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A feedback control strategy is proposed for lane assignment at bottle-
neck locations. The strategy assumes that some vehicles equipped with 
vehicle automation and communication systems are capable of receiving 
and executing specific lane-changing orders or recommendations. From 
a previously proposed optimal control strategy based on a simplified 
multilane motorway traffic flow model and formulated as a linear qua-
dratic regulator, a feedback control problem was designed. The aim was 
to maximize the throughput at bottleneck locations while distributing 
the total density at the bottleneck area over the lanes according to a 
given policy by optimal lane assignment of the vehicles upstream of 
the bottleneck. The feedback control decisions were based on real-time 
measurements of the traffic state and inflow. The proposed strategy was 
tested on a nonlinear first-order macroscopic multilane traffic flow model, 
which also accounted for the capacity drop phenomenon.

In the near future, vehicle automation and communication systems 
(VACS) are expected to revolutionize the features and capabilities of 
individual vehicles. Of the wide range of potentially introduced VACS, 
some may be exploited to interfere with driving behavior via recom-
mending, supporting, or even executing appropriately designed traffic 
control tasks, providing unprecedented opportunities to improve 
traffic control performance (1). However, the uncertainty about the 
future development of VACS calls for the design of control strategies 
that are robust with respect to the different system types, as well as to 
their penetration rate. A promising new feature that can be exploited 
for traffic management is lane-changing control.

The problem of modeling the distribution of vehicles over the lanes 
in the case of ordinary traffic has been addressed in research that 
shows that lane distribution is affected by some characteristics of the 
network layout (e.g., the total number of lanes) (2–8). However, this 
choice is also behavioral since every single driver may autonomously 
decide to stay in a slower lane accepting the lower speed, stay in the 
slower lane and overtake when necessary (for lower densities), or 
travel constantly in a faster lane (in higher densities). In addition—
particularly at bottleneck locations (e.g., lane drops and on-ramp 
merges)—human drivers usually perform suboptimal lane changes 

on the basis of erroneous perceptions, which may trigger congestion 
and, thus, deteriorate the overall travel time (9, 10). Last, some of 
the mentioned empirical investigations indicate that in conventional 
traffic, capacity flow is not reached simultaneously at all lanes, a 
feature that reduces the potentially achievable cross-lane capacity. 
It is, therefore, envisioned that if a sufficient percentage of vehicles 
are equipped with VACS having vehicle-to-infrastructure capabilities 
and appropriate lane-changing automatic controllers or advisory 
systems, the overall throughput at the bottleneck location may be 
improved by the execution of specific lane-changing commands 
decided by a central decision maker.

The problem of assigning traffic flow over lanes for motorways 
under fully automated or semiautomated driving has been studied in  
research during the past decades. To tackle the high complexity 
of the problem, several assumptions are typically made, including 
the known and constant prevailing speeds along the motorway and 
the absence of traffic congestion, thanks to the assumed (but not 
addressed) appropriate operation of other control actions (e.g., ramp 
metering) at the motorway entrances. In addition, structural assump-
tions are commonly considered to limit the (otherwise vast) space of 
potential path assignments. In his seminal work, Varaiya proposed a 
hierarchical framework for a fully automated motorway, in which the 
decisions on the lane-changing behavior of vehicles are addressed 
in the link layer, which consists of a set of parallel decentralized link 
controllers, each addressing a corresponding motorway link (of about 
2 km in length) (11). Following this framework, several strategies 
have been proposed to solve the problem of lane assignment in the 
link layer; strategies include designing control methods suitable for 
real-time applications, including the definition of well-justified and 
structured heuristic rules (12); implementing lane-routing algorithms 
(13); and defining control laws to stabilize traffic conditions (14). 
Optimization methods for path planning through lanes have been 
developed, but the computation complexity of the proposed optimi-
zation problems makes them hardly applicable in a real-time context 
(15–18). Lane-changing control has also been considered, together 
with variable speed limits and ramp metering in integrated traffic 
management strategies (19–21).

