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This paper addresses the event-triggered control problem for a modified Aw–Rascle–Zhang (ARZ) traffic
model under congestion conditions. The considered ARZ-type model, described by non-linear first-
order hyperbolic partial differential equations, represents traffic flow involving both adaptive cruise
control-equipped (ACC-equipped) vehicles and human-driven vehicles. The control inputs are time-gap
settings for ACC-equipped vehicles that are updated based on a suitable event-triggering condition. For
the linearized and transformed system (a 2 × 2 linear hyperbolic system with in-domain control and
dynamic boundary condition), we provide input-to-state stability estimates (in the sup-norm) with respect
to actuation errors. Based on a small-gain approach, we design an appropriate triggering rule (yielding
small-gain-based event triggering condition). We ensure the exponential stability in the sup-norm of
the closed-loop system and Zeno-free behaviour. Numerical simulations illustrate the efficiency of the
proposed control strategy in stabilizing traffic flow.

Keywords: event-triggered control; ARZ traffic model; first-order hyperbolic PDE; small-gain approach.

1. Introduction

The control of traffic flow on highways has been an important research focus over the past decades.
While many different control strategies have been explored, we list here only some examples of the
existing works. For example, in Papageorgiou (1980), the author proposes a time-of-day control strategy
by considering the evolution of traffic flow according to the time delay between a volume change at
a ramp and the subsequent disturbance at a freeway point downstream. Integrated control strategies
for arbitrary topology traffic corridors, including motorways and signal-controlled urban roads, were
presented in Papageorgiou (1995). In Bayen et al. (2022), control problems of vehicular traffic were
studied based on conservation laws. The boundary controller was provided for a traffic flow model,
while the velocity of the dynamics depends on a weighted average of the traffic density ahead in Bayen
et al. (2021). In Goatin et al. (2016), the authors investigate the integration of variable speed limits and
coordinated ramp metering within the framework of the traffic flow networks.
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2 X. WANG ET AL.

Various mathematical models have been proposed for traffic flow, such as the Payne–Whitham
model (Payne, 1971), which describes non-equilibrium traffic flows, the Lighthill–Whitham–Richards
model (Whitham, 1974), where the traffic is restricted to equilibrium states, the Aw–Rascle–Zhang
(ARZ) model (combining the Aw–Rascle framework (Aw & Rascle, 2000) with Zhang’s non-equilibrium
extension (Zhang, 2002)), along with their numerous variations. Among these models, the ARZ model
has gained particular attention due to its ability to capture the complex relationship between vehicle
density and velocity (Yu & Krstic, 2019).

With the integration of adaptive cruise control (ACC)-equipped (Yu & Wang, 2022) and connected
automated vehicles (Li et al., 2023), the challenge of managing traffic flow in mixed environments
involving both human-driven and ACC-equipped vehicles becomes more critical. Some research works
have attempted to address this challenge, for example, the delay-compensated control for freeway traffic
with connected vehicles (Qi et al., 2023), the elimination of bistability and phantom traffic jams in mixed
traffic systems (Molnar & Orosz, 2024) and the safety of connected automated vehicles employing
connected cruise control (Chen et al., 2024), as well as novel schemes that integrate a performance-
based controller with a safety-oriented controller (Alan et al. (2023)) enabling compatibility with a wide
range of controllers while ensuring instantaneous operation. The boundary stabilization problem for
mixed traffic on freeways, where traffic dynamics are modelled as uncertain coupled hyperbolic partial
differential equations (PDEs) with Markov jumping parameters, has been addressed in Zhang et al.
(2024). However, traditional control approaches may impose limitations in terms of communication and
computational load, particularly under mixed traffic conditions.

Event-triggered control (ETC) has recently emerged as an effective approach to address these
limitations by reducing the frequency of control updates while maintaining system stability (Heemels
et al., 2012).

Unlike traditional time-triggered systems, ETC applies the control input only when certain conditions
are satisfied, which can lead to significant savings in communication and computation (Tabuada, 2007).
This strategy has shown promising results for PDE systems, including one-dimensional hyperbolic
systems (linear, semi-linear and non-linear hyperbolic PDEs); see e.g. Espitia et al. (2016, 2018);
Espitia (2020); Diagne & Karafyllis (2021) and Strecker et al. (2024), and one-dimensional parabolic
systems; see e.g. Selivanov & Fridman (2016); Espitia et al. (2021); Katz et al. (2021); Rathnayake et al.
(2021) and Rathnayake et al. (2024) among others. Event-triggered rules are also studied for coupled
PDE–ordinary differential equation (ODE) systems (Wang & Krstic, 2021) and PDE–PDE systems
(Koudohode et al., 2024). Recently, the ETC has been investigated for stabilizing traffic flow, using PDE-
backstepping approach (Espitia et al., 2020). Subsequently, an event-triggered output-feedback control
based on backstepping method is proposed to stabilize the traffic flow on two connected roads described
by coupled hyperbolic PDEs (Espitia et al., 2022). More advanced and notable recent contributions deal
with event-triggered PDE backstepping in conjunction with performance-barrier strategies for not only
reducing the stop-and-go traffic flow but also with larger inter-execution times; see e.g. Zhang et al.
(2025). In Zhang & Yu (2024), an event-triggered boundary control framework for mixed-autonomy
traffic systems modelled by hyperbolic PDEs was provided, capturing the dynamics of human-driven
and autonomous vehicles, as well as their interactions. However, there is still limited research on ETC
strategies for traffic.

Building on the recent work of Bekiaris-Liberis & Delis (2021), which introduces an ARZ-type
model for traffic flow consisting of both human-driven and ACC-equipped vehicles, and develops a
Lyapunov-based continuous control design, we extend this framework by introducing an ETC scheme to
stabilize traffic flow governed by a mixed-traffic ARZ model while updating control actions—adjusting
the time gap for ACC-equipped vehicles—based on a suitable small-gain based triggering rule. We
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ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 3

perform the stability analysis on a linearized and transformed ARZ model (a 2 × 2 linear hyperbolic
system with in-domain control and dynamic boundary condition) and provide input-to-state stability
(ISS) estimates with respect to actuation errors. A small-gain approach (Karafyllis & Krstic, 2018;
Espitia et al., 2021; Karafyllis & Krstic, 2021) is employed to design the suitable triggering rule (small-
gain-based event- triggering condition). The small-gain condition drives the selection of the triggering
parameters. With the help of small-gain arguments, we obtain estimates of the closed-loop system. We
prove the avoidance of the Zeno phenomenon, which allows us to conclude the exponential stability
result, though we highlight that the lower bounds of the inter-execution times turn out not to be uniform.
Nevertheless, we also point out a natural extension of our ETC strategy to a Self-triggered Control (STC)
strategy, which suggests that the next triggering time is predicted based on the current state information
at the current sampled time. The main contributions of this paper are summarized as follows:

• We develop an ETC strategy for the ARZ traffic model that includes both ACC-equipped and
manually driven vehicles.

• We establish the ISS estimates of the closed-loop system and use small-gain arguments to design an
appropriate triggering rule.

• We provide the exponential stability under the proposed ETC strategy and demonstrate the avoidance
of Zeno behaviour.

• We outline a possible STC strategy for traffic flow control.

Compared with the preliminary version of this work (Wang et al., 2025), in the present paper,
we extend the theoretical analysis by providing detailed proofs and conducting an in-depth analysis.
In addition, we enhance the simulation part by providing the number of events in the event-triggered
mechanism obtained at different small gain parameters.

The structure of this paper is as follows: Section 2 introduces the ARZ traffic model and the
formulation of the problem. Section 3 discusses how nominal control is emulated by an ETC approach
and presents the main results, which include the analysis of stability using the ETC based on small-gain
conditions and the analysis to avoid the Zeno phenomenon. Section 4 presents numerical simulations
that illustrate the performance of the ETC in stabilizing traffic flow. Finally, Section 5 a concludes the
paper and outlines future research directions.

Notation. R+ will denote the set of non-negative real numbers. Let S ⊆ R
n be an open set and let

A ⊆ R
n be an open set that satisfies S ⊆ A ⊆ S̄. By C 0(A; �), we denote the class of continuous

functions on A, which take values in � ⊆ R. By C k(A; �), where k ≥ 1 is an integer, we denote the
class of functions on A, which takes values in � and has continuous derivatives of order k. For any
integer p > 0, we denote Lp([0, 1],R) the space of real-valued p-integrable functions defined on [0, 1]

with the standard Lp norm, i.e. for any f ∈ Lp([0, 1],R), we have ||f ||Lp :=
(∫ 1

0 |f (x)|pdx
) 1

p
. We denote

‖f ‖∞ = maxx∈[0,1] |f (x)| = limp→∞ ‖f ‖Lp . Let u : R+ × [0, 1] → R be given. u(t, ·) denotes the profile
of u at certain t ≥ 0, for all x ∈ [0, 1].

2. System description and problem formulation

The ARZ model is a traffic flow model based on PDEs. It is mainly used to describe the dynamic
characteristics of traffic density and speed, and can capture some important phenomena in traffic flow,
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4 X. WANG ET AL.

such as ‘stop-and-go’ fluctuations and sudden drops in traffic volume. This model is instrumental in
analysing and controlling traffic congestion.

2.1. ARZ type traffic flow model with mixed vehicles

The ARZ model, originally developed for human-driven vehicles (Aw & Rascle, 2000; Zhang, 2002), can
be extended to accommodate mixed traffic environments containing human-driven and ACC-equipped
vehicles. The traffic flow can be regulated by introducing time-gap control variables. In this case, the
model uses a mixed speed equation (that we will denote by Vmix in the sequel) to combine ACC-equipped
and human-driven vehicles’ response characteristics into a common speed expression.

We consider the following model, which can be seen as a modification of the ARZ traffic model as
presented in Bekiaris-Liberis & Delis (2021):

ρt(t, x̄) = − ρx̄(t, x̄)v(t, x̄) − ρ(t, x̄)vx̄(t, x̄), (2.1)

vt(t, x̄) = − ρ(t, x̄)
∂Vmix

(
ρ(t, x̄), hacc(t, x̄)

)
∂ρ

vx̄(t, x̄) − v(t, x̄)vx̄(t, x̄)

+ Vmix

(
ρ(t, x̄), hacc(t, x̄)

) − v(t, x̄)

τmix
, (2.2)

ρ(t, 0) = qin /v(t, 0), (2.3)

vt(t, L) = Vmix

(
ρ(t, L), hacc(t, L)

) − v(t, L)

τmix
. (2.4)

Here, ρ(t, x̄) represents the traffic density (vehicles per unit length), and v(t, x̄) denotes the average speed
of vehicles. These variables are defined over the domain (t, x̄) ∈ R+ × [0, L], where t represents time,
x̄ is the spatial coordinate. The spatio-temporal-dependent time-gap setting hacc(t, x̄) of ACC-equipped
vehicles is considered as a control input that determines the desired spacing behaviour of ACC-equipped
vehicles at time t and location x̄. The traffic parameters involved in the model (2.1)–(2.4) are described
in Table 1.

