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On 1-D PDE-Based Cardiovascular Flow Bottleneck Modeling
and Analysis: A Vehicular Traffic Flow-Inspired Approach

Nikolaos Bekiaris-Liberis

Abstract—We illustrate the potential of partial differential equa-
tion (PDE)-based traffic flow control in cardiovascular flow anal-
ysis, monitoring, and control, presenting a PDE-based control-
oriented formulation, for one-dimensional (1-D) blood flow dynam-
ics in the presence of stenosis. This is achieved adopting an
approach for modeling and analysis that relies on the potential
correspondence of 1-D blood flow dynamics in the presence of
stenosis, with 1-D traffic flow dynamics in the presence of bottle-
neck. We reveal such correspondence in relation to the respective
(for the two flow types), speed dynamics and a (consistent with
them) fundamental diagram-based reduction; bottleneck dynamic
effects description and resulting boundary conditions; and free-
flow/congested regimes characterization.

Index Terms—Cardiovascular flow stenosis, hyperbolic PDE
systems, modeling, traffic flow bottleneck.

|. INTRODUCTION

Arterial stenosis, due to, for example, atherosclerotic plaque building
up in arteries or in-stent restenosis, is a primary cause of human losses
worldwide [13]. A great number of deceases, attributed to congested
blood flow, currently accounting for about 50% of deaths within the
European Union [34], could be avoided with accurate/timely detection
and action implementation. This is true particularly in view of the
practical feasibility that is supported by existing technologies, such as
smart, stents and bypass grafts, and other implantable or noninvasive
devices, where actuation and sensing may be performed wirelessly, via
communication with a central computer; see, e.g., [8], [12], [13], [26],
[49], [50].

Despite the technological advancement and urgent need for availabil-
ity of respective advanced methodologies, illustrated by their potential
in congested blood flow detection/treatment, there exists no control-
theoretic approach tackling the formulation, analysis, monitoring, and
feedback control problems of congested blood flow, in its natural,
continuous in time/space, domain, in the presence of stenosis. However
(and despite the domain and dimensional complexity of cardiovascular
flow), there exist one-dimensional(1-D), second-order, hyperbolic par-
tial differential equation (PDE) systems that may effectively describe
(on average) blood flow dynamics; see, e.g., [11], [19], [21], [30], [35],
[46]. Thus, such models may be utilized as basis for control-theoretic
modeling, analysis, and design purposes.

In this article, we launch an effort in this direction formulating and
analyzing, from a PDE-based traffic flow control (see, e.g., [10], [15],
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[17], [22], [24], [33], [44], [45], [56], [58]) perspective, the dynamics
of 1-D blood flow in the presence of stenosis. The stenosis is considered
to be located at the boundary of the arterial segment considered. We
present two alternative formulations in which the stenosis dynamics are
characterized via a static or dynamic description for the pressure drop
through the stenosis. Together with utilization of a baseline dynamic
model for blood flow, capturing the main transport phenomena and
respective mass/momentum conservation principles, such formulation
gives rise to a 2 x 2 (heterodirectional; see, e.g., [3], [23]) hyperbolic
PDE system, with a static or dynamic boundary condition, at the
outlet of the artery segment considered, respectively. As the location,
geometry, and length of the potential stenosis are considered to be
unknown, the derived model may incorporate unknown PDE domain
length and boundary conditions parameters. We recast the problems
of real-time blood flow estimation and stenosis characteristics (in
particular, stenosis’ location, length, and section area) identification
as problems of state estimation and parameters identification of a class
of 2 x 2 hyperbolic PDE systems with uncertain characteristic speeds
and boundary parameters, which have not been formulated elsewhere.

For the derived dynamic descriptions of 1-D blood flow in the
presence of stenosis, we then illustrate the correspondence of certain
features with traffic flow dynamics in the presence of bottleneck.
We explore correspondence with Payne—Whitham- and Aw—Rascle—
Zhang-type models, in particular, in relation to speed dynamics and
a consistent (with respect to reduction to conservation law equation,
for instance, of Lighthill-Whitham—Richards-type) fundamental dia-
gram. Furthermore, we illustrate the connection to respective, dynamic
models of traffic flow bottlenecks. In particular, boundary blood flow
stenosis may be characterized via the pressure drop at the stenosis
location, while boundary traffic flow bottleneck may be described via
the capacity drop at the bottleneck area. Moreover, for each type of
stenosis description, we provide a consistent boundary condition at
the outlet, which could either be static or dynamic, also illustrating
the correspondence with the respective boundary conditions, in the
case of traffic flow bottleneck. We also discuss the analogy between
characterization of free-flow/congested traffic regimes and supercrit-
ical/subcritical blood flow regimes. Consistent simulation results are
provided for the two boundary stenosis’ descriptions. Illustration of
the fact that the two different applications, namely, cardiovascular and
traffic systems, could be treated utilizing techniques from a common
theme, despite the fact that the underlying dynamic phenomena, giving
rise to blood and traffic flow are fundamentally different, is significant
and it has not been illustrated elsewhere in literature.

