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Simultaneous Compensation of Actuation and Communication
Delays for Heterogeneous Platoons via Predictor-Feedback

CACC with Integral Action
Amirhossein Samii1 and Nikolaos Bekiaris-Liberis1

Abstract—We construct a predictor-feedback cooperative
adaptive cruise control (CACC) design with integral action,
which achieves simultaneous compensation of long, actuation
and communication delays, for platoons of heterogeneous vehicles
whose dynamics are described by a third-order linear system with
input delay. The key ingredients in our design are an underlying
predictor-feedback law that achieves actuation delay compensa-
tion and an integral term of the difference between the delayed
(by an amount equal to the respective communication delay) and
current speed of the preceding vehicle. The latter, essentially,
creates a virtual spacing variable, which can be regulated
utilizing only delayed position and speed measurements from the
preceding vehicle. We establish individual vehicle stability, string
stability, and regulation for vehicular platoons, under the control
design developed. The proofs rely on combining an input-output
approach (in the frequency domain), with derivation of explicit
solutions for the closed-loop systems, and they are enabled by the
actuation and communication delays-compensating property of
the design. We demonstrate numerically the control and model
parameters’ conditions of string stability, while we also present
simulation results, in realistic scenarios, including a scenario in
which the leading vehicle’s trajectory is obtained from NGSIM
data. All case studies confirm the effectiveness of the design
developed.

Index Terms—Delay compensation, string stability of vehicular
platoons, cooperative adaptive cruise control (CACC), predictor
feedback, actuation and communication delays.

I. INTRODUCTION

A. Motivation

STRING stability is a crucial requirement and serves as
an indicator of the safety and efficiency properties of

platoons consisting of vehicles equipped with Adaptive Cruise
Control (ACC) and CACC capabilities, see, for example, [11],
[22], [24]. This property is imperiled when delays affect
actuation, sensing, or communication of vehicular systems,
see, for example, [4], [6], [13], [20], [23], [30], [31], [36], [37].
In particular, communication delay, stemming from vehicle-to-
vehicle (V2V) communication, imposes a significant challenge
to string stability, particularly when both actuation and com-
munication delays coexist and they are large [10], [18], [22],
[26], [33], [36].
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B. Literature

For this reason, compensation of such delays becomes an
essential mechanism that could be integrated with nominal,
ACC/CACC laws. This integration may lead to a substantial
enhancement in string stability properties of vehicular pla-
toons. This is already evident in works that address small
actuation delays only [14], [30], or small communication
delays only [1], [10], [23], [25], or both [5], [13], [18],
[22], [33], [35]. To address larger actuation or communication
delays a predictor-based approach is required. Predictor-based
control designs addressing long actuation and communica-
tion delays can be found in [3], [4], [6], [12], [19], [20],
[28], [31], [34] and [32], respectively; while [36] presents
a predictor-based design to address both long actuation and
communication delays. Our work is viewed as complementary
and different to [36], in the sense of a) developing a new,
less complex predictor-feedback CACC design with integral
action, b) achieving simultaneous compensation of large ac-
tuation/communication delays, c) developing a constructive
and systematic approach for establishing individual vehicles’
stability, string stability, and regulation of the closed-loop
systems, and d) validating our design with real traffic data.
For the reader’s benefit, we present Table I, which illustrates
the distinctions between the present work and related, existing
works.

TABLE I
VARIOUS TYPES OF DELAYS ADDRESSED IN LITERATURE

Delays Types

References [3], [4], [6],
[12], [19],
[20], [28],
[31], [34]

[32]
[36] and

current paper

[1], [5], [10],
[13], [14], [18],
[22], [23], [25],
[30], [33], [35]

Small actuation and/or
communication delays X

Large actuation delay only X

Large communication delay
only X

Simultaneous large actuation
and communication delays X

In the present paper, we build upon the predictor-feedback
CACC law from [4], which is constructed to compensate
actuation delay only. While in [26] it is established that string
stability of the CACC law from [4] is robust to small commu-
nication delay, a predictor-feedback CACC design addressing
simultaneously, long actuation and communication delays is
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not available. The main reason for this unavailability is the
fact that exact predictor states (over a prediction horizon equal
to the actuation delay) cannot be constructed anymore in
the presence of communication delays. Nevertheless, as we
establish here, to achieve string stability it is not necessarily
required to construct exact predictor states, but to rather cancel
the effect of communication delay by aiming at regulation of
spacing and speed of the ego vehicle, essentially, to the past
(rather than the current) spacing and speed of the preceding
vehicle.

C. Contributions

Towards this end, we construct a linear, predictor-feedback
CACC law augmented with an integral term of the difference
between the preceding vehicle’s, delayed, by an amount equal
to the respective communication delay, speed and its current
speed. We consider platoons of vehicles with heterogeneous
dynamics described by a third-order linear system with actu-
ation delay. The control design developed achieves L2 string
stability with respect to speed/acceleration errors propagation
(and with respect to spacing errors propagation as well, in the
particular case of homogeneous vehicles). String stability is
achieved relying on the following two mechanisms embedded
in the control law developed–an underlying predictor-feedback
CACC design that aims at actuation delay compensation and
the integral term of the difference between the delayed and
current speed of the preceding vehicle (which, in fact, may be
viewed as a type of spacing variable). The latter, essentially,
modifies the objective of the original control law to aiming
at regulating the spacing (and speed) of the ego vehicle
accounting for the delayed, rather than the current, position
and speed of the preceding vehicle. This, in a way, aligns
the regulation objectives of the controller with the available
information for the preceding vehicle’s state at the current
time, which is beneficial for string stability. Furthermore, the
control design achieves stability of individual vehicles (which
is a prerequisite for string stability) and zero, steady-state
speed and spacing tracking errors, for a constant leader’s
speed. To achieve zero, steady-state spacing tracking error it
is required to reduce the original time-headway by an amount
equal to the respective communication delay, which imposes
a condition that the desired time-headway is larger than the
respective communication delay. This, in fact, is reasonably
expected since the controller reacts to past rather than current
information of the preceding vehicle’s state. Nevertheless, the
values of actuation and communication delays themselves are
not restricted.

The proof of string stability relies on an input-output
approach, deriving the respective transfer functions between
the speed of the ego and the preceding vehicle, together with
deriving explicit conditions on control/model parameters and
time-headway. The proofs of individual vehicle stability and
regulation rely on deriving explicit solutions of the closed-loop
systems, capitalizing on the ability of the control design de-
veloped to achieve actuation and communication delays com-
pensation. The analytical string stability conditions are also
illustrated numerically. Furthermore, we present consistent

simulation results of a platoon of ten vehicles, for the practical
scenario in which a vehicle cuts in the platoon (described by
considering initial condition deviations from equilibrium) and
it subsequently performs an acceleration/deceleration maneu-
ver. As it is shown, the performance of the platoon is consid-
erably improved as compared with [26], since only actuation
but not communication delay compensation is achieved in [26],
and thus, for large values of communication delays the design
from [26] cannot guarantee string stability. In addition, we
validate the design considering a scenario in which the leading
vehicle’s acceleration is obtained from the NGSIM data.

