1 (k) , ξ1 (k)] , (6)

where f1 is a nonlinear vector function, x1 refers to the state
vector, and ξ1 to the state noise vector, and

x1 = [
ρ1, . . . , ρN , v1, . . . , vN , q0, v0, ρN+1, r i1 , . . . , rim ,

si1 , . . . , sim , v f , ρcr , a
]T

, (7)

ξ1 = [
ξ

q
1 , . . . , ξ

q
N , ξv

1 , . . . , ξv
N , ξ

q
0 , ξv

0 , ξ
ρ
N+1, ξ

r
i1 , . . . , ξ

r
im ,

ξ s
i1 , . . . , ξ

s
im , ξv f , ξρcr , ξa]

, (8)
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TABLE II

NOMENCLATURE
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TABLE II

(Continued.) NOMENCLATURE

Fig. 1. A freeway stretch with 10 segments and 3 fixed sensors.

where ξ
q
i , ξv

i denote modeling noise of flow and mean speed
at segment i, ξ

q
0 , ξv

0 denote modeling noise of flow and mean
speed at the upper bounds of the freeway stretch, ξ

ρ
N+1 denotes

modeling noise of density right downstream of the lower
bound of the stretch, ξv f , ξρcr , ξa denote modeling noise of
free speed, critical density and exponent parameter.

All involved traffic measurements may also be expressed in
a state-space form:

y1 (k) = g1
[
x1 (k) , ξ1 (k) , η1 (k)

]
, (9)

where y1 is the output vector including all available traffic
measurements, g1 is a nonlinear vector function, and η1 refers
to the output (measurement) noise vector. More specifically,

y1 = [
mq

0 , mv
0, mq

N , mv
N , mq

k1
, mv

k1
, . . . , mq

km
,

mv
km

, mv
l1 , . . . , mv

ln

]T
, (10)

η1 = [
η

q
0 , ηv

0, η
q
N , ηv

N , η
q
k1

, ηv
k1

, . . . , ηq
km

,

ηv
km

, ηv
l1 , . . . , η

v
ln

]T
. (11)

(a) mq
0 , mv

0, mq
N , and mv

N denote flow and mean speed
measurements from fixed sensors at the upper and lower
bounds of the freeway stretch, e.g. sensors 1 and 3 in
Fig. 1.

(b) mq
k1

, mv
k1

, . . . , mq
km

, mv
km

denote the flow and mean speed
measurements from the fixed sensors possibly installed
in segments k1, …, km , k j ∈ {2, . . . , N − 1} , j =
1, 2, . . . , m, m ≤ N − 2, for the purpose of flow
observability, e.g. sensor 2 in Fig. 1.

(c) mv
l1
, . . . , mv

ln
denote mean speeds from CVs within

segments l1, …, ln , l j ∈ {1, 2, . . . , N} , j =
1, 2, . . . , n, n ≤ N . When the MPR and measure-
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ment time interval are relatively high, CV data could
be available from each segment at any time instant,
i.e. l1 = 1, lN = N , e.g. from each segment in Fig. 1.

(d) η1 denote the corresponding output noise in y1.

Both aggregated flow and mean speed measurements from
all fixed sensors are included in (10), while only aggregated
mean speed measurements converted from speeds of all mobile
sensors (individual CVs) are included in (10).

Concerning (b) and (c) above, if the mean speed information
for a segment can be obtained via both a fixed sensor installed
there and CVs, then the mean speed information from the
former is used, because it covers all vehicles while that from
the latter does not as long as the MPR is less than 100%.
Equations (6) and (9) constitute a nonlinear dynamic system.

C. Method 2 Based on Speed-Uniformity Assumption

The speed-uniformity assumption states that, given a seg-
ment i , vi (k), the mean speed of all vehicles is equal to vc

i (k),
the mean speed of all CVs in the segment. It is demonstrated
in [10] that the mean of vc

i (k) − vi (k) is close to zero
even when MPR is very small, and the standard deviation
of vc

i (k)− vi (k) drops drastically and monotonically with the
increase of MPR.

Consider MPR is not extremely low, then with segment
mean speed vi (k) in (2) replaced by vc

i (k), we have:
qi (k) = λiρi (k) vc

i (k) + ξ
q
i (k) . (12)

Substituting (12) into (1) leads to:

ρi (k + 1) = ρi (k) + T

�i × λi

× [
λi−1ρi−1 (k) vc

i−1 (k) − λiρ i (k) vc
i (k)

]
+ T

�i × λi
×[

ri (k)−si (k) + ξ
q
i−1 (k)−ξ

q
i (k)

]
.