Recently, a combined lane-changing and variable speed limits 
control strategy was developed by Zhang and Ioannou, with the 
purpose of avoiding lane changes in the immediate proximity of  
a bottleneck, which especially in the case of heavy vehicles, may 
lead to premature triggering of congestion (10). In particular, lane-
changing commands delivered as recommendations to drivers are 
defined according to a set of case-specific rules. Schakel and van Arem 
proposed a system that aims at an optimal lane distribution in high 
flow conditions by sending advice on lane, speed, and headway to 
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vehicles equipped with an in-car advisory system (22). The advice 
is determined at a traffic management center, based on a newly pro-
posed lane level traffic state prediction model. Furthermore, Guériau 
et al. proposed a multiagent decentralized framework with the aim 
of performing cooperative lane-changing tasks according to infor-
mation exchange between vehicles and a roadside unit located in the 
proximity of a bottleneck (23).

An optimal feedback control strategy formulated as a linear qua-
dratic regulator was recently proposed in Roncoli et al. (24). The 
solution is applied in the form of a linear state-feedback control law, 
which is highly efficient in real time even for large-scale networks. 
Different from other approaches, this strategy is based on a rigorous 
application of optimal control theory and does not involve the defi-
nition of heuristic rules. The control strategy aims at regulating the 
lane assignment of vehicles upstream of a bottleneck location so as 
to maximize the bottleneck throughput, targeting critical densities 
at bottleneck locations as set points. However, as a result, the traf-
fic density distribution over different lanes may remain (roughly) 
constant under any demand scenario. Although this behavior would 
not produce any negative effect on the traffic performance, it may 
in some circumstances be undesirable. As an example, consider a 
two-lane motorway in which the two lanes have the same charac-
teristics (i.e., same critical densities); targeting critical densities as 
set points would result in equal flows in both lanes for any traffic 
situation. This behavior is not permitted, for example, in European 
motorways, where vehicles are obliged to travel in the rightmost 
(for right-hand traffic) available lane, while overtaking is allowed 
only on the left side. For North American freeways this issue is less 
crucial since vehicle overtaking is allowed on any lane; however, 
also in this case, traffic authorities may for various reasons, prefer 
different specific lane distributions. To incorporate this feature, a 
method is proposed here that does not always aim at tracking the 
critical density, but through opportunely defined functions, it allows 
distribution of the total density at a bottleneck area over the lanes 
according to a given policy.

The rest of the paper is organized as follows. The control design 
framework for multilane motorways proposed in Roncoli et al. is 
presented first (24). Then, the control problem is reformulated, and a 
feedback control law is designed to achieve a different traffic density 
distribution for the various lanes at the bottleneck area. Simulation 
experiments using a first-order macroscopic traffic flow model featur-
ing the capacity drop phenomenon are then presented to evaluate the 
effectiveness of the developed method and to highlight the different  
traffic behaviors in regard to flow distribution. The main results 
of the paper are highlighted in the concluding section, and further 
research challenges are proposed.

Lane-Changing-Based Optimal Control  
of Multilane Motorways at Bottlenecks

Bottlenecks in Motorways

A motorway bottleneck is a location where the flow capacity upstream 
of the bottleneck location is higher than the flow capacity downstream.

Bottleneck locations can be lane drops, merge areas, and zones 
with a particular infrastructure layout (e.g., strong grade or curvature 
and tunnels) or with external capacity-reducing events (e.g., work 
zones and incidents). The nominal bottleneck capacity is the maxi-
mum traffic flow that can be maintained at the bottleneck location 
if the traffic flow arriving from upstream is smaller than (or equal to) 
the bottleneck capacity. However, if the arriving flow is higher than 
the capacity or the lane-changing behavior leads to exceeding the 
capacity of at least one lane, the bottleneck is activated, generating 
congestion starting at the bottleneck location and spilling back for 
as long as the upstream arriving flow is sufficiently high. Empiri-
cal observations show that whenever a bottleneck is activated, the 
maximum outflow that materializes (also called discharge flow) may 
be some 5% to 20% lower than the nominal bottleneck capacity; the 
difference between these two values of flow is called the capacity 
drop (25, 26). To avoid or delay the activation of a bottleneck and the 
related capacity drop phenomenon, various traffic control measures 
have been proposed and applied (27). In this work, it is assumed that 
the proposed control strategy operates simultaneously with some 
other controller [e.g., ramp metering (28) or mainstream traffic flow 
control (29)] that guarantees that the flow approaching the bottleneck 
area does not exceed the overall capacity of the bottleneck and, there-
fore, assuming an appropriate operation of the proposed lane-changing 
controller, traffic congestion may be completely avoided.