The traffic density equation (2.1) represents the conservation of vehicles, that is, the number of
vehicles per unit length of road remains unchanged. The speed equation (2.2) describes the dynamic
changes of traffic speed based on the relationship between traffic density and expected speed. Equation
(2.3) describes the boundary condition of traffic density at the inlet of the considered freeway stretch (i.e.
at x̄ = 0). This boundary condition reflects the impact of the external inflow qin on the traffic density
entering the freeway stretch. Equation (2.4) describes the boundary condition for vehicle speed at the
outlet of the considered freeway stretch (i.e. at x̄ = L). This dynamic boundary condition reflects free-
flow conditions at the downstream end, implying that even under congested situations, vehicles will still
strive to reach the mixed speed, thereby achieving stable traffic flow; in other words, traffic flow at the
right boundary is not obstructed. This boundary condition is realistic, as it does not require additional
control measures, for example, keeping a constant density or speed at the outlet of the considered highway
segment, while in practice it may appear in areas where at x̄ = L there is an end of an area of low capacity
(that calls for the implementation of control measures), such as, for example, the end of a tunnel or of a
location of high curvature (see also Karafyllis et al. (2018)).
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ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 5

TABLE 1 Description of traffic parameters involved in system (2.1)–(2.4) and (2.13)–(2.16)

Parameters Description in transportation system

ρmin > 0 The lowest value for density.
L > 0 The length of the highway segment under consideration.
l > 0 Average length of each vehicle.
qin > 0 A constant external inflow.
τmix = 1

α
τacc

+ 1−α
τm

The time constant of a mixture of ACC-equipped and human-driven vehicles.

τacc > 0 The time constants of the ACC-equipped vehicles.
τm > 0 The time constants of the manual vehicles.
0 ≤ α ≤ 1 The proportion of ACC-equipped vehicles in the total vehicles.
h̄acc > 0 The steady-state time gap for ACC-equipped vehicles.
h̄mix > 0 The steady-state time gap for mixed vehicles.
hm > 0 The time gap of manual vehicles.

The ARZ-type model can be interpreted both as a representation of traffic flow dynamics involving
only manual vehicles (Zhang, 2002) and as a model describing traffic flow behaviour for situations
where only ACC-equipped vehicles are present (Darbha & Rajagopal, 1999). Figure 1 shows a mixed
traffic flow model representation with in-domain actuation using time-gap of ACC-equipped vehicles
as a control. Note that in the mixed traffic case, to accommodate mixed traffic scenarios—where both
ACC-equipped and manual vehicles coexist—we introduce the fundamental diagram relation for speed
(Bekiaris-Liberis & Delis, 2021), expressed as

Vmix

(
ρ, hacc

) = 1

hmix

(
hacc

) (
1

ρ
− l

)
, (2.5)

where the effective (or mixed) time gap is defined as

hmix

(
hacc

) = α + (1 − α) τacc
τm

α + (1 − α)τacc
τm

hacc
hm

hacc, (2.6)

where α ∈ [0, 1] denotes the proportion of ACC-equipped vehicles in the total vehicle population. This
parameter governs the mixed traffic dynamics, as reflected in the speed equation above. In particular,

1. If only ACC-equipped vehicles exist, i.e. α = 1, we have

Vacc

(
ρ, hacc

) = 1

hacc

(
1

ρ
− l

)
, ρmin < ρ <

1

l
. (2.7)
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6 X. WANG ET AL.

FIG. 1. Mixed traffic flow model representation with in-domain actuation using time-gap of ACC-equipped vehicles as a control
(see also Manolis et al. (2020)).

2. If only manual vehicles are present, i.e. α = 0, we have

Vm(ρ) = 1

hm

(
1

ρ
− l

)
, ρmin < ρ <

1

l
. (2.8)

The formulations (2.7)–(2.8) correspond to the constant time-gap policy (in a direct correspondence
to a microscopic viewpoint; refer to Darbha & Rajagopal (1999); Bose & Ioannou (2003) and Yi &
Horowitz (2006) for more details).

To alleviate traffic congestion, the ARZ-type model (2.1)–(2.6) can be used for feedback-based
control design. By dynamically adjusting the time gap hacc(t, x̄) of ACC-equipped vehicles, traffic
fluctuations can be mitigated, thereby ensuring more stable traffic flow.

2.2. Linearization and diagonalization of the system

The steady-state equilibria of system (2.1)–(2.4), resulting from a constant inflow rate qin and a fixed,
steady-state time gap for ACC-equipped vehicles, denoted by h̄acc, lead to a steady-state mixed time gap
expressed as

h̄mix = α + (1 − α) τacc
τm

α + (1 − α)τacc
τm

h̄acc
hm

h̄acc. (2.9)

The equilibria are uniform and fulfil the following condition:

v̄ = qin

ρ̄
, (2.10)
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ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 7

where ρ̄ and v̄ represent, equilibrium, the constant traffic density and speed, respectively, achieved under
a constant inflow qin and a fixed time gap h̄acc, satisfying the following fundamental diagram relation
(Bekiaris-Liberis & Delis, 2021, section 2-C):

1

ρ̄
− l = h̄mixv̄, (2.11)

where 1/ρ̄ represents the (equilibrium) average rear-to-rear distance between vehicles, which includes
the length of the vehicle itself l and the bumper-to-bumper space gap between vehicles (h̄mixv̄). It is
worth noting that, to ensure consistency of units in (2.11), the term 1/ρ̄ should be interpreted as having
distance units (e.g. [m] or [km]).

We define the error variables ρ̃(t, x̄) and ṽ(t, x̄) as deviations of the traffic density ρ(t, x̄) and traffic
velocity v(t, x̄) from their respective steady-state values ρ̄ and v̄. These are expressed as

ρ̃(t, x̄) = ρ(t, x̄) − ρ̄, ṽ(t, x̄) = v(t, x̄) − v̄. (2.12)

Using (2.12), and linearizing the system (2.1)–(2.4) around the uniform, congested equilibrium profile,
we get

ρ̃t(t, x̄) + v̄ρ̃x̄(t, x̄) = −ρ̄ṽx̄(t, x̄), (2.13)

ṽt(t, x̄) − l
h̄mix

ṽx̄(t, x̄) = − 1
ρ̄2τmix h̄mix

ρ̃(t, x̄) − 1
τmix

ṽ(t, x̄) − α

τacc h̄2
acc

(
1
ρ̄

− l
)

hacc(t, x̄), (2.14)

ρ̃(t, 0) = − ρ̄
v̄ ṽ(t, 0), (2.15)

ṽt(t, L) = − 1
ρ̄2τmixh̄mix

ρ̃(t, L) − 1
τmix

ṽ(t, L) − α

τacc h̄2
acc

(
1
ρ̄

− l
)

hacc(t, L). (2.16)

To simplify the analysis, namely the ISS stability analysis as conducted in Section 3, we introduce the
following normalized spatial coordinate x = x̄/L, where x ∈ [0, 1], which scales the highway segment
of length L to a unit interval. This normalization, common in ISS analysis for PDEs (e.g. Karafyllis &
Krstic (2018)), facilitates the stability analysis.

Introducing the following change of variables:

z(t, x) = v̄
ρ̄

(
ρ̃(t, Lx) + h̄mixρ̄

(l + h̄mixv̄)
ṽ(t, Lx)

)
, (2.17)

w(t, x) = ṽ(t, Lx), (2.18)

where x ∈ [0, 1], and using relation (2.11), we obtain the diagonal form of (2.13)–(2.16)

zt(t, x) + v̄
L zx(t, x) = − 1

τmix
z(t, x) − h̄mix ρ̄v̄ α

τacc h̄2
acc

(
1
ρ̄

− l
)

U(t, x), (2.19)

wt(t, x) − l
h̄mix L

wx(t, x) = − 1
ρ̄v̄τmix h̄mix

z(t, x) − α

τacc h̄2
acc

(
1
ρ̄

− l
)

U(t, x), (2.20)

z(t, 0) = −lρ̄w(t, 0), (2.21)

wt(t, 1) = − 1
ρ̄v̄τmix h̄mix

z(t, 1) − α

τacc h̄2
acc

(
1
ρ̄

− l
)

U(t, 1), (2.22)
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8 X. WANG ET AL.

with initial conditions

z(0, x) = v̄
ρ̄

(
ρ̃(0, Lx) + h̄mixρ̄

(l+h̄mixv̄)
ṽ(0, Lx)

)
, w(0, x) = ṽ0(Lx), (2.23)

and U(t, x) = hacc(t, Lx), x ∈ [0, 1]. Note that although z incorporates information from both density
and velocity, it is constructed via a scaling transformation and makes use of relation (2.11). Therefore,
it has the same physical unit as w, i.e. metres per second ([m/s]).

2.3. Feedback control law (nominal)

We adapt the feedback control law proposed in (Bekiaris-Liberis & Delis, 2021, section III-B). We
recall that such a control law stabilizes the traffic system exponentially by eliminating the source terms
that cause the instability. The stability analysis is carried out in the C 1-norm by means of Lyapunov
techniques. In our study we use first the following nominal control (which differs from the one in
Bekiaris-Liberis & Delis (2021) as we use a slightly different change of coordinates) to stabilize the
system (2.19)–(2.22) exponentially

U(t, x) = τacch̄2
acc

α((1/ρ̄)−l)

(
− 1

ρ̄v̄τmix h̄mix
z(t, x) + κw(t, x)

)
, (2.24)

with κ > 0. This feedback law aims at eliminating the source term in (2.20), which may cause instability
due to a feedback connection between the states z and w.