D. Organization

The outline of the paper is as follows. Section II presents
the model of heterogeneous platoons considered and the com-
munication/actuation delays-compensating predictor-feedback
design with integral action. In Section III, we state our
main result, which is stability, string stability, and regulation
under the CACC law developed, whose proof is provided in
Appendix A. In Section IV we present numerical experiments
for validation of the string stability guarantees. Simulation
results are presented in Section V and in Section IV we provide
concluding remarks.

II. PREDICTOR-FEEDBACK CACC FOR HETEROGENEOUS
PLATOONS WITH BOTH ACTUATOR AND COMMUNICATION

DELAYS

A. Vehicle Model and Nominal Delay-Free Design

a) Vehicle dynamics: We consider a heterogeneous string of
vehicles (see Fig. 1) each one modeled by the following third-
order, linear system with actuator delay that describes vehicle
dynamics (see, e.g., [1], [31], [32], [33])

ṡi(t) = vi−1(t)− vi(t), (1)
v̇i(t) = ai(t), (2)

ȧi(t) = − 1

τi
ai(t) +

1

τi
ui(t−D), (3)

i = 1, ..., N , where si = xi−1−xi−l and xi is the position of
vehicle i and l is its length, vi is vehicle speed, ai is vehicle
acceleration, τi is lag, capturing, engine dynamics, ui is the
individual vehicle’s control variable, D ≥ 0 is input delay, and
t ≥ 0 is time. Note that for the leading vehicle we assume
similarly that it has the same type of third-order dynamics as
the rest of the vehicles. The difference is that ul acts as a
time-varying, exogenous input rather than as feedback control
input. We adopt the convention that v0 = vl and a0 = al are
the speed and acceleration of the string leader, respectively.

b) Available measurements: For CACC platoons the mea-
surements available to the ego vehicle i are its own spacing
si, speed vi, acceleration ai, and control input ui as well
as the speed of the preceding vehicle vi−1. It is possible
to obtain this information through on-board sensors (for a
more low level description of the ways of acquiring such
measurements in practical applications the reader is referred to,
e.g., [7]– [9]). Furthermore, the control input of the preceding
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Fig. 1. Platoon of N + 1 heterogeneous vehicles following each other in a
single lane without overtaking. The dynamics of each vehicle i = 1, ..., N
are governed by system (1)–(3). Each vehicle can measure its own speed,
the relative speed with the preceding vehicle, and the spacing with respect to
the preceding vehicle. The control input and acceleration of each vehicle is
communicated to the following vehicle via V2V communication.

vehicle, as well as its acceleration and speed are also available
and are denoted by ui−1,m, ai−1,m, and vi−1,m respectively.
These measurements are transmitted from the preceding ve-
hicle, through V2V communication. Due to the presence of
communication delay these measurements are modeled by
vi−1,m(t) = vi−1(t−Dc,i−1), ai−1,m(t) = ai−1(t−Dc,i−1)
and ui−1,m(θ) = ui−1(θ − Dc,i−1), θ ∈ [t − D, t], respec-
tively, where Dc,i−1 ≥ 0, i = 1, ..., N , are communication
delays1.

c) Nominal control design: Without input delay, the follow-
ing control strategy is constructed

ui(t) = τiαi

(
si(t)

hi
− vi(t)

)
+ τibi(vi−1(t)− vi(t))

+ τiciai(t),

(4)

where αi > 0, bi > 0, and ci ∈ R are design parameters, and
hi > 0 is time-headway.

B. Communication Delay-Compensating Predictor-Feedback
Control Design

The predictor-based control laws with communication delay
compensation for system (1)–(3) are given by

ui(t) =
τiαi
hi

qi,1(t)− τi(αi + bi)qi,2(t) + τibiqi,3(t)

+ τiciqi,4(t) +
τiαi
hi

σi(t), (5)

σ̇i(t) = vi−1,m(t)− vi−1(t), (6)

qi(t) = eΓiDx̄i(t) +

∫ t

t−D
eΓi(t−θ)Biui(θ) dθ

+

∫ t

t−D
eΓi(t−θ)B1iui−1,m(θ) dθ, (7)

where

qi =


qi,1
qi,2
qi,3
qi,4
qi,5

 , x̄i =


si
vi

vi−1,m

ai
ai−1,m

 , (8)

Bi =
[
0 0 0 1

τi
0
]T
, B1i =

[
0 0 0 0 1

τi−1

]T
,

(9)

1The initial conditions vi−1(s) = vi−10
(s), s ∈ [−Dc,i−1, 0],

ai−1(s) = ai−10
(s), s ∈ [−Dc,i−1, 0] and ui−1(s) = ui−10

(s),
s ∈ [−D −Dc,i−1, 0) are assumed to be continuous functions.

Γi =


0 −1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 − 1

τi
0

0 0 0 0 − 1
τi−1

 . (10)

Implementation of control laws (5) requires measurements of
the ego vehicle’s spacing si, speed vi, acceleration ai, and
control input ui as well as the relative speed with the preceding
vehicle. Utilizing on-board sensors, this information can be
obtained. The preceding vehicle’s speed vi−1,m, acceleration
ai−1,m, and control input ui−1,m, which are also required, can
be obtained through V2V communication that, however, are
subject to communication delay. It is important to note that
we employ in our control design two different measurements
for the preceding vehicle speed, one from on-board sensors
vi−1 and one from V2V communication vi−1,m. Note that for
control implementation the value of the communication delay
is not needed, because vi−1,m can be obtained directly from
V2V communication. If Dc,i−1 is known to vehicle i, then
one could, alternatively, employ vi−1,m(t) via vi−1,m(t) =
vi−1(t−Dc,i−1).

Control laws (5), in the absence of communication delay,
correspond to an exact predictor-feedback CACC design. In
the present case, due to communication delay, the states qi are
not exact, D-time units predictor states anymore. Nevertheless,
simultaneous compensation of input and communication de-
lays is achieved, as stated in the next section, in which we also
include details on the mechanism embedded in our controller
that enables input/communication delays compensation.

III. STRING STABILITY DESPITE ACTUATION AND
COMMUNICATION DELAYS

We start providing the definition of string stability em-
ployed. A platoon of vehicles indexed by i = 1, ..., N,
following each other within one lane without overtaking, is
L2 string stable with reference to speed errors if the following
condition holds

sup
ω
|Gi(jω)| ≤ 1, i = 1, ..., N, (11)

where Gi(jω) denotes the transfer function between the i-th
vehicle’s speed and the speed of its preceding vehicle i − 1
(see, e.g., [11], [13]). It should be noted that string stability of
a platoon in the heterogeneous case depends on the selection
of states used to analyze the propagation of disturbances
(upstream in the platoon). Here we study L2 string stability
with respect to speed errors propagation, as this is the most
commonly used definitions, see, for example, [13], [36]. Note
also that the respective transfer functions, corresponding to
acceleration states, are identical to those for speed states (and,
in the case of homogeneous platoons, identical to spacing error
states as well). We now state our main result.