Linear Multilane Traffic Flow Model

Consider a multilane motorway that is subdivided into i = 0, . . . , N  
segments of length Li, while each segment is composed of j =  
mi, . . . , Mi lanes, where mi and Mi are the minimum and maximum 
indexes of lanes for segment i. Each element of the resulting grid is 
denoted as a cell (see Figure 1), which is indexed by (i, j). The model 
is formulated in discrete time, considering the discrete time step T, 
indexed by k = 0, 1, . . . , where the time is t = kT. To account for any 
possible network topology, including lane drops and lane additions 
on the right and on the left sides of the motorway, it is assumed that 
j = 0 corresponds to the segment(s) including the rightmost lane. 
Consequently, mi and Mi are defined as the minimum and maximum 
indexes j, respectively, for which a lane exists in segment i. For 
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FIGURE 1    Hypothetical motorway stretch.
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example, looking at the hypothetical motorway stretch depicted in 
Figure 1, m0 = 0 and M0 = 4, while m3 = 1 and M3 = 3. According to 
that definition, the total number of cells from the origin to segment i 
is Hi = Σ i

r=0(Mr − mr + 1), and the total number of cells for the whole 
stretch is H

–
 = HN.

Each motorway cell (i, j) is characterized by the traffic density 
ρi,j(k), defined as the number of vehicles present in the cell at time 
instant k divided by Li. Density dynamically evolves according to the 
following conservation law equation [see, e.g., Roncoli et al. (30)]:
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where

	qi,j(k)	=	� longitudinal flow leaving cell (i, j) and entering cell  
(i + 1, j ) during time interval (k, k + 1],

	fi,j(k)	=	� net lateral flow moving from cell (i, j) to cell (i, j + 1) 
during time interval (k, k + 1], and

	di,j(k)	=	� external flow entering network in cell (i, j), either from 
mainstream or from on-ramp, during time interval  
(k, k + 1].

Depending on the network topology, some terms of Equation 1 may 
not be present. In particular, the inflow qi−1,j(k) does not exist for the 
first segment of the network; the outflow qi,j(k) does not exist for the 
last segment before a lane drop, while lateral flow term fi,j(k) exists 
only for mi ≤ j < Mi. Following previous considerations, the total 
number of lateral flow terms is F

–
 = H

–
 − N.

To guarantee numerical stability [since the discrete-time system 
described by Equation 1 may come from a discretization of a partial 
differential equation (31)], the time step T must respect the so-called 
Courant–Friedrichs–Lewy CFL condition (32):
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≤

where vi,j
max is the maximum speed allowed in cell (i, j).

Similar modeling approaches of multilane motorway traffic are 
also considered in Roncoli et al. (30), Munjal and Pipes (33), and 
Michalopoulos et al. (34). The net lateral flow fi,j(k) is considered only 
in one direction, namely, from the right to left lanes; therefore, fi,j(k) is 
actually the difference between the flow leaving and entering lane j 
at its left side. This simplification is useful for the subsequent control 
problem formulation since lateral flows are treated as control inputs.

Consider the well-known relationship
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With Equation 3 replaced into Equation 1, the following is obtained:
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which treating speeds vi,j(k) as known parameters, can be seen as a 
linear parameter varying system in the form

1 (5)x k A k x k Bu k d k( ) ( ) ( ) ( ) ( )+ = + +

where

�. . . . . . (6)0, 0, 1, ,0 0 1
x m M m N M

T H
N[ ]= ρ ρ ρ ρ ∈

�. . . . . . (7)0, 0, 1, , 10 0 0
u f f f k fm M m N M

T F
N[ ]( )= ∈−

�. . . . . . (8)
0

0,
0

0,
1

1, ,0 0 1
d

T

L
d

T

L
d

T

L
d

T

L
dm M m

N
N M

T
H

N
= 





∈

and time index k is omitted to simplify the notation. A ∈ H
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of subsequent cells connected by a longitudinal flow, and B ∈ H
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–
, 

composed of elements br,s, which reflects the connection of adjacent 
cells connected by lateral flows, are defined as
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where r = Σ i–1 
r=0Hr + j − mi.