2.4. Emulation of the control law

We aim at stabilizing system (2.19)–(2.22) on events while updating the nominal continuous-time
controller U(t, x) at certain sequence of time instants tj, j ∈ N, which will be characterized later on.
The control value is held constant between two successive time instants and it is updated when some
triggering conditions are verified. It is an efficient way to suitably apply (only when needed) the control
value, thus avoiding useless actuation solicitations. To that end, we need to modify the control law. More
precisely, the control law U(t, x), which appears in (2.19)–(2.22) and is defined in (2.24), will be replaced
by Ud(t, x) = U(tj, x) for all x ∈ [0, 1], and t ∈ [tj, tj+1), j ≥ 0, that is,

Ud(t, x) = τacch̄2
acc

α((1/ρ̄)−l)

(
− 1

ρ̄v̄τmix h̄mix
z(tj, x) + κw(tj, x)

)
. (2.25)

Hence, we deal with the following system with dynamic boundary condition:

zt(t, x) + v̄
L zx(t, x) = − 1

τmix
z(t, x) − h̄mix ρ̄v̄ α

τacc h̄2
acc

(
1
ρ̄

− l
)

Ud(t, x), (2.26)

wt(t, x) − l
h̄mix L

wx(t, x) = − 1
ρ̄v̄τmix h̄mix

z(t, x) − α

τacc h̄2
acc

(
1
ρ̄

− l
)

Ud(t, x), (2.27)

z(t, 0) = −lρ̄w(t, 0), (2.28)

w(t, 1) = η(t), (2.29)

η̇(t) = − 1
ρ̄v̄τmix h̄mix

z(t, 1) − α

τacc h̄2
acc

(
1
ρ̄

− l
)

Ud(t, 1), (2.30)
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ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 9

for all t ∈ [tj, tj+1). We assume that the initial values satisfy the first-order compatibility conditions at
the boundaries:

z0(0) = −lρ̄ w0(0), w0(1) = η(0), (2.31)

so that we avoid introducing discontinuities or singularities at the boundaries.
Notice that Ud(t, x) = U(t, x) + d∗(t, x), where d∗(t, x) can be seen as an error of actuation (called

deviation of actuation in the sequel of the paper). It is given as follows:

d∗(t, x) = τacch̄2
acc

α((1/ρ̄)−l)

(
− 1

ρ̄v̄τmix h̄mix

(
z(tj, x) − z(t, x)

)
+ κ

(
w(tj, x) − w(t, x)

) )
, (2.32)

for all t ∈ [tj, tj+1). Therefore, the closed-loop system, with dynamic boundary condition, reads as
follows:

zt(t, x) + λ1zx(t, x) = −κaw(t, x) − b1d∗(t, x), (2.33)

wt(t, x) − λ2wx(t, x) = −κw(t, x) − b2d∗(t, x), (2.34)

z(t, 0) = −rw(t, 0), (2.35)

w(t, 1) = η(t), (2.36)

η̇(t) = −κη(t) − b2d∗(t, 1), (2.37)

with

λ1 := v̄L−1,

λ2 := l
h̄mix

L−1,

a := ρ̄v̄h̄mix ,

b1 := h̄mix ρ̄v̄ α

τacc h̄2
acc

(
1
ρ̄

− l
)

,

b2 := α

τacc h̄2
acc

(
1
ρ̄

− l
)

,

r := lρ̄.

(2.38)

3. ETC strategy and main results

In this section, we introduce the ETC and the main results: the well-posedness of the closed-loop system
under an ETC, the existence of a lower bound to the time interval between two consecutive switches
and the exponential stability of the closed-loop system under the ETC. By building on the emulation
approach, we define first the ETC considered in this paper. It encloses both a triggering condition (which
determines the time instant at which the controller needs to be updated) and the feedback control (2.25).
The proposed event-triggering condition is based on the evolution of sup-norm of the actuation deviation
(2.32) and the evolution of the sup-norm of the states.
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DEFINITION 1. Let β1, β2 > 0 be design parameters. The ETC is defined by considering the following
components:

(I) (The event-triggered mechanism) The times of the events tj ≥ 0 with t0 = 0 form a finite or
countable set of times, which is determined by the following rules for some j ≥ 0:

(a) if
{

t ∈ R+|t > tj ∧ ‖d∗(t, ·)‖∞ ≥ β1‖z(t, ·)‖∞ + β2‖w(t, ·)‖∞
}

= ∅ then the set of the times

of the events is {t0, ..., tj},
(b) if

{
t ∈ R+|t > tj ∧ ‖d∗(t, ·)‖∞ ≥ β1‖z(t, ·)‖∞ + β2‖w(t, ·)‖∞

}
�= ∅ then the next event time

is given by

tj+1 = inf
{

t ∈ R+|t > tj ∧ ‖d∗(t, ·)‖∞ ≥ β1‖z(t, ·)‖∞ + β2‖w(t, ·)‖∞
}

, (3.1)

where the actuation deviation d∗(t, x) is given by (2.32) for all t ∈ [tj, tj+1).

(II) (The control action) The feedback control law is defined by (2.25) for all t ∈ [tj, tj+1).

3.1. Well-posedness aspects

PROPOSITION 1. For any given initial data
(
z(tj, x), w(tj, x)

) ∈ (L∞(0, 1))2, there exists a unique solution(
z, w

) ∈ C 0
(
[tj, tj+1]; (L∞(0, 1))2

)
to the system (2.33)–(2.37).

Proof. The boundary input (2.37) is given by an absolutely continuous ODE solution and the in-domain
source terms are reset to zero at each triggering instant, for all x ∈ [0, 1]. Inspired by Prieur et al. (2014)—
where the hyperbolic PDE is affected by source terms that are subject to switching—we adopt the notion
of solution along the characteristics for all t ∈ [tj, tj+1). Hence, we have that for tj ≤ t ≤ tj + x

λ1
, the

solution z(t, x) is given as

z(t, x) = z
(

tj, x − λ1(t − tj)
)

+
∫ t

tj
(−κa)w(τ , x − λ1(t − τ))dτ +

∫ t

tj
(−b1)d

∗(τ , x − λ1(t − τ))dτ .

(3.2)

For tj + x
λ1

≤ t < tj+1, it is expressed as

z(t, x) = −rw
(

t − x
λ1

, 0
)

+
∫ t

t− x
λ1

(−κa)w(τ , x − λ1(t − τ))dτ +
∫ t

t− x
λ1

(−b1)d
∗(τ , x − λ1(t − τ))dτ .

(3.3)

For tj ≤ t ≤ tj + 1−x
λ2

, the solution w(t, x) satisfies

w(t, x) = w
(

tj, x + λ2(t − tj)
)

exp(−κ(t − tj)) +
∫ t

tj
exp(−κ(t − τ))(−b2)d

∗(τ , x + λ2(t − τ))dτ .

(3.4)
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ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 11

For tj + 1−x
λ2

≤ t < tj+1, it is given as

w(t, x) = η
(

t − 1−x
λ2

)
exp

(
− κ

λ2
(1 − x)

)
+

∫ t

t− 1−x
λ2

exp(−κ(t − τ))(−b2)d
∗(τ , x + λ2(t − τ))dτ ,

(3.5)

where η(t) evolves as

η(t) = exp(−κ(t − tj))η(tj) − b2

∫ t

tj
exp(−κ(t − τ))d∗(τ , 1) dτ . (3.6)

The characteristic-based explicit solution guarantees the existence and uniqueness of a solution
(
z, w

) ∈
C 0

(
[tj, tj+1]; (L∞(0, 1))2

)
over the time interval [tj, tj+1]. �

The methodology of Prieur et al. (2014) is adapted to account for the ODE-driven boundary condition
(2.37), which gives rise to a solution that is absolutely continuous. Since our analysis guarantees existence
and uniqueness of a solution in C 0([tj, tj+1]; (L∞(0, 1))2) for each interval [tj, tj+1], we view such a
solution as weak. To extend the solution on [0, limj→∞ tj), one can employ a step-by-step method using
Proposition 1, iterating over successive intervals [tj, tj+1]. To ensure the solution is well-posed for all
t ≥ 0, it is essential to verify that the triggering times satisfy limj→∞ tj = +∞.

3.2. Stability analysis

In this section, we provide the stability properties of the closed-loop system (2.33)–(2.37). In the
following Lemma 1, we first state the estimates of the ISS stability of the closed-loop system, which
is essential for the stability analysis of system (2.33)–(2.37).

LEMMA 1. Consider the closed-loop system (2.33)–(2.37) with initial data z(0, x) = z0 and w(0, x) =
w0 where (z0, w0) ∈ (L∞(0, 1))2. The following estimates hold, for some ς ∈ (0, κ), and for all t ∈
[0, limj→∞(tj)):

‖z(t, ·)‖∞ ≤ e−ς te
ς
λ1 ‖z (0, ·)‖∞

+ 2|b1|
λ1

e

( |κa|+|b1|
|b1| + ς

λ1

)
max

max
{

0,t− 1
λ1

}
≤s≤t

((‖d∗(s, ·)‖∞ + ‖w(s, ·)‖∞
)

e−ς(t−s)
)

+ e
ς
λ1 |r| max

max
{

0,t− 1
λ1

}
≤s≤t

(
|w(s, 0)|e−ς(t−s)

)
, (3.7)

‖w(t, ·)‖∞ ≤ e−ς te
ς
λ2 ‖w (0, ·)‖∞ + |b2|

λ2
e

(
1− κ

λ2
+ ς

λ2

)
max

max
{

0,t− 1
λ2

}
≤s≤t

(
‖d∗(s, ·)‖∞e−ς(t−s)

)

+ e
ς
λ2 max

max
{

0,t− 1
λ2

}
≤s≤t

(
|η(s)|e−ς(t−s)

)
(3.8)
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12 X. WANG ET AL.

and

|η(t)| ≤ e−ς t|η(0)| + |b2|
κ−ς

max
0≤s≤t

(
|d∗(s, 1)|e−ς(t−s)

)
. (3.9)

Proof. See the appendix. �
Let us first state the following small-gain condition, which indicates the choice of β1, β2 (the

parameters involved in the triggering condition (3.1)):

β1

(
|b2||r|

κ
+ |r||b2|

λ2
e

(
1− κ

λ2

)
+ 2|b1b2|

λ1λ2
e

( |κa|+|b1|
|b1|

)
e

(
1− κ

λ2

)
+ 2|b1|

λ1
e

( |κa|+|b1|
|b1|

)
|b2|
κ

+ 2|b1|
λ1

e

( |κa|+|b1|
|b1|

))

+ β2

(
|b2|
λ2

e

(
1− κ

λ2

)
+ |b2|

κ

)
< 1.

(3.10)

By continuity arguments, there exists ς > 0 sufficiently small, and ς < κ , such that

β1Λ
2(ς)

(
|b2||r|
κ−ς

+ |r||b2|
λ2

e

(
1− κ

λ2

))
+ β1Λ

2(ς)
2|b1|
λ1

e

( |κa|+|b1||b1|
) (

|b2|
λ2

e

(
1− κ

λ2

)
+ |b2|

κ−ς

)

+ β1Λ(ς)
2|b1|
λ1

e

( |κa|+|b1||b1|
)

+ β2Λ(ς)

(
|b2|
λ2

e

(
1− κ

λ2

)
+ |b2|

κ−ς

)
< 1,

(3.11)

where

Λ(ς) = e
ς
(

1
λ1

+ 1
λ2

)
. (3.12)

The existence of ς is assured because the function

F (ς) =β1Λ
2(ς)

(
|b2||r|
κ−ς

+ |r||b2|
λ2

e

(
1− κ

λ2

))
+ β1Λ

2(ς)
2|b1|
λ1

e

( |κa|+|b1||b1|
)(

|b2|
λ2

e

(
1− κ

λ2

)
|b2|
κ−ς

)

+ β1Λ(ς)
2|b1|
λ1

e

( |κa|+|b1||b1|
)
+ β2Λ(ς)

(
|b2|
λ2

e

(
1− κ

λ2

)
+ |b2|

κ−ς

)
,

is continuous at 0 and satisfies F (0) < 1. Furthermore, it also holds that 0 < β1Λ(ς)
2|b1|
λ1

e

( |κa|+|b1|
|b1|

)
<

1, and 0 < β2Λ(ς)

(
|b2|
λ2

e

(
1− κ

λ2

)
+ |b2|

κ−ς

)
< 1. Reorganizing the terms, we introduce the following

quantities as defined from (3.11):

φ1 := 2|b1|
λ1

e

( |κa|+|b1|
|b1|

)
, (3.13)

φ2 := |b2|
λ2

e

(
1− κ

λ2

)
(3.14)
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ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 13

and

φ3(ς) := |b2|
κ−ς

. (3.15)

Additionally, we define

� := β1Λ(ς)2 (
1 − β1Λ(ς)φ1

)−1
(1 − β2Λ(ς)(φ2 + φ3(ς)))−1(φ2 + φ3(ς))(|r| + β2φ1 + φ1).