Theorem 1: Consider a platoon of vehicles with hetero-
geneous dynamics modeled by (1)–(3), under control laws
(5) with (6)–(10). Let the leading vehicle’s speed be uni-
formly bounded and continuous. For any D ≥ 0, hi >
0, the platoon is L2 string stable with respect to speed
errors propagation provided that the following conditions
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hold: 1
τi
− ci > 0,

(
1
τi
− ci

)
(αi + bi) − αi

hi
> 0,(

ci − 1
τi

)2

−2(αi+bi) > 0 , and 2
hi

(
ci − 1

τi

)
+2bi+αi > 0,

i = 1, ..., N . Furthermore, all states remain bounded and,
for a constant leading vehicle’s speed, say v∗, regulation
is achieved with limt→+∞ ai(t) = 0, limt→∞ vi(t) =
v∗, and limt→+∞ si(t) = hiv

∗ − limt→+∞ σi(t), where
limt→+∞ σi(t) = σi(0) +

∫ 0

−Dc,i−1
vi−10

(s)ds − Dc,i−1v
∗,

i = 1, ..., N .

Proof: The proof can be found in Appendix A.

Remark 1: Communication delay is compensated by reg-
ulating the speed of the ego vehicle to match the speed
of the preceding vehicle, also accounting for the respective
communication delay (see Remarks 2 and 3). This regula-
tory action in the presence of communication delays alters
the equilibrium point, resulting in loss of zero, steady-state
tracking error, as the controller aims to regulate si+σi (rather
than si) to hivi (this phenomenon also appears in, e.g., [32]).
To address steady-state error when communication delay is
known (e.g., as a known, average network delay), we can
set σi(0) = −

∫ 0

−Dc,i−1
vi−10

(s)ds and hi = hi,des − Dc,i−1

(assuming hi,des > Dc,i−1, which is a reasonable requirement
given that the controller reacts with Dc,i−1 delay and that,
typically, the values of communication delay are much smaller
that the desired headways), which results in a steady-state
value for si to be hi,desv

∗. Note that the choice for σi(0)
can be implemented at t = 0 using the past measurements
of vi−1, which are available. On the other hand, if Dc,i−1 is
unknown, we can set σi(0) = 0. This results in a steady-state
error for si of Dc,i−1v

∗ −
∫ 0

−Dc,i−1
vi−10

(s)ds. Nevertheless,
it is worth noting that, in practice, Dc,i−1 is typically much
smaller than hi, and thus, the steady-state error is expected not
to be large, particularly when the initial condition for speed is
close to the leader’s equilibrium speed or, at least, an estimate
D̂c,i−1 of actual communication delay Dc,i−1 is available.

Remark 2: Note that the conditions in the statements of
Theorem 1 do not depend on the delays values. To better
understand the structure of our controller that allows simulta-
neous actuation and communication delays compensation we
proceed as follows. We re-formulate the control laws (5) as2

ui(t) =Kipi(t) +Ki

eΓiD


σi(t)

0
∆vi−1(t)

0
∆ai−1(t)


+

∫ t

t−D
eΓi(t−θ)B1i∆ui−1(θ) dθ

)
, (12)

2Using (18), relation (5) is written as ui(t) = Kiqi(t) + τiαi
hi

σi(t).

Using (7), from definitions (8) and (14)–(17) we get qi(t) =

eΓiDx̃i(t) + eΓiD
[
0 0 ∆vi−1(t) 0 ∆ai−1(t)

]T
+∫ t

t−D eΓi(t−θ)Biui(θ) dθ +
∫ t
t−D eΓi(t−θ)B1iui−1(θ) dθ +

+
∫ t
t−D eΓi(t−θ)B1i∆ui−1(θ) dθ. With definitions (13), (A.5), and

noting that KieΓiD
[
σi(t) 0 0 0 0

]T
= τiαi

hi
σi(t), we get (12).

where

pi(t) = eΓiDx̃i(t) +

∫ t

t−D
eΓi(t−θ)Biui(θ) dθ

+

∫ t

t−D
eΓi(t−θ)B1iui−1(θ) dθ, (13)

x̃i =
[
si vi vi−1 ai ai−1

]T
, (14)

∆vi−1(t) = vi−1,m(t)− vi−1(t), (15)
∆ai−1(t) = ai−1,m(t)− ai−1(t), (16)
∆ui−1(s) = ui−1,m(s)− ui−1(s), s ∈ [t−D, t], (17)

Ki =
[ τiαi
hi

− τi(αi + bi) τibi τici 0
]
. (18)

The terms (15)–(17) in parentheses of (12) are viewed as
error due to the communication delays Dc,i−1, because in the
nominal case Dc,i−1 = 0, terms (15)–(17) are zero and pi is
the exact predictor of x̃i, D-time units in advance. Structure
of (12) reveals the reason for which Theorem 1 implies
that communication delay does not affect individual vehicle
stability. As it is evident from (12), communication delay
affects only the feedforward and not the feedback terms in
each ego vehicle’s controller, i.e., it affects only measurements
of the preceding vehicle’s states; while the part Kipi achieves
input delay compensation and individual vehicle stability. This
is consistent with the fact that the predictor-feedback controller
is input-to-state stable (see, for example, [2], [15]) with respect
to exogenous inputs and the states of the preceding vehicle,
namely σi, ∆vi−1, ∆ai−1, and ∆ui−1, act as such, when
viewed from the ego vehicle’s dynamics perspective.

Remark 3: We next proceed to explaining how string
stability is achieved. The states σi, ∆vi−1, and ∆ai−1 involved
in (12), for t ≥ max

i
{Dc,i−1} satisfy the following dynamics

σ̇i(t) =∆vi−1(t), (19)
∆v̇i−1(t) =∆ai−1(t), (20)

∆ȧi−1(t) =− 1

τi−1
∆ai−1(t) +

1

τi−1
∆ui−1(t−D). (21)

Then, we define the new signal p̄i, as the predictor of states
σi, ∆vi−1, and ∆ai−1, over a D-time units horizon, treating
∆ui−1 as input, in the following manner

p̄i(t) = eΓ̄iDx̂i(t) +

∫ t

t−D
eΓ̄i(t−θ)B̄1i∆ui−1(θ)dθ, (22)

where

p̄i =

p̄i,1p̄i,2
p̄i,3

 , x̂i =

 σi
∆vi−1

∆ai−1

 , (23)

B̄1i =

 0
0
1

τi−1

 , Γ̄i =

0 1 0
0 0 1
0 0 − 1

τi−1

 . (24)

Substituting (22) in the parentheses of (12) we get

ui(t) = Kipi(t) +Ki


p̄i,1
0
p̄i,2
0
p̄i,3

 . (25)
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Thus, (12) is written for t ≥ max
i
{Dc,i−1} as

ui(t) =
τiαi
hi

si(t+D)− τi(αi + bi)vi(t+D)

+ τibivi−1(t+D) + τiciai(t+D) +
τiαi
hi

σi(t+D)

+ τibi (vi−1,m(t+D)− vi−1(t+D)) . (26)

Hence, for t ≥ max
i
{Dc,i−1} we have

ui(t) = τiαi

(
s̄i(t+D)

hi
− vi(t+D)

)
+ τibi (vi−1,m(t+D)− vi(t+D)) + τiciai(t+D),

(27)

where

s̄i(t) = si(t) + σi(t). (28)