Optimal Control Problem Formulation  
with Constant Set Points

The linear system described in the previous section is used for for-
mulating an optimal control problem with the purpose of manipulating 
the lateral flows to avoid creating congestion resulting from the activa-
tion of a bottleneck. Under the assumptions that the overall traffic 
flow entering the controlled area does not significantly exceed the 
bottleneck capacity and that the controller succeeds in avoiding the 
creation of congestion, one can assume that the speed in all cells 
remains at a constant value (e.g., the free-flow speed) vi,j(k) ≡ v–, ∀i, j, k. 
In addition, one can assume that the measurable inflows d– are con-
stant; the actual slow time variation of d– will not affect the control 
performance significantly. With these assumptions, the system in 
Equation 5 can be viewed as a linear time invariant system

1 (11)x k Ax k Bu k d( ) ( ) ( )+ = + +

Identifying the nominal capacity of a bottleneck is a nontrivial 
task. In fact, Elefteriadou et al. (35) and Lorenz and Elefteriadou (36) 
have demonstrated that the real flow capacity in a merge area may 
vary quite substantially from day to day, even under similar envi-
ronmental conditions; therefore, any control strategy attempting to 
achieve a prespecified capacity flow value may lead either to overload 
and congestion (on days in which the real capacity happens to be 
lower than its prespecified target value) or to underutilization of the 
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infrastructure (on days in which the real capacity happens to be higher 
than its prespecified target value). However, the critical density at 
which capacity flow occurs exhibits smaller variations, and it is there-
fore preferable to target a density set point (i.e., the critical density) at 
the bottleneck location (37). In Roncoli et al. (24), a control strategy 
was proposed that always targets the critical densities for each 
lane, and if they are unknown, an extremum-seeking algorithm was 
proposed to estimate them (38).

The following quadratic cost function (over an infinite time 
horizon) that accounts for the penalization of the difference between 
some (targeted) densities and the corresponding prespecified (assumed 
constant) set point values is defined, as well as a penalty term aim-
ing at maintaining small control inputs, that is, small lateral flows 
(weighted by ϕ):
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where

	(î , ĵ )	=	 targeted cells,
	 ρ̂î, ĵ	=	desired set point, and
	 αî, ĵ	=	corresponding weighting parameter.

Equation 12 is rewritten in matrix form as
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where Q = QT ≥ 0 and R = ϕIF
– > 0 are weighting matrices associated 

with the magnitude of the state tracking error and control actions, 
respectively, while C, composed of elements cr,s(k), where

=


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1 if density is tracked

0 otherwise
(14),cr s

reflects the cells that are tracked and ŷ
–
 is a vector that contains the 

desired set points. At first, only cells at the bottleneck locations 
(e.g., in Figure 1, ρ3,1, ρ3,2) are targeted.

The problem, defined as the minimization of the cost in Equa-
tion 13 subject to the linear dynamics in Equation 11, is solved 
through a linear quadratic regulator, under the assumption that the 
original system is, at least, stabilizable and detectable [see Lewis  
et al., chap. 2 (39)]. As shown in Roncoli et al., stabilizability is guar-
anteed for any network configuration, while to guarantee detectabil-
ity, it is necessary to control the density of each cell that does not 
have any other cell downstream (24). To account for this issue, an 
additional dummy cell is placed immediately downstream of each 
lane drop, imposing it with an appropriate high penalty weight αî,ĵ  
to have a density equal to zero. In the described case, the system is 
also observable. Further details are presented in Roncoli et al. (24).