(3.16)

We can ensure that if (3.11) is verified, then � < 1. This condition is instrumental in the proof of the
main result that we state next.

THEOREM 1. Assume β1, β2 > 0 are chosen such that the condition (3.10) is satisfied. Then, for any
initial conditions (z0, w0) ∈ (L∞(0, 1))2 and η(0) ∈ R satisfying the compatibility condition (2.31),
there exist constants ς > 0 and Θ > 0 such that the following estimates hold for the solutions to the
closed-loop system (2.26)–(2.30) with the ETC law (2.25), (3.1):

‖z(t, ·)‖∞ + ‖w(t, ·)‖∞ + |η(t)| ≤ Θ exp(−ς t)
(
‖z0‖∞ + ‖w0‖∞ + |η(0)|

)
, (3.17)

for all t ∈ [0, limj→∞(tj)).

Proof. : According to Lemma 1, the ISS bounds provided in (3.7)–(3.9) lead to the following alternative,
yet more conservative, estimates, for all t ∈ [0, limj→∞(tj)):

‖z(t, ·)‖∞ ≤ e−ς te
ς
λ1 ‖z (0, ·)‖∞ + φ1Λ(ς) max

0≤s≤t

( (‖d∗(s, ·)‖∞ + ‖w(s, ·)‖∞
)

e−ς(t−s)
)

(3.19)

+ Λ(ς)|r| max
0≤s≤t

(
‖w(s, ·)‖∞e−ς(t−s)

)
,

‖w(t, ·)‖∞ ≤ e−ς te
ς
λ2 ‖w (0, ·)‖∞ + φ2Λ(ς) max

0≤s≤t

(
‖d∗(s, ·)‖∞e−ς(t−s)

)

+ Λ(ς) max
0≤s≤t

(
|η(s)|e−ς(t−s)

)
(3.19)

and

|η(t)| ≤ e−ς t|η(0)| + φ3(ς) max
0≤s≤t

(
|d∗(s, 1)|e−ς(t−s)

)
, (3.20)
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14 X. WANG ET AL.

where Λ(ς) is defined in (3.12), while φ1, φ2 and φ3(ς) are defined in (3.13), (3.14) and (3.15),
respectively. Additionally, we define the following quantities for all t ∈ [0, limj→∞(tj)) and x ∈ [0, 1]:

‖z‖[0,t] : = max
0≤s≤t

(‖z(s, ·)‖∞ eςs) ,

‖w‖[0,t] : = max
0≤s≤t

(‖w(s, ·)‖∞ eςs) ,

‖η‖[0,t] : = max
0≤s≤t

(|η(s)|eςs) ,

∥∥d∗∥∥
[0,t] : = max

0≤s≤t

(∥∥d∗(s, ·)∥∥∞ eςs) . (3.21)

Using the relations (3.18)–(3.20) together with (3.21), we derive

‖z‖[0,t] ≤ e
ς
λ1

∥∥z0

∥∥∞ + Λ(ς)|r| ‖w‖[0,t] + φ1Λ(ς)
(‖d∗‖[0,t] + ‖w‖[0,t]

)
, (3.22)

‖w‖[0,t] ≤ e
ς
λ2

∥∥w0

∥∥∞ + Λ(ς) ‖η‖[0,t] + φ2Λ(ς)
∥∥d∗∥∥

[0,t] (3.23)

and

‖η‖[0,t] ≤ |η(0)| + φ3(ς)
∥∥d∗∥∥

[0,t] . (3.24)

From Definition 1, events are triggered to guarantee, for all t ∈ [0, limj→∞(tj)),

‖d∗(t, ·)‖∞ ≤ β1‖z(t, ·)‖∞ + β2‖w(t, ·)‖∞. (3.25)

Therefore, from (3.22)–(3.24) along with definitions (3.21), it follows that

‖z‖[0,t] ≤ e
ς
λ1

∥∥z0

∥∥∞ + (Λ(ς)|r| + β2Λ(ς)φ1 + Λ(ς)φ1) ‖w‖[0,t] + β1Λ(ς)φ1‖z‖[0,t], (3.26)

‖w‖[0,t] ≤ e
ς
λ2

∥∥w0

∥∥∞ + Λ(ς) ‖η‖[0,t] + β1Λ(ς)φ2‖z‖[0,t] + β2Λ(ς)φ2‖w‖[0,t] (3.27)

and

‖η‖[0,t] ≤ |η(0)| + β1φ3(ς)‖z‖[0,t] + β2φ3(ς)‖w‖[0,t]. (3.28)

Replacing (3.28) with (3.27), we get

‖w‖[0,t] ≤ e
ς
λ2

∥∥w0

∥∥∞ + Λ(ς)|η0| + Λ(ς)β1φ3(ς)‖z‖[0,t] + Λ(ς)β2φ3(ς)‖w‖[0,t]

+ β1Λ(ς)φ2‖z‖[0,t] + β2Λ(ς)φ2‖w‖[0,t]

≤ e
ς
λ2

∥∥w0

∥∥∞ + Λ(ς)|η0| + β1Λ(ς)
(
φ3(ς) + φ2

) ‖z‖[0,t] + β2Λ(ς)
(
φ3(ς) + φ2

) ‖w‖[0,t].
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ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 15

Therefore, it holds

‖z‖[0,t] ≤ (
1 − β1Λ(ς)φ1

)−1
e

ς
λ1

∥∥z0

∥∥∞ + (
1 − β1Λ(ς)φ1

)−1
(Λ(ς)|r|

+ β2Λ(ς)φ1 + Λ(ς)φ1) ‖w‖[0,t] , (3.29)

and

‖w‖[0,t] ≤ (1 − β2Λ(ς)ψ2,3(ς))−1e
ς
λ2

∥∥w0

∥∥∞ + (1 − β2Λ(ς)ψ2,3(ς))−1Λ(ς)|η0|
+ (1 − β2Λ(ς)ψ2,3(ς))−1β1Λ(ς)ψ2,3(ς)‖z‖[0,t], (3.30)

with

ψ2,3(ς) := φ2 + φ3(ς). (3.31)

By substituting (3.30) into (3.29), we obtain

‖z‖[0,t] ≤ (
1 − β1Λ(ς)φ1

)−1
e

ς
λ1

∥∥z0

∥∥∞

+ (
1 − β1Λ(ς)φ1

)−1
(Λ(ς)|r| + β2Λ(ς)φ1 + Λ(ς)φ1)(1 − β2Λ(ς)ψ2,3(ς))−1e

ς
λ2

∥∥w0

∥∥∞

+ (
1 − β1Λ(ς)φ1

)−1
(Λ(ς)|r| + β2Λ(ς)φ1 + Λ(ς)φ1)(1 − β2Λ(ς)ψ2,3(ς))−1Λ(ς)|η0|

+ β1Λ(ς)
(
1 − β1Λ(ς)φ1

)−1
(1 − β2Λ(ς)ψ2,3(ς))−1ψ2,3(ς)(Λ(ς)|r|

+ β2Λ(ς)φ1 + Λ(ς)φ1)‖z‖[0,t]. (3.32)

Replacing (3.29) with (3.30), we get

‖w‖[0,t] ≤(1 − β2Λ(ς)ψ2,3(ς))−1e
ς
λ2

∥∥w0

∥∥∞ + (1 − β2Λ(ς)ψ2,3(ς))−1Λ(ς)|η0|

+ (1 − β2Λ(ς)ψ2,3(ς))−1β1Λ(ς)ψ2,3(ς)
(
1 − β1Λ(ς)φ1

)−1
e

ς
λ1

∥∥z0

∥∥∞

+ β1

(
1 − β1Λ(ς)φ1

)−1
(1 − β2Λ(ς)ψ2,3(ς))−1Λ(ς)ψ2,3(ς)(Λ(ς)|r|

+ β2Λ(ς)φ1 + Λ(ς)φ1) ‖w‖[0,t] . (3.33)

Hence, we can finally obtain

‖z‖[0,t] ≤ (1 − �)−1 (
1 − β1Λ(ς)φ1

)−1
Λ(ς)

∥∥z0

∥∥∞

+ (1 − �)−1 (
1 − β1Λ(ς)φ1

)−1
(Λ(ς)|r| + β2Λ(ς)φ1 + Λ(ς)φ1)

× (1 − β2Λ(ς)ψ2,3(ς))−1Λ(ς)
∥∥w0

∥∥∞

+ (1 − �)−1 (
1 − β1Λ(ς)φ1

)−1
(Λ(ς)|r| + β2Λ(ς)φ1 + Λ(ς)φ1)

× (1 − β2Λ(ς)ψ2,3(ς))−1Λ(ς)|η0|, (3.34)
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16 X. WANG ET AL.

and

‖w‖[0,t] ≤ (1 − �)−1 (1 − β2Λ(ς)ψ2,3(ς))−1Λ(ς)
∥∥w0

∥∥∞
+ (1 − �)−1 (1 − β2Λ(ς)ψ2,3(ς))−1Λ(ς)|η0|
+ (1 − �)−1 (1 − β2Λ(ς)ψ2,3(ς))−1β1Λ(ς)ψ2,3(ς)

(
1 − β1Λ(ς)φ1

)−1
Λ(ς)

∥∥z0

∥∥∞ ,
(3.35)

where � is given by

� = β1Λ(ς)2 (
1 − β1Λ(ς)φ1

)−1
(1 − β2Λ(ς)ψ2,3(ς))−1ψ2,3(ς)(|r| + β2φ1 + φ1), (3.36)

which is precisely defined in (3.16). It satisfies � < 1 due to the validity of (3.11). Combining (3.34),
(3.35) and (3.28), we can infer that (3.17) is true for a suitable constant Θ , for all t ∈ [0, limj→∞(tj)).
Thus, the proof is concluded. �

REMARK 1. The convergence speed, determined by the decay rate ς , is influenced by the feedback gain
κ and triggering parameters β1 and β2. Larger κ enhances convergence but may increase the number of
events due to tighter triggering thresholds (smaller β1, β2), as the small-gain condition (3.10) balances
stability and actuation frequency.