(13)

In case of a very small MPR, it is possible that no CV
could be present in a freeway segment over a certain time
interval k, then the mean speed of CVs in the same segment
over the last time interval k − 1 is used instead, also with a
default initial value set. It is again demonstrated in [10], [29]
that the error so introduced to mean speed estimates is quite
acceptable even with a small MPR and tends to be zero with
the increase of MPR.

To model the unknown ramp flows, a random walk
equation (5) is employed. Thus, equations (13) for all
concerned freeway segments along with all random walk
equations constitute a dynamic system of the state-space
form:

x2 (k + 1) = A2
(
vc(k)

)
x2 (k) + B2u2 (k) +F2ξ2 (k) , (14)

where

x2 = [ρ1, . . . , ρN , ri1 , . . . , rim , si1 , . . . , sim ]T , (15)

u2 = q0, (16)

ξ2 = [
ξ

q
1 , . . . , ξ

q
N , ξ r

i1 , . . . , ξ
r
im , ξ s

i1 , . . . , ξ
s
im

]T
. (17)

vc is the vector of the mean speed of CVs in each segment,
and ξ2 stands for the noise in the random walk equations fixed
sensor installed at the lower bound of the of on/off-ramp flows.
Note that A2 in (14) depends on vc, while B2 and F2 are
constant in relation to T

�i ×λi
(i = 1, 2, . . . , N). Therefore,

(14) is a linear parameter-varying system. All involved traffic
measurements may also be expressed in a parameter-varying
system form:

y2 (k) = C2(v
c(k))x2 (k) + η2 (k) , (18)

where

y2 = [mq
N , mq

k1
, . . . , m

q

km
]T , (19)

η2 = [ηq
N , η

q
k1

, . . . , η
q
km

]T . (20)

Like A2 in (14), C2 in (18) also depends on the real-time
measurements of speeds of CVs. Unlike y1 in (10), y2 in (19)
includes only flow measurements from fixed sensors. As afore-
mentioned, Methods 1-3 consider the same configuration of
fixed sensors. Therefore, (19) and (10) share the same elements
concerning flow measurements of fixed sensors. The interested
reader is referred to [9], [10] for more details.

D. Method 3 Based on Dynamic Modeling for MPR

Following (1) for the dynamics of the total density, the
dynamics of the density ρc

i of CVs reads:

ρc
i (k + 1) = ρc

i (k) + T

�i × λi

(
qc

i−1 (k) − qc
i (k)

+rc
i (k) − sc

i (k)
)
, (21)

where qc
i is the flow of the CVs at segment i ; rc

i and sc
i are

the corresponding inflow and outflow of CVs at ramps. Let us
define the inverse of MPR αi of CVs at segment i as p̄i , i.e.,

p̄i (k) = ρi (k)

ρc
i (k)

= 1

αi
. (22)

And assume that the average speed of conventional vehicles
in segment i equals the average speed of CVs in the same seg-

ment, we obtain p̄i (k) = qi (k)
qc

i (k)
. Considering the inaccuracies

introduced by the assumption, we have:
qi (k) = p̄i (k) qc

i (k) + ξ
q
i (k) . (23)

Thus, we get from (1), (21)–(23), formula (24), which is
shown at the bottom of the next page, where gc

i (k) denotes
the right-hand side of (21).

To model the unknown ramp flows, again a random walk (5)
is employed. Thus, equations (24) for all concerned freeway
segments along with all random walk equations constitute a
linear parameter-varying dynamic system of the state-space
form:

x3 (k + 1) = A3
(
qc (k) , ρc (k) , rc (k) , sc (k)

)
x3 (k)

+B3
(
qc (k) , ρc (k) , rc (k) , sc (k)

)
u3 (k)

+F3
(
qc (k) , ρc (k) , rc (k) , sc (k)

)
ξ3 (k) ,

(25)
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where

x3 = [ p̄i , . . . , p̄N , ri1 , . . . , rim , si1 , . . . , sim ]T , (26)

u3 = q0, (27)