Noting that ˙̄si(t) = vi−1,m(t) − vi(t), one could observe
comparing (27) with the nominal controller (4) the following.
First, all involved states are predicted by D-time units for
input delay compensation. Second, communication delay is
compensated through aiming at regulation of the ego’s vehicle
speed vi to vi−1,m rather than vi−1. This is evident by the
fact that vi−1,m is involved in (27) (instead of vi−1), together
with the fact that s̄i satisfies ˙̄si = vi−1,m − vi, which is
viewed as the counterpart of si, under communication delay.
One of the key aspects of the proposed controller, which
makes it beneficial to string stability, is that the controller
aims at regulating vi to vi−1,m, while, simultaneously, aiming
at regulating s̄i (and not si) to hivi. In other words, the
controller regulates both speed and position of vehicle i taking
into account the past (by Dc,i−1) speed and position (note
that s̄i could be viewed as xi−1(t − Dc,i−1) − xi(t)) of
vehicle i − 1, because this is the available information for
the reference trajectory to vehicle i at time t (and it depends
on the past preceding vehicle’s speed/position). This, in a way,
aligns the objectives of speed and spacing regulation, i.e., we
regulate both, accounting for delayed information, rather than
regulating speed but not spacing, using delayed information.
This matching/synchronization is beneficial for string stability,
because each vehicle’s controller reacts uniformly, with respect
to time, to speed and spacing deviations. Moreover, the way
that the effect of the current speed of vehicle i − 1 is being
canceled from the spacing dynamics is by subtracting, via σi
(having units of spacing), the term vi−1. We note here that it
is anticipated that, this characteristic of the controller, may not
be beneficial for safety, due to the fact that the controller reacts
to past and not to the current speed/spacing of the preceding
vehicle.

Remark 4: The first two conditions of Theorem 1 come
from the Routh-Hurwitz criterion and they are a prerequisite
for string stability of the platoon. While the remaining two
conditions are derived from the string stability criterion in
speed error propagation. Feasibility of simultaneous satisfac-
tion of the four conditions in Theorem 1 is explained noting,
for example, that, since αi and bi are positive, the first three
conditions can be satisfied with a proper choice of 1

τi
− ci

(via a proper choice of ci); while the last condition can be
satisfied, subsequently, with a proper choice of αi and bi.

IV. NUMERICAL ILLUSTRATION OF STRING STABILITY

In this section, we numerically analyze the string stability
properties of the closed-loop system, according to Theorem 1.
The transfer function Gi = Vi

Vi−1
, which corresponds to the

closed-loop systems described by equations (1)–(3), (5)–(10),
along with choices (made for simplicity of illustration)

αi = − hip3
i , (29)

bi = hip
3
i + 3p2

i , (30)

ci =
1

τi
+ 3pi, (31)

for some pi < 0 and all i, is determined as

Gi(s) =
Vi(s)

Vi−1(s)
=
−p3

i + p2
i (pihi + 3)s

(s− pi)3
e−sDc,i−1 . (32)

The numerical performance of the predictor-feedback CACC
design (5) is showcased, focusing on L2 string stability
definition in relation to (32). Fig. 2 depicts supω |Gi(jω)| as a
function of pi and hi, where Gi is defined in (32). The condi-
tions in Theorem 1, reduce to condition h2

i p
2
i +6hipi+6 < 0,

which should hold to guarantee string stability. In Fig. 2,
the region between the red curves indicates where condition
h2
i p

2
i + 6hipi + 6 < 0 is satisfied.

Fig. 2. The values of function supω |Gi(jω)| corresponding to transfer
function (32) for heterogeneous vehicles, for different values of time-headway
hi and control parameter pi.

In fact, string stability in Lp, p ∈ [1,+∞], is also estab-
lished. This follows based on the facts that Gi(0) = 1 and
that (32) corresponds to a non-negative impulse response (see,
e.g., [11]). As inferred from [29] (Theorem 5; case Type D-
1), the validity of the latter is confirmed when the subsequent
condition holds

− 1

pi
≥ −hi

pi

(
pi +

3

hi

)
≥ 0, (33)

which can be also written as − 3
hi
≤ pi ≤ − 2

hi
(that also

guarantees h2
i p

2
i + 6hipi+ 6 < 0). Note that all conditions for

string stability do not depend on communication delay Dc,i−1

(or actuation delay D), demonstrating the delay-compensating
property of our design.
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V. SIMULATION RESULTS

In this section first, the performance of the actua-
tion/communication delays-compensating controller (5) is
demonstrated, followed by a comparison with the predictor-
feedback CACC approach in [26], which does not achieve
communication delay compensation. Moreover, to illustrate
the efficiency of predictor-feedback CACC with integral action
in more practical scenarios, we utilize real traffic data from
NGSIM.

A. Predictor-Feedback CACC with Simultaneous Compensa-
tion of Actuator/Communication Delays

At first we demonstrate the performance of the actua-
tion/communication delays-compensating predictor-feedback
CACC law. We consider a heterogeneous platoon of ten vehi-
cles in order to make the numerical example more practical.
For a heterogeneous platoon of ten vehicles with third-order
dynamics given by (1)–(3), we consider a case in which
τi = 0.1s, i = 1, 2, 6, 9; τi = 0.2s, i = 0, 3, 5; and τi = 0.25s,
i = 4, 7, 8. The desired time-headways are hi,des = 0.75,
i = 3, 4, 7, 9; hi,des = 0.9, i = 2, 5; hi,des = 1.2, i = 1, 6, 8.
The actuation delay is set to D = 0.7 and communication
delays are Dc,i−1 = 0.1, i = 1, 4, 6; Dc,i−1 = 0.15, i = 5, 8;
Dc,i−1 = 0.2, i = 3; Dc,i−1 = 0.25, i = 2, 9; and
Dc,i−1 = 0.35, i = 7. Following Remark 1, we assume that
the communication delay is known. To address steady-state
error, we employ in (5) time-headways hi = hdes,i −Dc,i−1

(all hi, i = 1, 2, ..., 9, satisfy the conditions in Theorem 1;
see Fig. 2) and choose σi0 = −

∫ 0

−Dc,i−1
vi−10

(s)ds for all
vehicles. Moreover, zero, steady-state spacing tracking errors
are achieved as limt→+∞ si(t) = hi,desv

∗, i = 1, 2, ..., N
(see Remark 1). We choose control gains according to (29)–
(31) with pi = −2.5

hi
, i = 1, 2, ..., 9 which satisfy the

conditions in Theorem 1. Moreover, we consider a scenario
in which ai−1(s) = 0, s ∈ [−Dc,i−1, 0] and ui(s) = 0,
s ∈ [−D −Dc,i−1, 0) for each vehicle i. While we set vi0 =

15
(
m
s

)
, i = 1, 2, ..., 9 and vl0 =

4vi0
5 = 12

(
m
s

)
; vl(s) =

12, s ∈ [−Dc,0, 0] and vi−1(s) = 15, s ∈ [−Dc,i−1, 0],
i = 2, ..., 9; si0 = hdes,ivi0 = hdes,i × 15 m, i = 2, 3, ..., 9,
s10 = 16 m. Furthermore, the leading vehicle performs both
deceleration and acceleration maneuvers.