3.3. Avoidance of the Zeno phenomenon and exponential stability result

THEOREM 2. Under the event-triggered condition (3.1), any inter-sampling interval is lower bounded by
a positive constant (depending on the current state at tj).

Proof. : Notice that if the set of triggering times is empty, then the next event is not triggered. Moreover,
the estimates in Theorem 1 guarantee that for t > tj if ‖z(tj, ·)‖∞ = ‖w(tj, ·)‖∞ ≡ 0, then ‖z(t, ·)‖∞ =
‖w(t, ·)‖∞ ≡ 0. Since zero states at tj indicate that the system has achieved equilibrium in finite time,
the triggering mechanism will not activate further events, and the system remains in its zero equilibrium.
In another case, assume that ‖z(tj, ·)‖∞ = ‖w(tj, ·)‖∞ ≡ 0, but there exists a t > tj such that either
‖z(t, ·)‖∞ > 0 or ‖w(t, ·)‖∞ > 0. This would mean the system deviates from the equilibrium after tj,
which contradicts the system’s dynamics and estimates in Theorem 1. In these cases, tj+1 = +∞, and
thus the Zeno phenomenon is excluded. Assume that we do not have those cases. From the definition of
the deviation of actuation (2.32), the following estimate holds:

‖d∗(t, ·)‖∞ ≤ R
(
‖z(tj, ·) − z(t, ·)‖∞ + ‖w(tj, ·) − w(t, ·)‖∞

)
, (3.37)

where

R := max

( ∣∣∣ τacch̄2
acc

α((1/ρ̄)−l)
1

ρ̄τmix h̄mix

∣∣∣ ,
∣∣∣ τacc h̄2

acc
α((1/ρ̄)−l) κ

∣∣∣ ). (3.38)
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ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 17

Consider the following inequality:

‖z(tj, ·) − z(t, ·)‖∞ + ‖w(tj, ·) − w(t, ·)‖∞ ≤ β1
R ‖z(t, ·)‖∞ + β2

R ‖w(t, ·)‖∞. (3.39)

Notice that by enforcing (3.39) we guarantee ‖d∗(t, ·)‖∞ ≤ β1‖z(t, ·)‖∞ + β2‖w(t, ·)‖∞, which is the
triggering condition in (3.1) under which Theorem 1 applies. Moreover, consider the following more
conservative inequality:

‖z(tj, ·) − z(t, ·)‖∞ + ‖w(tj, ·) − w(t, ·)‖∞ ≤ β1
R+β1

‖z(tj, ·)‖∞ + β2
R+β2

‖w(tj, ·)‖∞. (3.40)

It can be proved (using the property in (Liu et al., 2020, lemma B3)) that if (3.40) is verified then (3.39)
holds. Therefore, by enforcing (3.40) we guarantee ‖d∗(t, ·)‖∞ ≤ β1‖z(t, ·)‖∞ + β2‖w(t, ·)‖∞, as well.
It suffices then to show the inter-executions times are bounded for the execution rule ‖z(tj, ·)−z(t, ·)‖∞+
‖w(tj, ·)−w(t, ·)‖∞ ≥ β1

R+β1
‖z(tj, ·)‖∞+ β2

R+β2
‖w(tj, ·)‖∞. Based on this condition, we define the function

ψ(t) := ‖z(tj, ·) − z(t, ·)‖∞ + ‖w(tj, ·) − w(t, ·)‖∞
β1

R+β1
‖z(tj, ·)‖∞ + β2

R+β2
‖w(tj, ·)‖∞

. (3.41)

A lower bound for the inter-execution times is given by the time that takes for the function ψ to go from
ψ(tj) = 0 to ψ(t−j+1) = 1 (here t−j+1 is the left limit at t = tj+1). The time-derivative of ψ on (tj, tj+1)

can be computed by adapting the arguments in (Karafyllis & Krstic, 2021, lemma 5.2) to our case, and
considering the following:

d‖z(tj,·)−z(t,·)‖∞
dt ≤‖ ∂

∂t (z(tj, x) − z(t, x))‖∞, (3.42)

d‖w(tj,·)−w(t,·)‖∞
dt ≤‖ ∂

∂t (w(tj, x) − w(t, x))‖∞. (3.43)

If ‖z(tj, ·) − z(t, ·)‖∞ > 0 and ‖w(tj, ·) − w(t, ·)‖∞ > 0, for t ∈ (tj, tj+1), using (3.42) and (3.43), we
have

d‖z(tj,·)−z(t,·)‖∞
dt ≤ max

x∈I(t)

(
sgn(z(tj, x) − z(t, x))( ∂

∂t (z(tj, x) − z(t, x)))
)

, (3.44)

d‖w(tj,·)−w(t,·)‖∞
dt ≤ max

x∈I(t)

(
sgn(w(tj, x) − w(t, x))( ∂

∂t (w(tj, x) − w(t, x)))
)

, (3.45)

I(t) = {x ∈ [0, 1] : |y(t, x)| = ‖y(t, ·)‖∞}. Here, y may represent either z or w, depending on which
variable we are referring to in the subsequent discussion. Focusing on the later case, it holds that

sgn(z(tj, x) − z(t, x))( ∂
∂t (z(tj, x) − z(t, x)))

≤ sgn(z(tj, x) − z(t, x))
(
λ1zx(t, x) + κaw(t, x) + b1d∗(t, x)

)
(3.46)
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18 X. WANG ET AL.

and

sgn(w(tj, x) − w(t, x))( ∂
∂t (w(tj, x) − w(t, x)))

≤ sgn(w(tj, x) − w(t, x))
(

− λ2wx(t, x) + κw(t, x) + b2d∗(t, x)
)

. (3.47)

If x ∈ I(t) ∩ (0, 1) and satisfies (z(tj, x) − z(t, x)) = ‖z(tj, ·) − z(t, ·)‖∞, (w(tj, x) − w(t, x)) = ‖w(tj, ·) −
w(t, ·)‖∞ then (z(tj, x) − z(t, x)) and (w(tj, x) − w(t, x)) have a maximum at x, hence zx(tj, x) = zx(t, x),
wx(tj, x) = wx(t, x) and z(t, x) = z(tj, x)−‖z(tj, ·)−z(t, ·)‖∞, and w(t, x) = w(tj, x)−‖w(tj, ·)−w(t, ·)‖∞.
Hence,

sgn(z(tj, x) − z(t, x)) ∂
∂t (z(tj, x) − z(t, x)) ≤λ1zx(tj, x) + κaw(tj, x) − κa‖w(tj, ·) − w(t, ·)‖∞+ b1d∗(t, x)

(3.48)

and

sgn(w(tj, x)−w(t, x)) ∂
∂t (w(tj, x)−w(t, x)) ≤ λ2wx(tj, x) − κw(tj, x) − κ‖w(tj, ·) − w(t, ·)‖∞+b2d∗(t, x).

(3.49)

If x ∈ I(t)∩(0, 1) and satisfies (z(tj, x)−z(t, x)) = −‖z(tj, ·)−z(t, ·)‖∞, (w(tj, x)−w(t, x)) = −‖w(tj, ·)−
w(t, ·)‖∞ then (z(tj, x) − z(t, x)) and (w(tj, x) − w(t, x)) have a minimum at x, hence zx(tj, x) = zx(t, x),
wx(tj, x) = wx(t, x) and z(t, x) = z(tj, x)+‖z(tj, ·)−z(t, ·)‖∞, and w(t, x) = w(tj, x)+‖w(tj, ·)−w(t, ·)‖∞.
Thus,

sgn(z(tj, x) − z(t, x)) ∂
∂t (z(tj, x) − z(t, x)) ≤ λ1zx(tj, x) + κaw(tj, x) + κa‖w(tj, ·) − w(t, ·)‖∞+b1d∗(t, x)

(3.50)

and

sgn(w(tj, x)−w(t, x)) ∂
∂t (w(tj, x)−w(t, x)) ≤ λ2wx(tj, x) − κw(tj, x) + κ‖w(tj, ·) − w(t, ·)‖∞+b2d∗(t, x).

(3.51)

Combining both cases, and using (3.37) we obtain

d‖z(tj, ·) − z(t, ·)‖∞
dt

≤ |λ1|‖zx(tj, ·)‖∞ + |κa|‖w(tj, ·)‖∞ + |κa|‖w(tj, ·) − w(t, ·)‖∞ + |b1|‖d∗(t, ·)‖∞

≤ |λ1|‖zx(tj, ·)‖∞ + |κa|‖w(tj, ·)‖∞ + |κa|‖w(tj, ·) − w(t, ·)‖∞
+|κ|‖z(tj, ·)‖∞ + |κ|‖z(tj, ·) − z(t, ·)‖∞

+ |b1|R
(
‖z(tj, ·) − z(t, ·)‖∞ + ‖w(tj, ·) − w(t, ·)‖∞

)
, (3.52)
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ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 19

and

d‖w(tj, ·) − w(t, ·)‖∞
dt

≤ |λ2|‖wx(tj, ·)‖∞ + |κ|‖w(tj, ·)‖∞ + |κ|‖w(tj, ·) − w(t, ·)‖∞ + |b2|‖d∗(t, ·)‖∞

≤ |λ2|‖wx(tj, ·)‖∞ + |κ|‖w(tj, ·)‖∞ + |κ|‖w(tj, ·) − w(t, ·)‖∞

+ |b2|R
(
‖z(tj, ·) − z(t, ·)‖∞ + ‖w(tj, ·) − w(t, ·)‖∞

)
. (3.53)

Therefore, using (3.37),(3.40) and (3.41) we have from (3.52) and (3.53) that

ψ̇(t) ≤ (
K̄ + R(|b1| + |b2|)

)
ψ(t) + χ(tj), (3.54)

for t ∈ (tj, tj+1), where χ(·) (depending on the current state at sampled time t = tj) is a constant quantity
defined as follows:

χ(tj) := 1

min

(
β1

R+β1
,

β2
R+β2

)
(

K̄ + λ̄

(‖zx(tj, ·)‖∞ + ‖wx(tj, ·)‖∞
‖z(tj, ·)‖∞ + ‖w(tj, ·)‖∞

))
> 0, (3.55)

with λ̄ = max(λ1, λ2) and K̄ = κ max (|a + 1|, 1).
Then, by the comparison principle, it follows that the time needed by ψ to go from ψ(tj) = 0 to

ψ(t−j+1) = 1 is at least

Tj = 1

K̄ + R(|b1| + |b2|)
ln

(
1 + K̄ + R(|b1| + |b2|)

χ(tj)

)

≥ 1

χ(tj) + K̄ + R(|b1| + |b2|)
> 0, ∀j ≥ 0, (3.56)

where we have used the property ln(s) ≥ s−1
s .