ξ3 = [ξq
1 , . . . , ξ

q
N , ξ r

i1 , . . . , ξ
r
im , ξ s

i1 , . . . , ξ
s
im ]T , (28)

where qc = [
qc

0 . . . qc
N

]T
, ρc = [

ρc
0 . . . ρc

N

]T
, rc =[

rc
0 . . . rc

N

]T
, sc = [

sc
0 . . . sc

N

]T .
Given a fixed sensor in segment i , the flow measurement

mq
i can be expressed by considering (23) as:

mq
i (k) = qi (k) + η

q
i (k)

= p̄i (k) qc
i (k) + ξ

q
i (k) + η

q
i (k). (29)

Denote also by m p
i the “measurement” of p̄i , then

m p
i (k) = mq

i (k)

qc
i (k)

= p̄i (k) + 1

qc
i (k)

ξ
q
i (k) + 1

qc
i (k)

η
q
i (k).

(30)

Thus, all involved traffic measurements may be expressed
in a linear parameter-varying system form:
y3 (k) = C3x3 (k) + G3

(
qc (k)

)
ξ3 (k) + G3(q

c(k))η3(k),

(31)

where y3 = [m p
N , m p

k1
, . . . , m

p

km
]T , ξ3 is already defined

by (28), and η3 = [ηq
N , η

q
k1

, . . . , η
q
km

]T . The related main-
stream flows mq

N (k) and mq
ki

(k), i = 1, . . . , m, are available
from fixed sensors in the corresponding segments, while qc

N
and qc

ki
, i = 1, . . . , m, are available from CVs. ξ3 and η3 are

independent zero-mean Gaussian white, and their sum is still
zero-mean Gaussian white. C3 is a diagonal matrix with its
non-zero elements all equal to one.

Note that in this case y3 is related to both flow mea-
surements from all fixed sensors and of all CVs passing the
same locations. Flows qc and densities ρc of all CVs in each
segment as well as on/off-ramp flows of CVs are introduced
to the state equation (25), while qc is introduced to the output
equation (31). The interested reader is referred to [10] for more
details.

E. Traffic State Estimator Design

Consider the dynamic system formulations for the three
methods, the traffic state estimator for Method 1 can be
designed on the basis of EKF as follows:

x̂1(k + 1|k) = f1
[
x̂1(k|k − 1), 0

] + K1 (k) [y1 (k)

−g1
(
x̂1(k|k − 1), 0

) ]
, (32)

where x̂1(k + 1|k) denotes the estimate of x at time instant
k+1 based on measurements available until time instant k. The

traffic state estimators for Methods 2 and 3 can be designed
on the basis of KF as follows:

x̂i (k + 1|k) = Ai (k) x̂i
(
(k|k − 1) + Bi (k) ui (k)

+Ki (k) (yi (k) − Ci x̂i (k|k − 1)), i = 2, 3.

(33)

Note that the mean-speed measurement noise of CVs
(e.g., due to speed information transmitted through a network)
is not considered in (12) and (18) for Method 2, and similarly,
the flow (and position) measurement noise of CVs is not
considered in (23) and (29) for Method 3. It is not hard to
extend the current formulations for Methods 2 and 3 to address
such measurement noise of CVs. However, the resulting sys-
tems would then incorporate noise terms that do not enter the
process and measurement equations in an additive manner, and
thus, a KF may not appear as a suitable choice anymore (rather,
an EKF may be more appropriate). Nevertheless, as reported
with the tests performed in [9], [10], [29], the current system
formulations and estimator designs for Methods 2 and 3 can
tolerate the un-modeled non-additive measurement noise of
CVs, which is consistent with the robustness properties of KF
to non-additive noise reported in the literature, see e.g. [41].

F. Comparison of Three Estimators

The operational mechanisms of Methods 1-3 are quite dif-
ferent; see Table III for a summary and Fig. 2 for comparison.

1) State Observability: In terms of fixed-sensing data, each
method requires a minimum number of configuration of fixed
sensors that respects the flow observability for the targeted
freeway stretch/network [1], [2]. In terms of mobile-sensing
data, both Methods 1 and 2 exploit speed information of CVs,
while Method 3 requires flow and density information of CVs.
Note that Method 1 can work without mobile sensing data (as
long as the flow observability is guaranteed by the fixed sen-
sor configuration), while mobile sensing is indispensable for
Methods 2 and 3. The state observability analysis in [10], [28]
proves that the availability of mean speed information or the
availability of flow and density information of CVs in each
segment is essential for the state observability of Method 2
or Method 3, as no dynamic model for average speed is
employed.