Note that, here, we consider a scenario in which the initial
condition for the speed of the leading vehicle (12

(
m
s

)
) is

smaller than the initial speed of vehicle no. 1 (15
(
m
s

)
), i.e., the

vehicle immediately behind the leader; while their respective
initial spacing is 16 m. Thus, this scenario may appear in
cases in which a vehicle (taking the role of the leader) cuts
in, in front of the platoon (e.g., as a result of lane-changing
from an adjacent lane) at a lower speed and short distance; or
when a vehicle in the platoon changes lane to avoid a slowly
moving vehicle in front (that takes the role of the leader after
the lane-changing maneuver). Such a realistic correspondence,
between the practical scenario of a vehicle cutting in the
platoon and the simulation test using initial conditions not
at equilibrium (with the leading vehicle having lower initial
speed than vehicle no. 1), has been also considered in, for
example, [16] (Scenario 3 in Section 2.2). In addition, the

sharp deceleration maneuver of the leading vehicle in the same
scenario (at t = 20 s) could be also considered as related to
a practical scenario of a vehicle changing lane in front of
the leading vehicle with lower speed, thus causing the leading
vehicle to decelerate abruptly. Such a correspondence, between
the practical scenario of a vehicle cutting-in in front of the
platoon and the simulation scenario of a sharp deceleration
maneuver of the leading vehicle, has been also considered in,
for example, [38] (Scenario 1 in Section 4.1).

As depicted in Fig. 3, the speed and acceleration responses
to these maneuvers by the leading vehicle exhibit charac-
teristics devoid of oscillations and overshoot. This desirable
outcome is attributed to the obtained impulse response pos-
itivity and L∞ string stability, respectively. These attributes
are guaranteed for the corresponding transfer functions (32),
subject to the condition (33). Furthermore, it is interesting to
note that all states diverged with the nominal control law (4)
in the presence of actuation/communication delays.

We note that if communication delays are not known exactly
then we could still employ the choices hi = hi,des − D̂c,i−1

and σi0 = −
∫ 0

−D̂c,i−1
vi−10

(s)ds, with an estimate D̂c,i−1

of Dc,i−1. It is anticipated that steady-state, spacing tracking
errors would remain small. The only case in which steady-
state spacing errors would be large is when Dc,i−1 are both
completely unknown and large which, in practice, may not be
as realistic.

B. Predictor-Feedback Without Compensation of Communica-
tion Delay

In Fig. 4 we show the response of the heterogeneous platoon
of ten vehicles under the predictor-feedback CACC law from
[26] for system (1)–(3) that are given by

ūi(t) =
τiαi
hi

q̄i,1(t)− τi(αi + bi)q̄i,2(t) + τibiq̄i,3(t)

+ τiciq̄i,4(t), (34)

q̄i(t) = eΓiD ˜̄xi(t) +

∫ t

t−D
eΓi(t−θ)Biūi(θ) dθ

+

∫ t

t−D
eΓi(t−θ)B1iūi−1,m(θ) dθ, (35)

where

q̄i =


q̄i,1
q̄i,2
q̄i,3
q̄i,4
q̄i,5

 , ˜̄xi =


si
vi
vi−1

ai
ai−1,m

 . (36)

Control law (34) aims at only input delay compensation, but
does not address communication delay. String stability under
(34) is robust to the presence of small communication delay,
as it is shown in [26]. We consider the scenario in which τi,
D, and Dc,i−1 are the same with Section V-A and the desired
time-headways are hi = 0.75, i = 3, 4, 7, 9; hi = 0.9, i = 2, 5;
and hi = 1.2, i = 1, 6, 8. We choose control gains according
to (29)–(31) with pi = −2.5

hi
, i = 1, 2, ..., 9, which satisfy the

stability and string stability requirements when Dc,i−1 = 0
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Fig. 3. Acceleration (top), speed (middle), and spacing (bottom) of ten
vehicles, with dynamics described by (1)–(3), where D = 0.7, τi = 0.1s,
i = 1, 2, 6, 9; τi = 0.2s, i = 0, 3, 5; and τi = 0.25s, i = 4, 7, 8, following a
leader that performs an acceleration/deceleration maneuver, under the CACC
laws (5), where Dc,i−1 = 0.1, i = 1, 4, 6; Dc,i−1 = 0.15, i = 5, 8;
Dc,i−1 = 0.2, i = 3; Dc,i−1 = 0.25, i = 2, 9; and Dc,i−1 = 0.35, i = 7.
The desired time-headways are hi,des = 0.75, i = 3, 4, 7, 9; hi,des = 0.9,
i = 2, 5; hi,des = 1.2, i = 1, 6, 8; while control parameters are chosen
according to (29)–(31) with pi = −2.5

hi
and hi = hi,des − Dc,i−1. Initial

conditions are vi0 = 15
(
m
s

)
, i = 1, 2, ..., 9, vl0 =

4vi0
5

= 12
(
m
s

)
;

si0 = hi,desvi0 = hi,des × 15 m, i = 2, 3, ..., 9, s10 = 16 m;
σi0 = −

∫ 0
−Dc,i−1

vi−10
(s)ds and ui0 ≡ 0, for i = 1, 2, ..., 9.

Fig. 4. Acceleration (top), speed (middle), and spacing (bottom) of ten
vehicles, with dynamics described by (1)–(3), where D = 0.7, τi = 0.1s,
i = 1, 2, 6, 9; τi = 0.2s, i = 0, 3, 5; and τi = 0.25s, i = 4, 7, 8,
following a leader that performs an acceleration/deceleration maneuver, under
the CACC laws in [26] (see also (34)–(36)), where Dc,i−1 = 0.1, i = 1, 4, 6;
Dc,i−1 = 0.15, i = 5, 8; Dc,i−1 = 0.2, i = 3; Dc,i−1 = 0.25, i = 2, 9;
and Dc,i−1 = 0.35, i = 7. The desired time-headways are hi = 0.75,
i = 3, 4, 7, 9; hi = 0.9, i = 2, 5; and hi = 1.2, i = 1, 6, 8; while
control parameters are chosen according to (29)–(31) with pi = −2.5

hi
. Initial

conditions are vi0 = 15
(
m
s

)
, i = 1, 2, ..., 9, vl0 =

4vi0
5

= 12
(
m
s

)
;

si0 = hivi0 = hi × 15 m, i = 2, 3, ..., 9, s10 = 16 m; and ui0 ≡ 0, for
i = 1, 2, ..., 9.
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(see Fig. 1-top in [26]). Since we consider the same scenario
with Section V-A we choose identical initial conditions for
ai, vi, ui; while we set the initial spacing for i = 2, 3, ..., 9 to
the corresponding equilibria for this this case, namely, si0 =
hivi0 = hi × 15 m, and set s10

= 16 m. The respective
responses are, in general, more oscillatory. In addition, the
response of vehicle 7 is string unstable, for the given values
of h7 and Dc,6 (see Fig. 3 in [26]), which results in overshoot
in the respective response to leader’s maneuvers.