The rest of this article is organized as follows. In Section II, we
present a control-oriented model for blood flow in which arterial
stenosis is described either as static or dynamic, boundary bottleneck.
In Section III, we analyze the obtained hyperbolic system, revealing
the dynamic correspondence with traffic flow dynamics in the presence
of bottlenecks. In Section IV, we present simulation results and discuss
how the models presented can be utilized for adaptive observer design.
Finally, Section V concludes this article.

0018-9286 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Il. CONTROL-THEORETIC MODELING OF STENOSIS
A. 1-D Cardiovascular Flow Model

We consider the following 2 x 2 hyperbolic system, which con-
stitutes an 1-D approximation of cardiovascular flow dynamics (see,
e.g., [19], [21], [35]):

Ay(z,t) = — Ap(x, )V (x, t) — Az, t) Vi (x, t) (1)
Vi, t) = — V(a, t)Vy () — %Px (A(z,1))

V(x,t)
" A(x,t)

A(O,t)V(O,t) = Qin(t) (3)

(@)

where A > 0is the section area of the artery, V' > 0is the average blood
speed, p > 0 is the blood density, K, > 0 is the friction parameter
related to blood viscosity, ¢ > 0 is the time, = € [0, D] is the spatial
variable, D > 0is the length of the artery segment considered, P € Ris
the pressure, which accounts for vessel wall displacement, and Q;, > 0
the is flow at the inlet of the artery segment considered (it could, e.g., be
described by a periodic signal, with period equal to the cardiac cycle,
see, e.g., [35]). A possible expression for the pressure function is (see,
e.g., [21], [35])

P(A) = Aﬁo (VA -4 @)

B = hE/Tb 5

where Ay is the reference arterial section area at rest, h > 0 is the artery
wall thickness, EZ > 01is Young’s modulus, and bis a positive parameter.
One boundary condition, associated with (1) and (2), is provided in (3),
describing the blood flow entering the arterial segment considered. The
second boundary condition is specified in the following sections since
it depends both on the sign of the eigenvalues of hyperbolic system
(1), (2) as well as the stenosis dynamic description adopted.

In this setup, in which the case of a boundary bottleneck is consid-
ered, it is assumed that parameters (3 and Ag, in the pressure equation
(4), are known and constant throughout the domain, which may be a
reasonable requirement given that variations in geometry and mechan-
ical properties of the artery, imposed by the stenosis, are considered
to be located at the boundary = D. Although most of modeling and
analysis developments could be performed considering spatially vary-
ing coefficients 5 and Ay, for presentation and formulation simplicity,
as well as to not distract the reader from the main scope of this article,
which is presentation and analysis of a control-theoretic, stenosis model
and its correspondence with traffic flow bottleneck model, we do not
consider this case here.

B. Formulation of Available Measurements Qutput Equation

In this article, we consider the case in which the pressure and flow
at the inlet of the artery segment considered are measured in real
time. Although such a setup may appear, at first sight, as unrealistic,
current technological advancements enable the availability of these
measurements. In particular, such measurements could be wirelessly
transmitted to a central computer, utilizing smart stent (or other im-
plantable) devices, see, for example, [13], [26], [39], [50], as well as
noninvasive devices, see, e.g., [8], [49]. Thus, besides having available
Qin, a measured output is available, given by

y(t) = P (A(0,1)). (6)
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Fig. 1. Simplified schematic of an 1-D approximation of an arterial

segment at rest with boundary stenosis. At the inlet of the segment
considered (i.e., for x = 0), an implantable smart stent device measures
pressure and flow (i.e., P, and Qin, respectively). The bottleneck loca-
tion D, stenosis cross-sectional area Ag, and stenosis length Ls may be
unknown.

Since location, geometry, and material properties of the stent, in realistic
scenarios, could be considered as known, it follows that 8 and Ag
at x = 0 are known (even in the case in which 8 and Ay may take
different values, as compared with their values for « € (0, D)). Thus,
using (4), measurements of A(0, ¢) could be obtained, and hence, using
(3), measurements of V' (0, t).