2) Data Inputs: Any considered freeway stretch is spatially
separated into a number of segments, and it is segment traffic
flow variables like volumes, densities and mean speeds that
are of interest to TSE. To take advantage of mobile sensing
information for TSE, each method needs to be aware of the
positions of CVs within the considered freeway stretch at any
time so as to assign them to their corresponding segments
in real time. Therefore, each method essentially needs the
regularly reported position information of CVs, as stated in
Section II-A-(2).

p̄i (k + 1) =
(
ρc

i (k) − T
�i

qc
i (k)

)
pi (k) + T

�i
qc

i−1 (k) pi−1 (k) + ξ
q
i−1 (k) − ξ

q
i (k)

gc
i (k)

+ T

�i

(ri (k) − si (k))

gc
i (k)

, (24)
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TABLE III

COMPARISON OF METHODS 1-3 FOR FREEWAY TRAFFIC STATE ESTIMATION

Note that speeds of CVs may either be obtained by vehicle
odometers or via trajectories of CV positions, while segment
flows and densities of CVs can solely be obtained with
trajectories of CV positions. Thus, in terms of measurement
data input, Methods 1 and 2 may potentially use more CV
information than Method 3. This paper does not consider
vehicle odometers, and hence all three methods are based on
the same set of CV information.

3) Estimation Outputs: Method 1 delivers segment speed
and density estimates simultaneously; Method 2 presumes that
the segment speeds are directly measurable via CVs, and
focuses on segment density estimation; Method 3 estimates
MPR for each segment, from which we can compute a-
posteriori segment flows and densities for all vehicles based
on measured segment flows and densities of CVs, delivering
segment speed estimates accordingly.
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Fig. 2. Comparison of Methods 1-3. Any link from the freeway network to the model or EKF/KF represents an input, with a solid line for fixed sensing
data and a dashed line for mobile sensing data; any link from EKF/KF represents an (estimated) output, denoted as ω̂ for a variable ω.

Note that Methods 1 and 2 may also be applied to calculate
MPR estimates once their segment flow or density estimates
for all vehicles are computed. Therefore, each method can
actually yield estimates for the same set of traffic state
variables, and thus the three methods can be compared for
their estimation performance.

More information of the three methods is found in Fig. 2 and
Table III.

III. EVALUATION RESULTS

A. Evaluation Setup

Vehicle trajectory data from the Next Generation SIMula-
tion (NGSIM) program was utilized in this work to evaluate
the designed traffic state estimators. As shown in Fig. 3, the
considered NGSIM highway stretch is composed of six lanes
and includes one on-ramp close to its upstream end. The left-
most lane (Lane 1) was open only to high occupancy-vehicles
(HOVs) presenting a clear bias in term of vehicle speeds, thus
vehicle trajectory data collected from regular lanes (Lanes 2-6)
was used for this work.

The considered data set was recorded from 4: 00 PM
to 4: 15 PM on April 13, 2005. The original NGSIM data

incorporates non-negligible errors in the positions of individual
vehicles (see, e.g., [42]). Therefore, correction methodologies
have been proposed in the literature to improve the data relia-
bility, and the data used for this work was processed [43], [44].

For the purpose of macroscopic modeling and TSE, the
stretch was divided into 4 segments, each of 100 meters in
length, with the on-ramp located in segment 2. The model
time step was set to be 5 s.

Regarding the fixed sensing conditions for this work, the
original NGSIM highway stretch involved no fixed sensor,
so the fixed sensing data employed was mimicked/converted
from the available NGSIM vehicle trajectory data. With
respect to the NGSIM highway stretch in Fig. 3, according to
Section II-A, a pair of fixed sensors are needed at the upper
and lower bounds of the stretch as illustrated in Fig. 3a for
each method 1/2/3. Method 1 is based on flow and speed
measurements from fixed sensors 1 and 5 in Fig. 3a, while
Method 2/3 requires only flow measurements from the same
sensors.

The mobile sensing conditions is illustrated in Fig. 3b.
Method 1 accepts mean speed information of CVs in segments
1-3, Method 2 requires mean speed information of CVs in
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Fig. 3. A highway stretch of I-80 in Emeryville, California: (a) fixed sensor configuration; (b) mobile sensor configuration.

segments 1-4, Method 3 requires flow and density information
of CVs in segments 1-4. See also Table III.