C. Validation With NGSIM Data
In Fig. 5 we present the results of applying the predictor-

feedback CACC law of Section V-A on NGSIM dataset.
We extract reconstructed data from [21] to demonstrate the
controller’s performance in real maneuvering of the leading
vehicle, considering that the leading vehicle’s trajectory is
taken from the real trajectory of vehicle no. 1601. This
vehicle’s trajectory is selected because it involves interesting
dynamics with several acceleration/deceleration cycles. In fact,
NGSIM data involve vehicles’ trajectories that are taken from
traffic in heavily congested conditions [21]. Indeed, from
Fig. 5 (top and middle plots) it can be observed that the leading
vehicle’s (and thus, also the rest of the vehicles’) trajectory
features oscillations, as result of appearance of stop-and-go
waves (evident in congested traffic flow); while its speed varies
between around 15

(
m
s

)
and 4

(
m
s

)
(also a feature of congested

traffic flow conditions).
We consider a heterogeneous platoon of five vehicles in

order to make the numerical example more accessible and to
more clearly illustrate the benefits of (5) in more practical
scenarios. One difference from Section V-A is the predictor-
feedback law for the first vehicle. Because we assume that
the leading vehicle’s dynamics satisfy v̇l(t) = ul(t − D)
(and not the third-order system (1)–(3)) we have to modify
slightly the predictor-feedback law for the first vehicle. In this
case, for implementation of the predictor-feedback law, we
set ul(s), s ≥ 0, using the practical command data, which
are obtained from NGSIM dataset and we also set ul(s) = 0,
for s ∈ [−D −Dc,0, 0). Furthermore vl is computed from the
model v̇l(t) = ul(t − D), where ul(t) = al(t), t ≥ 0, and
al(t) are the NGSIM values of acceleration. This scenario
could correspond to a case of a leading vehicle that is
connected/automated or only connected, in which the control
input commands ul(t) (desired acceleration) affect the vehicle
with a delay D; while these commands are transmitted to the
following vehicle with communication delay Dc,0. We also
note here that we do not validate the design in scenarios in
which, for example, the leading vehicle’s dynamics satisfy
v̇l(t) = ul(t). The reason is that, because the leading vehicle’s
dynamics in such a case would not involve input delay, one
would have to properly modify the predictor-feedback law for
vehicle i = 1, for obtaining an implementable formula for
the predictor state of vl. This could be done, for example, as
in [19], assuming constant speed for the leader. We do not
investigate this scenario here, because this would imply that
we also validate the design in such type of model mismatches,
rather than validating it only accounting for real, leading
vehicle’s trajectories, which is our current scope here.

Fig. 5. Acceleration (top), speed (middle), and spacing (bottom) of five
vehicles, where D = 0.7, τi = 0.1s, i = 1, 4; τi = 0.2s, i = 0, 2;
and τi = 0.25s, i = 3, following a leader whose trajectory is obtained
from the trajectory of vehicle no. 1601 in the NGSIM data, under the CACC
laws (5), where Dc,i−1 = 0.1, i = 1, 3, 4; Dc,i−1 = 0.2, i = 2.
The desired time-headways are hi,des = 1.2, i = 1, 4; hi,des = 0.75,
i = 2, 3; while control parameters are chosen according to (29)–(31) with
pi = −2.5

hi
and hi = hi,des−Dc,i−1, with σi0 = −

∫ 0
−Dc,i−1

vi−10
(s)ds.

Initial conditions are vi0 = 20
(
m
s

)
, i = 1, 2, 3, 4, vl0 = 14.9

(
m
s

)
;

si0 = hi,desvi0 = hi,des × 20 m, i = 2, 3, 4, s10 = 22 m; and ui0 ≡ 0,
for i = 1, 2, 3, 4.
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In this scenario we consider a case in which τi = 0.1s,
i = 1, 4; τi = 0.2s, i = 0, 2; and τi = 0.25s, i = 3.
The desired time-headways are hi,des = 1.2, i = 1, 4;
hi,des = 0.75, i = 2, 3. The actuation delay is set to D = 0.7
and communication delays are Dc,i−1 = 0.1, i = 1, 3, 4;
Dc,i−1 = 0.2, i = 2. Following a similar approach to Sec-
tion V-A, we assume that the communication delay is known,
so we employ in (5) time-headways hi = hdes,i − Dc,i−1,
i = 1, 2, 3, 4 and choose σi0 = −

∫ 0

−Dc,i−1
vi−10

(s)ds for all
vehicles to address steady-state spacing error. Moreover, we
choose control gains according to (29)–(31) with pi = −2.5

hi
,

i = 1, 2, 3, 4, which satisfy the conditions in Theorem 1.
We set ai(s) = 0, s ∈ [−Dc,i−1, 0] and ui(s) = 0,
s ∈ [−D −Dc,i−1, 0) for vehicles i = 1, 2, 3, 4. While we
also set vi0 = 20

(
m
s

)
, i = 1, 2, 3, 4 and vl0 = 14.9

(
m
s

)
(to match the initial speed of vehicle 1601 from NGSIM
data); vl(s) = 14.9, s ∈ [−Dc,0, 0] and vi−1(s) = 20, s ∈
[−Dc,i−1, 0], i = 2, 3, 4; si0 = hdes,ivi0 = hdes,i × 20 m,
i = 2, 3, 4, s10 = 22 m. Fig. 5 illustrates that the performance
of the predictor-feedback CACC law with integral action (5)
is preserved even in more realistic traffic scenarios.

VI. CONCLUSIONS

In the present paper, we design a predictor-feedback CACC
law with integral action, which achieves simultaneous actua-
tion and communication delays compensation. We consider
heterogeneous platoons with vehicles whose dynamics are
described by a linear, third-order model with delayed actu-
ation. The control design developed achieves string stability
with respect to speed errors propagation, individual vehicle
stability, and zero steady-state tracking errors. We provide
constructive proof strategies that rely on a combination of
an input-output approach and on deriving explicit solutions
of the closed-loop systems. We demonstrate numerically the
string stability conditions obtained and we provide simulation
results for a platoon of ten vehicles, considering a realistic
scenario of a vehicle cutting in the platoon and performing
acceleration/deceleration maneuvers. We also validate the per-
formance of the design developed in simulation, using real
traffic data to describe the trajectory of the leading vehicle.