The solution to the proposed linear quadratic regulator problem 
obtained via dynamic programming in Roncoli et al. results in the 
following feedback–feedforward control law (24):

* (15)ffu k Kx k u( ) ( )= − +
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The optimal gain computed in Equation 16 and the algebraic Riccati 
equation computed in Equation 17 are the same as can be found in 
classic optimal control books [see, e.g., Anderson and Moore (40)]. 
Several methods have been proposed to efficiently compute the solu-
tion of the algebraic Riccati equation [see, e.g., Anderson and Moore 
(40) and Arnold and Laub (41)]. Also, for practical implementation, 
one may allow for the (measured) inflow d– to be time varying, in 
which case the feedforward term u–ff in Equation 15 also becomes 
time varying, obtaining (instead of Equations 15 and 18)

* (21)ffu k Kx k u k( ) ( ) ( )= − +

ˆ (22)ffu k K y K d ky d( ) ( )= +

This corresponds to a model predictive control procedure, whereby 
the future inflow values are predicted to be equal to their current 
(measured) values.

The proposed feedback–feedforward control law is very effective 
for practical application since the computation of the feedback gain 
matrix K and of Ky and Kd is effectuated only once, offline; whereas 
online calculations are limited to a few matrix–vector multiplications, 
as evidenced by Equations 21 and 22.

A similar optimal regulation problem, without guarantee of 
regulation to an a priori prescribed set point for state variables and 
non-zero mean disturbances, has also been considered in Haddad 
and Bernstein, in which a different formulation for the feedforward 
term is obtained (42). In fact, the solution to the optimal control 
problem in this paper is obtained with the dynamic programming 
principle, whereas Haddad and Bernstein use Lagrange multipliers 
(42). Although it is cumbersome to compare the two control laws 
analytically, they produce the same results in all tested examples 
presented in this paper.

The implementation of lane-changing actions may not be trivial in 
practice, even if all vehicles are connected with the control center.  
These actions can be implemented by sending lane-changing rec-
ommendations to an appropriate number of selected vehicles; the 
selection may be based on the known destinations of the vehicles 
and further criteria. Since for the foreseeable future, the lane change 
advice will not be mandatory, the assignment will have to account for 
the compliance rate, as well as for other, spontaneous lane changes 
decided by the drivers. The latter may be reduced by giving additional 
“keep-lane” advice to all equipped vehicles that do not receive lane-
change advice. Clearly, any mismatch between the optimal lateral flows 
and the actually triggered lane changes may be partially compensated 
thanks to the feedback nature of the proposed controller.

Feedback Control Strategy for Density 
Distribution at Bottlenecks

An extended control strategy is proposed here that besides aiming at 
tracking the critical density (e.g., when demand is close to bottleneck 
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capacity) aims at distributing the vehicles at the bottleneck area over 
the lanes according to a given policy.

To achieve that end, the control law is modified by choosing a 
time-varying set point ŷ

–
 as a function of the network inflow: ŷ

–
(k) = 

ψ–(d–(k)); where the function ψ– defines the pursued lane distribution 
policy. Thus, the feedback–feedforward control law in Equation 21  
is maintained; however, the feedforward term of Equation 22 is 
replaced by

(23)ffu k K d k K d ky d( )( ) ( ) ( )= ψ +

As an example, Figure 2 shows possible functions for defining the 
set points for the left ( ŷL) and right ( ŷR) lanes of a two-lane motor-
way. In this example, the authors impose that for low total inflow 
dtot entering the motorway network, a higher amount of traffic is 
assigned to the left lane by choosing ŷL > ŷR for 0 < dtot ≤ d̃ tot, where 
d̃ tot is a flow value smaller than the bottleneck capacity dcap; while 
ŷL = ρL

cr and ŷR = ρR
cr for dtot ≥ d̃ tot. As a result, a higher outflow is 

expected from the left lane when the incoming demand is lower than 
dtot, while the two lanes should simultaneously reach their capacity 
(i.e., operating at their critical densities) when the overall demand 
approaches the bottleneck capacity. Notably, the proposed controller 
is capable of achieving a desired distribution of traffic on the basis  
of any given functions, which would reflect different distribution 
policies. A constraint to be considered while defining such functions 
is that to obtain the best traffic performance, the (per-lane) density 
set points should be equal to the (per-lane) critical densities when 
the inflow approaches the bottleneck capacity.