The performance metrics considered are as follows:

RM SE =
√

1

K N

∑K

k=1

∑N

i=1

[
xi (k) − x̂i (k/k − 1)

]2
,

(34)

M AP E = 1

K N

∑K

k=1

∑N

i=1

∣∣xi (k)− x̂i(k/k−1)
∣∣

xi (k)
× 100%,

(35)

B I AS = 1

K

∑K

k=1

[
xi (k) − x̂i (k/k − 1)

]
, (36)

N B I AS =
∑K

k=1

[
xi (k) − x̂i(k/k − 1)

]
∑K

k=1 xi (k)
. (37)

For this work, N = 4 (Fig. 3). The time horizon of
the NGSIM data set is 15 minutes, and K in (34)-(37) is
determined with setting the evaluation time interval set to be

30 s. As previously mentioned, the model time step is set to
be 5 s. So, each evaluation time interval includes 6 model time
steps, over which x̂i (k|k − 1) is delivered by each estimator
6 times, and what is eventually placed in (34)-(37) is the mean
value of the six TSE values for every 30 s.

The three methods were evaluated and compared with (34)
and (35) for their segment density, speed, and MPR estimates,
and with (36) and (37) for their on-ramp flow estimates. With
respect to the NGSIM data set used, the MPR is defined to be
the sampled rate of vehicle trajectories in the data set.

Comprehensive evaluation results were obtained and are
presented in Figs. 4-17. For the convenience of readers, the
main contents of Figs. 4-17 are summarized in Table IV.

B. Density and Mean Speed Estimation

Figs. 4 and 5 depict the RMSE and MAPE results for
Methods 1-3 in terms of segment densities and speeds versus
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Fig. 4. The comparison of density estimation performance for the three methods: (a) RMSE; (b) MAPE.

Fig. 5. The comparison of speed estimation performance for the three methods: (a) RMSE; (b) MAPE.

the sampled MPR. Tables V and VI numerically compare the
evaluation results for the three methods, when the sampled
MPR ranges from 10% to 80%. The scenarios “Mixed-1” and
“Mixed-2” in Tables V and VI are discussed in Section III-D.
Figs. 6 and 7 depict the density and speed estimation results
for segments 2 and 3 (in Fig. 3). Similar spot TSE results were
also obtained for the other two segments (Fig. 3), but omitted
for the sake of brevity.

Regarding the segment density estimation, it is noticed from
Figs. 4a, 4b, Table V, and Fig. 6:

(1) the estimation errors reduce with the increase of the
sampled MPR from 10% to 80% for each method;

(2) the estimation accuracy of Methods 1 and 2 is mod-
erately sensitive to MPR, while that of Method 3 is
significantly more sensitive;

(3) when MPR is lower than 40%, Method 1 is more
advantageous, while when MPR is larger than 60%,
Method 3 delivers the best results.

The speed estimation results are presented in Figs. 5a,
5b, Table VI, and Fig. 7. First, Method 2 assumes that
the mean speed of conventional vehicles is equal to that of
CVs, and accordingly takes the mean speed of CVs in each

segment as the segment speed estimate. With the increase
of MPR, the speed estimate for each segment by Method
2 approaches to the ground truth. That is why when MPR
is equal to 100%, both RMSE and MAPE for the speed
estimation by Method 2 become zero in Figs. 5a and 5b.
Overall, it is noticed from Figs. 5a, 5b, Table VI, and
Fig. 7:

(4) the estimation accuracy of Method 1-3 is sensitive to the
increase of the sampled MPR;

(5) Method 2 delivers the best speed estimates when MPR
is bigger than 20%, which is not surprising as explained
above.

(6) Method 1 is quite more accurate than Method 3 at each
MPR.

Observations (1) and (4) above indicate that the usage
of mobile sensing data is certainly beneficial for TSE.
Observations (2) and (3) regarding the density estimation,
and (5) and (6) regarding the speed estimation, can be further
interpreted from the mechanisms of the three methods as
follows.