Inflow Q;, could be viewed in two different ways. One is as an
exogenous, nevertheless, measured input, which is realistic from a
practical viewpoint. For this reason, we focus in this article on the
formulation and analysis of a blood flow model in the presence of
stenosis, which may be suitable for solving the state estimation and
parameters identification problems (see also Section IV-B). The other
is viewing (Q;,, as manipulated input. Even though it may be currently
technologically difficult to manipulate blood flow at a specific point,
there is enough evidence that such implementations could become
feasible in the future. In particular, current technological advances,
such as smart shunts [41] (able to manipulate artery radius via com-
munication with a computer), suggest that such implementations may
indeed become possible.

C. Stenosis Model as Static Boundary Bottleneck

This potential formulation of a bottleneck is derived assuming that
the stenosis (e.g., due to atherosclerotic plaque building up at arterial
wall [34] or in-stent restenosis [13]) is located downstream of the inlet
(i.e., the known location of a, for instance, stent device). In particular, we
treat the right boundary of the arterial segment considered as the point
at which the potential stenosis is located. Therefore, z belongs to [0, D],
where D may be unknown as the stenosis location may be unknown. The
right boundary condition is derived such that it incorporates the effect
of stenosis in the outlet. A schematic view of the setup considered is
shown in Fig. 1.

1) Modeling Assumptions: In this setup, the domain length
D and the effective section area at the stenosis location A; may be
unknown.! In particular, the stenosis section area is assumed to be
constant, which may be a reasonable assumption given the material and
elastic properties of atherosclerotic plaque (see, e.g., [40]). It is further
assumed that (for constant A) flow is conserved through the stenosis.
Moreover, the least complex formulation of the stenosis effect (at least
in terms of the number of potentially unknown model parameters) could
be obtained assuming (initially) zero (or, effectively, very small) length
for the stenosis.

2) Boundary Condition Formulation: Consequently, at the
stenosis location, the following relation may be satisfied ([36], [52],

'The stenosis may be assumed to be axisymmetric (see, e.g., [53]; see also,
for instance, [29] and [32], for more complex, potential stenosis geometries).
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[53]; see also [14], [27], [38] for relevant expressions):

, Kop (A(D 1) 1)2 o

AP (A(D,t),V(D,t)) = 2 A

V(D,t)?

where AP(A(D), V(D)) denotes the pressure drop due to the stenosis,
while parameter K > 0 is known (obtained, e.g., from experimental
data, see, e.g., [36]). The pressure drop denotes the pressure difference
between the locations before and after the stenosis. For the former, we
may assume that it is given by (4), while for the latter, we may assume
that it is described such that a terminal boundary condition, modeling
the effect of blood flow dynamics in arteries downstream of the stenosis
(see, e.g., [20], [38]), is imposed. Therefore, we may define

AP (A(D,t),V(D,t)) = P(A(D,t)) — RTA(D,t)V(D,t) (8)
with Qs = A(D)V (D) denoting the flow at the inlet of the stenosis,
where R+ > 0 denotes a total, terminal resistance. Parameter R may
be chosen depending on the blood flow conditions modeled for a
considered arterial network, and thus, it may be considered as known.
Using (4), (7), and (8), we obtain

Aﬁo(\/A(D,t) f) RrA(D,t)V(D, 1)

2

Equation (9) prescribes a boundary condition at z = D, associated with
system (1)—(3), with A and D being unknown.

Although, as starting point and under the assumption of zero stenosis
length, formulation (9) may appear to be adequately realistic, a more
accurate, nevertheless more complex, formulation for the right bound-
ary condition (at the inlet of the stenosis) may be obtained utilizing the
following relation for the pressure drop (see, e.g., [36], [52], [53]):

—V(D,t)

8WML

AP (A(D,t),V(D,t)) = A(D,t)V(D,t) + V(D,t)?

Ksp (A(D,1) ’
X 5 ( A -1

where Lg > 0 is the unknown stenosis length and . is the known blood
viscosity coefficient. Thus, using (4), (8), and (10), we obtain

(10)

- (VADD - Vo) - (R + = ) Dyt
x V(D,t) — V(D,t)QKSp (A(f"t) - 1)2 —0. (11

In the case of boundary condition (11), in addition to Ag and D, the
stenosis length L may also be an unknown parameter.