In particular, notice that the first inter-sampling interval is lower bounded by T0 ≥ 1
χ(0)+K̄+R(|b1|+|b2|) >

0. This concludes the proof. �
Theorem 2 allows to conclude that limj→∞(tj) = ∞. Consequently, we derive the following

corollary, which states the exponential stability result.

COROLLARY 1. Let β1, β2 > 0 (design parameters involved in the triggering condition (3.1)) that are
selected such that (3.10) holds. Let ς be such that (3.11) holds. Then, for any initial conditions (z0, w0) ∈
(L∞(0, 1))2, η(0) ∈ R, the closed-loop system (2.26)–(2.30) with ETC (2.25), (3.1) is exponentially
stable, that is, there exists a constant Θ > 0 such that the following estimate holds:

‖z(t, ·)‖∞ + ‖w(t, ·)‖∞ + |η(t)| ≤ Θ exp(−ς t)
(
‖z0‖∞ + ‖w0‖∞ + |η(0)|

)
(3.57)

for all t ≥ 0.
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20 X. WANG ET AL.

Proof. It is a consequence of Theorem 2 in conjunction with Theorem 1. �
Corollary 1 holds, in particular, if we set the initial conditions as in (2.23) and η(0) = w(0, 1).

REMARK 2. The bound (3.56) obtained in the proof of Theorem 2 shows that any inter-sampling interval
is lower bounded by a positive constant. However, there is a dependence on j, and therefore we
lack uniformity. From (3.56), it may not be straightforward to obtain a minimal dwell-time, uniform,
independent of j and the system’s initial conditions.

REMARK 3. By examining the bound (3.56), we observe that the proof of Theorem 2 naturally suggests an
STC strategy. In STC strategies, the next triggering time is computed based on the state information at the
current sampling time tj, eliminating the need for continuous monitoring of the triggering condition. This
approach has been extensively studied for finite-dimensional systems (Heemels et al., 2012; Liu et al.,
2020) (see also the survey Zhang et al. (2023)), but remains relatively unexplored for PDEs. Notable
exceptions include some recent developments in STC for PDEs, such as the strategies proposed for a
class of reaction-diffusion PDEs (Rathnayake & Diagne, 2024) and subsequently for 2 × 2 boundary-
controlled hyperbolic PDEs (Somathilake et al., 2024).

In our case, we could also propose an STC strategy based on the sup-norm of the state and its spatial
variation, both at the current sampling time tj, which would be given by

tj+1 = tj + 1

χ(tj) + K̄ + R(|b1| + |b2|)
, (3.58)

where χ(tj) is defined by (3.55). However, studying STC strategies for our problem requires a thorough
analysis, particularly to assess the conservatism of the approach (as our current bounds are quite
conservative) and to avoid χ(tj) being dependent on the spatial variation of the solution. Instead, we
aim to rely solely on the norm of the state at the previous sampling time to make the self-triggered
strategy more feasible for implementation. These considerations warrant deeper investigation but are
beyond the scope of this paper.

4. Numerical simulations

In this section, we present a numerical example to demonstrate the validity of our results. We perform
simulations on system (2.26)–(2.30) with control (2.25), (3.1) by employing a two-step LxF method
(Shampine, 2005b) that can be set in Shampine’s solver for Matlab detailed in Shampine (2005a).
The spatial and temporal discretization were done with steps Δx = 1.4 × 10−3 and Δt = 0.2. It
can be verified that the Courant–Friedrich–Levy condition for the numerical stability holds. Then, we
obtain the numerical solutions of (2.1)–(2.4) via the change of variables (2.17)–(2.18) along with (2.12).
We run simulations on a time horizon T = 400 s. The initial conditions are chosen as ρ(0, x̄) =
ρ̄ + 10 cos

(
8π x̄

L

)
, and v(0, x̄) = qin

ρ(0,x̄) (thus z(0, x) = v̄
ρ̄

(
10 cos (8πx) + h̄mix ρ̄

(l+h̄mixv̄)

(
qin

ρ̄+10 cos(8πx) − v̄
))

,

w(0, x) = qin
ρ̄+10 cos(8πx) − v̄ and η(0) = w(0, 1) for system (2.26)–(2.30), according to (2.17)–(2.18)

along with (2.12)).
The traffic parameters of the system (2.1)–(2.4) are given in Table 2 and are borrowed from

(Bekiaris-Liberis & Delis, 2021, section V).
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ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 21

TABLE 2 Parameters of the system (2.1)–(2.4) chosen as in Bekiaris-Liberis & Delis (2021)

ρ̄ = 105.8[ veh
km ] v̄ = 11.35[ km

h ] τacc = 2[s] h̄mix = 1.39[s]

qin = 1200[ veh
h ] L = 1000[m] τm = 60[s] hm = 1[s]

ρmin = 37[ veh
km ] l = 5[m] α = 0.15 h̄acc = 1.5[s]

FIG. 2. Numerical solution of ρ and v in system (2.1)–(2.4), and profile of the nominal controller (2.24) (under the original variables
via (2.17)–(2.18)).

The control gain κ (see (2.25)) is set as κ = 0.25[ 1
s ], as in Bekiaris-Liberis & Delis (2021). The

parameters of the triggering condition (3.1) are tuned to β1 = 9×10−4 and β2 = 0.118, verifying (3.10).
The tuning of those parameters can be done using e.g. a ‘line search’ (by increasing progressively β1
and β2) until condition (3.10) is no longer verified.

However, it is important to emphasize that due to the conservatism of our proposed approach (small-
gain based ETC design), the parameters β1 and β2 turn out to be very small. This implies that when
implementing the ETC strategy, the resulting numerical solution of the closed-loop system would behave
similar as in the continuous case (i.e. under a nominal control—see Fig. 2), since the updating of
the event-triggered controller occurs very often. See also Remark 1. The theoretical results, although
conservative, allow to study qualitatively the behaviour of the system under an event-triggered strategy
and the robustness to sampling. Now, in practice we can select larger values of β1 and β2 that violate
the small-gain condition (3.10), and still observe, numerically, convergence of the solution of system to
the desired profiles. For instance, we can set β1 = 0.19 and β2 = 0.82, which imply less updating of
the controller, and yet observe the convergence of the closed-loop solutions. Indeed, Fig. 3 shows the
numerical solution of system (2.1)–(2.4) in closed loop under the ETC (2.25), (3.1). Figure 4 shows the
profile at the boundary x̄ = L, of the ETC (2.25) and the nominal control (2.24) (under the original
variables via (2.17)–(2.18)).

Figure 5 shows the time evolution of the sup-norms of the the linear hyperbolic system (2.26)–(2.30)
using small-gain event-triggered controller (2.25) (red line), and the nominal continuous controller (2.24)
(blue line). In both cases, we can observe exponential convergence to zero, and it can be highlighted a
better performance (in terms of convergence rate) under a nominal controller, as expected.

Finally, we investigate traffic system performance, by computing the following metrics, introduced
in Treiber & Kesting (2013); these are, respectively, the fuel consumption Jfuel, travel comfort Jcomfort
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22 X. WANG ET AL.

FIG. 3. Numerical solution of ρ and v in system (2.1)–(2.4), and profile of the small-gain event-triggered controller (2.25), (3.1)
with β1 = 0.19 and β2 = 0.82.

FIG. 4. Profile at the boundary x̄ = L of the ETC (2.25) (red line) and the nominal control (2.24) (blue line)—both under the
original variables via (2.17)–(2.18).

and total travel time JTTT:

Jfuel =
∫ T

0

∫ L

0
max{0, δ0 + δ1v(t, x̄) + δ3v(t, x̄)3 + δ4v(t, x̄)ā(t, x̄)}ρ(t, x̄)dx̄dt, (4.1)

Jcomfort =
∫ T

0

∫ L

0

(
ā(t, x̄)2 + āt(t, x̄)2

)
ρ(t, x̄)dx̄dt, (4.2)

JTTT =
∫ T

0

∫ L

0
ρ(t, x̄)dx̄dt, (4.3)

where ā(t, x̄) = vt(t, x̄) + v(t, x̄)vx̄(t, x̄) is the local acceleration, and the following parameters: δ0 =
25 × 10−3[1/s], δ1 = 24.5 × 10−6[1/m], δ3 = 32.5 × 10−9[1s3/m2] and δ4 = 125.6 × 10−6[1s2/m2].
For more details, we refer to (Treiber & Kesting, 2013, page 485).

We compare the traffic performance metrics in open loop with the performance metrics obtained
in closed loop under both the nominal continuous-time control (given in (2.24)) and the ETC
(given in (2.25),(3.1)) strategies. Table 3 reports the percentage of improvement with respect to the
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ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 23

FIG. 5. Time-evolution of the sup-norms of the linear hyperbolic system (2.26)–(2.30) under small-gain event-triggered controller
(2.25) (red line), and the nominal continuous controller (2.24) (blue line).

TABLE 3 Performance indices (4.1)–(4.3)

Performance index Improvement (%) with nominal control (2.24) Improvement (%) with ETC (2.25)

Jfuel 5.928 5.928
Jcomfort 96.48 76.53
JTTT 5.962 5.967

open-loop driving behaviour. Closing the loop with a feedback controller considerably improves all fuel
consumption, total travel time and drivers’ comfort compared with the open-loop scenario. It is worth
noticing, however, that the ETC strategy leads the drivers to experience more discomfort, yet much lower
than if no control is applied at all. Overall, application of ETC results in better performance in all of the
metrics, compared with the open-loop baseline.