As an alternative, the set point ŷ
–

(k) may be varied via a total-
density-dependent term χ

–
(ρtot(k))ρtot(k), where χ

–
 is an opportunely 

defined function and ρtot(k) is the total (measured) density at the 
bottleneck area. In this case, χ

–
 holds the portions of the total current 

density assigned to the corresponding lanes. The involvement of 
ρtot(k) leads, factually, to an additional (outer) feedback loop, which 
however has virtually no impact on the overall system stability, as 
numerical investigations have shown.

Finally, all proposed controllers are in the form of state-feedback 
regulators, which require availability of measurements for all state 
variables (densities for each cell) in real time. In the case of incom-
plete measurements, one may use a traffic state estimator to produce 
the missing measurements; in the context of connected vehicles, 
promising approaches are found in other research (43–46).

Simulation Experiments

Nonlinear Multilane Traffic Flow Model

Presented next is the performance evaluation of the proposed control 
strategies based on simulation experiments using a first-order traffic 
flow model based on Roncoli et al. (30). The model is used for 
reproducing the traffic behavior for a lane motorway, and it features 
(a) nonlinear functions for the lateral flows of manually driven 
vehicles, (b) a cell transmission model–like formulation for the  
longitudinal flows, and (c) a nonlinear formulation to account for the 
capacity drop phenomenon (31). For completeness, a brief explanation 
is provided here of the model used.

Consider the conservation law described in Equation 1. Lateral 
flows owing to manual lane changing on adjacent lanes of the same 
segment are considered, and corresponding rules are defined to 
properly assign and bound their values. The net lateral flows are 
computed as follows:
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where li,j,j
–(k) is the lateral flow moving from cell (i, j) to cell (i, j
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) 

during time interval (k, k + 1] and j
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 = j ± 1. Lateral flows li,j,j
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computed according to the following:
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Equation 25 accounts for the potentially limited space that may 
not be sufficient for accepting the lateral flow entering from both sides 
of a cell, where S is the available space in regard to flow acceptance, 
and D is the lateral demand flow, which is computed via the definition 
of the attractiveness rate A. The attractiveness rate is computed as 
a function of the densities for each pair of adjacent lanes; the factor P  
affects the distribution of vehicles over the lanes and should be cali-
brated to achieve the desired behavior, for example, with the use of 
real data as in Roncoli et al. (47). Choosing a value P = 1 implies 
that drivers always move toward a faster lane (leading also to equal 
densities over the lanes), but P may also be tuned to reflect particular 
location-dependent effects in which lateral flow may occur in the 
direction from a lower to a higher density (e.g., upstream of on- and 
off-ramps and lane-drop locations). Finally, parameter µ is a constant 
coefficient in the range [0, 1] reflecting the “aggressiveness” in lane 
changing.

Longitudinal flows are the flows generated in a segment that move 
to the next downstream segment while remaining in the same lane. 
A Godunov-discretized scheme similar to the scheme proposed 
in Roncoli et al. (30) is used, but it uses the nonlinear exponential 
function proposed in Messmer and Papageorgiou (48) to obtain a more 
realistic behavior at undercritical densities. The model also accounts 
for the capacity drop phenomenon via a linearly decreasing demand 

ŷ
ŷL

ŷR

0 d̃ tot dcap dtot

ρR
cr

ρL
cr

FIGURE 2    Possible functions x– (d–(k)) used to define 
set points ŷ–(k) in real time at bottleneck area as 
function of total inflow d– tot(k) of motorway network.
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function for overcritical densities. Other modeling approaches can be 
used to improve the capability of reproducing capacity drop, obtain-
ing comparable results [see, e.g., Han et al. (49) and Kontorinaki et al. 
(50)]. More details and calibration results related to this model are 
presented in Roncoli et al. (30, 47). Formally, the complete formulation 
for longitudinal flows reads

min , (29), , 1, ,q k Q k Q k d ki j i j
D

i j
S

i j{ }( ) ( ) ( ) ( )= −+
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	vmax	=	 free speed,
	Q cap	=	capacity flow,
	 ρcr	=	critical density (i.e., density at which capacity flow occurs),
	 γ	=	capacity drop coefficient in [0,1], and

ln .
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Network Description and the No-Control Case