D. Stenosis Model as Dynamic Boundary Bottleneck

Boundary condition formulations (9) and (11) may be accurate for
zero or, effectively, very small, stenosis length. A potentially more
realistic, nevertheless more complex, model of the pressure drop dy-
namics, accounting for larger stenosis length (yet, much smaller than
the length D of the arterial segment considered), may be written as
(see, e.g., [38], [53])

L AP(A(D

VD) = -

1), V(D, 1)) — V(D,t)QQKfS
« (A(%S’t) _ 1) ~EADOVDD). (2)

Employing (4) and (8), relation (12) may be written as

2 (V) - (450 )

Vi(D,t) =

2L, A2 =

K v, 02— (8“’“‘ + RT) A(D, )V (D, t).
Complete model (1)—(3), (13) consists of a nonlinear hyperbolic PDE —
nonlinear ordinary differential equation (ODE) coupled system. One
could consider an ODE for the pressure dynamics downstream of
stenosis (instead of relation Rt AV in (8), e.g., [38]). For formulation
and presentation simplicity, we do not consider the stenosis pressure
dynamics here.

The dynamic stenosis model is expected, in general, to be more
accurate as it captures the dynamics of the inherently pulsatile (os-
cillating) blood flow as well as the pressure drop dynamics at the
stenosis, see, for example, [53]. However, as first step and for simplicity
of formulation (such that, e.g., the problems of state estimation and
parameters identification become more tractable) one could employ
the static stenosis model. From a more practical viewpoint, an a priori
choice of the potential stenosis model could be made guided by practical
considerations, such as depending on the artery and potential stenosis
geometries, as well as on the pressure drop estimation accuracy re-
quired. In particular, the static boundary bottleneck model (9) [obtained
from (12) assuming that the length of stenosis is negligible, compared
to the length of the artery segment considered] could be employed,
as the first step and for simplicity of formulation, for specifying a
static boundary condition (viewing the stenosis as a single point), which
involves only one unknown parameter namely, the section area of the
stenosis (see also Section I'V-B).

I1l. ANALYSIS OF THE CARDIOVASCULAR FLOW MODEL AND ITS
RELATION TO TRAFFIC FLOW DYNAMICS

A. Analysis of the Hyperbolic System

1) Blood Flow Information Propagation: In physiological
conditions blood flow is reported to lie in congested (or, subcritical)
regime (see, e.g., [21], [35]). In particular, the eigenvalues of the
hyperbolic system (1) and (2) are given by

_ B 8 1

M(A V)=V + 2pA0A4 (14)
B 1

M(A V)=V — 2PA0A4 (15)

Since we are concerned with the case of subcritical regime, we restrict
our attention in a nonempty, connected open subset €2 of the set
O={(A,V)ER?:0< A,0< V},suchthat V < /2= AT, and
hence, A; > 0 and A5 < 0, in the region of interest. System (1)—(3)
is then strictly hyperbolic with distinct, real nonzero eigenvalues, as
long as (A, V) € Q, which implies that information propagates both
forward (with blood flow) and backward (at a lower speed).

2) Transformation to Riemann Variables: The Riemann in-
variants that correspond to the hyperbolic system (1) and (2) with
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eigenvalues (14) and (15) are defined as

268 1
w(A, V)=V +24/ — A3 (16)
( ) pAo
28 1
AV)=V —24/ —Ax. 17
v(A,V) e (a7
The inverse transformations that correspond to (16) and (17) are
1
V(u,v) = 5 (u+v) (18)
2 42
p°A
A(u,v) = 45753 (u— v)4. (19)
In the new variables, system (1) and (2) is written as
ug(z,t) = — A (u(z, t),v(z, b)) ug (2, t)
+ fi (u(z,t),v(z, 1)) (20
Ut (.’L’, t) = — X2 (u(x, t)? U(ffa t)) Vg ({E, t)
+ f1 (u(z,t),v(x,t)) 21
where
A (y 0) = O . 3v 22)
Aoty 0) = . o 23)
43K, B2 utv
filuv) = — LEL_w 4)

p? A2 (u— 0)4 '

Boundary condition (3) at the inlet is expressed in terms of the Riemann
variables as

g (U(O, t)7 U(07 t)) = Qin(t) (25)
g(u,v) = pPAS (u+v) (u— v)4 . (26)

47 B2
Together with (20)—(26), we associate a boundary condition at x = D,
which may be specified as follows.

3) Boundary Condition at the Outlet: Since the 2 x 2 hy-
perbolic system (20) and (21) is heterodirectional, together with the
boundary condition (25) at x = 0, one should specify a boundary con-
dition at x = D. There are different options for specifying a boundary
condition at z = D, also depending on the coupling type, of the arterial
segment considered, with different arteries (also considering different
types of arteries; see, e.g., [20], [27], [35]).