5. Conclusion

This paper proposed an ETC scheme to regulate mixed traffic flow, incorporating ACC-equipped
vehicles, under the ARZ-type modelling framework. The event-triggered scheme makes use of a small-
gain based triggering condition. We performed the stability analysis through ISS estimates and small-gain
arguments. The ETC design ensures exponential stability in the supr-norm, and we prove the avoidance
of the Zeno phenomenon (though lacking uniformity as there is dependence on the information of
the current inter-sampling interval). Future work will focus on reducing the frequency of updating by
addressing the conservativeness of the event-triggering conditions, thereby improving system efficiency
and further optimizing the control strategy. To this end, we will rely on recent strategies such as
performance-barrier-based ETC (Zhang et al., 2025). In addition, spatial discretization can also be
studied based on recent advancements in sampled-data control of mixed traffic flow by Zhao et al. (2024).
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A. Appendix

A.1. Proof of Lemma 1

By the method of characteristics, the explicit solution of (2.33) with boundary condition (2.35) and initial
data z(0, x), x ∈ [0, 1], is given as follows, for all t ∈ [0, limj→∞(tj)):

z(t, x) = z
(
0, x − λ1t

) +
∫ t

0
(−κa)w(τ , x − λ1t + λ1τ)dτ +

∫ t

0
(−b1)d

∗(τ , x − λ1t + λ1τ)dτ , (A.1)

for 0 ≤ t ≤ x
λ1

, and

z(t, x) = −rw
(

t − 1
λ1

x, 0
)
+

∫ t

t− x
λ1

(−κa)w(τ , x − λ1t + λ1τ)dτ +
∫ t

t− x
λ1

(−b1)d
∗(τ , x − λ1t + λ1τ)dτ ,

(A.2)

for x
λ1

≤ t. From (A1) and (A2), the solution can be seen as the sum of the following terms for all
t ∈ [0, limj→∞(tj)):

z(t, x) = z̄1(t, x) + z̄2(t, x) + z̄3(t, x) + z̄4(t, x), (A.3)

where

z̄1(t, x) := z
(
0, x − λ1t

)
, (A4)

z̄2(t, x) := 0, (A5)

z̄3(t, x) :=
∫ t

0
(−b1)d

∗(τ , x − λ1t + λ1τ)dτ , (A6)

z̄4(t, x) :=
∫ t

0
(−κa)w(τ , x − λ1t + λ1τ)dτ , (A7)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article/42/3/dnaf027/8266458 by Technical U

niversity of C
rete user on 29 Septem

ber 2025



ETC OF TRAFFIC FLOW WITH CONNECTED/AUTOMATED VEHICLES 27

for t ∈ [0, limj→∞(tj)), x ∈ [0, 1] with 0 ≤ t ≤ x
λ1

, and

z̄1(t, x) := 0, (A8)

z̄2(t, x) := −rw
(

t − 1
λ1

x, 0
)

, (A9)

z̄3(t, x) :=
∫ t

t− x
λ1

(−b1)d
∗(τ , x − λ1t + λ1τ)dτ , (A10)

z̄4(t, x) :=
∫ t

t− x
λ1

(−κa)w(τ , x − λ1t + λ1τ)dτ , (A11)

for t ∈ [0, limj→∞(tj)), x ∈ [0, 1] with x
λ1

≤ t. We estimate the Lp(0, 1) norm of z̄1, with p ∈ [1, ∞).
From (A4), the following estimate holds for every ς > 0:∣∣z̄1(t, x)

∣∣ p = ∣∣z (
0, x − λ1t

)∣∣ p

≤ e−pς te
pς

x
λ1

∣∣z (
0, x − λ1t

)∣∣ p

≤ e−pς te
pς

1
λ1

∣∣z (
0, x − λ1t

)∣∣ p.

Therefore, we get

∥∥z̄1(t, ·)
∥∥

Lp ≤ e−ς te
ς
λ1 ‖z (0, ·)‖Lp . (A.12)

We estimate the Lp(0, 1) norm of z̄2, with p ∈ [1, ∞). From (A9), the following estimate holds for every
ς > 0:

∣∣z̄2(t, x)
∣∣ p = |r| p

∣∣∣w (
t − 1

λ1
x, 0

)∣∣∣ p

= e
pς

x
λ1 e

−pς(t−(t− x
λ1

)) |r| p
∣∣∣w (

t − 1
λ1

x, 0
)∣∣∣ p

≤ e
pς

x
λ1 |r| p max

t− 1
λ1

≤s≤t

(
|w(s, 0)| pe−pς(t−s)

)

≤ e
pς

1
λ1 |r| p max

max
{

0,t− 1
λ1

}
≤s≤t

(
|w(s, 0)| pe−pς(t−s)

)
, (A.13)

for all t ∈ [0, limj→∞(tj)), x ∈ [0, 1] with x
λ1

≤ t. Hence, we obtain for every ς > 0, p ∈ [1, ∞) and
t ∈ [0, limj→∞(tj))

∥∥z̄2(t, ·)
∥∥

Lp ≤ e
ς

1
λ1 |r| max

max
{

0,t− 1
λ1

}
≤s≤t

(
|w(s, 0)| e−ς(t−s)

)
. (A.14)

Using Lyapunov analysis, we estimate the Lp(0, 1) norm of z̄3, which verifies z̄3t(t, x) = −λ1z̄3x(t, x) −
κaw(t, x) − b1d∗(t, x) based on (2.33) with z̄3(t, 0) = 0 for t ∈ [0, limj→∞(tj)), and the initial data
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z̄3(0, x) = 0 for all x ∈ [0, 1]. Let us define

V1(z̄3) =
∫ 1

0
e−μx|z̄3(t, x)|pdx, (A.15)

with μ > 0 to be selected in the sequel. Computing the time derivative, we have

V̇1(z̄3) = p
∫ 1

0
e−μxsign(z̄3(t, x))z̄3t(t, x)|z̄3(t, x)|p−1dx

= p
∫ 1

0
e−μxsign(z̄3(t, x))

[−λ1z̄3x(t, x) − κaw(t, x) − b1d∗(t, x)
] |z̄3(t, x)|p−1dx. (A.16)

Since the following holds:

p
∫ 1

0
e−μxsign(z̄3(t, x))

(−λ1z̄3x(t, x)
) |z̄3(t, x)|p−1dx

= −λ1

[
e−μx|z̄3(t, x)|p]1

0 −
∫ 1

0
e−μxμλ1|z̄3(t, x)|pdx

= −λ1e−μ|z̄3(t, 1)|p + λ1|z̄3(t, 0)|p − μλ1V1(z̄3), (A.17)

and using the Young’s inequality,

|z̄3(t, x)|p−1w(t, x) ≤ p − 1

p
ε

p
p−1
0 |z̄3(t, x)|p + 1

p
ε
−p
0 |w(t, x)|p, (A18)

|z̄3(t, x)|p−1d∗(t, x) ≤ p − 1

p
ε

p
p−1
1 |z̄3(t, x)|p + 1

p
ε
−p
1 |d∗(t, x)|p, (A19)

we obtain, from (A16)–(A19),

V̇1(z̄3) ≤ − μλ1V1(z̄3) + |κa|(p − 1)ε

p
p−1
0

∫ 1

0
e−μx|z̄3(t, x)|pdx + |κa|ε−p

0

∫ 1

0
e−μx|w(t, x)|pdx

+ |b1|(p − 1)ε

p
p−1
1

∫ 1

0
e−μx|z̄3(t, x)|pdx + |b1|ε−p

1

∫ 1

0
e−μx|d∗(t, x)|pdx

= −
[
μλ1 − |κa|(p − 1)ε

p
p−1
0 − |b1|(p − 1)ε

p
p−1
1

]
V1 + |κa|ε−p

0

∫ 1

0
e−μx|w(t, x)|pdx

+ |b1|ε−p
1

∫ 1

0
e−μx|d∗(t, x)|pdx. (A.20)

Next, using the comparison principle, we have, for all x ∈ [0, 1],
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V1(z̄3) ≤ e−[μλ1−|κa|(p−1)ε

p
p−1

0 −|b1|(p−1)ε

p
p−1

1 ]tV1(z̄3(0, ·))

+ |κa|ε−p
0

∫ t

0
e−[μλ1−|κa|(p−1)ε

p
p−1

0 −|b1|(p−1)ε

p
p−1

1 ](t−s)ds‖w(s, ·)‖p
Lp

+ |b1|ε−p
1

∫ t

0
e−[μλ1−|κa|(p−1)ε

p
p−1

0 −|b1|(p−1)ε

p
p−1

1 ](t−s)ds|d∗(s, ·)|pLp . (A.21)

Since V1(z̄3(0, x)) = 0, for every ς > 0, we obtain from (A21), the following estimate:

‖z̄3(t, ·)‖Lp ≤ eμ/pε−1
1

⎛
⎜⎝|b1|

∫ t

0
e
−

[
μλ1−(|κa|ε

p
p−1

0 +|b1|ε
p

p−1
1 )(p−1)−pς

]
(t−s)

ds

⎞
⎟⎠

1/p

× max
0≤s≤t

(
‖d∗(s, ·)‖Lpe−ς(t−s)

)

+ eμ/pε−1
0

⎛
⎜⎝|κa|

∫ t

0
e
−

[
μλ1−

(
|κa|ε

p
p−1

0 +|b1|ε
p

p−1
1

)
(p−1)−pς

]
(t−s)

ds

⎞
⎟⎠

1/p

× max
0≤s≤t

(
‖w(s, ·)‖Lpe−ς(t−s)

)
. (A.22)

Selecting

μ = p(|κa| + |b1|)λ1/|b1| + pς

λ1
, (A.23)

and

ε0 = ε1 =
(

μλ1p−1 − ς

|κa| + |b1|
) p−1

p

=
(

λ1

|b1|
) p−1

p

, (A.24)

we get from (A22) the following estimate:

‖z̄3(t, ·)‖Lp ≤ e

( |κa|+|b1|
|b1| + ς

λ1

)
(|b1|)

1
p

(
λ1

|b1|
)− p−1

p
(∫ t

0
e
−(|κa|+|b1|)

(
λ1|b1|

)
(t−s)

ds

) 1
p

× max
0≤s≤t

(
‖d∗(s, ·)‖Lpe−ς(t−s)

)
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+ e

( |κa|+|b1|
|b1| + ς

λ1

)
(|κa|) 1

p

(
λ1

|b1|
)− p−1

p
(∫ t

0
e
−(|κa|+|b1|)

(
λ1|b1|

)
(t−s)

ds

) 1
p

× max
0≤s≤t

(
‖w(s, ·)‖Lp e−ς(t−s)

)

≤e

( |κa|+|b1|
|b1| + ς

λ1

)
(|b1|)

1
p

(
λ1

|b1|
)− p−1

p
( |b1|

(|κa| + |b1|)λ1

) 1
p

max
0≤s≤t

(
‖d∗(s, ·)‖Lpe−ς(t−s)

)

+ e

( |κa|+|b1|
|b1| + ς

λ1

)
(|κa|) 1

p

(
λ1

|b1|
)− p−1

p
( |b1|

(|κa| + |b1|)λ1

) 1
p

max
0≤s≤t

(
‖w(s, ·)‖Lpe−ς(t−s)

)
. (A.25)

Since

(|b1|)
1
p

(
λ1

|b1|
)− p−1

p
( |b1|

(|κa| + |b1|)λ1

) 1
p = (|b1|)

1
p

(
λ1

|b1|
)−1 (

λ1

|b1|
) 1

p
( |b1|

(|κa| + |b1|)
) 1

p

λ1
− 1

p

≤ (|b1|)
1
p

(
λ1

|b1|
)−1 (|b1|

)− 1
p λ1

1
p (1)

1
p λ1

− 1
p

≤
(

λ1

|b1|
)−1

(A.26)

and

(|κa|) 1
p

(
λ1

|b1|
)− p−1

p
( |b1|

(|κa| + |b1|)λ1

) 1
p = (|κa|) 1

p

(
λ1

|b1|
)−1 (

λ1

|b1|
) 1

p
(

1

(|κa| + |b1|)
) 1

p
( |b1|

λ1

) 1
p

=
(

λ1

|b1|
)−1 ( |κa|

(|κa| + |b1|)
) 1

p

≤
(

λ1

|b1|
)−1

, (A.27)

according to (A25)–(A27), we have

‖z̄3(t, ·)‖Lp ≤ e

( |κa|+|b1|
|b1| + ς

λ1

) |b1|
λ1

max
0≤s≤t

(
‖d∗(s, ·)‖Lpe−ς(t−s)