APPENDIX A

In order to studying stability and string stability of speed
error propagation, we first compute the transfer functions

Gi(s) =
Vi(s)

Vi−1(s)
, i = 1, ..., N, (A.1)

viewing as input the preceding vehicle’s speed and as output
the current vehicle’s speed. Taking Laplace transform of the
predictor states (7) we get

Qi(s) = eΓiDX̄i(s) +M1,i(s)Ui(s)

+M2,i(s)Ui−1(s)e−sDc,i−1 , (A.2)

where

M1,i(s) = (sI5×5 − Γi)
−1
(
I5×5 − eΓiDe−sD

)
Bi, (A.3)

M2,i(s) = (sI5×5 − Γi)
−1

×
(
I5×5 − eΓiDe−sD

)
B1i, (A.4)

eΓiD =



1 −D D E14 E15

0 1 0 E24 0

0 0 1 0 τi−1

(
1− e

−D
τi−1

)
0 0 0 e

−D
τi 0

0 0 0 0 e
−D
τi−1

 ,
(A.5)

E14 = τ2
i

(
1− D

τi
− e

−D
τi

)
, (A.6)

E15 = τ2
i−1

(
e

−D
τi−1 +

D

τi−1
− 1

)
, (A.7)

E24 = τi

(
1− e

−D
τi

)
. (A.8)

Using (8), (10), (A.3), and (A.4) we get

(sI5×5 − Γi)
−1 =


s 1 −1 0 0
0 s 0 −1 0
0 0 s 0 −1
0 0 0 s+ 1

τi
0

0 0 0 0 s+ 1
τi−1


−1

=
1

s2


s −1 1 − τi

sτi+1 − τi−1

sτi−1+1

0 s 0 sτi
sτi+1 0

0 0 s 0 sτi−1

sτi−1+1

0 0 0 s2τi
sτi+1 0

0 0 0 0 s2τi−1

sτi−1+1

 ,
(A.9)

M1,i(s) =
[
M11,i(s) M21,i(s) 0 M41,i(s) 0

]T
,

(A.10)

M2,i(s) =
[
m11,i(s) 0 m31,i(s) 0 m51,i(s)

]T
,

(A.11)

where

M11,i(s) =
e−sD

(
τi − τie

−D
τi

)
s2τi

+
e−sD

(
τ2
i e

−D
τi +Dτi − τ2

i

)
sτi

+
τi

(
e
−D
τi e−sD − 1

)
s2τi(sτi + 1)

, (A.12)

M21,i(s) =− e−sD(τi − τie
−D
τi )

sτi
−
τi

(
e

−D
τi e−sD − 1

)
sτi(sτi + 1)

,

(A.13)

M41,i(s) =− e
−D
τi e−sD − 1

sτi + 1
, (A.14)
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m11,i(s) =−
e−sD

(
τi−1 − τi−1e

−D
τi−1

)
s2τi−1

−
e−sD

(
τ2
i−1e

−D
τi−1 +Dτi−1 − τ2

i−1

)
sτi−1

−
τi−1

(
e
− D
τi−1 e−sD − 1

)
s2τi−1(sτi−1 + 1)

, (A.15)

m31,i(s) =−
e−sD

(
τi−1 − τi−1e

−D
τi−1

)
sτi−1

−
τi−1

(
e

−D
τi−1 e−sD − 1

)
sτi−1(sτi−1 + 1)

, (A.16)

m51,i(s) =− e
−D
τi−1 e−sD − 1

sτi−1 + 1
. (A.17)

Using the i-th vehicle’s model (1)–(3) we obtainSi(s)Vi(s)
Ai(s)

 =
(
sI3×3 − Γ̂i

)−1

 0
0
1
τi

 e−sDUi(s)

+

1
0
0

Vi−1(s)

 ,

(A.18)

where

Γ̂i =

0 −1 0
0 0 1
0 0 − 1

τi

 , (A.19)

and henceSi(s)Vi(s)
Ai(s)

 =

−
1

s2(sτi+1)
1

s(sτi+1)
1

sτi+1

 e−sDUi(s) +

 1
s
0
0

Vi−1(s).

(A.20)
Using control laws (5), together with (A.2)–(A.17), we arrive
at

Ui(s) =
τiαi
hi

Si(s)−
(
τi(αi + bi) +

Dτiαi
hi

)
Vi(s)

− τiαi
shi

Vi−1(s)

+

(
τibi +

Dτiαi
hi

+
τiαi
shi

)
e−Dc,i−1sVi−1(s)

+
(
τicie

−D
τi − τi(αi + bi)

(
τi − τie

−D
τi

)
−τiαi

hi

(
τ2
i e

−D
τi +Dτi − τ2

i

))
Ai(s)

+

(
τibi

(
τi−1 − τi−1e

−D
τi−1

)
+
τiαi
hi

(
τ2
i−1e

−D
τi−1

+Dτi−1 − τ2
i−1

))
e−Dc,i−1sAi−1(s)

+ g1,i(s)Ui(s) + g2,i(s)Ui−1(s)e−Dc,i−1s, (A.21)

where

g1,i(s) =

(
τiαi
hi

M11,i(s)− τi(αi + bi)M21,i(s)

+τiciM41,i(s)) , (A.22)

g2,i(s) =

(
τiαi
hi

m11,i(s) + τibim31,i(s)

)
. (A.23)

Hence, substituting (A.20) in (A.21) we derive Ui
Ui−1

, which,
multiplying it by sτi−1+1

sτi+1 , gives

Gi(s) =

(
bis+ αi

hi

)
e−Dc,i−1s

s3 +
(

1
τi
− ci

)
s2 + (αi + bi)s+ αi

hi

. (A.24)

String stability in L2 is guaranteed when |Gi(jω)| ≤ 1, for all
ω ≥ 0. The condition is satisfied for ω = 0 since |Gi(0)| = 1.
Moreover, from (A.24) we have

Gi(jω) =
f1,i(ω) + jf2,i(ω)

f3,i(ω) + jf4,i(ω)
e−Dc,i−1jω, (A.25)

f1,i(ω) =
αi
hi
, (A.26)

f2,i(ω) = biω, (A.27)

f3,i(ω) = ω2

(
ci −

1

τi

)
+
αi
hi
, (A.28)

f4,i(ω) = ω(αi + bi)− ω3. (A.29)

By using the fact that supω |e−Dc,i−1jω| = 1, the condition
for string stability becomes f1,i(ω)2 + f2,i(ω)2 < f3,i(ω)2 +
f4,i(ω)2, ω > 0, i = 1, ..., N , and hence, after straightforward
computations, we get the following condition that has to hold
for all ω > 0 and i = 1, ..., N

ω6 + ω4f5,i(ω) + ω2f6,i(ω) > 0, (A.30)

where

f5,i(ω) =

(
ci −

1

τi

)2

− 2(αi + bi), (A.31)

f6,i(ω) =αi

(
αi + 2bi +

2

hi

(
ci −

1

τi

))
. (A.32)

Relation (A.30) holds for all ω > 0 , under the conditions on
the parameters ai, bi, ci, τi, hi of Theorem 1.