Firstly, let us compare Methods 1 and 2 for the density
estimation. Method 2 assumes the speed of any segment is
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TABLE IV

FIGURES AND DESCRIPTIONS

TABLE V

PERFORMANCE OF DENSITY ESTIMATION

directly measured with CVs, and is based on the conservation
equation to estimates segment densities. In contrast, Method 1
makes use of nearly the same amount of fixed and mobile

sensing data, but it is based on a more sophisticated and
also more thoughtful traffic flow model to deliver density and
speed estimates simultaneously for any segment. Therefore,
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Fig. 6. Segment density estimates: (a), (b) Method 1; (c), (d) Method 2; (e), (f) Method 3; (a), (c), (e) segment 2; (b), (d), (f) segment 3 in Fig. 3.

the density estimation accuracy of Method 1 is higher than
that of Method 2.

Secondly, as previously explained, segment speeds are
directly measured with Method 2. Therefore, it is not mean-
ingful to compare Methods 1 and 2 for the speed estimation.

Thirdly, let us compare Methods 1 and 3 for the density
estimation. Given a segment i , Method 3 delivers the segment
density (or flow) based on the density (or flow) of all CVs
and the segment MPR estimate, i.e. qi (k) = qc

i (k) p̄i (k),
ρi (k) = ρc

i (k) p̄i (k), see also Fig. 2. Both qc
i (k) and ρc

i (k)
involve measurement noise, and while calculating qi (k) and

ρi (k), the noise is amplified with p̄i (k) (≥1) (see (22) in
Section II-C). In general, the lower the MPR, the higher the
errors for Method 3 in estimating segment densities and flows.
This is confirmed with Fig. 4, and Table V. Nevertheless, with
the increase of MPR, Method 3 eventually becomes superior to
Method 1 in the density estimation. This is probably because
Method 3 makes use of more connected vehicle information
than Method 1 (and Method 2), see Table III and Fig. 2.

Fourthly, let us compare Methods 1 and 3 in term of speed
estimation. Note that the segment speed estimates considered
in Fig. 5 and in Table VI for Method 3 were calculated
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TABLE VI

PERFORMANCE OF SPEED ESTIMATION

as follows:
vi (k) = qc

i (k)

ρc
i (k)

. (38)

Since both qc
i (k) and ρc

i (k) involve measurement noise,
vi (k) involves noise as well. That is probably why Method 3
is inferior to Method 1 in the speed estimation over the whole
spectrum of MPR (Fig. 5, Table VI).

C. On-Ramp Flow Estimation

As shown in Fig. 3, the considered NGSIM highway stretch
includes one on-ramp. The on-ramp flow estimation results
are presented in Fig. 8 using the three methods. Note from
Table III that the same random walk approach (see (5) in
Section II-A) was applied in each method for the ramp flow
estimation. It is seen from Fig. 8 that, with the MPR increase,
the ramp flow estimates tend to approach the trend of the
ramp flow curve for each method. The estimates are also
evaluated using the criteria of BIAS and NBIAS in Table VII.
The estimation accuracy increases with MPR. The scenarios
“Mixed-1” and “Mixed-2” in Table VII are discussed in
Section III-D.

Note that the results in Fig. 8 and Table VII (MPR =
10% - 80%) are obtained with a mild standard deviation (SD)
for the noise in the random walk equation. With a bigger
SD considered, however, a much quicker adaption of the
estimation towards the ramp flow is observed in each method,
see Fig. 9 for Method 1.

D. MPR Estimation

Only Method 3 can directly deliver MPR estimates. This
capability is demonstrated in this section using the same
NGSIM data set. By sampling the trajectories of all NGSIM
vehicles that consecutively entered the freeway stretch accord-
ing to the percentage of 10%, 20%, 40%, and 80%, a number

of vehicle trajectories were picked up to mimic those of CVs.
The above percentages are referred to as the sampled MPR
for this evaluation study. Because vehicle trajectories in the
NGSIM data set are not evenly distributed in time and space,
the resulting MPRs at the mainstream and on-ramp entries
are not constant. Thus, the MPR in each segment is not
constant, for any given sampled MPR, which is confirmed
in Figs. 10-12 below. Fig. 10 display actual MPR values
and their estimates in segments 2 and 3 in Fig. 3. Similar
results were observed for segments 1 and 4 but omitted for
brevity. Given a sampled MPR, the resulting segment MPRs
fluctuate around the sampled MPR, and with the increase of
the sampled MPR, the amplitudes of fluctuation are reduced.
In any case, the MPR estimates tracked the actual MPRs in
all segments quite well, and the higher the sampled MPR, the
more accurate the estimates, see also Table VIII for Method 3
(MPR = 10% - 80%).