Since, in this article, we are concentrated on the modeling of bot-
tleneck effects, the boundary condition is specified in order to describe
the pressure difference between the locations before and after the bot-
tleneck, also accounting for a cumulative effect of arteries downstream
of the stenosis area. This could be achieved employing a static (see
Section II-C) or dynamic (see Section II-D) description for the effect
of the stenosis. For completeness, we also discuss the case in which
there is no stenosis and arteries downstream of the arterial segment
considered do not affect its dynamics. In such a case, we explore a
nonreflecting (see, e.g., [19], [42]) boundary condition at z = D, such
that there is no incoming wave at the right boundary. We summarize
below these three cases.

1) In the case of static boundary bottleneck, the boundary condition
at x = D is specified in order to describe the pressure drop at
the outlet of the arterial segment considered, where a stenosis is

located, as described in Section II-C. Specifically, using (11), the
right boundary condition is expressed in Riemann variables as

G (u(D,t),v(D,t)) =0 @27
where
G(U,’U) :p(u—’u)2 — \3/% —d1 (U—’U)4 (U+U)
CAK.p (u+v)? (d2 (u—v)* — 1)2 (28)
8rulLs\ p*A2 pr A2
dy = (RT+ yr ) —5243, = WQQS. (29)

2) Similarly, in the case of a dynamic boundary bottleneck, the right
boundary condition is expressed in Riemann variables using (13)
and (18) as

(D, 1) = 2X (1) — u(D, 1) 30)
X(t) = 32;1)L G (u(D,1),2X(t) —u(D,). @)

3) In the case in which there is no stenosis, we explore the option of a
nonreflecting, right boundary condition (see, e.g., [19], [42]), such
that no incoming wave enters at the right boundary of the arterial
segment considered. Such a boundary condition could be compared
with a “free” right boundary condition (imposed, e.g., in specific
traffic networks, see, e.g., [5], [24]; see also Section III-B). Such a
boundary condition could be described as

Ut(D7t) :fl (u(D,t)7v(D7t)). (32)

In fact, one could observe that, boundary condition (32) implies
(for classical solutions) that the Riemann variable corresponding
to the negative eigenvalue has zero spatial derivative at the right
boundary.

Well-posedness of the 2 x 2 hyperbolic PDE system (20)—(26) with
the dynamic boundary condition (32) [with (24)] or (30) and (31) [with
(28)], or the static boundary condition (27) [with (28)] may be guar-
anteed utilizing, for example, the results in [4] and [31]. To be able to
employ such results, certain assumptions are required to be imposed on
regularity, size, and compatibility (with boundary conditions) of initial
conditions, on size and regularity of flow @);, at the inlet, and on the
values of parameters 3, Ay, K, p, Ls, pt, R, and A,. Well-posedness
of the hyperbolic system considered, for realistic values of the various
parameters involved, is also consistent with the dynamic behavior of
the actual physical system (see, e.g., [11], [35]). Although important,
we do not belabor this issue as it is beyond this article’s primary scope.

B. Properties of the Model From a Traffic Flow Perspective

1) The first correspondence with second-order traffic flow models
originates in the speed equation (2). Such relation for K, =0
may be compared to the speed dynamics of Payne—Whitham traffic
flow model without the relaxation term (a term that may dictate
convergence to a specific equilibrium profile) and with pressure
given by (4) (see, e.g., [18], [43], [57]). Equation (1), which
expresses the conservation of blood volume entering and exiting
an artery segment considered, corresponds to the conservation
of the number of vehicles entering and exiting a given highway
segment. If K. # 0 model (1) and (2) could be also viewed as
Payne—Whitham-type with the term KT% playing the role of a
type of relaxation term. Nevertheless, in such a case, a fundamental
diagram-based reduction, employing the procedure described in
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the next paragraph, would not work.” We note that both cases may
be realistic for blood flow, depending on, for example, whether
convection is the dominant effect (thus, simplification KX,. = 0 may
be realistic), see, for example, [11].

The correspondence of model (1) and (2) to traffic flow models of
Payne—Whitham (and Aw—Rascle—Zhang, see, e.g., [18], [28], [43])
type could be also viewed via a fundamental diagram definition,
considering the pressure function (4), which could be explained
as follows. Adopting the procedure in [57] for derivation of a
fundamental diagram relation from the speed equation (2), we
define V' = F'(A) and substitute this relation into (2) in order to
obtain only one, conservation law equation of the form (1), i.e., of
the form A, 4 (F(A)A), = 0, where F is to be determined. With
K, =0, we get that

2

~

)
7 A )=0. (33
op AoV AR (A) 0 9

Imposing the reasonable requirement that F'(A) < 0, for all A >
0, relation (33) holds if the following equation is satisfied:

8
2pAgVAF'(A)
Therefore, in order for (34) to reduce to the conservation law

equation (1), imposing V' = F'(A), for any A, the following should
hold:

FM(&+N@&+
A+ F(A)A, +

A, =0. (34)