We next show that boundedness of all states is achieved.
Using the delay-compensating property of predictor feed-
back (see e.g., [2]), we have, using (26), that for t ≥
max

{
D,max

i
{Dc,i−1}

}
= D̄ (note that, due to linearity

of systems (1)–(3) and controllers (5), no finite escape time
phenomenon can appear for t < D̄) it holdsṡi(t)v̇i(t)
ȧi(t)

 =

 0 −1 0
0 0 1
ai
hi
−(ai + bi) ci − 1

τi

si(t)vi(t)
ai(t)


+

1
0
0

 vi−1(t) +

0
0
bi

 vi−1,m(t) +

 0
0
ai
hi

σi(t),
(A.33)

σ̇i(t) =vi−1,m(t)− vi−1(t). (A.34)
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The solution to (A.33), (A.34) is given assi(t)vi(t)
ai(t)

 =eĀi(t−D̄)

si (D̄)vi
(
D̄
)

ai
(
D̄
)


+

∫ t

D̄

eĀi(t−s)

1
0
0

 vi−1(s) +

0
0
bi

 vi−1,m(s)

+

 0
0
ai
hi

σi(s)
 ds, (A.35)

σi(t) =σi
(
D̄
)

+

∫ t

D̄

(vi−1,m(s)− vi−1(s)) ds, (A.36)

where Āi =

 0 −1 0
0 0 1
ai
hi
−(ai + bi) ci − 1

τi

. Under the condi-

tions in Theorem 1, Āi always has eigenvalues with strictly
negative real part, which means that the states si, vi, ai remain
bounded, provided that σi and vi−1 are bounded. We establish
next the boundedness of σ1 under the assumption that the
leader’s speed, denoted as v0, is bounded by, say, Mv0 , i.e.,
|v0(s)| ≤ Mv0, for all s ≥ −Dc,0. We derive

σ1(t) =σ1(0) +

∫ t

0

(v0(s−Dc,0)− v0(s)) ds

=σ1(0) +

∫ t−Dc,0

−Dc,0

v0(s)ds−
∫ t

0

v0(s)ds, (A.37)

and thus,

σ1(t) =σ1(0) +

∫ 0

−Dc,0

v0(s)ds−
∫ t

t−Dc,0

v0(s)ds. (A.38)

Considering the assumption on the leader’s speed being
bounded we can derive that∫ t

t−Dc,0

|v0(s)| ds ≤
∫ t

t−Dc,0

Mv0ds = Mv0Dc,0. (A.39)

Thus, considering (A.38), (A.39), it follows that σ1 is uni-
formly bounded, with |σ1(t)| ≤ Mσ1

, where Mσ1
= σ1(0) +

2Mv0Dc,0, t ≥ 0. For showing boundedness of v1 we proceed
as follows. By using (A.35) for i = 1, with the fact that∣∣∣eĀ1(t−D̄)

∣∣∣ ≤ k1e−λ1(t−D̄), for some positive constants k1,
λ1 (because A1 is Hurwitz, see, e.g., [17]) we get for t ≥ D̄

|v1(t)| ≤r1,1(t) + r2,1(t) ≤ v̄1(t), (A.40)

where

r1,1(t) =k1e−λ1(t−D̄) (∣∣s1

(
D̄
)∣∣+

∣∣v1

(
D̄
)∣∣+

∣∣a1

(
D̄
)∣∣) ,
(A.41)

r2,1(t) =

∫ t

D̄

k1e−λ1(t−s) (|v0(s)|+ |b1v0,m(s)|

+

∣∣∣∣α1

h1
σ1(s)

∣∣∣∣) ds, (A.42)

v̄1(t) =r1,1(t) +
(1 + b1) k1

λ1
Mv0 +

k1α1

λ1h1
Mσ1 . (A.43)

Relations (A.40)–(A.43) imply that v1 is uniformly bounded
with |v1(s)| ≤ Mv1 , s ≥ −Dc,1. This assertion is based on the
observation that v1 is bounded by constant terms (1+b1)k1

λ1
Mv0 ,

k1α1

λ1h1
Mσ1 , and an exponentially decaying term, as well as

using the fact that v1(s), s ∈ [−Dc,1, 0] is also bounded
(by assumption). Then we need to show that σ2 is uniformly
bounded. We derive

σ2(t) =σ2(0) +

∫ t

0

(v1(s−Dc,1)− v1(s)) ds

= σ2(0) +

∫ 0

−Dc,1

v1(s)ds−
∫ t

t−Dc,1

v1(s)ds.

(A.44)

Following a similar argument as for the boundedness of σ1

and since∫ t

t−Dc,1

|v1(s)| ds ≤
∫ t

t−Dc,1

Mv1ds = Mv1Dc,1, (A.45)

we conclude that σ2 is uniformly bounded. We next show that
v2 is bounded. Similarly to derivation of (A.40)–(A.43), there
exist some positive constants k2 and λ2, such that for t ≥ D̄

|v2(t)| ≤r1,2(t) + r2,2(t) ≤ v̄2(t), (A.46)

where

r1,2(t) =k2e−λ2(t−D̄) (∣∣s2

(
D̄
)∣∣+

∣∣v2

(
D̄
)∣∣+

∣∣a2

(
D̄
)∣∣) ,
(A.47)

r2,2(t) =

∫ t

D̄

k2e−λ2(t−s) (|v1(s)|+ |b2v1,m(s)|

+

∣∣∣∣α2

h2
σ2(s)

∣∣∣∣) ds, (A.48)

v̄2(t) =r1,2(t) +
(1 + b2) k2

λ2
Mv1 +

k2α1

λ2h2
Mσ2

. (A.49)

This pattern continues iteratively up to i = N . Consequently,
we can deduce by induction that vi and σi, i = 1, ..., N , are
bounded. From (A.35) and the fact that the Āi matrices are
Hurwitz we conclude that the system’s states si and ai are
also bounded.

Next, we demonstrate how control law (5) regulates si, vi,
ai, and σi, and we also compute their steady-state values. Reg-
ulation follows starting with i = 1 and considering v0 ≡ v∗

as the leader’s speed having constant value. This assumption
leads to bounded limits for each σi and, subsequently, results
in finite limits for vi, si, and ai. To clarify this, we begin with
σ1, which is constant (given a constant v0). This enables us to
recursively compute finite limits for v1, s1, and a1, based on
(A.35) and the fact that Ā1 is Hurwitz. Then, using (A.44),
together with the continuity of v1 (for t ≥ D̄) and the fact
that v1 has a finite limit, we obtain that σ2 has a finite limit.
By considering (A.35) and the finite limit of states v1 and σ2,
as well as the fact that Ā2 is Hurwitz, we deduce that v2, s2,
and a2 have finite limits. This process continues recursively,
leading to the conclusion that si, vi, ai, and σi, i = 1, 2, ..., N ,
have finite limits. Moreover, we can derive limt→+∞ ṡi(t) =
limt→+∞ v̇i(t) = limt→+∞ ȧi(t) = 0, i = 1, 2, ..., N . This
is established by applying, for example, Barbalat’s lemma,
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(see, e.g., [27]), given that si, vi, and ai have finite limits
and by using (A.33), (A.34), which allow us to conclude
boundedness of s̈i, v̈i, äi. Subsequently, by using (A.33) we
deduce that limt→+∞ vi(t) = limt→+∞ vi−1(t) = v∗, and
limt→+∞ vi−1,m(t) = limt→+∞ vi−1(t) = v∗. Moreover, we
conclude that limt→+∞ si(t) = limt→+∞ (hivi(t)− σi(t)),
where

lim
t→+∞

σi(t) =σi(0) +

∫ 0

−Dc,i−1

vi−10
(s)ds

− lim
t→+∞

∫ 0

−Dc,i−1

vi−1(s+ t)ds. (A.50)

Due to the fact that vi−1 is a continuous function on the time
interval

(
D̄, +∞

)
and uniformly bounded, we can derive

lim
t→+∞

σi(t) = σi(0) +

∫ 0

−Dc,i−1

vi−10
(s)ds−Dc,i−1v

∗,

(A.51)

which completes the proof.
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