Recall that the original NGSIM data set covers only
15 minutes. In order to further explore the dynamics of seg-
ment MPR and the tracking capability of the MPR estimator,
a demand scenario of 45 minutes was created by replicating the
original NGSIM data twice over the second and third periods
of 15 minutes each. In addition, the sampled MPR over the
first, second, and third periods were set to be 10%, 40%, and
20%. As displayed in Fig. 11, the segment MPRs were still
estimated quite well, and in particular, the MPR estimator was
able to closely track the sharp increase and decrease of MPR at
the end of the first and second periods of 15 minutes; see also
the last second line of Table VIII. Another test is presented
in Fig. 12, with the sampled MPRs over the first, second, and
third periods of 15 minutes set to be 80%, 40%, and 60%.
Again, the MPR estimator was able to track the sharp changes
of MPR quite satisfactorily; see also the last line of Table VIII.

To further demonstrate the estimation performance of the
three methods, the estimates of segment densities and speeds
for the MPR scenarios depicted in Figs. 11 and 12 are
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Fig. 7. Segment speed estimates: (a), (b) Method 1; (c), (d) Method 2; (e), (f) Method 3; (a), (c), (e) segment 2; (b), (d), (f) segment 3 in Fig. 3.

also evaluated, with the corresponding results presented in
Figs. 13-16 as well as in the last two lines of Tables V–VIII.

Note that Methods 1-3 utilize the same CVs measurements
derived from the same NGSIM data. Once Methods 1 and 2
obtain their segment density estimates for all vehicles, both
methods can also deliver their respective MPR estimates for
each segment. Fig. 17 and Table VIII compare the MPR
estimation capability of the three methods, with the results
of Method 3 already presented in Fig. 10.

In contrast to Fig. 4a and Table V, the RMSE results for
MPR estimates by Method 1/2 in Fig. 17a and Table VIII
increase with MPR. At first sight, this is surprising, but it could

be explained as follows. Let ρc
i and ρi denote the density of

CVs and that of all vehicles for a segment i . For either method,
ρc

i is measurable, but ρi needs to be estimated, and let the
estimate be ρ̂i . Let us denote also the segment MPR and its
estimate by αi and α̂i . Then, α̂i − αi = ρc

i

[
1
ρ̂i

− 1
ρi

]
. Note

that
[

1
ρ̂i

− 1
ρi

]
is little sensitive to MPR αi for MPR lager

than about 10% (see also Fig. 17b), but ρc
i is a monotonically

increasing function of αi . Thus, the increase of RMSE with
MPR is attributed to a more aggressive increase of ρc

i with
MPR, as compared to the change of 1

ρ̂i
− 1

ρi
with MPR αi ,

given that α̂i − αi is the dominant term in (34).
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Fig. 8. On-ramp flow estimates based on (a) Method 1; (b) Method 2; (c) Method 3.

TABLE VII

PERFORMANCE OF ON-RAMP FLOW ESTIMATION

On the other hand, the MAPE results in Fig. 17b and
Table VIII decrease with MPR. In fact, Fig. 17b and Table VIII
for MPR are quite comparable to Fig. 4b and Table V for
density. This is because the dominant factor of MAPE in (35)
for MPR estimates of segment i is equal to: αi−α̂i

αi
= ρ̂i −ρi

ρ̂i
,

but the key item in the MAPE index (35) for density of
segment i reads: ρi −ρ̂i

ρi
. Therefore, Fig. 17b and Table VIII

for MPR are highly relevant to Fig. 4b and Table V for
density.

IV. DISCUSSIONS

A. Recommendations

The investigation results from this work show that no
method outperforms the others in every aspect:

(1) Method 2 delivers the best results of segment speeds
when MPR is bigger than 20% (Fig. 5);

(2) Method 3 delivers the best MPR and density estimates
when MPR is bigger than 50% (Figs. 17b and 4b);
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Fig. 9. On-ramp flow estimates based on Method 1 with MPR equal to (a) 10%, (b) 20%, (c) 40%, (d) 80%.

TABLE VIII

PERFORMANCE OF MPR ESTIMATION

(3) Method 1 is more balanced on the density, speed, and
MPR estimates.