)

+ e

( |κa|+|b1|
|b1| + ς

λ1

) |b1|
λ1

max
0≤s≤t

(
‖w(s, ·)‖Lp e−ς(t−s)

)
. (A.28)

Similarly, since z̄4(0, x) also verifies (2.33), we get, for all x ∈ [0, 1],

‖z̄4(t, ·)‖Lp = ‖z̄3(t, ·)‖Lp

≤ e

( |κa|+|b1|
|b1| + ς

λ1

)
|b1|
λ1

max
0≤s≤t

((‖d∗(s, ·)‖Lp + ‖w(s, ·)‖Lp

)
e−ς(t−s)

)
. (A.29)
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Using (A3) with (A12), (A14), (A28), (A29), and p → ∞, it holds

‖z(t, ·)‖∞ ≤ e−ς te
ς
λ1 ‖z (0, ·)‖∞

+ e

( |κa|+|b1|
|b1| + ς

λ1

)
2|b1|
λ1

max
max

{
0,t− 1

λ1

}
≤s≤t

((‖d∗(s, ·)‖∞ + ‖w(s, ·)‖∞
)

e−ς(t−s)
)

+ e
ς
λ1 |r| max

max
{

0,t− 1
λ1

}
≤s≤t

(
|w(s, 0)|e−ς(t−s)

)
. (A.30)

On the other hand, the explicit solution of (2.34) with dynamic boundary conditions (2.36)–(2.37) and
initial data w(0, x), x ∈ [0, 1] for all t ∈ [0, limj→∞(tj)), is given as follows:

w(t, x) = w
(
0, x + λ2t

)
exp(−κt) +

∫ t

0
exp(−κ(t − τ))(−b2)d

∗(τ , x + λ2t − λ2τ)dτ , (A.31)

for 0 ≤ t ≤ 1−x
λ2

, and

w(t, x) = η
(

t − 1−x
λ2

)
exp

(−κ
λ2

(1 − x)
)

+
∫ t

t− 1−x
λ2

exp(−κ(t − τ))(−b2)d
∗(τ , x + λ2t − λ2τ)dτ ,

(A.32)

for 1−x
λ2

≤ t, with

η(t) = exp(−κt)η(0) − b2

∫ t

0
exp(−κ(t − s))d∗(s, 1)ds. (A.33)

From (A31) and (A32), the solution can be seen as the sum of the following terms for all t ∈
[0, limj→∞(tj)):

w(t, x) = w̄1(t, x) + w̄2(t, x) + w̄3(t, x), (A.34)

where

w̄1(t, x) := w
(
0, x + λ2t

)
exp(−κt),

w̄2(t, x) := 0,

w̄3(t, x) :=
∫ t

0
exp(−κ(t − τ))(−b2)d

∗(τ , x + λ2(t − τ))dτ ,

(A.35)

for t ∈ [0, limj→∞(tj)), x ∈ [0, 1] with 0 ≤ t ≤ 1−x
λ2

, and

w̄1(t, x) := 0,

w̄2(t, x) := η
(

t − 1−x
λ2

)
exp

(−κ
λ2

(1 − x)
)

,

w̄3(t, x) :=
∫ t

t− 1−x
λ2

exp(−κ(t − τ))(−b2)d
∗(τ , x + λ2(t − τ))dτ ,

(A.36)
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for t ∈ [0, limj→∞(tj)) with 1−x
λ2

≤ t. We estimate the Lp(0, 1) norm of w̄1, with p ∈ [1, ∞). Note that
κ > 0 and from (A35)–(A36), the following estimate holds for every ς > 0:∣∣w̄1(t, x)

∣∣ p = ∣∣w (
0, x + λ2t

)
exp(−κt)

∣∣ p

≤ e−pς te
pς

(
1−x
λ2

) ∣∣w (
0, x + λ2t

)∣∣ p

≤ e−pς te
pς

1
λ2

∣∣w (
0, x + λ2t

)∣∣ p, (A.37)

for all t ∈ [0, limj→∞(tj)), x ∈ [0, 1] with 0 ≤ t ≤ 1−x
λ2

. Therefore, we get

∥∥w̄1(t, ·)
∥∥

Lp ≤ e−ς te
ς

1
λ2 ‖w (0, ·)‖Lp . (A.38)

We estimate the Lp(0, 1) norm of w̄2, with p ∈ [1, ∞). From (A35)–(A36), the following estimate holds
for every ς > 0 and κ > 0:

∣∣w̄2(t, x)
∣∣ p =

∣∣∣η (
t − 1−x

λ2

)
exp

(−κ
λ2

(1 − x)
)∣∣∣ p

≤ e
pς

x
λ2 e

−pς
1
λ2 e

−pς
((

t−
(

t+ 1−x
λ2

)) ∣∣∣η (
t − 1−x

λ2

)∣∣∣ p

≤ e
pς

x
λ2 max

t− 1−x
λ2

≤s≤t

(
|η(s)| pe−pς(t−s)

)

≤ e
pς

x
λ2 max

max{0,t− 1
λ2

}≤s≤t

(
|η(s)| pe−pς(t−s)

)
. (A.39)

Hence, we obtain for every ς > 0, p ∈ [1, ∞) and t ≥ 0

∥∥w̄2(t, ·)
∥∥

Lp ≤ e
ς

1
λ2 max

max
{

0,t− 1
λ2

}
≤s≤t

(
|η(s)| e−ς(t−s)

)
. (A.40)

Using Lyapunov analysis, we estimate the Lp(0, 1) norm of w̄3, with p ∈ [1, ∞), σ > 0. We have
w̄3(t, 1) = 0 for t ∈ [0, limj→∞(tj)).

Let us define

V2(w̄3) =
∫ 1

0
eσx|w̄3(t, x)|pdx. (A.41)

We compute the time derivative of V2(w̄3) as follows:

V̇2(w̄3) = p
∫ 1

0
eσxsign(w̄3(t, x))w̄3t(t, x)|w̄3(t, x)|p−1dx

= p
∫ 1

0
eσxsign(w̄3(t, x))

[
λ2w̄3x(t, x) − κw̄3(t, x) − b2d∗(t, x)

] |w̄3(t, x)|p−1dx. (A.42)
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Since

p
∫ 1

0
eσxsign(w̄3(t, x))λ2w̄3x(t, x)|w̄3(t, x)|p−1dx = λ2

[
eσx|w̄3(x)|p

]1
0 −

∫ 1

0
eσxσλ2|w̄3(x)|pdx

= λ2eσ |w̄3(1)|p − λ2|w̄3(0)|p−σλ2

∫ 1

0
eσx|w̄3(x)|pdx

(A.43)

and

|w̄3(x)|p−1d∗(t, x) ≤ p − 1

p
ε

p
p−1
2 |w̄3(x)|p + 1

p
ε
−p
2 |d∗(t, x)|p, (A.44)

substituting (A43)–(A44) into (A42), we get

V̇2(w̄3) ≤ λ2eσ |w̄3(1)|p − λ2|w̄3(0)|p − σλ2V2(w̄3) − pκV2(w̄3)

+ (p − 1)|b2|ε
p

p−1
2 V2(w̄3) + |b2|ε−p

2

∫ 1

0
eσx|d∗(t, x)|pdx

≤ −
(

σλ2 + pκ − (p − 1)|b2|ε
p

p−1
2

)
V2(w̄3) + |b2|ε−p

2

∫ 1

0
eσx|d∗(t, x)|pdx

≤ |b2|ε−p
2 eσ ‖d∗(t, x)‖p

Lp −
(

σλ2 + pκ − (p − 1)|b2|ε
p

p−1
2

)
V2(w̄3). (A.45)

Using the comparison principle and the fact that V2(0) = 0 (since w̄3(0, x) = 0), we get for all t ∈
[0, limj→∞(tj)), x ∈ [0, 1]

V2(w̄3) ≤ |b2|ε−p
2 eσ

∫ t

0
e−(σλ2+pκ−(p−1)|b2|ε

p
p−1

2 )(t−s)‖d∗(s, ·)‖p
Lpds

≤ |b2|ε−p
2 eσ

∫ t

0
e−(σλ2+pκ−(p−1)|b2|ε

p
p−1

2 −pς)(t−s)ds max
0≤s≤t

(
‖d∗(s, ·)‖p

Lpe−pς(t−s)
)

. (A.46)

Thus, we have

‖w̄3(t, ·)‖Lp ≤
(

|b2|
∫ t

0
e−(σλ2+pκ−(p−1)|b2|ε

p
p−1

2 −pς)(t−s)ds

)1/p

eσ/pε−1
2 max

0≤s≤t

(
‖d∗(s, ·)‖Lpe−ς(t−s)

)
.

(A.47)

Selecting

σ = pλ2 − pκ + pς

λ2
(A.48)

and

ε2 =
(

σλ2p−1 + κ − ς

|b2|
) p−1

p

=
(

λ2

|b2|
) p−1

p

, (A.49)
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we get

‖w̄3(t, ·)‖Lp ≤ e

(
1− κ

λ2
+ ς

λ2

) (
λ2

|b2|
)− p−1

p |b2|
1
p

(∫ t

0
e−(pλ2−(p−1)λ2)(t−s)ds

)1/p

max
0≤s≤t

‖d∗(s, ·)‖Lpe−ς(t−s)

≤ e

(
1− κ

λ2
+ ς

λ2

) (
λ2

|b2|
)− p−1

p |b2|
1
p

(
1
λ2

) 1
p

max
max

{
0,t− 1

λ2

}
≤s≤t

‖d∗(s, ·)‖Lpe−ς(t−s). (A.50)

Since the following holds:(
λ2

|b2|
)− p−1

p |b2|
1
p

(
1
λ2

) 1
p =

(
λ2

|b2|
)−1 (

λ2

|b2|
) 1

p
( |b2|

λ2

) 1
p

=
(

λ2

|b2|
)−1

, (A.51)

substituting (A51) into (A50), we have

‖w̄3(t, ·)‖Lp ≤e

(
1− κ

λ2
+ ς

λ2

) (
λ2

|b2|
)−1

max
max

{
0,t− 1

λ2

}
≤s≤t

‖d∗(s, ·)‖Lpe−ς(t−s). (A.52)

Using (A34) with (A38), (A40), (A52), and p → ∞, it holds

‖w(t, ·)‖∞ ≤ e−ς te
ς
λ2 ‖w (0, ·)‖∞ + |b2|

λ2
e

(
1− κ

λ2
+ ς

λ2

)
max

max
{

0,t− 1
λ2

}
≤s≤t

‖d∗(s, ·)‖∞e−ς(t−s)

+ e
ς
λ2 max

max
{

0,t− 1
λ2

}
≤s≤t

|η(s)|e−ς(t−s). (A.53)

The proof is complete.
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