B4

/ 2 _ 3
F'(A)* = 30, 2, 35)
Therefore, since F'(A) < 0, for any A > 0, we get that
28
F(A) = F(0) — — Az, 36
(4) = F(0) 2 20 6o

The constant F'(0) may be viewed as the speed at a limiting case
in which the section area tends to zero. Thus, in practice, it may
be defined, for example, through considering a maximum possible,
blood transport speed, which could be obtained empirically. Rela-
tion (36) defines a fundamental diagram (see, e.g., [43]), satistying
the required conditions. In particular, function Q(A) = AF(A) =

A(F(0) — 2,/ 25-A%),for A € [0, Ay ], where A, = PO AL

Ao CEZE I
satisfies Q(0) = Q(A;) = 0, while being strictly concave.

We note here that the limiting case, in which V = F'(A), con-
stitutes a considerable simplification, which may appear, at first
sight, as not realistic for cardiovascular systems. However, such
a reduction may be useful in, for example, studying the dynamic
effect of a bottleneck in blood flow, at a vicinity upstream of the
stenosis, employing only the respective conservation law equa-
tion. Furthermore, introduction, for first time, of the notion of
fundamental diagram for cardiovascular flow, could be utilized to
characterize, in a computationally tractable and practical manner,
the stenosis degree via estimation/quantification of pressure drop
magnitude at the stenosis; inspired by respective capacity drop
modeling and estimation techniques in traffic flow (via utilization of
fundamental diagram for traffic flow) in the presence of bottleneck.

ZFor this procedure to be feasible, one would have to modify the corresponding
term in (2) to K- W [with F' given in (36)], such that this term plays the
role of relaxation, forcing asymptotic convergence to a specific equilibrium
profile. However, whether such a modification is realistic for blood flow would
have to be validated, for example, using available data. The reason is that the
K, % term is employed to capturing viscous effects of blood flow, whereas the
relaxation term dictates convergence to a certain equilibrium profile.

3) The two different bottleneck descriptions also bear a resemblance

to traffic flow bottleneck descriptions. For example, boundary
bottlenecks may appear due to lane-drops or, in general, due to
the presence of locations of reduced capacity, at the end of a
controlled area of interest, such as where a tunnel or an area of
high curvature begins (see, e.g., [47]). A boundary bottleneck could
be described through properly modeling the traffic capacity drop
at the bottleneck location (potentially also employing different
fundamental diagram relations for the traffic speed immediately
before and after the bottleneck location; see, e.g., [43], [55]);
corresponding to the static equation (7) [or (10)], which describes
the pressure drop at the area of the stenosis that may also be
viewed as defining a reduced-pressure fundamental diagram at
the stenosis, depending on the pressure immediately before, as
P, (A, V)=P(A) - ‘/2%(1%S — 1)? (that becomes a function
of only A when V' = F(A)).
In the case of a dynamic bottleneck description, speed (or flow)
dynamics at the area of the stenosis are described by an ODE (as
in (13) and (31); see also, e.g., [38], [53]), dictated by the pressure
difference between the areas at the inlet and outlet of the stenosis.
This may be viewed as corresponding to the case of dynamic
description of traffic density at a bottleneck area through an ODE,
dictated by the flow difference between the flow arriving and exiting
the bottleneck area (see, e.g., [6], [47]). In both cases, the resulting
dynamic description consists of a nonlinear, hyperbolic PDE-ODE
coupled system.

4) The nonreflecting boundary condition (see, e.g., [19], [42]), consid-
ered in the case of no bottleneck, at the outlet of the arterial segment
considered, could be compared with a free boundary condition in
traffic flow, at the outlet of a highway segment (see, e.g., [5], [24]).
Such a boundary condition may describe the fact that the traffic
network downstream of a highway segment considered has no
effect on the traffic flow dynamics upstream, for example, because
there is a capacity increase downstream, e.g., in the case where the
right boundary indicates the end of tunnel or end of high curvature.
Respectively, in the case of blood flow dynamics such condition is
employed to specify the right boundary condition in cases in which
the arterial network downstream of the artery segment considered
does not have a strong effect in the blood flow inside the domain (for
instance, when the downstream blood flow is not obstructed, e.g., by
the presence of stenosis), or its effect is difficult, or irrelevant (with
respect to modeling the dynamics of the specific artery segment
considered) to be modeled. It may be prescribed, for example, as
a terminal boundary condition for numerical simulation, see, for
example, [17] and [34].