Note again that Method 1 can work without mobile
sensing data, while Methods 2 and 3 cannot. Method 2
takes advantage of speeds of CVs in each segment,
Method 3 exploits the density and flow of CVs in
each segment, all based on regularly reported positions
for CVs.

In general, the following recommendations are given:

(1) when MPR is less than 10%, Method 1 is recommended
for all density, speed, and MPR estimation;

(2) when MPR is bigger than 20%, there is no benefit
in calculating speed estimates, which can be obtained
directly from CV measurements; in fact, we observe
that speed errors in Method 2 are smaller than in
Methods 1 and 3.
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Fig. 10. MPR estimates in Method 3 for segments 2 and 3 in Fig. 3: (a), (b) MPR equal to 10%; (c), (d) MPR equal to 20%; (e), (f) MPR equal to 40%;
(g), (h) MPR equal to 80%; (a), (c), (e), (g) segment 2; (b), (d), (f), (h) segment 3.
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Fig. 11. MPR estimates in Method 3 over a period of 45 minutes with the MPR set to be 10%, 40%, and 20% over the first, second, and third period of
15 minutes: (a) segment 2; (b) segment 3.

Fig. 12. MPR estimates in Method 3 over a period of 45 minutes with the MPR set to be 40%, 80%, and 60% over the first, second, and third periods of
15 minutes: (a) segment 2; (b) segment 3.

Fig. 13. Segment density estimates corresponding to the MPR scenario in Fig. 11: (a) segment 2; (b) segment 3.

(3) when MPR is bigger than 50%, Method 3 is recom-
mended for density and MPR estimation.

The traffic flow model employed by Method 1 is more com-
plex than those by Methods 2 and 3. The above observations
indicate that, when MPR is very low, Method 1 can better

compensate the deficiency in traffic measurements through its
comprehensive traffic flow model. With the increase of MPR,
however, the richness of mobile sensing data weakens the
importance of traffic flow modeling for TSE, and hence allow
Methods 2 and 3 to adopt simpler modeling structures and
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Fig. 14. Segment speed estimates corresponding to the MPR scenario in Fig. 11: (a) segment 2; (b) segment 3.

Fig. 15. Segment density estimates corresponding to the MPR scenario in Fig. 12: (a) segment 2; (b) segment 3.

Fig. 16. Segment speed estimates corresponding to the MPR scenario in Fig. 12: (a) segment 2; (b) segment 3.

also excel in density, speed and MPR estimation. In addition,
when MPR ranges between 10% and 50%, Method 1 may
still be recommended for density and MPR estimation, but
Method 2 could be applied instead, if the difference in the
estimation accuracy between the two methods is not a major
concern (Figs. 4b and 17b). This is because the design and
implementation of traffic state estimator in Method 1 are quite

more complex than Method 2, due to an extra cost paid to
online model parameter estimation (OMPE).

B. Remarks on OMPE

The significance of OMPE for Method 1 was demonstrated
using fixed sensing data [1]–[6], and also confirmed recently
with mixed sensing [27]. All results of Method 1 presented
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Fig. 17. The comparison of MPR estimation performance for the three methods: (a) RMSE; (b) MAPE.

in this paper already take OMPE into account. Method 1 was
originally developed to work with fixed and sparse sensing
data, so it highly relies on comprehensive traffic flow models
and OMPE to compensate the shortage of traffic measure-
ments. Methods 2 and 3, on the other hand, have been specially
designed to operate with mobile sensing data (in addition to a
small amount of fixed sensing data for flow observability). The
advantages of mobile sensing allow Methods 2 and 3 to adopt
simpler modeling structures that do not need OMPE. On the
other hand, the density estimation accuracy of Method 1 is
higher than that of Method 2 (Fig. 4), and the speed estimation
accuracy of Method 1 is higher than that of Method 3 (Fig. 5),
at the cost of OMPE that involves an empirical and time-
consuming process for fine tuning. The interested reader is
referred to [27] for more details of OMPE for Method 1 in
the mixed sensing case.

V. CONCLUSION

Three model-based approaches to freeway traffic state esti-
mation have been studied and evaluated in depth using mixed
sensing data extracted from the NGSIM data set. The three
approaches were carefully compared in terms of their traffic
state estimator designs, operating principles, data require-
ments, and capabilities of estimating traffic flow variables
and MPRs of connected vehicles. A few recommendations are
given about the choice of methods with the gradual increase
of MPR of connected vehicles.
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