A hypothetical motorway stretch is considered to test and evaluate 
the performance of the proposed strategy. In particular, consider the 
network depicted in Figure 3; the network is composed of seven 
segments. Segments 1, . . . , 5 feature three lanes, while Segments 6 
and 7 feature only two, with a lane drop located downstream of cell 
(5, 1). All segments are characterized by a length of Li = 0.5 km, 
and a simulation step is defined as T = 10 s. Different lanes feature 
different parameters, specifically a different fundamental diagram, 
which may reflect a different traffic composition (e.g., a higher rate 
of heavy vehicles reducing the capacity of a specific lane); the values 
used are shown in Table 1.

Traffic demand profiles are defined for a simulation horizon K = 480  
(80 min), as shown in Figure 4. The overall demand entering the 
network is, at its peak, roughly equivalent to the total capacity of 
Segment 5, that is, the bottleneck capacity.

Running the macroscopic model described by Equations 1 and 24 
through 31 without the use of any control actions eventually produces 
traffic congestion starting at the lane-drop area, as a result of the non
optimal spontaneous lane changes of the vehicles. Looking at the  
contour plots shown in Figure 5a, one can see that the density 
increases first in Lane 1 (the lane that is dropping) at about t = 20 
because of the high demand arriving in the lane-drop area, while vehi-
cles try to merge first into Lane 2 and, because density also increases in 
this lane, eventually also into Lane 3. In particular, most lane changes 
take place in Segments 4 and 5, while a small number of lane changes 
take place in Segment 6; there are virtually no lane changes in the 
upstream segments (see Figure 6a). Recall that according to Equa-
tion 28, with Pi,j,j

– = 1, the lane-changing model acts toward the homog-
enization of the densities between adjacent lanes. The detrimental 
effects of the congestion worsen as a consequence of the capacity drop 
that occurs; that drop is triggered here by overcritical densities at both 
lanes of Segment 5, causing a reduction in the outflow in both lanes 
during the high-demand period, as shown in Figure 7a.

The congestion created spills back, covering all lanes of Segments 4 
and 5 (see Figure 5). The total travel time (TTT) over a finite time 
horizon K is used as the numerical evaluation criterion. It is defined 
as in Papageorgiou et al. as follows (28):

TTT (32)
0
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T L ki
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= =

−

=

obtaining for the presented no-control case a resulting overall 
TTT = 186.7 veh • h.

Application of Control Strategy  
with Constant Set Points

Now, the optimal control strategy with constant set points is evalu-
ated with the use of the previously described motorway scenario. 
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FIGURE 3    Motorway stretch used for testing and evaluating proposed control strategy.

TABLE 1    Parameters Used in  
Nonlinear Multilane Traffic Flow Model

Parameter Lanes j = 1, 2 Lane j = 3

vmax (km/h) 100 100

Qcap (vph) 1,800 2,400

ρcr (veh/km) 32 36

ρjam (veh/km) 120 160

γ 0.65 0.65

P 1 1

µ 0.5 0.5

Note: veh = vehicle.
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FIGURE 7    Flow exiting from Lanes 2 and 3 of Segment 5 (blue lines) and corresponding capacity 
flow (red lines). In (a) no-control case, capacity drop mechanism is triggered and outflow drops 
from capacity flow; whereas, when (b) control strategy with constant set points or (c) proposed 
feedback control strategy for density distribution is applied, capacity drop phenomenon is avoided 
and outflow during the peak period is close to bottleneck capacity.

The “application area,” namely, the portion of the network where the 
designed strategy is applied, is defined as the area from Segment 3 to 
Segment 6 (see Figure 3). The outflow of the segments immediately 
upstream of the application area q2,j is used as demand d–. A dummy 
cell (6, 1) is added immediately downstream of the lane drop to ensure 
system observability. The set point considered in the linear quadratic 
regulator thus includes the three cells in Segment 6.

According to the network topology and setting a constant speed 
v– = 90 km/h and cost weights Qi,j = 1 for i = j = 2, 3, Qi,j = 100 for 
i = j = 1, Qi,j = 0, ∀i ≠ j, and ϕ = 10−5 (obtained after some manual 
tuning of the controller aiming at achieving an efficient and smooth 
response), the gains according to Equations 16, 17, 19, and 20 are 
computed (offline).