5) For a cardiovascular flow, the subcritical regime is characterized
by the sign of A, in (15). Analogously, traffic congestion may
be characterized by a negative sign of a respective eigenvalue
that corresponds to the Riemann invariant transporting opposite
to the traffic flow direction (see, e.g., [7]). One difference lies in
that physiological conditions for cardiovascular flow correspond
to the subcritical (congested) regime (where Ao < 0; see, e.g.,
[21], [35]), whereas for a traffic flow, physiological conditions
may be considered as corresponding to the free-flow (supercritical)
regime (where Ao > 0; see also, e.g., [7]).

A congested regime is characterized by the sign of X, in (15),
irrespectively of the boundary condition considered. In the case of a
fundamental diagram-based reduction of the 2 x 2 hyperbolic PDE
model, the condition for congested regime characterization reduces
to a condition that the section area A being larger than a critical
section area, namely, the point at which the function AV (A) changes
monotonicity. In fact, the value of the latter, obtained considering the

Authorized licensed use limited to: Technical University of Crete. Downloaded on May 27,2023 at 09:14:13 UTC from |IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 6, JUNE 2023

3733

Fig. 2. Dotted line: Inflow Q;n(t) to artery segment considered. Solid
line: Flow Q(D,t) = A(D,t)V(D,t) at the outlet of a given artery seg-
ment using the dynamic bottleneck model (12) for the cases of 75% (cor-
responding to small values of outflow) and 25% stenosis. Dashed line:
Outflow Q(D,t) = A(D,t)V(D,t) using the static bottleneck model (7)
for the cases of 75% (corresponding to small values of outflow) and 25%
stenosis.

derived fundamental diagram in (36), namely Q(A) = AF(A), would
be also consistent with the respective value obtained from (15) [when
V is given by (36)] imposing the condition that A, is negative (thus,
congested regime characterizations using either of the two descriptions
are in alignment).

Even though the blood flow may lie in a congested regime (according
to the above characterization), the degree of flow reduction that makes a
stenosis to be an actual blood flow bottleneck depends on the magnitude
of the pressure drop at the stenosis. The point at which a stenosis
pressure drop reduces to a critical point from a clinical viewpoint is
crucial. This, in turn, depends on the characteristics of the stenosis and
of the given artery, see, for example, [38].

IV. NUMERICAL SIMULATION OF THE STENOSIS MODEL AND ITS
USEFULNESS FOR ADAPTIVE OBSERVER DESIGN

A. Simulation of Static/Dynamic Boundary Bottleneck Models

We present simulation examples of the dynamic and static bot-
tleneck formulations. We choose a numerical example with realistic
values for the parameters (see, e.g., [21], [38], [53]). Specifically, as
regards (2), we choose D = 10, p = 1, and K,, = 87 = 87 x 0.035.
As regards the pressure function (4), we set b = %, h=0.05, £ =
3 x 10°, and Ay = 7 x 0.52. For the right boundary condition, we
set R =100 and Ks = 1.5. We solve numerically, employing a
finite-difference scheme with discrete time and spatial steps equal
to 10~* and 0.4, respectively, the system in Riemann coordinates,
i.e., (20) and (21), recovering the numerical solution in the original
variables via (18) and (19). The initial conditions for u and v are
chosen as constant for simplicity. They are given by (16) and (17), with
Vinitial (%) = #{% and Ajnitial(2) = (VAo + RrQin(0) ABO +
AOQI;SPQin(O)2(Al0 _ %0)2)2.

For the left boundary condition (25) and (26) we specify the inflow
Qin shown in Fig. 2 (dotted line), having, qualitatively, a simple,
nevertheless realistic form with respect to blood flow shape (see,
e.g., [21], [38], [53]). For the right boundary condition, we consider
two cases. The static boundary condition case in which we employ
(27) and (28) with Ly = 0 and the dynamic boundary condition case in

10000
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-2000 1 1 1 I
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Fig. 3. Pressure drop AP(t) at the stenosis. Solid line: Pressure drop
as predicted by the dynamic bottleneck model (12) for the cases of 75%
(corresponding to large values of pressure drop) and 25% stenosis.
Dashed line: Pressure drop as predicted by the static bottleneck model
(7) for the cases of 75% (corresponding to large values of pressure drop)
and 25% stenosis.

which we employ (30) and (31) [where an Euler scheme is employed
for solving (31) numerically] with p = 0.045 and L¢ = %. For each
of the two cases, we consider two different stenosis areas, one with
ﬁ; = 0.25 (corresponding to a 75% stenosis) and one with 1’2; =0.75
(corresponding to a 25% stenosis). In Fig. 2, we show the respective
numerical solutions for the outflow Q(D,t) = A(D,t)V(D,t). In
Fig. 3, we show the pressure drop, as predicted by (7) for the static
boundary case and as predicted by solving (12) with respect to AP for
the dynamic boundary case, for the four cases. Pressure drop increases
with an increase in stenosis severity, i.e., with a decrease of the area
As. In the case of dynamic boundary, larger values of pressure drop
are observed, which is explained in view of the fact that the length
of stenosis and potential blood acceleration due to the stenosis (see,
e.g., [53]) are also accounted for [via (12)].

B. Models Formulation Toward Adaptive Observer Design

The uncertain parameters are related to the characteristics of the
stenosis. The rest of the parameters involved in the model, for example,
related to blood flow properties, can be empirically/experimentally
identified, and thus, could be considered as known (see, e.g., [38], [52],
[53]). Thus, the uncertain parameters are the location D, the length L,
and the section area A of the stenotic region. These parameters appear
at the right boundary and the characteristic speeds, which can be seen
as follows. We first rescale the domain length in order to move the
uncertainty in the domain length to an uncertainty in the characteristic
speeds (that would allow a linear parameterization of the uncertain
parameter, at least in the case where the full state was measured). This
can be seen defining z = 5 and rewriting (20) and (21) as

Ug(z,t) = — 012 (U(2,t),0(z,t)) U (2,t)

+ f1(u(z,t),0(z, 1)) (37)
U(z,t) = — O1h2 ((z,t),0(2,t)) V. (2, t)

+ f1(a(z,1),9(z,1)) (38)

where 0y = 3,z € [0,1],u(2) = u(zD),and v(z) = v(zD). The left
boundary condition (25) incorporates no uncertain parameter, while the
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available measurements are now ©(0) and #(0). The right boundary
condition (27)—(29) or (30) and (31) incorporates the uncertain param-
eters Lg and As.

When it is assumed that Lg is very small, one could formulate a
simultaneous state estimation and parameters identification problem in
a tractable manner as follows. Manipulating boundary condition (27),
we get (as long as A; < A(D))

G (a(1),5(1) = 0, (39)
\/p('uu)zj%dl(u'u)4(u+v)
o AKsp(a+tv)2 +1
where G'(u, v) = 4°32 pzAg(ﬁfﬂﬂ =4 A

system consisting of (37)—(39) and (25) could be utilized for designing
an adaptive observer, toward simultaneous state and parameters esti-
mation. Although we are not aware of a result presenting such a design,
we will pursue this in our future research, also drawing inspiration by
the designs for general, linear hyperbolic systems and traffic flows;
see, for example, [1], [2], [9], [48] and [37], [54], respectively, for
performing such a design for a potentially linearized version. Even for
a linearized version, the main technical challenges for designing an
adaptive observer stem from (in addition to the linearized hyperbolic
system being time-varying, as typical, reference blood inflow to a
given artery segment is time-varying, thus generating a time-varying
reference trajectory) the simultaneous presence of unknown transport
speeds (since the full state is not measured) and unknown boundary
parameters at the boundary anticollocated with the boundary where
measurements are available. These challenges make it difficult, for
example, to transform (even a linearized version of) system (37)—(39),
and (25) with boundary measurements at z = 0 in a canonical form
suitable for adaptive observer design.

Similarly, for the more complex case in which the dynamic boundary
condition (30) and (31) is employed, one could formulate the problem
as a problem of simultaneous state and parameters estimation for a
respective PDE-ODE coupled system, consisting of (37), (38), (25),
and the boundary condition (30), with unknown parameters 0; = %,
02 = i,andeg = i

V. CONCLUSION AND DISCUSSION

The arterial stenosis models presented and the correspondence with
vehicular traffic flow bottleneck models may constitute the starting
point for PDE-based, control-theoretic developments for cardiovascular
flow stenosis analysis, estimation, and control, inspired by respective
traffic flow techniques.

A crucial issue for addressing the feedback control problem of blood
flow at areas with stenosis would be to specify how, in practice, the
required actuation could be performed. One possibility would be to
consider boundary actuation, manipulating the inflow in (25) through
certain micro-electromechanical systems (e.g., smart stent/shunt de-
vices, actuated wirelessly; see, e.g., [12], [41], [50]), thus resulting
in a boundary control problem for system (20), (21), and (25) with
either (27) or (30), (31). An alternative possibility would be to consider
in-domain actuation enabled through automated drug delivery systems
(see, e.g., [12], [49]). Such an approach could build upon an extension
of the presented model to incorporate in-domain actuation, in corre-
spondence with automated vehicles-based actuation incorporation in
vehicular traffic (see, e.g., [5], [16], [25], [33], [51]). Accordingly, the
stability of the PDE models presented should be also studied (even in
an open loop).
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