Assuming that the critical densities at the controlled area are 
known, the set point vector ŷ

–
 is built to consist of ρ̂6,2 = 32 veh/km 

and ρ̂6,3 = 36 veh/km, while for the additional dummy segment one 
defines ρ̂6,1 = 0 veh/km.

Lateral flows fi,j are computed as u–*, via the control law (Equa-
tion 21) and are then applied directly in the conservation law (Equa-
tion 1) of the simulation model, while longitudinal flows qi,j are 
obtained from Equations 29 through 31 as in the no-control case.

From inspection of the resulting contour plots in Figure 5b, one 
can see that the controller is capable of avoiding the creation of con-
gestion. This finding is the result of the fact that during the period 
characterized by high demand, the density at the bottleneck area is 
maintained at its critical value.

The optimal lateral flows are distributed quite homogeneously 
in the whole application area (see Figure 6b), thus avoiding high  
lane-changing flows close to the lane-drop location. Moreover, since 
all densities remain undercritical, the capacity drop phenomenon 
does not appear, and the system operates at the bottleneck capacity 
during the whole peak period (see Figure 7b). In this scenario, 
one obtains a TTT = 145.7 veh • h, which is a 22% improvement 
with respect to the no-control case.
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However, as can be seen from Figure 8 (a), at the bottleneck area, 
the flow exiting Lane 3 is always higher than the flow exiting Lane 2, 
for any value of total flow. This finding is a result of the higher value 
of critical density used as a constant set point in the application of 
this control strategy.

Application of Proposed Feedback Control Strategy 
for Density Distribution at Bottlenecks

Now, the proposed control strategy aiming at distributing the total 
density at a bottleneck area over the lanes according to a given policy 
is tested. The set point vector ŷ

–
(k) is computed via the functions 

depicted in Figure 2 with the use of a quadratic form for ρ̂6,2(k) and 
a linear term for ρ̂6,3 according to
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The same configuration is maintained for the controlled system 
as in the previous case, computing the lateral flow as u–* via the 
feedback–feedforward control law in Equation 21, using Equation 23, 
however, to compute the feedforward term.

Similar to the previous case, the resulting contour plots in Fig-
ure 5c illustrate that the controller also avoids congestion and hence 
the capacity drop phenomenon during the whole peak period (see 

Figure 7c), while lateral flows are distributed quite homogeneously in 
the whole application (see Figure 6c). For this scenario, one obtains 
a TTT = 146.7 veh • h, which is a 21.4% improvement with respect to 
the no-control case.

In this case, however, one can see from Figure 8b that at the bot-
tleneck area, the flow exiting Lane 2 is higher than the flow exiting 
Lane 3 for lower values of total flow (i.e., when the total flow is lower 
than about 3,500 veh/h); whereas, for higher values of total flow, 
the flow in Lane 3 exceeds the flow in Lane 2 until capacity flow 
is reached simultaneously. In Figure 8b, there are three equilibrium 
values (circled) for outflows at each lane, which can be identified 
as areas in which the marks appear thicker, which are representa-
tive of the respective periods of simulation characterized by low, 
intermediate, and high traffic demand (see Figure 4). The observed 
behavior is in full accordance with the goals of the policy used for 
lane distribution.

Conclusions

This paper presents an extended version of an optimal control strat-
egy for lane-changing-based traffic control at bottleneck locations 
(previously proposed in Roncoli et al.) by including together with 
the capability to operate a motorway traffic system at its capacity, 
the possibility to distribute the traffic over the lanes at the bottleneck 
area according to a given policy (24). Simulation results demonstrate 
the effectiveness of the proposed control strategy in improving traffic 
performance, while also pursuing a prescribed lane flow distribution 
at the bottleneck area.

This method is currently being extended to account for unmeasured 
demand flows and incomplete measurements, as well as to incor-
porate a mainstream or ramp flow control strategy. Moreover, the 
case of mixed traffic, in which manual vehicles may not receive or 
may not follow the prescribed lane-changing commands, is being 
examined.
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